Unified Extensible Firmware Interface
Specification

Version 2.7
May 2017

Unified Extensible Firmware Interface Specification

Acknowledgments

The materialContained herein is not a license, either expressly or impliedly, to any intellectual property owned
orControlledBy any of the authors or developers of this material or to anyContribution thereto. The
materialContained herein is provided on an "AS IS"Basis and, to the maximum extent permittedBy applicable law,
this information is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material hereby
disclaim all other warranties andConditions, either express, implied or statutory, including,But not limited to, any (if
any) implied warranties, duties orConditions of merchantability, of fitness for a particular purpose, of accuracy
orCompleteness of responses, of results, of workmanlike effort, of lack of viruses and of lack of negligence, all with
regard to this material and anyContribution thereto. Designers must not rely on the absence orCharacteristics of any
features or instructions marked "reserved" or "undefined." The Unified EFI Forum, Inc. reserves any features or
instructions so marked for future definition and shall have no responsibility whatsoever forConflicts or
incompatibilities arising from futureChanges to them. ALSO, THERE IS NO WARRANTY ORCONDITION OF TITLE,
QUIET ENJOYMENT, QUIET POSSESSION,CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH
REGARD TO THE SPECIFICATION AND ANYCONTRIBUTION THERETO.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR ANYCONTRIBUTION THERETOBE LIABLE
TO ANY OTHER PARTY FOR THECOST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS
OF USE, LOSS OF DATA, OR ANY INCIDENTAL,CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES
WHETHER UNDERCONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY
OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF
THE POSSIBILITY OF SUCH DAMAGES.

Copyright 2017 Unified EFI Forum, Inc. All Rights Reserved.

ii May 2017 Version 2.7

Revision History

Revision Mantis Number / Description Date
27 1779 Adjusting UEFI version to UEFI 2.7 April 2017
2.7 1771BluetoothLE minor fix April 2017
27 1762 UEFI UFS DEVICECONFIG Protocol April 2017
2.7 1751 Update DNS Device Path April 2017
27 1750 Add new data type to EFl Supplicant Protocol April 2017
2.7 1745 NVDIMM Label Protocol April 2017
27 1744 NVDIMMBIlock Translation Table (BTT) Protocol {NewChapter} April 2017
2.7 1730 HIl Popup Protocol April 2017
27 1726 Host and I/0 defense April 2017
2.7 1720 Have Partition driver publish addition information for MBR/GPT April 2017
partition types.
27 1719 Add EFI HTTP Boot Callback Protocol April 2017
2.7 1718 Allow SetData to clear configuration in Ip4Config2/Ip6Config Protocol April 2017
27 1716 Add BluetoothLE ECR April 2017
2.7 1711 Firmware Error Record Update April 2017
27 1707 Clarification of Private Authenticated Variables April 2017
2.7 1701 Add wildcard support to RegisterKeyNotify April 2017
2.7 1690 Reset Notification Protocol Update April 2017
2.7 1689 Secure Boot with Externally Managed Configuration April 2017
27 1685 Key Management Services (KMS) Protocol Enhancement April 2017
2.7 1672 UEFI Variable Enhancements April 2017
27 1654 New AIP Information block for wireless NIC April 2017
2.7 1652 Add DNS device path node April 2017
27 1647 UEFI binding for RISC-V April 2017
2.7 1641 Simplify SecureBoot Revocation and Usage of VerifySignature April 2017
2.7 1641 Simplify Secure Boot Revocation and Usage of VerifySignature April 2017
2.7 1627 Support ASCIl RegEx Patterns in April 2017
EFI_REGULAR_EXPRESSION_PROTOCOL
27 1627 EFI regular expression syntax type definitions April 2017
2.7 1623 New EFI_HTTP_STATUS_CODE enum for 308 Permanent Redirect April 2017
27 1623 New EFI_HTTP_STATUS_CODE enum for 308 Permanent Redirect April 2017
2.6B 1772 Clarify EFI_NOT_READY in Media State of AIP April 2017
2.6B 1767 Incorrect structure definition for EFI_IFR_RESET_BUTTON_OP April 2017
2.6B 1742 Clairfy PK enrolling in user mode April 2017
2.6B 1741 The memory map returnedByBS->GetMemoryMap() mayContain April 2017
impossible values.
2.6B 1739 typos -Broken references link. April 2017

Version 2.7 May 2017 iii

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
2.6B 1729Cleanup of ACPI 2.0 references in UEFI spec April 2017
2.6B 1708 Typos in Imge Decode and Image Ex Protocols April 2017
2.6B 1700 Align ACPI descriptor definitions in PCI I/O and PCI RootBridge /0 April 2017
2.6B 1698 Update to Mantis 1613 - GetNextVariable April 2017
2.6B 1691 Remove/Deprecate SMM Communication ACPI Table April 2017
2.6B 1682 HIl Protocol StatusCodes April 2017
2.6B 1678 Simplify the ACPI Table GUID declarations April 2017
2.6B 1675 section 30.5.1 typo April 2017
2.6B 1668 Duplicate GUID issue - mustChange the Image Decoder Protocol GUID April 2017
2.6B 1655 HTTP errata inConfigure() April 2017
2.6B 1653 Incorrect errorCode value in MTFTP6 April 2017
2.6B 1634 Update to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL TPL restriction April 2017
2.6B 1629 Errata in GetVariable description April 2017
2.6B 1625 Clarification of HTTPBoot wire protocol “HTTPClient” VendorClass April 2017
Option
2.6B 1624 Fix spelling typo in EFI_HTTP_STATUS_CODE April 2017
2.6B 1613 GetNextVariableName Errata April 2017
2.6B 1612 ResetSystem Errata April 2017
2.6B 1609 UEFI Errata - Address Security problems in the Pkcs7Verify Protocol April 2017
2.6B 1608 Enhance EFI_IFR_NUMERIC (Step) April 2017
2.6B 1586 Errors in appendix N for ARM ProcessorContext Information April 2017
2.6B 1584 WIFI errata April 2017
2.6B 1580 Correct some typos April 2017
2.6B 1559 Clarify return value for NULL pointer in LocateProtocol() API April 2017
2.6B 1557 secureBoot and auth variable errata April 2017
2.6B 1556 HTTPv6Boot DHCP Options Errata April 2017
2.6B 1555 USB Function port protocol errata April 2017
2.6B 1554 fix to ecr 1539 April 2017
2.6B 1553 os recoveryBoot option errata April 2017
2.6B 1551 EFIBluetoothConfiguration Protocol Errata April 2017
2.6B 1550 Replace FTP4 dataCallback pointer-to-function-pointer with regular April 2017
function pointer
2.6A SameContent as version 2.6,But with the Adobe “accessibility” feature December 2016
activated so text-to-speech will work.
2.6 1548ClarifyBoot procedure when file name is absent2. January, 2016
26 1547Clarify requirements for setting the PK variable. January, 2016
2.6 1544 DNS lookup API spelling January, 2016
26 1543 ip4/6Config policy errata/2.6 update January, 2016
2.6 1542 UEFI 2.6 supplicant errata January, 2016
26 1539 New EFI_HTTP_ERROR StatusCode December, 2015
iv May 2017 Version 2.7

Revision Mantis Number / Description Date
2.6 1538 UEFI TLS errata December, 2015
2.6 1536 UEFI 2.6 Errata : IMAGE EX Protocol and EFI HIl Image Decoder protocol | December, 2015
Errata
26 1534 EditorialComments against 2.6 Final Draft December, 2015
2.6 1533Bugs in the HTTP usage example December, 2015
26 1523Comments against 2.6 Draft December, 2015
2.6 1522 AArch64Bindings AlignmentBit errata December, 2015
2.6 1521Comment against UEFl.next draft - M1479 December, 2015
2.6 1519 Version for the next UEFI spec is... December, 2015
26 1518Comments against 2.6 Draft December, 2015
2.6 1516 EditorialComments against 2.6 Draft December, 2015
26 1509 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL Response December, 2015
to unsupported ParameterTypeGuid
2.6 1508 Lack of flexibility and realism in exception levelChoice whenCalling December, 2015
runtime services
2.6 1507 Insufficient qualification of page attributes for AArch64 December, 2015
2.6 1502 PCI 10 Define how to use the Address Translation Offset for systems that | November, 2015
are not mapped 1:1
2.6 1501 Define the usage of the "Address Space Granularity" field is defined in November, 2015
the PCI Root IO
2.6 1496Bad table reference in 13.2 November, 2015
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()
26 1494 Errata against UEFI 2.5 Properties Table November, 2015
2.6 1493 Updates to the SD_MMC_PASS_THRU interface November, 2015
26 1492 wireless macConnection protocol |l errata November, 2015
2.6 1491 supplicant errata November, 2015
2.6 1480 Refine Progress description in EFI_KEYWORD_HANDLER_PROTOCOL November, 2015
2.6 1479 UEFI Properties TableClarification November, 2015
2.6 1471 SD/eMMC PassThru Protocol update (follow up to mantis 1376) November, 2015
26 1467 New API - EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL November, 2015
26 1466 UEFI Ram disk protocol November, 2015
2.6 1452 Minor edits to 0001409 November, 2015
2.6 1414 Generalisation ofCommunication method in Appendix O November, 2015
2.6 1409 EFI HIl ImageEX protocol and EFI HIl Image Decoder protocols November, 2015
2.6 1408 EFI HIl Font EX protocol and EFI HIl Font Glyph Generator protocols November, 2015
26 1402 Add EFI_BROWSER_ACTION_SUBMITTED November, 2015
2.6 1383 Adding an EraseBlocks() function to a new protocol November, 2015
2.6 1376 SD/eMMC PassThru Protocol November, 2015
2.6 1357 ARMCPER extensions November, 2015
2.5A 1481 new networkConfig2 protocol data structure has a magic number October 2015
25A 1477 AllowCloseEvent toBeCalled within the Notification Function October 2015
Version 2.7 May 2017

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
25A 1476 Update to Indicate thatCloseEvent UnregistersCorresponding Protocol October 2015
Notification Registrations
25A 1472 ATA Pass Thru Errata October 2015
25A 1469 UNDI Errata - add more statistics October 2015
2.5A 1468 Errata on UEFI Supplicant protocol October 2015
25A 1451 Memory MapConsistency October 2015
2.5A 1441 UEFI2.5A — UNDI ProtocolClarification October 2015
25A 1426 UEFI 2.5 typo October 2015
2.5A 1424 Incorrect link in Section 22.1 FMP Getlmagelnfo() October 2015
2.5A 1421 Misc HTTP API typos October 2015
2.5A 1420 GetNextHighMonotonicCountClarification October 2015
25A 1419 Supplicant protocol using same GUID as TLS protocol October 2015
25A 1418 Inconsistent issues in DNS October 2015
25A 1417 Add HttpMethodMax to EFI_HTTP_METHOD enum October 2015
2.5A 1410Clarifications in appendix O October 2015
2.5A 1407 Networking errata - EFI_HTTP_STATUS typos October 2015
2.5A 1405 Errata in table 271 in Appendix O October 2015
25A 1399Clarification for EFI_BROWSER_ACTION_REQUEST_RECONNECT October 2015
2.5A 1398 Errata update to the runtime GetVariable operation documentation October 2015
25A 1388 Missed memory type fixes October 2015
2.5A 1381 Remove informativeContent in 12.6.1 October 2015
25A 1365 7.4 Virtual Memory Services lists Section 2.3.2 through Section 2.3.4. October 2015
incorrectly
2.5A 1363 Short form URI device path October 2015
25A 1209 UEFI networking APIChapter 2.6 requirements errors October 2015
2.5A October 2015
25 1364 Extend supplicant data type for EAP April, 2015
25 1362 HTTPBoot typos/bugs April, 2015
25 1360 Vendor Range for UEFI memory Types April, 2015
25 1358 v2.5 amendment and v2.4 errata (missed implementation of Mantis April, 2015
1089)
25 1353 SATA Device Path Node Errata April, 2015
25 1352 Errata for 1263 and 1227
25 1350 Keyword Strings Errata April, 2015
25 1348 ERRATA - Section 10.12 April, 2015
EFI_ADAPTER_INFORMATION_PROTOCOLCustom Types
25 1347Boot Manager Policy Errata April, 2015
25 1346 Mantis 1288 Errata April, 2015
25 1345 EFI_USB2_HC_PROTOCOL Errata April, 2015
25 1342 DNS6 - friendly amendment for reviewBy USWG April, 2015
vi May 2017 Version 2.7

Revision Mantis Number / Description Date
25 1341 DNS4 - friendly amendment toBe reviewedBy USWG April, 2015
25 1339 Errata in section 7.2.3.2 Hardware Error Record Variables April, 2015
25 1309 Disallow EFI_VARIABLE_AUTHENTICATION from SecureBoot Policy April, 2015
Variables
25 1308 Fix typo's found in the final/published UEFI 2.4 ErrataB spec February, 2015
25 1304 Add IMAGE_UPDATABLE_VALID_WITH_VENDOR_CODE to FMPCheck February, 2015
image
25 1303 Update the UEFI version to reflect new revision February, 2015
25 1288 The Macro definitionConflict in February, 2015
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute() in UEFI 2.4B
25 1287 Errata: EFI Driver Supported EFI Version not matching the spec revision | February, 2015
25 1269Configuration Routing Protocol andConfiguration String Updates February, 2015
25 1268 RAM Disk UEFI Device Path Node February, 2015
25 1266 UEFI.Next Feature - IP_CONFIG2 Protocol February, 2015
25 1263Customized Deployment of SecureBoot February, 2015
25 1257Correct the typedef definitions for EFI_BOOT_SERVICES/ February, 2015
EFI_RUNTIME_SERVICES--Reiterate
25 1255 UFS Device Path Node Length February, 2015
25 1254 SD Device Path February, 2015
25 1251 EFI_REGULAR_EXPRESSION_PROTOCOL and EFI_IFR_MATCH2 HIl op- | February, 2015
code
25 1244 sections of the spec mis-arranged February, 2015
25 1234 UEFI.Next feature - SmartCard edge protocol February, 2015
25 1227 UEFI.Next feature - Platform recovery February, 2015
25 1224 UEFI.Next - Adding support for No executable data areas February, 2015
25 1223 UEFIL.Next networking features -Chapter 2.6 requirements February, 2015
25 1222 UEFI.Next feature -BMC/Service Processor Device Path February, 2015
25 1221 UEFI.Next feature - REST Protocol February, 2015
25 1220 UEFI.Next feature -Bluetooth February, 2015
25 1219 UEFI.Next Feature - UEFI TLS API February, 2015
25 1218 UEFI.Next feature - EAP2 Protocol February, 2015
25 1217 UEFI.Next feature - WIFI support February, 2015
25 1216 UEFl.next feature - DNS version 6 February, 2015
25 1215 UEFI.Next feature - DNS version 4 February, 2015
25 1214 UEFI.Next feature - HTTPBoot February, 2015
25 1213 UEFI.Next feature - HTTP helper API February, 2015
25 1212 UEFI.Next feature - HTTP API February, 2015
25 1204 new UEFI USB Function I/0 Protocol addition to the UEFI spec February, 2015
25 1201 Exposing Memory Redundancy to OSPM February, 2015
25 1199 Add NVM Express Pass Thru Protocol February, 2015
Version 2.7 May 2017 Vii

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date

25 1191 Add new SMBIOS3_TABLE_GUID in EFI_CONFIGURATION_TABLE February, 2015
25 1186 AArch64BindingClarifications and errata February, 2015
25 1183 New Protocol with 2 Function for PKCS7 Signature Verification Services | February, 2015
25 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart February, 2015
25 1167 Persistent Memory Type support February, 2015
25 1166 hash 2 protocol errata February, 2015
25 1163 InlineCryptographic Interface Protocol proposal February, 2015
25 1159 Proposal for System Prep Applications February, 2015
25 1158 errata -Boot managerClarification February, 2015
25 1147--REDACT February, 2015
25 1121 IPV6 support from UNDI February, 2015
25 1109 SmartCard Reader February, 2015
25 1103 Longer term NewCPER Memory Section February, 2015
25 1091 Clarification of handle to host FMP February, 2015
25 1090 ESRT: EFI System Resource Table andComponent firmware updates February, 2015
25 1071 New EFI_HASH2_PROTOCOL February, 2015
24C 1308 Fix typo's found in the final/published UEFI 2.4 ErrataB spec January 2015
2.4C 1287 Errata: EFI Driver Supported EFI Version not matching the spec revision | January 2015
2.4C 1257Correct the typedef definitions for EFI_BOOT_SERVICES/ January 2015

EFI_RUNTIME_SERVICES
2.4C 1244 sections of the spec misarranged January 2015
24C 1211 EFI_LOAD_OPTION Definition January 2015
2.4C 1209 Errata - UEFI networking APIChapter 2.6 requirements January 2015
2.4C 1205 Errata for Hii Set item January 2015
2.4C 1200 Universal Flash Storage (UFS) Device Path January 2015
24C 1198 EFI_ATA_PASS_THRU_PROTOCOLClarification January 2015
24C 1194 Add EFI_IFR_FLAG_RECONNECT_REQUIRED January 2015
24C 1192Cleanup GUID formatting issues January 2015
2.4C 1186 AArch64BindingClarifications and errata January 2015
2.4C 1185 errata - tcp api January 2015
2.4C 1184 errata - snp modeClarification January 2015
24C 1182 Errata - UEFI URI Device path issue January 2015
2.4C 1174 errata - Error in EFI_IFR_PASSWORD logic flowchart January 2015
24C 1173 EFI_IFR_NUMERIC Errata July 11, 2014
2.4C 1172 EfiACPIMemoryNVS definition missing S4 July 11, 2014
2.4C 1170 Errata pxeBc apiClarifiation July 11, 2014
2.4C 1169 Errata - volatile networking variableCleanup July 11, 2014
24C 1168 MTFTP Errata July 11, 2014
2.4C 1165 Option rom layout errata July 11, 2014
2.4C 1162 Typo in ReinstallProtocolinterface() EFI 1.10 Extension section July 11, 2014
viii May 2017 Version 2.7

Revision Mantis Number / Description Date
2.4C 1150 Missing LineBreakCharacter (HIl Errata) July 11, 2014
2.4C 1147 EFI_USB2_HC_PROTOCOL.AsynciInterruptTransfer() Errata July 11, 2014
2.4C 1141 UEFI errata - ia32/x64 vector register management July 11, 2014
2.4C 1140UEFI Errata - image execution info table July 11, 2014
2.4C 1139 UEFI Errata on the storage securityCommand protocol July 11, 2014
2.4C 1066 Errata--reference to missing table (90) removed July 11, 2014
2.4C 1043 Ability to refresh the entire form [newContent] July 11, 2014
2.4C 1042 AddBrowser Action Request "reconnect” July 11, 2014
2.4B 1146 Typos andBroken links April 17,2014
2.4B 1137 Typographic errors in the 2.4 ErrataB draft April 16,2014
2.4B 1128 URI device path node redux--supersedes (defunct) 1119 April 4,2014
2.4B 1127 USB Errata - unnecessary restriction on UEFI interrupt transfer types March 27, 2014
2.4B 1124 Adding text description for NVMe device node March 27,2014
2.4B 1122Correct misleading language in the UEFI 2.4a specification about the March 27, 2014
EFI_ADAPTER_INFORMATION_PROTOCOL.EFI_ADAPTER_INFO_GET_SUPPO
RTED_TYPES function
2.4B 1120 Make time stamp handlingConsistent around all of the networking API's | March 27,2014
2.4B 1118 Network Performance EnhancementsConcerning Volatile Variables March 27,2014
2.4B 1115Clarification on the usage of XMM/FPU instructions from within a UEFI March 27,2014
Runtime Service on an x64 processor
2.4B 1111 Errors in DisconnectController() returnCode descriptions March 27, 2014
2.4B 1101 Errata — ReinstallProtocolinterface March 27,2014
2.4B 1092Clarification to PCI Option ROM Driver Loading Description March 27, 2014
2.4B 1085 Error--added in missing text approved for 2.4A April 17,2014
2.4B 1014 HlIConfig Access Protocol Errata April 3,2014
24A 1089 Short-termCPER Memory Section errata Nov. 14,2013
24 A 1088 Add revision #define to EFl_FILE_ PROTOCOL Nov. 6, 2013
24A 1085 Issues with Interactive password Nov.14, 2013
24 A 1082 Mistake in 2.3.5.1 / 2.3.6.2 Handoff State Nov. 6, 2013
24A 1081 Update Install Table protocol to deal with duplicate tables Nov. 6,2013
24 A 1079 UEFI 2.4: Remove repetitive "the" (typo) Nov. 6, 2013
24A 1078 Adjust some text for handling EFI_BROWSER_ACTION_CHANGING Nov. 6, 2013
24A 1077 Fix wording in EVT_SIGNAL_EXIT_BOOT_SERVICES Nov. 6, 2013
24A 1076 typo in UEFI v2.3.1d and v2.4 Nov. 6, 2013
24 A 1075Clarifications to Table 88. Device Node Table (Device Node to Nov. 6, 2013
TextConversion)
24A 1074 AddClarifications on DMA requirements for PCI_IO Nov. 6, 2013
24 A 1073 Add requirement for EFI_USB_IO_PROTOCOL Nov. 6, 2013
24A 1066 Errata - ISCSI IPV6 Root PathClarification Nov. 6, 2013
24A 1064 AIP Errata Nov. 6, 2013
Version 2.7 May 2017 ix

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
24A 1063Correction to GPT expression for SizeofPartitionEntry Nov. 6, 2013
24 A 1062 EFI_CERT_X509_GUID does not specify theCertificate encoding Nov. 6,2013
24 A 1061 UEFI 2.4 section 2.6.2 and 2.6.3 don't use protocol Nov. 6, 2013
hyperlinksConsistently
24 A 1060 SlightClarification to FMP Authentication Requirments Nov. 6, 2013
24A 1059Clarification of a return statusCode of HASH protocol Nov. 6,2013
24 A 1058Correct mistake in the system table revision Nov. 6, 2013
24A 1056 text modification to definition of Nov. 6,2013
EFI_FIRMWARE_IMAGE_DESCRIPTOR_VERSION 2
24 A 1055 Disk 10 2 errata Nov. 6, 2013
24A 1054 Deprecate 6 Hash Algorithms with inconsistent usage Nov. 6,2013
24 A 1053 Reduce Name space ofCapsule Result variable to increase performance | Nov. 6, 2013
24A 1035 PCI Option ROM Errata (five figures) Nov. 6, 2013
24 997 Driver Health Protocol errorCodes April 25,2013
24 993 (original ticket--supersededBy 1026)
24 992 Adapter Information Protocol (AIP) April 25,2013
24 991 Greater than 256 NICs support on UNDI April 25,2013
24 968 HIl Forms op-code for displaying a warning message April 25,2013
24 966 Spec typos April 25,2013
24 964 Disk 10 2 Protocol to support Async 10 April 25,2013
24 963 Add new device path node NVM Express devices April 25,2013
24 956 Require network drivers to return EFI_NO_MEDIA April 25,2013
24 946 ForbidCreation of non-spec variables in EFI_GLOBAL_VARIABLE April 25,2013
namespace
24 920 Add a variable for indicating out ofBand key modification April 25,2013
24 905 Need more granularity in EFI_RESET_TYPE to support platform specific April 25,2013
resets
24 1052 UEFI 2.4 Draft April 25th -Corrections to ARM sections May 16, 2013
24 1050 2.4 Draft April 25 has missing text for ECR 1009 May 16, 2013
24 1049 2.4 Draft April 25 has missing text for ECR 1008 May 16, 2013
24 1048Comment against UEFI 2.4 - NVMe related May 16, 2013
24 1047Comment on Feb 25th draft - fix alignment issue May 16, 2013
24 1045 PCI OpROM Device ListChanges to section 14.2 June 28, 2013
24 1044Corrections to Mantis 1015, Interruptible driver diagnostics May 16, 2013
24 1037 Add 2.4 to the system table version May 16, 2013
24 1036Comments on April 25 Draft May 16, 2013
24 1033 HiiConfigAccess->ExtractConfig StatusCodes Errata May 16, 2013
24 1032 HiiConfigRouting->ExtractConfig StatusCodes Errata May 16, 2013
24 1031 NVMe subtypeConflict errata April 25,2013
X May 2017 Version 2.7

Revision Mantis Number / Description Date
24 1029 Method for delivery ofCapsule on disk; Method for reportingCapsule April 25,2013
processing status
2.4 1026 (supersedes 993) Update to the AArch64 proposedBindingChange April 25,2013
24 1024Clarification to the NVMe Device Path text descriptions April 25,2013
24 1023 Definition ofCapsule format to deliver update image to firmware April 25,2013
management protocol
24 1022 adapter information protocol for NIC iSCSI and FCoEBootCapabilities April 25,2013
andCurrentBooot Mode.
2.4 1017 AIP Instance - FCOE SAN MAC Address April 25,2013
24 1016 AIP Instance - Image Update April 25,2013
24 1015 Interruptible driver diagnostics April 25,2013
2.4 1009 Enable hashes ofCertificates toBe used for revocation, and timestamp April 25,2013
support
24 1008 New Random Number Generator / Entropy Protocol April 25,2013
24 1007Create a new Security Technologies section to avoidBlurring with April 25,2013
SecureBoot
24 1002 Timestamp Protocol April 25,2013
2.3.1D 996 UEFI 2.0 version number still in the 2.3.1C spec April 3,2013
2.3.1D 995CSA linkChange April 3,2013
2.3.1D 994 Spec typos April 3,2013
2.3.1D 990 EFI_ATA_PASS_THRU need oneClarification if it supports ATAPI device April 3,2013
231D 989Clarify hot-remove responsibility of aBus Driver April 3,2013
2.3.1D 988 EFI_BLOCK_I02_PROTOCOLBIlocksChild from stopping while doing non- | April 3, 2013
blocking I/0
2.3.1D 987 EFI_BLOCK_I02_PROTOCOL has aCopy pasteBug describing the Token April 3,2013
Parameter
2.3.1D 980 Errata on SNP Media detect April 3,2013
2.3.1D 978 Error Retun IndicatesCapsule requiresBoot Services April 3,2013
2.3.1D 977 missing statement April 3,2013
2.3.1D 976BrowserCallback text update to description April 3,2013
2.3.1D 975 UNDI errata to add missing memory type definitions April 3,2013
2.3.1D 974 UNDI IncorrectCPB function names ECR April 3,2013
2.3.1D 973 UNDI Mem_Map()Clarification April 3,2013
231D 972 ISCSI DHCP6Boot April 3,2013
231D 971 typo April 3,2013
231D 970 Typo section 28.3.8.3.41 EFI_IFR_MODAL_TAG April 3,2013
2.3.1D 965 File 10 Async extenstion April 3,2013
2.3.1D 962 Remove 2.3 table revision number April 3,2013
2.3.1D 960 Typo in netboot6 description April 3,2013
2.3.1D 959 InstallAcpiTable() does not say what to do when an attempt is made to April 3,2013
install a duplicate table
Version 2.7 May 2017 Xi

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
2.3.1D 955Clearing The Platform Key Errata April 3,2013
2.3.1D 954 Loadlmage Errata April 3,2013
2.3.1D 953 Need text definitions for Device Path Media Type Subtype 6/7 April 3,2013
2.3.1D 952Clarification of requirements to update timestamp associated with April 3,2013
authenticated variable
231D 950 IndeterminateBehavior for attribute modifications mayCause security April 3,2013
issues
2.3.1D 949 PCI 10.GetBarAttributes needs adjustment - - Address Space Granularity | April 3,2013
field
2.3.1D 944 Errata - Replace RFC reference April 3,2013
2.3.1D 943 Errata - Proposed updates to required interfaces inChapter 2.6 April 3,2013
231D 942 ExportConfig() description does not make sense April 3,2013
2.3.1D 941 Add OEM StatusCode ranges to EFI StatusCode Ranges Table April 3,2013
2.3.1D 938 InstallMultipleProtocolinterface() is missing StatusCode Returned values | April 3,2013
2.3.1D 935ClarifyChaining requirements with regards to the Platform Key April 3,2013
2.3.1D 934 Missing Figures and typos April 3,2013
2.3.1D 930Clarify usage of EFI Variable Varstores in HIl April 3,2013
2.3.1D 928Best Matching Language algorithm April 3,2013
2.3.1D 926 UEFI Image VerificationClarification April 3,2013
2.3.1D 924 New ErrorCode to handle reporting of IPV4 duplicate address detection April 3,2013
231D 1021 ATA_PASS_THRU on ATAPI device handle. April 3,2013
2.3.1D 1020Clarify Hll variable store definitions. April 3,2013
2.3.1D 1019 Alignment RequirementsClarification April 3,2013
2.3.1D 1018 HIl Font Errata April 3,2013
231D 1013 HIl Errata April 3,2013
2.3.1D 1012 Touchup to text of GPT April 3,2013
2.3.1D 1011 Typo regarding Debug Port in UEFI Spec April 3,2013
2.3.1D 1003 Missing “(* in section 11.7 April 3,2013
2.3.1D 1000Clarification to the IFR_REF4 opcode April 3,2013
231C 921 Length of IPv6 Device Path is incorrect June 13, 2012
2.3.1C 917 UNDI drive does not need toBe initialized as runtime driver June 13,2012
23.1C 915 For x64,Change Floating Point DefaultConfiguration to Double-Extended | June 13,2012
Precision
23.1C 914 Error Descriptor Reset FlagClarification June 13, 2012
23.1C 913 Enum definition does not match what ourCurrentCompilers implement. June 13,2012
231C 912 UEFI 2.3.1 Type June 13,2012
23.1C 909 Update to returnCodes for AllocatePool / AllocatePages June 13,2012
2.3.1C 907 iSCSI Device Path error June 13,2012
23.1C 882 Indications Variable - OS/FW feature &CapabilityCommunication June 13,2012
23.1C 882 Indications Variable - OS/FW feature &CapabilityCommunication June 13, 2012
xii May 2017 Version 2.7

Revision Mantis Number / Description Date
23.1C 874 Provide a mechanism for providing keys in setup mode June 13,2012
2.3.1C 831 PXEBOOtCSA Type definitionCleanup June 13, 2012
2.3.1B 896 Startimage andConnectController returnCodes April 10, 2012
2.3.1B 893 SMMCommunication ACPI Table Update April 10,2012
231B 891Component Name Protocol References April 10,2012
2.3.1B 890 DriveConfiguration Protocol Phantom. April 10,2012
231B 888 typo in EFI_USB_HC Protocol April 10,2012
2.3.1B 887 union is declared twice in same section April 10, 2012
23.1B 885 Errata in the GPT Table structureComment April 10,2012
2.3.1B 884 EFI_BOOT_KEY_DATA relies on implementation-definedBehavior April 10, 2012
23.1B 881 netboot6 - multicast versus unicast April 10,2012
2.3.1B 880 netboot6Clarification/errata April 10, 2012
23.1B 879 Reference to unsupported specification in SCSIChapter (14.1) April 10,2012
2.3.1B 878 Updated HIl "Selected Form"Behaviors to Reflect NewCallback Results April 10, 2012
23.1B 877 TableChecksum updateBy the ACPI_TABLE_PROTOCOL.InstallAcpiTable | April 10,2012
2.3.1B 876 ToClarify EDID_OVERRIDE attribute definitions and expected operations | April 10, 2012
23.1B 873 Section 9.3.7 incorrectly assumes that all uses ofBBS device paths are April 10,2012
non-UEFI
231B 872Change to SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify/ April 10, 2012
UnregisterKeyNotify
231B 871 Typo in InstallMultipleProtocolinterfaces April 10,2012
2.3.1B 870Clarify FrameBufferSize definition under April 10, 2012
EFI_GRAPHICS_OUTPUT_PROTOCOL_MODE struct
23.1B 869 Reference to FIPS 180 inChapter 27.3 is obsolete and incorrect April 10,2012
2.3.1B 867Clarify requirment for use of EFI_HASH_SERVICE_BINDING_PROTOCOL April 10, 2012
231B 866 PK, KEK, db, dbx relationsClarification April 10,2012
2.3.1B 865 Modify Protective MBRBootIndicator definition April 10, 2012
23.1B 864 Typo in Question-Level Validation section April 10,2012
2.3.1B 863 Attributes of the Globally Defined Variables April 10, 2012
23.1B 862 User identity typo April 10,2012
2.31B 861 Globally Defined Variables Errata April 10, 2012
2.3.1B 858 Superfluous and incorrect image hash description April 10,2012
2.31B 857 Absolute pointer typo April 10, 2012
231B 855Clarification of UEFI driver signing/Code definitions April 10,2012
2.31B 853 The EFI_HASH_PROTOCOL.Hash() description needsClarification on April 10, 2012
padding responsibilities
231B 852 Various EFI_IFR_REFRESH_ID errata. April 10,2012
2.3.1B 851 For EFI_IFR_REFRESH opcode,Clarify Refreshinterval = 0 means no auto- | April 10, 2012
refresh.
2.3.1B 850Clarification of responsibility for array allocation in EFI_HASH_PROTOCOL | April 10, 2012
Version 2.7 May 2017 Xiii

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
23.1B 849 IFR EFI_IFR_MODAL_TAG_OP is also valid under EFI_IFR_FORM_MAP_OP | April 10,2012
2.3.1B 848Clarification of semantics of SecureBoot variable April 10,2012
2.3.1B 847 When enrolling a PK, the platform shall not require a reboot to leave April 10, 2012
SetupMode
231B 845 EFI_SCSI_PASS_THRU_PROTOCOL replacement April 10, 2012
2.3.1B 842 Text to explain how the UEFI revision is referred April 10,2012
2.3.1B 836 StructureComment for EFI_IFR_TYPE_VALUE references unknown value | April 10, 2012
type.
231B 828 Network Driver Options April 10,2012
2.31B 826Comments against Mantis 790 April 10, 2012
23.1B 825 DMTF SMCLP errata April 10,2012
2.31B 819 Mantis 715 was not fully implemented April 10, 2012
231B 812 Errata — DUID-UUID usage April 10,2012
2.3.1B 809 Errata — Messaging Device PathClarification April 10, 2012
2.3.1B 808 Errata —-Boot File URL April 10,2012
2.3.1B 807 Give specific TPL rules to Stall()Boot services April 10, 2012
2.3.1B 771 SHA1 and MD5 references April 10,2012
2.3.1A MinorCorrections in toes to tickets 772, 785, 794, 804, also September 7,
formattingCorrection for _WIN_CERTIFICATE_UEFI_GUID typedef’s 2011
parameters
2.31A 820 Driver Health Needs to have Mantis 0000169 implemented August 17,2011
2.31A 819 ECR715 was not fully implemented August 17,2011
2.31A 806 Text update to Driver Health Description -Clarify role of user interaction August 17,2011
2.31A 805Correct Wrong Palette Information in 28.3.7.2.3 example August 17,2011
23.1A 804ClarifyContraints and alternatives when enrolling PK, KeK, db or dbx keys | August 17,2011
2.31A 803 Fix AcpiExp device node text description. August 17,2011
23.1A 801ClarifylFR Opcode Summary and Description #4 August 17,2011
2.31A 800Clarify IFR Opcode Summary and Description #3 August 17,2011
231A 797Clarify IFR Opcode Summary and Description #2 August 17,2011
2.31A 796Clarify IFR Opcode Summary and Description #1 August 17,2011
231A 795 Typo in ReadKeyStrokeEx() August 17,2011
2.31A 794 Incomplete text describingClearing of Platform Key August 17,2011
23.1A 793 Inconsistent wording about RemainingDevicePath August 17,2011
2.31A 790 Add warning to ReadKeyStrokeEx for partial key press August 17,2011
23.1A 789Clarify HIl opcode definition August 17,2011
2.31A 788 SasEx entry in Table 86-Device Node TableContains optional Reserved August 17,2011
entry that does not exist in device path
23.1A 786 PCI I/0 Dual AddressCycle attributeClarification August 17,2011
2.31A 785 Allowing more general use of UEFI 2.3.1 Variable time-based August 17,2011
authentication
23.1A 780 Errata in returnCode descriptions August 17,2011
Xiv May 2017 Version 2.7

Revision Mantis Number / Description Date
231A 778 EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() Errata August 17,2011
2.3.1A 777 Specified signature sizes incorrect in Section 27.6.1 August 17,2011
2.3.1A 776Clarifycomputation of EFI_VARIABLE_AUTHENTICATION_2 hash value August 17,2011
231A 774 Define EFI_BLOCK_IO_PROTOCOL_REVISION3 August 17,2011
231A 773Clarify the value for opcode EFI_IFR_REFRESH_ID_OP August 17,2011
231A 772 Definition of EFI_IMAGE_SECURITY_DATABAE_GUID incorrect August 17,2011
231A 770 Remove references to UEFI 2.1 spec August 17,2011
2.3.1A 767 The ReadBlocks function forBlocklO andBlocklO2 need synchronization | August 17,2011
23.1A 212 (revisit) final sentence section 28.2.15 missing final words. April 21,2011
231 765 ECR to limit the hash and encryption algorithms used with April 5,2011
PKCSCertificates
231 762 DevicePath in the Image Execution Information Table. April 5,2011
231 761 Table 195. Information for Types of Storage April 5,2011
231 760 SuggestedChanges to 2.3.1 final draft spec April 5,2011
231 759 UEFI Errata - wincerts for rest of hash algorithms April 5,2011
231 755 Errata in Legacy MBR table and Legacy MBR GUID April 5,2011
231 754 USB timeout parameter mismatch. April 5,2011
231 751 Fix USB HC2 erroneous references to IsSlowDevice March 11, 2011
231 750 Fix section 27.2.5 "related definitions” re: RSA public key exponent March 11, 2011
231 749 Fix Table 10 (Global Variables) WithCorrect Attributes March 11, 2011
231 748Clarify Standard GUID Text Representation March 11, 2011
231 744 ProcessorContext information structure definition notClear March 11, 2011
231 741 Errata:Corrected text for section 7.2.1.4 step 7 March 11, 2011
231 740 Errata: signatureheadersize inconsistencyCorrections April 6, 2011
231 736 Insert SMMCommunication ACPI Table and related data structures to the | April 5, 2011
UEFI Specification
231 735Clarification on Tape Header Format March 11, 2011
231 734 SecureBoot variable April 5,2011
231 733 Errata: 27.6.1 signatureheadersize definition March 11, 2011
231 732 Amendment to Mantis 711: section 7.2.1.6 March 11, 2011
231 729 Errata:Clarification of Microsoft references in appendix Q March 11, 2011
231 728 Netboot 6 errata - DUID-UUID March 11, 2011
231 727 Errata on returnCode for User Info Identity policy record March 11, 2011
231 726 Errata/clean-up of EFI_DHCP4_TRANSMIT_RECEIVE_TOKEN definition March 11, 2011
231 724 SetVariable Update 2 March 11, 2011
231 723 User Identification (UID) Errata — EFI User Manager Notify & April 5,2011
EnrollClarification
231 722 User Identification (UID) Errata —Credential Provider EnrolIClarification April 5,2011
231 721 User Identification (UID) Errata — SetIinfoClarification March 11, 2011
231 720 User Identification (UID) Errata —Credential Provider EnrolIClarification March 11, 2011
Version 2.7 May 2017 XV

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
231 716 EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget() IN OUT March 11, 2011
parameter Target input value shallBe OxFFs
231 715CPER Record and section fieldClarification March 11, 2011
231 713 Remove the errata revision from the EFI_IFR_VERSION format. March 11, 2011
231 711 SetVariable Update March 11, 2011
231 709 NewcCallback() Action Requests Related To Individual Forms. Feb. 3,2011
231 708 Errata (non-blockingBLOCK 10) April 5,2011
231 707 Errata revision in the EFI_IFR_VERSION format Feb. 3,2011
231 705 REPC signature definition stillConfusing Feb. 3, 2011
231 704 Unload() definition is wrong Feb. 3,2011
231 702Clarifications on Variable Storage for Questions Feb. 3, 2011
231 696 Update System Table with this new #define for Feb. 3,2011
EFI_SYSTEM_TABLE_REVISION
231 695 Add Port Ownership probing Feb. 3, 2011
231 687 Update System Table with this new #define for 2.3.1 Jan. 17,2011
231 686 HII -Clarify FormsBrowser 'standard’ user interfactions. Feb. 3, 2011
231 685 HIl - New op-code to enable event initiated refresh ofBrowserContext Feb. 3,2011
data
231 682 [UCST] Modal Form Feb. 3,2011
231 681 Typo: Pg. 56 Jan. 17,2011
231 680 Netboot6 handleClarification Jan. 17,2011
231 679 UEFI Authenticated Variable & Signature Database Updates Jan. 17,2011
231 678 Section 27.6.2: Imagehash reference needs toBe removed Jan. 17,2011
231 677 Section 27.2.5 & 27.6.1: Typo in X509 Signature Type Jan. 17,2011
231 674 Section 3.2: Missing variable type for SetupMode variable Jan. 17,2011
231 671 Errata; USB device path example is incorrect Jan. 17,2011
231 668 LUN implementations are notConsistent Feb. 3, 2011
231 661 USB 3.0 Updates Oct. 29,2010
231 645 Non-blocking interface forBLOCK oriented devices (BLOCK_IO_EX Oct. 29, 2010
transition toBLOCK_IO_2)
231 634 FormsBrowser DefaultBehavior Jan. 17,2011
231 634 FormsBrowser DefaultBehavior Oct. 29, 2010
231 616 Security ProtocolCommand to support encrypted HDD Jan. 17,2011
231 616 Security ProtocolCommand to support encrypted HDD Oct. 29, 2010
231 612 UEFI system Partition FAT32 data Region Alignment Oct. 29, 2010
231 484 Key Management Service Protocol Oct. 28,2010
231 484 Key Management Service (KMS) Protocol Oct. 29, 2010
231 478 (REVISIT) Update to ALTCFG references March 11, 2011
23D 667Clarification to the UEFIConfiguration Table definition Oct. 28, 2010
Xvi May 2017 Version 2.7

Revision Mantis Number / Description Date
23D 664 Appendix update for IPV6 networkBoot Oct. 28, 2010
23D 663 Update ARM PlatformBinding to allow OS loader to assume unaligned Nov. 10, 2010
access support is enabled
23D 662 ARM ABI errata Oct. 28, 2010
23D 659Clarify section length definition in the error record Oct. 28, 2010
23D 653 Errata to the Appendix N (Common Platform Error Record) Oct. 28, 2010
23D 652Clarification to the TimeZone value usage Oct. 28, 2010
23D 651 update to IPSec for tunnel mode support Oct. 28, 2010
23D 650 networking support errata Oct. 28,2010
23D 638 Add facility for dynamic IFR dynamicCross-references Oct. 28, 2010
23D 538 IPV6 PXE Oct. 28, 2010
2.3C 640 String ReferenceCleanup July 14,2010
2.3C 639Callback() does not describe FORM_OPEN/FORM_CLOSEBehavior July 14,2010
2.3C 637Clarification for Date/Time Question usage in IFR expressions. July 14,2010
2.3C 636 Mistaken Reference to "Date" inside ofBoolean question description July 14,2010
2.3C 635 Missing GUID label forConfig Access protocol July 14,2010
2.3C 633 Explicitly Specify ACPI Table Signature Format July 14,2010
2.3C 632ClarifyBlock 10 ReadBlocks and WriteBlocks functions handling of media | July 14, 2010
stateChange events
2.3C 625 Minor typo in surrogateCharacter description section July 14,2010
2.3C 622 Identify() function errata July 14,2010
2.3C 621 Typos in an EFI_HIl_CONFIG_ACCESS_PROTOCOL.Callback() member July 14,2010
2.3C 620Carification of need for Path MTU support for IPV4 and IPV6 July 14,2010
23C 613 PAUSE Key July 14, 2010
2.3C 611 LanguageCorrection requested for InstallProtocolinterface() and July 14,2010
InstallConfigurationTable(), Ref# 583
23C 610 RSA data structureClarification July 14,2010
2.3C 609 Startimage returnCode update July 14,2010
2.3C 583 How do we know an EFI_HANDLE is Valid/Invalid July 14,2010
2.3C 508 Update networking references, incl ipv6 July 14,2010
2.3B 608 more media detectClean-up Feb. 24,2010
2.3B 605Clarify user identity Find API Feb. 24,2010
2.3B 601 UNDI update as part of media detectChanges Feb. 24,2010
2.3B 600 Update toConfigAccess/ConfigRouting Feb. 24,2010
2.3B 598 ARP is only an IPV4Concept. Feb. 24,2010
2.3B 590 Media detectClean-up Feb. 24,2010
Version 2.7 May 2017 XVii

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date

2.3B 589 Device path representation of IPv4/v6 text Feb. 24,2010
2.3B 588 UEFI User Identity - ReturnCodes Feb. 24,2010
2.3B 587 UEFI User Identity - NamingConsistency Feb. 24,2010
2.3B 586Clarification of PXE2.1 specification for IPV4 interoperability issues Feb. 24,2010
2.3B 585 Errata to EFI_IFR_SET op-code Feb. 24,2010
2.3B 584 EFI_PXE_BASE_CODE_DHCPV6_PACKET missing for pxeBc protocol Feb. 24,2010
2.3B 583 How do we know an EFI_HANDLE is Valid/Invalid Feb. 24,2010
2.3B 580 ACPI_SUPPORT_PROTOCOLClarifications related to FADT and the DSDT/ | Dec. 15, 2009

FACS

2.3B 578 ATA Passthrough updates / questions Dec. 15, 2009
2.3B 577Clarifications on the user identity protocol Dec. 15, 2009
2.3B 576Clarifications in the Routing Protocol Dec. 15, 2009
2.3B 575 Machine hand-off/MP state modification Feb. 24,2010
2.3B 574 Add an "OPTIONAL" tag to a parameter in NewPackageList Dec. 15, 2009
2.3B 573 EFI_DESCRIPTION_STRING and EFI_DESCRIPTION_BUNDLE adjustments | Feb. 24,2010
2.3B 572 EFI_IFR_SECURITY shouldBe EFI_IFR_SECURITY_OP in Table 194 Dec. 15, 2009
2.3B 568 ATA_STATUS BLOCK name errata Dec. 15, 2009
2.3B 567 Various miscellaneous typos/updates Feb. 24,2010
2.3B 566 Minor update to HIl->NewString function description Dec. 15,2009
2.3B 560Correct erroneous example in ExtractConfig() Dec. 15, 2009
2.3B 559 Extraneous “default” tag in EFI_IFR_SECUITY grammar Dec. 15, 2009
2.3B 558Clarify VLANConfig publication requirements Dec. 15, 2009
2.3B 557Corrected Image Execution Information omission & ambiguity Dec. 15, 2009
2.3B 556 additional IPSec errata/issues Dec. 15, 2009
2.3B 549Binary prefixChange Dec. 15, 2009
2.3B 547Clean-Up In HIl Sections Dec. 15, 2009
2.3B 546 typo in GOP definiton Dec. 15, 2009
2.3B 545 Action parameter of the EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBack() | Dec. 15,2009
2.3B 542 Device Path DescriptionChanges Dec. 15, 2009
2.3B 540 Register name usage Dec. 15, 2009
2.3B 539CHAP node fix for iSCSI Dec. 15, 2009
2.3B 537 Add missing ACPI ADR Device Path Representation Dec. 15, 2009
2.3B 536 IPSec errata Dec. 15, 2009
2.3B 534 Size of Partition Entry restriction Dec. 15, 2009
2.3B 533 GPT editorialCleanup Dec. 15, 2009
2.3B 532 “LegacyBIOSBootable” GPT attribute Dec. 15, 2009
2.3B 531Clarify HIl Variable Storage Dec. 15, 2009
2.3B 519 AddConsole table (chapt 11) for Dec. 15, 2009

EFI_SIMPLE_TEXST_INPUT_EX_PROTOCOL

Xviii

May 2017

Version 2.7

Revision Mantis Number / Description Date
2.3B 518 Typos in the UEFI2.3 specification Feb. 24,2010
2.3B 515 Authenticated VariablesClarification Feb. 24,2010
2.3B 514 HllConfiguration String SyntaxClarification Feb. 24,2010
2.3B 507Clarify ACPI Protocol’s position onChecksums Dec. 15, 2009
2.3B 479 TPM guideline added to section 2.6.2 Dec. 15, 2009
2.3B 476 Text adjustment toConfigAccess &ConfigRouting Dec. 15, 2009
2.3B 460 Section 2.6 languageChange Dec. 15, 2009
2.3B 454 Dynamic support of media dectection - network stack Dec. 15, 2009
2.38 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 24,2010
2.3B 301 Errata to the Authentication Protocol Dec. 15, 2009
2.3B 215 previously added to Device Driver (wrong), nowBusDriver (correct) Dec. 15, 2009
2.3A 522Bugs in EFI_CERT_BLOCK_RSA_2048_ SHA256, ISCSI device path,CHAP Sept 15, 2009
device path
23A 518 typos Sept 15, 2009
2.3A 517 IP stack related protocol update Sept 15, 2009
2.3A 516 User Identity ProtocolBugs Sept 15, 2009
2.3A 513 add support for gateways in ipv4 & ipv6 device path nodes Sept 15, 2009
2.3A 506 TCP6/MTFTP6 StatusCode Definition Sept 15, 2009
2.3A 505 TCP4/MTFTP4 statusCodeS Sept 15, 2009
2.3A 490Correction 28.2.5.6, Table 185. Information for Types of Storage Sept 15, 2009
2.3A 478 Update to ALTCFG references Sept 15, 2009
2.3A 477 Text adjustment toConfigAccess/ConfigRouting Sept 15, 2009
23 463 Update EFI_IP6_PROTOCOL.Neighbors() API May 7, 2009
23 462 ExitBootServices timers deavtivation May 7, 2009
23 4611P4 Mode Data definition update May 7, 2009
23 460Chapter 2.6 language update May 7, 2009
23 457Change KeyData.PackedValue to 0x40000200, page 63. May 7, 2009
2.3 456 How to handle PXEBoot w/o NIl Section 21.3 May 7, 2009
2.3 454 Dynamic support of media detection - network stack May 7, 2009
23 453 Errata to support dynamic media detection - UNDI May 7, 2009
2.3 452 Support to dynamically detect media errata - SNP May 7, 2009
23 450 Missing opcode headers and formatting, section 28.3.8.3.x. May 7, 2009
23 449 Add missing EFI_IFR_GET, EFI_IFR_SET and EFI_IFR_MAP to the May 7, 2009
syntax.Section 28.2.5.7.
23 448 Section 28.2.5.4 Questions, Syntax, Update question-option-tag; Add May 7, 2009
EFI_IFR_READ and EFI_IFR_WRITE in the question syntax.
Version 2.7 May 2017 XiX

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
23 447Section 28.2.5.11.2 Moving Forms, Update line that starts with May 7, 2009
EFI_IFR_FORM to: EFI_IFR_FORM or EFI_IFR_FORM_MAP (and all references in
EFI_IFR_REF)
2.3 446 Section 28.2.5.2 Forms, Syntax,Change 3rd line to: May 7, 2009
form := EFI_IFR_FORM form-tag-list |
EFI_IFR_FORM_MAP form-tag-list
23 445 Table 194: EFI_IFR_FORM_MAP_OP, 2ndColumn shouldBe 0x5d (not May 7, 2009
05xd)
2.3 444 Form Set Syntax: Section 28.2.5.1.1, section shouldBe subheading, not May 7, 2009
heading level 5; Section 28.2.5.1, Syntax, line 3, text after := is not aligned with
other texton line 2, 4
23 443 Section 28.3.8.3.38, EFI_IFR_MAP, Prototype, line 4, outdent 2 spaces. May 7, 2009
23 442 Section 28.3.8.3.64, EFI_IFR_SET, Prototype, lines 3-8, indentBy 2 spaces | May 7, 2009
23 440Change the defined type of EFI_STATUs from INTN to UINTN May 7, 2009
23 439 Incorrect definitions of UEFI_CONFIG_LANG and UEFI_CONFIG_LANG_2 Feb 25, 2009
in UEFI 2.3 Feb18 draft
2.3 438 UEFI 2.3 Feb 13 Draft:Chapter 28 Formatting Issues Feb 18, 2009
2.3 437 Errata to 2.3 draft material from UEFI Spec 2_3_Draft_Jan29 Feb 18, 2009
23 436 UEFI 2.3 split Figure 88 into 3 figures Feb. 12,2009
23 435 Partition SignatureClarification Feb. 12, 2009
23 434 UEFI 2.3 Feb Draft: 28.3.8.3.58 Feb. 12,2009
23 432 UEFI 2.3 Feb Draft: Appendix M. Feb. 12, 2009
23 431 UEFI 2.3 Feb Draft: Section 30.4 Feb. 12,2009
23 418Change Appendix O from "UEFI ACPI Table" to "UEFI ACPI Data Feb 18, 2009
23 413Correct the definition of UEFI_CONFIG_LANG Feb 18, 2009
23 410 UNDIBuffer usage Feb 18, 2009
23 408 ARMBIndingCorrections Feb. 12,2009
23 406 Missing EFI System Table Revision In UEFI 2.3 Draft Feb. 12, 2009
23 395 New "Non-removable MediaBootBehavior" section Feb. 12,2009
23 394 Omission in EFI_USB2_HC_PROTOCOL Feb. 12,2009
23 388 Add HllCallback types (FORM_OPEN, FORM_CLOSE) when a form is Feb. 12,2009
opened orClosed.
23 376 Add ARM processorBinding to UEFI Jan. 12, 2009
23 326 Add Firmware Management Protocol Feb. 12, 2009
2.2A 429 EFI_HASH_SERVICE_BINDING_PROTOCOL GUID define misses _GUID Feb. 12,2009
2.2A 404 RemoveConstraint form EFI_TIME.YearComment Feb. 12, 2009
2.2A 400 FreePool() description error Feb. 12,2009
2.2A 393 UEFI 2.1/2.2Boot ManagerBehaviorClarification Feb. 12, 2009
2.2A 392 MBR errata in UEFI 2.2 Feb. 12,2009
2.2A 391 Polarity of INCONSISTENT_IF and NO_SUBMIT_IF IFR opcodes wrong Feb. 12, 2009
2.2A 390 UEFI 2.2 Miscellaneous Hll-related errata Feb. 12,2009

XX

May 2017

Version 2.7

Revision Mantis Number / Description Date
2.2A 389 UEFI 2.2 Hll-Related Formatting Issues Feb. 12, 2009
2.2A 387 UEFI 2.1/UEFI 2.2A (ch. 12) Feb. 12, 2009
2.2A 384 Fix HIl package description omission. Feb. 12,2009
22A 379 UEFI 2.1/UEFI 2.2 HIl-Related Errata Feb. 12, 2009
2.2A 378 UEFI 2.1 & UEFI 2.2 HIICallbackClarifications Feb. 12,2009
2.2A 377 MissingBLTBuffer figure. Feb. 12, 2009
2.2A 375 Extra periods errata in UEFI 2.2 Feb. 12,2009
22A 374 UEFI 2.1 & UEFI 2.2A (10.7-10.10) Feb. 12, 2009
2.2A 373 UEFI 2.2,Chs. 9.5 & 9.6.2 & 9.6.3 (Device Path) Errata Feb. 12,2009
2.2A 372 UEFI 2.2 remove "Draft for Review” Feb. 12, 2009
2.2A 371 UEFI 2.1 & UEFI 2.2 Typos (ch. 10) Feb. 12,2009
22A 370 EFI_SYSTEM_TABLE Errata (UEFI 2.1/UEFI 2.2) Feb. 12, 2009
2.2A 368 EFI_FONT_DISPLAY_INFO.Fontinfo description incorrect Feb. 12,2009
2.2A 366 UEFI 2.x: Erroneous references to EFI_BOOT_SERVICES_TABLE, Feb. 12,2009
EFI_RUNTIME_SERVICES_TABLE
2.2A 364 UEFI 2.2 Typos & Formatting Issues (ch. 9) Feb. 12,2009
22A 362 UEFI 2.2 Typos (Next) Feb. 12, 2009
2.2A 361 UEFI 2.2 Typos & Formatting Issues Feb. 12,2009
22A 359 TPL Table Feb. 12, 2009
2.2A 358 Missing signature for UEFI 2.2. Feb. 12,2009
2.2 398 Update to M348 to fix small typo Jan. 11, 2009
22 397 PCICopyMem() misspelling Jan. 11, 2009
22 394 Omission in EFI_USB2_HC_PROTOCOL Jan. 11, 2009
22 357Clarify EFI_IFR_DISABLE_IFBehavior with regard to dynamic values Jan. 11, 2009
2.2 351 Fix an unaligned field in a device path Jan. 11, 2009
22 350 EFI_HII_STRING_PROTOCOL Typos Jan. 11, 2009
2.2 348 EFI_IFR_RESET_BUTTON is incorrectly listed as a question Jan. 11, 2009
22 347 Replace first paragraph of the “Description” section for the Sept. 25,2008
ExitBootServices()
2.2 346 Nest, Sections 10.11 & 10.12 Under 10.10 Sept. 25, 2008
22 344Correct missing statusCodes returned section for Form() in Sept. 25, 2008
EFI_USER_CREDENTIAL_PROTOCOL.
2.2 343Correct missing parameter for User() function in Sept. 25, 2008
EFI_USER_CREDENTIAL_PROTOCOL
22 340 UEFI 2.2 Editorial / Formatting Issues Sept. 25, 2008
2.2 339 Update missing TPL restrictions Sept. 25, 2008
22 337 Replace the EFI_CRYPT_HANDLE reference (in the IPSsec APl)with a self- | Sept. 25, 2008
contained, independent definition.
2.2 335 User Authentication errata Sept. 25, 2008
22 334 Standardized "Unicode" References Jan. 11, 2009
Version 2.7 May 2017 XXi

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
2.2 333Correct the incorrect ';' at the end of EFI_GUID #defines Sept. 25, 2008
2.2 332Correct SendForm description Type, PackageGuid and FormsetGuid Sept. 25, 2008
parameters
22 331 Definition for EFI_BROWSER_ACTION and the related #defines were not | Sept. 25, 2008
present--Insert.
2.2 330 EFI_IFR_REF:ChangeCross reference to a question Sept. 25, 2008
22 327Clarify the support in DHCP4 protocol for "Inform" (DHCPINFORM) Sept. 25, 2008
messages.
2.2 325 MinorCorrection 28.3.8.3.20 July 25, 2008
22 324 ATA Pass-Thru ECR Update July 25, 2008
2.2 323 VLAN modificationBecause of IPV6 July 25, 2008
22 322Chapter 2 updates for IP6 net stack July 25, 2008
2.2 321Enable PCle 2.0 andBeyond support in the UEFI error records July 25, 2008
22 320Clarifcation for WIN_CERTIFICATE types & relationship with signature July 25, 2008
database types
22 319 UEFI IPSec protocol July 25, 2008
22 315 EFI TCP6 Protocol July 25, 2008
22 314 EFI MTFTP6 Protocol July 25,2008
22 313 EFI IPv6Configuration Protocol July 25, 2008
2.2 312 EFI IPv6 Protocol July 25, 2008
22 311EFI DHCPvV6 Protocol July 25, 2008
2.2 310 EFI UDPv6 Protocol July 25, 2008
22 309 IPv6 Address display formatClarification July 25,2008
2.2 306 Some errata to the animation support July 25, 2008
22 304 Errata to UpdateCapsule() July 25, 2008
2.2 303 Add ability to have aCapsule that initiates a reset & doesn’t return to July 25, 2008
theCaller
22 301 Errata to the Authentication Protocol July 25, 2008
2.2 300 MTFTP errata July 25, 2008
22 299 PIWG Firmware File/Firmware Volume Typo Errata July 25,2008
2.2 294 LocateDevicePath with multi-instance device path July 25, 2008
22 291 HIl Errata / Update July 25, 2008
2.2 288 Additional wording fixes for GPT Entry AttributeBit 1 July 25, 2008
22 282 Updated Requirements Section For ATA Pass Through (M242) July 25, 2008
2.2 279 Firmware/OS Trusted Key Exchange and Image Validation July 25, 2008
22 242 UEFI ATA Pass-Through Protocol July 25,2008
2.2 237 UEFI User Identification Proposal (from USST) July 25, 2008
22 215 new Start() RemainingDevicePath Syntax July 25,2008
2.2 212 UEFI HII Standards Mapping July 25, 2008
22 211UEFI Setup Question / Form Access Update July 25, 2008
XXii May 2017 Version 2.7

Revision Mantis Number / Description Date
2.2 210 UEFI HIl Animation addition July 25, 2008
2.2 202 EAP Management July 25, 2008
22 201EAP July 25, 2008
22 200 VLAN July 25, 2008
22 199 FTP API July 25,2008
2.2 198 GUID Partition Entry AttributesClarification and Definition July 25, 2008
22 169 EFI Driver Health Protocol July 25,2008
2.2 157 Floating-Point ABIChanges For X86, X64 & Itanium July 25, 2008
21C Re-format Revision History fromBulleted lists to one row per Mantis ticket/ June 5, 2008
EngineeringChange Request
2.1C 60 iSCSI Device Path Update June 5, 2008
2.1C 59 Add returnCode to Diagnostics Protocol June 5, 2008
2.1C 58 Language update for EfiReservedMemory type usage June 5, 2008
2.1C 57Clarify text for Extended SCSI Pass Thru Protocol.GetNextTargetLun() June 5, 2008
2.1C 56Clarification on ResetSystem June 5, 2008
21C 55Clarification on UpdateCapsule June 5, 2008
21C 54 ACPI Table Protocol GUID Update June 5, 2008
21C 52 New GUID for Driver Diagnostics and DriverConfiguration Protocols with June 5, 2008
new GUID
21C 283 Minor update toClarify a typedef/returnCode in Hil June 5, 2008
2.1C 281 Runtime memory allocation June 5, 2008
21C 280 Some minor errata to keyboard related topics June 5, 2008
21C 278Change references to EFI_SIMPLE_INPUT_PROTOCOL into June 5, 2008
EFI_SIMPLE_TEXT_INPUT_PROTOCOL
2.1C 266 PKCS11.5 structure does notCorrectly specify the portion of theCited RFC | June 5, 2008
that pertains to theCertificate struct/algorithm
2.1C 249 Latest update to UCST Errata list June 5, 2008
2.1C 248Correction to text inChapter 8.2 of UEFI 2.1B June 5, 2008
21C 246 New returnCode June 5, 2008
2.1C 245 Remove extraneous text inChapter 29 June 5, 2008
2.1C 244 Replace references to EFI_FIRMWARE_VOLUME_INFO_PPI with June 5, 2008
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
2.1C 221ImageBlock Structure name typos in 27.3.7.2 June 5, 2008
2.1C 220 Replace references to RFC 3066 to RFC 4646 June 5, 2008
2.1C 219 IA-32 and x64 stack need toBe 16-byte aligned June 5, 2008
21C 218 SATA update to section 9.3.5.6 June 5, 2008
21C 217 EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Query() June 5, 2008
Update
2.1C 216 UEFI 2.1 textCorrections June 5, 2008
2.1C 214 Device_lO + typos June 5, 2008
Version 2.7 May 2017 XXiii

Unified Extensible Firmware Interface Specification

Revision Mantis Number / Description Date
21C 213 UEFI HIl Errata June 5, 2008
21C 209 ESP number/locationClarifications June 5, 2008
2.1C 208 Driver Protocol Names and GUIDs June 5, 2008
2.1C 207 Updated Wording for the File Path June 5, 2008
2.1C 206Clarify return values for extended scsi passthru protocol June 5, 2008
2.1C 203 Platform Error Record - x64 register state errata June 5, 2008
21C 193 Loaded Image device paths for EFI Drivers loaded from PCI Option ROMs | June 5, 2008
2.1C 189 Graphics Output ProtocolClarification June 5, 2008
2.1B 51 Long physicalBlocks updates December 11,
2007
2.1B 205Change Loadlmage() parameter name from FilePath to DevicePath; December 11,
endsConfusion with EFI_LOADED_IMAGE_PROTOCOL 2007
2.1B 197 EFI Loaded Image Device Path Protocol December 11,
2007
2.1B 190 Extensive errata form UCST including OPCodesChanges ro December 11,
resolveConflicts. 2007
21B 187Clarify input protocols. December 11,
2007
2.1B 186Change PCIR struct to match PCI FW Spec 3.0 December 11,
2007
2.1B 185Change EFI term to UEFI forConsistency December 11,
2007
2.1B 184 SNIA/DDF Wording Update December 11,
2007
2.1B 182Clarify EFI_MTFTP4_TOKEN December 11,
2007
2.1B 181Correct MNP GUIDCollision December 11,
2007
21B 177 remove ending paragraph (editing text) in section 9.6 December 11,
2007
2.1B 175 Update to SendForm API December 11,
2007
2.1B 174 Error record addition for dma remapping units December 11,
2007
2.1B 173 MinorChanges to the description of two of the fields in theCommon December 11,
Platform Error Record, in Appendix N 2007
2.1B 172 Typo for ResetSystem() December 11,
2007
2.1B 170 (Addition of) Driver Family Override Protocol December 11,
2007
21B 168 Remove LOAD_OPTION_GRAPHICS December 11,
2007
XXV May 2017 Version 2.7

Revision Mantis Number / Description Date

2.1B 165 Fix EFI_GRAPHICS_OUTPUT_PIXEL December 11,
2007

2.1B 164 Update to USB2_HC_PROTOCOL Table December 11,
2007

2.1B 162 UEFI PIWG Device Path Errata December 11,
2007

2.1B 160Clean up references to PCIR December 11,
2007

2.1B 158 Errata to the UEFI 2.1Configuration sections December 11,
2007

2.1B 156 SendForm API Errata December 11,
2007

2.1B 159 Adjust some of the #define names in the Simple Text Input Ex protocol December 11,
2007

2.1A UEFI 2.1 incorporating Errata through 4-27-07 April 27,2007

21 Second release January 23, 2007

20 First release of specification. January 31, 2006

Version 2.7 May 2017 XXV

Unified Extensible Firmware Interface Specification

XXVi May 2017 Version 2.7

Table of Contents

ACKNOWIEAGMENTS......ooiiiie et e e nre e et e e nee e I
REVISION HISTOIY ..ottt et e st e st e e reesnee e ii
Table OFf CONTENTSoooi e e XXVil
1] o) T [0 1= Ixi
LISEOF TADIES ... e Ixv
3 I 1 oY W o T 1 T o o USSR 1
1.1 UEFI Driver MOAel EXTENSIONS ..ottt sttt st ssessesses s snes 1
1.2 OFQANIZATION ..o bbb 3

1.3 OFQANIZATION ..o 5
L4 GOAIS ..o 8
1.5 TArgel AUIENCE ... st ne sttt 10
1.6 UEF] DESIGN OVEIVIBW......cocviieriieiiieiciriisississs st ssss st sss s sess st sss st sssssssssssssssessssassesssessnsns 11
1.7 UEF] DEVEE IMOAEL......oiiieii ettt 12
1.7.1 UEFI Driver MOAEl GOaIS........ccocviiiiisiecsc ettt sssse s 13

1.7.2 Legacy Option ROM ISSUES........cccciireiciisseisesssissessisssssssssssssssssessssssssassassesssssassessessessesiens 14

1.8 Migration REQUITEIMENTS ...t 14
1.8.1 Legacy Operating SYStEmM SUPPOIT ... ssssssessens 14

1.8.2 Supporting the UEFI Specification on a Legacy Platform ... 14

1.9 Conventions Used in thiS DOCUMENT...........ccnrrerresesssssie st ssssssssssses s 15
1.9.1 Data StruCture DESCHIPTIONS.........coiiiiieieeiiiiee st 15

1.9.2 ProtOCOI DESCHPLIONSccvuiiisiiee bbb 15

1.9.3 Procedure DESCIIPLIONSc.ccviiiisiessssiee et ans 15

1.9.4 INSTruCtion DESCIIPLIONSc.cvieeicricrriier st 16

1.9.5 PSeudo-Code CONVENTIONS ...ttt sttt ssessses 16

1.9.6 TypographiC CONVENTIONS........ccoviinneee ettt ettt 16

1.9.7 NUMDBEL TOIMALS ..ottt bbb bbb 17

1.9.8 BINAIY PIrefiXES ..ottt 18

2 OVEIVIEW ...ttt ettt et e e s e e st e e e s e e sae e e sat e e an b e e snteeanteeanteesneeesneeeans 19
2.1 BOOT IMBINAGET ..ottt bbb bbb bbb 19

2. 1.1 UEFTIMAGES ..o e 20

2.1 2 UEFI APPHICALIONS ..ottt sttt 21

2. 1.3 UEF] OS LOAUEIS ...ttt 21

2. L4 UEF] DIIVEIS ..ottt 22

2.2 FIFMNWATE COFB...eniiiieiecieieei ittt E £t 22
2.2 1 UEF] SBIVICES ..ottt 22

2.2.2 RUNTIME SEIVICES ..ottt bbbt b bbbt bbb bbb 23

2.3 CalliNg CONVENTIONS......coiiiiiicieie ettt 24
2.3.1 DALA TYPIES ittt bbbt 25

2.3 2 TA-32 PIALFOIINS ..ottt 27

2.3.3 Intel® [£aniUM®-Based PIALFOIMS...........ccccoovooicereessesscceeessssssissesssessseeseesssssssesseessssseeseeens 30

Version 2.7 May 2017 XXVii

Unified Extensible Firmware Interface Specification

2.3.4 XB4 PIATOIMS ... 33

2.3.5 AAICN32 PlatfOrMIS.......coeiiieecc sttt 37

2.3.6 AAICNBA PlatfOrMIS.......cociiiieccce ettt 41

2.3.7 RISC-V PIAFOIMS ...ttt 46

2. PPOTOCOIS ...ttt 52
2.5 UEFI DFIVEE MOGEL......oiiiiicisieee ettt sttt sttt 58
2.5.1 Legacy OptioN ROM ISSUES........ccccieiiieieee et sssssssssssesssssasssssassessessessenes 60
2.5.2 Driver INILANZATION ...ttt 62
2.5.3 HOSE BUS CONTIOIEIS ...ttt 63

2.5.4 DEVICE DIVEIS ..ottt sttt 65

2.5.5 BUS DIIVEIS. ...ttt s8££ 1 bbb 66

2.5.6 Platform COMPONENTS ...ttt ssssssesse s 68

2.5.7 HOU-PIUQ EVENTS ...ttt 69
2.5.8 EFI SErvices BINAINGcccoviviiriricienesie sttt st ssesssessesanes 69

2.6 REQUITEIMENTS ...t bbbttt 71
2.6.1 ReqQUIred EIEMENTS ..ottt 71

2.6.2 Platform-Specific EIEMENTS ... 72

2.6.3 Driver-SpecCifiC EIEMENTS ... 75

2.6.4 Extensions to this Specification published elsewhere. ..., 77

G I = o To] i1V, = =T = PP URP PRSI 79
3.1 FIrmware BOOT MANAGET ..ot 79
3.1.1 Boot Manager ProgrammiNg ... sssssessssessesseses 80

3.1.2 Load OPtionN PrOCESSINGcccuiiiiiriiseississississssis st ssesse s ssessenes 81

G T80 G 31 o 7= To @ 1 T RO 83
3.1.4 Boot Manager Capabilities. ... 85
3.1.5 Launching Boot#### APPHCALIONS..........oiiririrrsscncen e 85
3.1.6 Launching Boot#### Load Options Using HOt KeYS.........cccocvvnnnnineninsns 85

3.1.7 Required System Preparation APpliCatioNS ... 88

3.2 Boot Manager POIICY PrOtOCOI ...t 88
EFI_BOOT_MANAGER_POLICY_PROTOCOLccccstmmrrirrrnireineisinsiseisssssesssssesssssssenns 88
EFI_BOOT_MANAGER_PROTOCOL.ConnectDevicePath().........cccccorvrnmrrnrrnrinrrnninnnne. 90
EFI_BOOT_MANAGER_PROTOCOL.ConnectDeVviceClass()ccrrrreneereereereeneene. 91

3.3 Globally Defined VariabIES ...ttt 92
3.4 BOOT OPLION RECOVEIY ...ttt sttt s s st 99
3.4.1 OS-Defined BOOt OPtioN RECOVEIY ..o 99

3.4.2 Platform-Defined BoOOt Option RECOVEIY ... 100
3.4.3 Boot Option Variables Default BOot BENAVIOF ..., 100

3.5 BOOL MECRANISIMS ..ottt 100
3.5.1 Boot via the SImple File ProtOCOL ... 100

3.5.2 Boot via the Load File ProtOCOI ... 101

4 EFI SYStemM Table.....ccoiiii e 103
4.1 UEFI IMAQGE ENTIY POINT ..ot 103
EFI_IMAGE_ENTRY _POINT w.cooooiiteieccccccceeeossssssssssssssssssessssssssssss st 103

4.2 EFI TADIE HEAUET ... 104
EFI_TABLE_HEADER.........coottiniisnise s 105

A 3 EF]I SYSTEM TADIE ..ottt 106

XXViii May 2017 Version 2.7

EFI_SYSTEM_TABLE. ... 106

4.4 EFI BOOT SEIVICES TADIE ...t 108
EFI_BOOT_SERVICES. ..ottt ssesssssssssssssssnssans 108

4.5 EFI RUNTIME SEIVICES TABIE ...ttt s 112
EFI._RUNTIME_SERVICESoo ottt s 112

4.6 EFI Configuration Table & Properties Table............ccoses 114
EFI_CONFIGURATION_TABLEoosiiieiisissseie st 115
EFI_PROPERTIES_TABLEooiiitneiiess st sssssans 116
EFI_MEMORY_ATTRIBUTES_TABLEcccoooisiitninrnnnsinsessisssssss s 117

4.7 Image ENtry POINT EXGMPIES ...ttt 119
4.7.1 Image ENtry POINT EXAMPIES ...ttt st ssssessessans 119
4.7.2 UEFI Driver Model EXaMPIE........ciniiiiessissses et sssssssssensans 121
4.7.3 UEFI Driver Model Example (Unloadable)..........cccccociiiccnicccccese e, 122
4.7.4 EFI Driver Model Example (Multiple INSTanCeS) ... 123

5 GUID Partition Table (GPT) Disk LAYOUTcccovveiieiiieiieiie e 125
5.1 GPT and MBR disk 1ayOut COMPATISON ..o 125
5.2 LBA O FOIMAL ...t bbbt 125
5.2.1 Legacy Master BoOt RECOIrd (MBR) ..o sessssesnnes 125

B.2.2 OS TYPES w.oouieiirieissisisssssise sttt sttt st 128

B5.2.3 ProteCliVe IMBR ...t 128
5.2.4 Partition INfOrMAatioN.........cc.ccoiiiiceci st 130

5.3 GUID Partition Table (GPT) DiSK LAYOUL..........cc.ccoviviieeiiieeeeee s 131
5.3.1 GPT OVEIVIEW......iiriiiiiiiiieisis st 131

B.3.2 GPT HEAAET ...ttt 134

5.3.3 GPT Partition ENTIY AITAYcccoviiiiiiiiiceieisseisse st 137

6 Block Translation Table (BTT) LAYOUL.........cccceviiiininiene s 141
6.1 Block Translation Table (BTT) BACKGrOUNd ... ssssnns 141
6.2 Block Translation Table (BTT) Data SIrUCLUIES ... sssessssesssssseens 142
6.2.1 BTT INTO BIOCK ...ttt 142

B.2.2 BTT MAP ENLIY .ottt 145

B.2.3 BTT FIOG w...oovvvveeeresecccivssseesssssssssisssssssesssssssssssssssssseesssssssssssssssssssssssssssssnsssssssssseessssssssssssssoes 146
B.2.4 BTT DALA AN ...ttt 148

6.2.5 NVDIMM Label Protocol Address Abstraction GUId ..., 148

6.3 BTT Theory Of OPEration ...ttt sesse st ssssessssnes 148
B.3. L BTT AIBINES ...ttt bbb bbb bbb bbbt 149

6.3.2 Atomicity of Data BIOCKS iN 8N ArENA........cccccovireieineeeee s 149

6.3.3 Atomicity Of BTT Data STIUCTUIEScooviiiriieicse et 150

6.3.4 Writing the Initial BTT 1aYOUL.........ccooiiiiiieceeee st ssenns 151

6.3.5 Validating BTT Arenas at Start-UPccccooveeiinnnnese e sssssssssssens 152

6.3.6 Validating the Flog entries at Start-Up ... sssssessssenns 153

B.3.7 REAA PALN ...t 153
B.3.8 WIILE PALN ...t 155

7 SEerviCeS — BOOT SEIVICESooiiiie ettt ae s 157
7.1 Event, Timer, and Task Priority SEIVICES ... sssssssessssssns 158
EFI_BOOT_SERVICES.CreateEVENT().......ccovvuirreririnrinrinriesissessssissssssesssssssssssssssssssnes 163

Version 2.7 May 2017 XXiX

Unified Extensible Firmware Interface Specification

XXX

EFI_BOOT_SERVICES.CreateEVENTEX().......ccvuvviviiriiiiiisiieiiesisissisesiesiesisssssssesssnes 167
EFI_BOOT_SERVICES.CIOSEEVENT().....ccoviririiiieiiiiseieiesisesiesssesi s 171
EFI_BOOT_SERVICES.SIGNAIEVENT()ovviviiriiiieiiiiieeisessissi s 172
EFI_BOOT_SERVICES.WaItFOrEVENT().......coconiierieiieiieiiiieeisesissississsissississississisees 173
EFI_BOOT_SERVICES.CHECKEVENT() ..o 175
EFI_BOOT_SERVICES.SELTIMEI() .c.vvvrirriiiirieeiiieiiesiesiesisssississsssssssssssssssssssssssssnes 176
EFI_BOOT_SERVICES.RAISETPL()cvvurvuiririieiiiiisiieiissiissississssssssesssessssssssssssisesssnns 178
EFI_BOOT_SERVICES.RESTOIETPL()coiivirieiiieiieisiiseinsisseissssssssesssesssesssssssssensnenns 180
7.2 MemOry AlOCALION SEIVICES ..ottt sttt 180
EFI_BOOT_SERVICES.AIIOCAtEPAGES().......ovvrevirirciriiririsiieeeeiseissiseiesssies s 184
EFI_BOOT_SERVICES.FIEEPAGES()vvvevrriiiririiieirieiesisississssssssiesssssessssses s 187
EFI_BOOT_SERVICES.GEtMEMOIYMAP().....couvrrerirriirerieessiseesisssiessssiesssssses s 188
EFI_BOOT_SERVICES. AIIOCAtEPOOI().......ccovivririiiiiiirineisissisesssiessissssssens 193
EFI_BOOT_SERVICES.FIreePOOI()cvvuivvrriiiiiiriiieissisessessessesisssssisssessssissssssos 194
7.3 ProtoCOl HANAIET SEIVICES ...ttt s 194
EFI_BOOT_SERVICES.InstallProtocollnterface() ..., 200
EFI_BOOT_SERVICES.UninstallProtocollnterface() ..., 202
EFI_BOOT_SERVICES.ReinstallProtocolInterface() ..., 204
EFI_BOOT_SERVICES.RegisterProtoCOINOLITY()....c.cccovrvviniinreisisnnesiersssseisssneens 206
EFI_BOOT_SERVICES.LOCAtEHANAIE()ccvurviriiiieiiieieiseisensssnissiesines 208
EFI_BOOT_SERVICES.HaNAIEPIOtOCOI()vvuviieriieieiseeiseieseessenes e 210
EFI_BOOT_SERVICES.LocateDevicePathn().........ccccoviirenieeeeeessissenne, 212
EFI_BOOT_SERVICES.OPENPIOtOCOI()......cvvrviiiriiiiriiiieiesiseisissiesissssssies s 214
EFI_BOOT_SERVICES.CIOSEPIOtOCOI()......coviiiiiiiiiieiiieeee e 221
EFI_BOOT_SERVICES.OpenProtocollnformation()c..ccouvevninrsrisrisisneinninnns 224
EFI_BOOT_SERVICES.ConnectController()........cooveinncenrensenessesseeseessennes 226
EFI_BOOT_SERVICES.DisconnNectCoNroller()........couniinesnesseesenins 231
EFI_BOOT_SERVICES.ProtocolsPerHandle() ... 234
EFI_BOOT_SERVICES.LocateHandIeBUTTEr() ... 236
EFI_BOOT_SERVICES.LOCAtEPIOtOCOI()cvvvevreicicrcirecese e, 239
EFI_BOOT_SERVICES.InstallMultipleProtocolinterfaces()........ccooevvvevenereseenenne, 240
EFI_BOOT_SERVICES.UninstallMultipleProtocolinterfaces()......c.covinneiniinnnn. 242
T2 IMAGE SEIVICESoeiiiiieiieieeisiieesese ettt 8288888 s ettt 242
EFI_BOOT_SERVICES.LOAAIMAGE() rvruvurerrerreererierierierseiseesesssssesssssssssssssssssssssesesnes 245
EFI_BOOT_SERVICES.STArtIMAagE()oevvveeerriiieinrieiiesiseissississsssiesssssesssssesessssesessans 248
EFI_BOOT_SERVICES.UNIOAdIMAGE()ccvvvvrrrriiiiiiriiirieissisesesessssesissiessns 250
EFI_IMAGE_ENTRY_POINT ..ot 251
EFI_BOOT_SERVICES.EXIT()vvurvrrirriiiiiiniiseiseisseiessesssssss s 253
EFI_BOOT_SERVICES.EXItBOOTSEIVICES()ouvvureuierririirineieeississisesisssississississsesees 255
7.5 MiSCEIlaN@OUS BOOT SEIVICESc.euiirieieireiresereiseeseis sttt sttt 256
EFI_BOOT_SERVICES.SetWatchdogTimer()........cccurnrininiernsiesssesesessssenens 257
EFI_BOOT_SERVICES.STAH()......ceviiiiiiiiiiiinisiiseessess s 259
EFI_BOOT_SERVICES.COPYMEM() ..o 260
EFI_BOOT_SERVICES.SEtMEM()......ovviiririiiiriiissiesiesisssiessssssessssssssssss s 261
EFI_BOOT_SERVICES.GetNextMonotoniCCOUNT()ccocvvreerrereeriereireirerereereereiseeneene. 262
EFI_BOOT_SERVICES.InstallConfigurationTable() ..., 263
EFI_BOOT_SERVICES.CAICUIAtECIT32()cvvrvireriiniiiiineieisriseisissiesisieessies s, 265

May 2017 Version 2.7

8 SEerVICES — RUNTIME SEIVICES ..ottt ettt 267

8.1 Runtime Services Rules and RESIIHCLIONS ... 268
8.1.1 Exception for Machine Check, INIT, and NMl.........cccoevnnnnininnnsnnnnsnsnsessnens 269
8.2 VaAlADIE SEIVICES ... 270
GEEVANIADIE() ... 271
GetNextVariableNaME() ... 275
SEVArIADIE() ..o ————————————— 277
8.2.1 Using the EFI_VARIABLE_AUTHENTICATION_3 desCriptor........cccoecminerrninrinnnnn. 283
8.2.2 Using the EFlI_VARIABLE_AUTHENTICATION_2 descCriptor..........ccoeonvnnenereeneens 286
8.2.3 Using the EFI_VARIABLE_AUTHENTICATION deSCriptor ... 289
QUErYVAriabIeINTO() ..o s 292
8.2.4 Hardware Error ReCOrd PErSISTENCE ...ttt sens 293
8.3 THIME SEIVICES ... bbbt 294
7= i T 01T) OSSOSO 295
SEETIME() v 299
GEtWAKEUPTIME()...vvieuireieieiisei et 300
SEWAKEUPTIME() cvvviieicieici sttt 301
8.4 VIrtUal MEIMOIY SEIVICES......cooviiirieirieie sttt sttt sss s sn s ssnns 302
SetVirtUalAdAreSSMAaP() ..ottt essessenes 303
CONVEITPOINTEI() ...ttt 305
8.5 Miscellaneous RUNTIME SEIVICES........c.viiininssisssssssse s ssssens 306
8.5.1 RESEL SYSTEIM ..ottt b bbbttt 306
RESEESYSTEM(). ..t bbb 307
8.5.2 Get Next High MONOtONIC COUNT ... 308
GetNextHIghMoNOtONICCOUNT() ... 309
8.5.3 UPALE CAPSUIL ..o 310
UPAALECAPSUIE(). ..t 311
QueryCapsuleCapabiliti@S() ... 318
8.5.4 Exchanging information between the OS and Firmware..........cccooeveovenenenenenenn. 319
8.5.5 Delivery of Capsules via file on Mass Storage deviCe..........coovvvvineeienieineeneennns 321

8.5.6 UEFI variable reporting on the Success or any Errors encountered in processing
OF CAPSUIES @FLEE FESTAIT ... 322

9 Protocols — EFI Loaded IMage........cccveviiiie e 327
9.1 EFI Loaded ImMage ProtOCOl ...ttt sssse s ssssessssnes 327
EFI_LOADED_IMAGE_PROTOCOL......ccoviiniiririsinsinsississssssssssssssssssessessssssssssssessasssnes 327
EFI_LOADED_IMAGE_PROTOCOL.UNIOAA()....rvvrerereinrirernrieesrinsiessssissssssssssssssesnsenns 329
9.2 EFI Loaded Image Device Path ProtoCOL............ccoonsse e 329
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOLc.ccccouimrrniieinieisisneisssssiseenns 329

10 Protocols — Device Path Protocol...........cccccvviiiiiiiiieeee 331
10.1 DEVICE Path OVEIVIEWoeiiecs ettt sttt 331
10.2 EFI DeViCe Path ProtOCO] ... esssssesssns 331
EFI_DEVICE_PATH_PROTOCOLoviitiiiiiisiniesissiesssisessssss s sssssisssssssssssssnns 332
10.3 DEVICE PAtN NOUES ...t 332
10.3.1 Generic Device Path STIUCTUIES ... 333
10.3.2 Hardware DeVICe Path............ccccovneee ettt 334

Version 2.7 May 2017 XXXi

Unified Extensible Firmware Interface Specification

10.3.3 ACPI DEVICE PAth.......cccoviiiiiiiiiee s 336
10.3.4 ACPI _ADR DeVICE PAtNcoriiiiniriseees e 339
10.3.5 Messaging DeViCe Path.............cccoicinnncsns st sessssens 339
10.3.6 Media DeViCe Path ... 375
10.3.7 BIOS Boot Specification Device Path ... 380

10.4 Device Path Generation RUIES ... s 381
10.4.1 HOUSEKEEPING RUIES ..ottt 381
10.4.2 Rules with ACPI _HID and _UID.........cccccoumnrininincsinssssssssisessssssssssssssesssssssssens 382
10.4.3 RUIES WIth ACPI _ADR ...ttt 383
10.4.4 Hardware vs. Messaging Device Path RUIES ... 383
10.4.5 Media DeVvice Path RUIES..........ccccvn s 383
10.4.6 OthEr RUIES ..ottt bbbt b 384

10.5 Device Path UtIlitIeS ProtOCON ... 384
EFI_DEVICE_PATH_UTILITIES _PROTOCOLc.coeivvrrinrrnrineisinsieiesieissssssssssessesans 384
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetDevicePathSize()cccccovvernnnne. 386
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.DuplicateDevicePath()c.......... 387
EFI_DEVICE_PATH_UTILITIES_ PROTOCOL.AppendDevicePath()...........cccccc... 388
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.AppendDeviceNode()........c.ccrvurrunne. 389
EFI_DEVICE_PATH_UTILITIES_ PROTOCOL.AppendDevicePathinstance()........ 390
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.GetNextDevicePathinstance()........ 391
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.CreateDeviceNode()........cccournrernrene. 392
EFI_DEVICE_PATH_UTILITIES_PROTOCOL.IsDevicePathMultilnstance()........... 393

10.6 EFI Device Path Display FOrmat OVEIVIEW ... 393
10.6.1 DESIGN DISCUSSIONcociiiiiiirisiississese st 394
10.6.2 Device Path to TEXE ProtOCOl ... 412
EFI_DEVICE_PATH_TO_TEXT_PROTOCOLccooimimmrimirimrinsisiinsisssssissnssssssssasessssans 412
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDeviceNodeToText().......... 413
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.ConvertDevicePathToText()............ 414

10.6.3 Device Path from TexXt ProtOCOl ... ssssssesesssenes 415
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOLcceemmrrminiirsinsiseinsieisssseesssssessenns 415
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDeviceNode()....416
EFI_DEVICE_PATH_FROM_TEXT_PROTOCOL.ConvertTextToDevicePath()....417

11 Protocols — UEFI Driver Model...........cccooviii i 419
11.1 EFI Driver BiNding ProtOCO] ... 419
EFI_DRIVER_BINDING_PROTOQCOL.......cccouimiiiiiiiniesisisssssississsssiessssssssssssssssssssens 419
EFI_DRIVER_BINDING_PROTOCOL.SUPPOIEA().....vvrrrrrrrrernrrnrereirnreeisneseisssnsessesneenss 422
EFI_DRIVER_BINDING_PROTOCOL.SLAM()...ccvvererrrrnreernrisresnersseesssssssesssssssssssssssssenss 428
EFI_DRIVER_BINDING_PROTOCOL.STOP() ...crvrrverernerrinirnerresnssssessssssssesssssssssassssssessnns 437

11.2 EFI Platform Driver OVerride ProtOCOl ... 441
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL......c.ccosirmimiriiineinireinsississesneenes 441
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GEtDIIVEr()ccccovrnivrrrrnirrrernenne. 443
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.GetDriverPath()............ccccu..... 445
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL.DriverLoaded()......c..ccccuvereene. 447

11.3 EFI Bus Specific Driver Override ProtOCOL ... 448
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOLcceeeeerrririierircccccrerrrrrsennenn 448
EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL.GetDriver()........unne. 450

XXXii May 2017 Version 2.7

11.4 EFI Driver DiagnOStiCS PrOtOCO! ..o 451

EFI_DRIVER_DIAGNOSTICS2_PROTOCOLcecvtriiriiriiririreeissississsisssississssssssssisees 451
EFI_DRIVER_DIAGNOSTICS2_PROTOCOL.RUNDIagNOSLICS()cocoerrerrrrirrririenee. 453
11.5 EFI Component Name ProtOCOL ... 455
EFI_COMPONENT_NAMEZ2_PROTOCOL ..ottt 456
EFI_COMPONENT_NAME2_ PROTOCOL.GetDriverName (). 457
EFI_COMPONENT_NAME2_PROTOCOL.GetControllerName()c.ccccuvvvernvenne. 459
11.6 EFI Service BiNAING ProtOCOL ...ttt ssssssessssssessnns 460
EFI_SERVICE_BINDING_PROTOCOLcocstviririiiiniieissisesssississsssssssssssssssesssssns 461
EFI_SERVICE_BINDING_PROTOCOL.CreateChild()ccouummurmmrmmrrrriirnirnrinriseenienne, 462
EFI_SERVICE_BINDING_PROTOCOL.DestroyChild().........ccccovrmrrmrrmrinerereireieireeneene, 467
11.7 EFI Platform to Driver Configuration ProtoCOl ... 471
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL........cccorurrmrirnrrrnrrrne. 472
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.QuEry()cc..... 473
EFI_PLATFORM_TO_DRIVER_CONFIGURATION_PROTOCOL.Response()......... 475
11.7.1 DMTF SM CLP ParameterTYPeGUId ... 477
11.8 EFI Driver Supported EFI Version ProtOCOI ... 479
EFI_DRIVER_SUPPORTED_EFI_VERSION_PROTOCOLooooovvveiveeseeeeeeeseressrerirricien 479
11.9 EFI Driver Family OVerride ProtoCOl ...t ssssssssssssssssens 480
L1.9. 1 OVEIVIBW ...ttt 480
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.......ccccsmimmimiimiirinniineissississsssesssennes 480
EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL.GEetVersion (). 482
11.10 EFI Driver HEalth ProtOCOL. ... 482
EFI_DRIVER_HEALTH_PROTOCOLccccsvvmiriiiiiniiiisissisessississssssssssssssssssins 482
EFI_DRIVER_HEALTH_PROTOCOL.GetHealthStatus()...........c.cccouurmrrmernerrerirniirniinne, 485
EFI_DRIVER_HEALTH_PROTOCOL.REPAIN ()vvvvvrrvririririeierneieensieesessessessesenas 490
11.10.1 UEFI Boot Manager AlgOrithims.........cccove s 491
11.10.2 UEFI Driver AIGOTTNMS ..o 496
11.11 EFI Adapter INformation ProtOCOL...........ccoviesee e 497
EFI_ADAPTER_INFORMATION_PROTOCOLccvmirmrinriniriieinsisisisssssississens 497
EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_GET_INFO()........... 499
EFI_ADAPTER_INFORMATION_PROTOCOL. EFI_ADAPTER_INFO_SET_INFO()
501

EFI_ADAPTER_INFORMATION_PROTOCOL.
EFI_ADAPTER_INFO_GET_SUPPORTED_TYPES() ..ccceeeeeiieeiiiieiiicrvccccreeerrrrrsssnnnn 503
11.12 EFI Adapter Information Protocol Information TYPES ... 504
11.12.1 NetWork Media STAte ..o 504
12.12.2 NETWOIK BOOT ...ttt 505
11.12.3 SAN MAC AQAIESS ...ttt bbb 506
11.12.4 IPV6 SUPPOIT FrOmM UNDI ..o 506
11.12.5 NetWOrK Media TYPE ...t 507
12 Protocols — CONSOIE SUPPOITcoiiiiiiiie et 509
12.1 CONSOIE I/O PrOTOCOL........coiiiiiiiicisis s 509
L1201 OVEIVIBW ...ttt 509
12.1.2 CoNSOIEIN DEFINITION ..ot 509
12.2 Simple TeXt INPUL EX PrOTOCOL........c.cccoviicrsssssssssse s 511

Version 2.7 May 2017 XXXili

Unified Extensible Firmware Interface Specification

EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOLc.ceecmtrimrirmimiiinririsissiesiesississsessns
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RESEL().......ocrvrerrrririirinrinriirinrinrienenan,
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.ReadKeyStroKeEX()...........cccuerrerrrenne.
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.SetState().........cccomrrrrmrrmrinrineeneenne.
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.RegisterKeyNotify() ...
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.UnregisterKeyNotify()ccccuuurnees

12.3 Simple TEXt INPUL PrOTOCOL.........cccceccssr sttt e
EFI_SIMPLE_TEXT_INPUT_PROTOCOL......c.ceemtriirirriiriirineeiesinssississsssssessissssssssssssees
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.RESEL().......ccrurrrriririririiriirieiierieriesieninnes
EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroKe()currmrrnnierneenne.

12.3.1 ConsoleOut Or STANAArAEITON ...

12.4 Simple TeXt OULPUL PrOTOCOL ...ttt s e
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.......ccccsmiririrrirmiirniiiniinsrinssssissiesisssssssesens
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.RESEL()......cosvurrrrrrrrerrirrrierierierierienenns
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.OUtPULSErING()......ccorvvrrrrerrmriiriirirnienne,
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.TEStSLrNG()....cccevverrrrrrrrrmrirnrireireirneennes
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.QUEryMOde().......couermrrmrrmrrmrinrirnrernienne.
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SEtMOE()ccvvrvrrrrrrrrrrirrinririsrirneenne,
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetAttribute().........ccccovuverrmrrnirniirniinne,
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.CIearScreen().......mernrenens
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.SetCursorPosition()cccoveerneenne.
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL.ENableCursor() ...,

12.5 Simple POINTET PrOTOCOL. ...
EFI_SIMPLE_POINTER_PROTOCOL........cccimiimiiiiiiiieieissississsisssississsesssssssssssesssns
EFI_SIMPLE_POINTER_PROTOCOL.RESEL()cvvurrirrrirriiiirierirerisiissiesiesisesisssssesenans
EFI_SIMPLE_POINTER_PROTOCOL.GEtSIALE()evvrerrrrririnriririiriseieeiesiseisseenennns

12.6 EFI Simple Pointer DeViCe PAtNS ...
12.7 ADSOIUtE POINTEN PrOTOCOI ...ttt
EFI_ABSOLUTE_POINTER_PROTOCOLcccosvimrimiiiieiniineieisessssssenssssssssessssssssnns
EFI_ABSOLUTE_POINTER_PROTOCOL.RESEL()......cecrrrrrririeiiririiisiisiesisissiesinens
EFI_ABSOLUTE_POINTER_PROTOCOL.GEtSAE()ovvvvrvririririniierierisisiieiinnn,

12.8 Serial I/O PrOtOCOL ... e
EFI_SERIAL_IO_PROTOQCOLciutiimiieiieiierieeississiesisssssssssssississssssssss s ssssssssesees
EFI_SERIAL_IO_PROTOCOL.RESEL().....ccourririrrirririimiieeissississisesissssssissssssssssssssssesess
EFI_SERIAL_IO_PROTOCOL.SEtALtrDULES()........ccvvvrrrrriiririiineisssesees s
EFI_SERIAL_IO_PROTOCOL.SetCONLrol().....c.ccouvmriiririiiiiiniiseinsisissiesssissseninons
EFI_SERIAL_IO_PROTOCOL.GELCONTIOI()cvvuvviriiriiriiiieiiieisesessssiesiesinieninas
EFI_SERIAL_IO_PROTOCOLMIILE() ...ouevrrrrerieriiriieieeieeississssssisesssssssssssssesssssssssssesssns
EFI_SERIAL_IO_PROTOCOL.REAA().....cevuerrrirrrrrieiieiieriesisssssssssisssssssssssssssssssssssssnns

12.9 GraphicS OULPUL PrOTOCOIc.ooirieeeeee e
L12.9. 1 BIEBUFTEI ..ot
EFI_GRAPHICS_OUTPUT_PROTOCOLcecrtrirriiiriiisieisissssssssssisssssssssessses
EFI_GRAPHICS_OUTPUT_PROTOCOL.QUErYMOE()......cccorvvrririieririririsrissireninnes
EFI_GRAPHICS_OUTPUT_PROTOCOL.SEIMOE().......vvvrrrrerrrieeeieiierieriiienenns
EFI_GRAPHICS_OUTPUT_PROTOCOL.BIL()....ccvrrerrimrirrirniieiiseiseisssisesisssissississsinees
EFI_EDID_DISCOVERED_PROTOCOLccoseviiieiiiieeieiineesesisssssssssisssssssssssssssesssnes
EFI_EDID_ACTIVE_PROTOCOL......ccstiiiiiriiisiississississississessssssssssss s ssssssssnes

XXXIV May 2017 Version 2.7

EFI_EDID_OVERRIDE_PROTOCOLcovtiiniisisisssssssissssssssssssssssssnens 580

EFI_EDID_OVERRIDE_PROTOCOL.GELEIA() ..vvurvrrrrererrrinrenirneieissieesesseessssseessenenes 582

12.10 RUIES TOr PCI/AGP DEVICEScvoieiiiiiiiiniieiiineeseiseissssses st sssssssss st sssssessassesessassessessessesessessessenns 584
13 ProtoCOIS — MEdia ACCESS......coiiiieiiiiieie ittt ans 587
13.1 LOAA File PIOTOCOL.......cciiiiiieiciii s 587
EFI_LOAD_FILE_PROTOGCOLovvviiririeiniineieissisisssssessssssssssessssssssssssssssssssssesssssssssssnes 587
EFI_LOAD_FILE_PROTOCOL.LOAAFIIE() ...cvrveerrrririreineineisississeeissssssisssssssssssssesnsenns 588

13.2 LOAA FilE 2 PrOTOCOL. ...ttt 589
EFI_LOAD_FILE2 PROTOCOL . ..coiiiiiiieinsieissisissssssessssssssssssssesssssssssessssssssssssessasssnns 589
EFI_LOAD_FILE2 PROTOCOL.LOAAFIE()vvvrerrrieisiiseiesesisrssiseissississsssssesssssssessans 591

13.3 File SYSTEM FOIMALooovivciiissss st 592
13.3.1 SYSEM PArtitiONcocviicicrcce ettt 592
13.3.2 PartitioN DISCOVEIYcovviirieiiieisssisssis st ssss st ssssssssssssssssssssesssnsssssesssens 595
13.3.3 Number and Location of System Partitions ..., 596
13.3.4 MEAIA FOIMALScovviiiiicessss st 597

13.4 Simple File SyStem ProtOCOL ... 598
EFI_SIMPLE_FILE_SYSTEM_PROTOCOLccccommtimiinrinineninsiseisisssss s, 598
EFI_SIMPLE_FILE SYSTEM_PROTOCOL.OpenVolume().......ccovniineneerninnennns 600

L35 FlE PrOTOCOL ...ttt 601
EFI_FILE_PROTOQCOL ...ttt sessesssssssssssssessssssssssssssasssnssessans 601
EFI_FILE_PROTOCOL.OPEN()...iiriiiriririirisiseissisisesisssssssssessssssssssssessessssssesssssessassssssans 604
EFI_FILE_PROTOCOL.CIOSE()...etveererrrieeriieirsisisissssssssssssiesssssssssssssssssssssssssssesssssssssens 607
EFI_FILE_PROTOCOL.DEIELE()......vvurrrririiiiieinsieissiseisesisisessssississssss s ssssssssssssesens 608
EFI_FILE_PROTOCOL.REAA()......vvirrerrrrerrineireissieisnssssiessssssssesssssssssssssessessssssssssssessasssnes 609
EFI_FILE_PROTOCOLMWIILE() . .cvvveerrireririrnisnsieissssessssssesssessssssssssssssssssssesssssssssssssssesssssnes 611
EFI_FILE_PROTOCOL.OPENEX() vrrrrrrerrerrerrrrereissiseisnsssesssessssssssssssssssssessessssssessssssessasssnes 612
EFI_FILE_PROTOCOL.REAAEX()..vrveurrrrerirrisiseisssissiessesiessesssssssssssssessassssssesssssssssssesssssnns 615
EFI_FILE_PROTOCOL.WIITEEX() .1vvuevuevvrieiriineieisieissiseisssssissssssssssss s ssssssssssssssssssssesnns 617
EFI_FILE_PROTOCOL.SEtPOSITION() ...coovvvrrvriiiiriiieiissineiesissiessssiesssss s ssssssessees 621
EFI_FILE_PROTOCOL.GEtPOSITION() ...voveurrririnirsierniineeesissesssssiesssssssssssssesssssssssessanes 622
EFI_FILE_PROTOCOL.GEINTO()..vovvereeriririrriseinsisississiesssssssssssssssssssssssessessssessssssesssssnes 623
EFI_FILE_PROTOCOL.SEINTO() ..vvvvvureeerirerirrireinsisississiessessssssesssssssssssssessesssssssssssesssssnes 625
EFI_FILE_PROTOCOL.FIUSN() ..ot essessssssesssnes 627
EFI_FILE_INFO ..o 627
EFI_FILE_SYSTEM_INFOcoiiiriniiieiieiss st sssssssns 629
EFI_FILE_SYSTEM_VOLUME_LABELcccsviiinrininrnsiinrissssnsissississsssissssssssssssssssssans 630

13.6 TAPE BOOL SUPPOIT ...ttt 630
13.6.1 TAPE I/O SUPPOIT ...ttt 630
13.6.2 TAPE I/O PrOTOCOIccooiiiii e 631
EFI_TAPE_IO_PROTOCOLcootvviirtiiiisrieieisisisssis st 631
EFI_TAPE_IO_PROTOCOL.TAPEREAU()......vvrrrrireirrieierinsierssississsseiessssisssssisessssssesens 633
EFI_TAPE_IO_PROTOCOL.TAPEWIILE() ...uverrrrrrrerrreisirnrieeessseisssssiesssssssssssssssssssssssssans 635
EFI_TAPE_IO_PROTOCOL.TAPEREWINA() . ..cvrvrrirrirririerinrissensissiessssesssssssssssesesessenssnes 637
EFI_TAPE_IO_PROTOCOL.TAPESPACE(). . rrerrerrrrrermrrnnerersnssresnsssssssssasssessssssssssessssssasssnes 638
EFI_TAPE_IO_PROTOCOL.TaPEWTIILEFM()......covrrierieeiereriseissississssie s sssssssessessnens 640
EFI_TAPE_IO_PROTOCOL.TAPERESEL().....cvvrrririreiiiineieiseineisiissiessssissssssessssssessssnns 641

Version 2.7 May 2017 XXXV

Unified Extensible Firmware Interface Specification

13.6.3 Tape Header FOIMAL.........ccccooviivieiinnises s 641

13.7 DISK 1/O PIOTOCON ...ttt 643
EFI_DISK_IO_PROTOCOL......ccoimiiniiiriseisieissssissesssessassasssnns 643
EFI_DISK_IO_PROTOCOL.REAADISK()....vrurerrrmrerrerrrseermisnseseesesssnssssssssssssssssssssssssssssssssans 645
EFI_DISK_|O_PROTOCOLMIILEDISK().......ovvvvvvvveeereeeseesesssssssssssesssssssssssssssseeesessssssseees 646

13.8 DiISK I/O 2 PrOLOCOI ..ottt ettt bbb b b s 647
EFI_DISK_ 102 _PROTOCOL ...ttt sssssiessssisssssssssssssssssssssssssssssssnns 647
EFI_DISK_102_PROTOCOL.CANCEI() ..uvvurvrrrrririrrirrernriseesrsnsesssessssssssssesssssssssssssesssssssssnns 649
EFI_DISK_102_PROTOCOL.REAADISKEX()cvvrvrrernrrnrirernrieinrinsieissisisssssessssseessesesnes 650
EFI_DISK_102_PROTOCOL.WTIItEDISKEX() ..vuveverierieeeireirnrisisssieissssesssssssessessssssssnes 652
EFI_DISK_I02_PROTOCOL.FIUSNDISKEX() ..vvvvvvvveeeeeseesesseesssesssessesessessssseseeeessssssssenes 654

13.9 BIOCK /0 PrOTOCOI ...ttt sttt 655
EFI_BLOCK _IO_PROTOCOLceoviirtiiiirieieisisisssisissssisssssissssssss s sssssssssans 655
EFI_BLOCK _IO_PROTOCOL.RESEL()....cvrrrrrrrrirmrrrirnernsisrnssssissssssesessssssssssssssssasssssessans 660
EFI_BLOCK _IO_PROTOCOL.REadBIOCKS()covvrrririrrieinireinirnseeissississse e 661
EFI_BLOCK _IO_PROTOCOL.WTIItEBIOCKS() ..vuvvvverrirrirrininriseinesnsieissssissessissssssssssnnenns 663
EFI_BLOCK_IO_PROTOCOL.FIUSABIOCKS() ..vvvvvvvveveresseesseesseseseeseeesseeesssceeesssssssnene 665

13.10 BIOCK I/O 2 PrOtOCOL.......oiicicscrce ettt sttt 665
EFI_BLOCK _IO2_PROTOQCOLoovtiiiiiniiiieiisisisssisissssssisssss s sssssssissssssssssssssssssssnns 665
EFI_BLOCK _I02_PROTOCOL.RESEL() ...vvvurrrrrrirnririnirnsineineississssseesssssssessssssssssssssssssenns 667
EFI_BLOCK _I02_PROTOCOL.REAdBIOCKSEX()......ccvvmrrrrrnrrrernernrieisnsesisnississsssssesnsenss 668
EFI_BLOCK _I02_PROTOCOL.WItEBIOCKSEX() . ..vvvovverrrrrirernirnsisssssiseisssssssssseessnesnes 670
EFI_BLOCK 102 _PROTOCOL.FIUSNBIOCKSEX()....vevrrererrnrenrrnsinssnrsnssssssssnsssssnssessesnseens 672

13.11 Inline Cryptographic Interface ProtOCOl ... 673
EFI_BLOCK_IO_CRYPTO_PROTOCOL ...cccovvriirrriirirniineississississis s sssssssssssssesees 673
EFI_BLOCK _IO_CRYPTO_PROTOCOL.RESEL() ...evvrrrrrrrrnereernrrneeerrnsesisnessisssssssesnsenns 678
EFI_BLOCK _IO_CRYPTO_PROTOCOL.GetCapabilitieS()c.ccu e 679
EFI_BLOCK _IO_CRYPTO_PROTOCOL.SetConfiguration()ccccccovermrrrerneenrerneene. 680
EFI_BLOCK_IO_CRYPTO_PROTOCOL.GetConfiguration()...........ccocovemeererrnirreeneene. 682
EFI_BLOCK_IO_CRYPTO_PROTOCOL.ReadEXtended()cccrurmrvreemernerrnrrneernernenne. 684
EFI_BLOCK_IO_CRYPTO_PROTOCOL.WriteExtended()cccvermrnerrnirneernirnrenennn, 686
EFI_BLOCK _IO_CRYPTO_PROTOCOL.FIUShBIOCKS()ccorevrrreereirririnireisisnsesisneenes 688

13.12 Erase BIOCK PrOTOCOL ...ttt 689
EFI_ERASE_BLOCK _PROTOCOLvviririirrirniiiisiriisisssssisssssissssssssssssssssssssssssessssssssans 689
EFI_ERASE_BLOCK_PROTOCOL.EraseBIOCKS()ccccorvrmriminrnninrinrneeeee e, 691

13.13 ATA PASS THIU PrOTOCON ...t 692
EFI_ATA_PASS _THRU_PROTOCOL......ccccostitiiiriiisinsieissiseissississsssissssssssssssssessssnns 692
EFI_ATA_PASS _THRU_PROTOCOL.PaSSTNIU()...cccvurirmrrnrinirneieiineieissisissssseesssnennes 697
EFI_ATA_PASS THRU_PROTOCOL.GENEXIPOIt().....ccoormrvrrrrrrirrierinrinirneirerssesnesnnenes 704
EFI_ATA_PASS THRU_PROTOCOL.GEtNEXIDEVICE().....covrrrerrrrnrrrrirririrnerseenrsanesneenns 705
EFI_ATA_PASS_THRU_PROTOCOL.BUIldDeVicePath()cccccooeeeeieiiriiiicccccicerrrrnen 707
EFI_ATA_PASS_THRU_PROTOCOL.GEIDEVICE()ovrrrrrrernrrierirrniiersnsieisssseiessssissnsnns 709
EFI_ATA_PASS_THRU_PROTOCOL.RESEIPOI().....cccrvrrrrrrrerrrrniiirniieinsiseisesissisenssnines 711
EFI_ATA_PASS _THRU_PROTOCOL.RESEIDEVICE()errrrrerrrrirerrneieineieessssnseessanennes 712

13.14 Storage Security Command ProtoCOl ... 713
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL......ccccommrrimrrnrirnrnnissrnseseisssnnenns 713
EFlI_STORAGE_SECURITY_COMMAND_PROTOCOL.ReceiveData()c..coeouu... 715

XXXVi May 2017 Version 2.7

EFI_STORAGE_SECURITY_COMMAND_PROTOCOL.SendData()............ccouurrrrurns 718

13.15 NVM Express Pass Through ProtOCOL..........ccccisissessse s 719
EFI_NVM_EXPRESS_PASS _THRU_PROTOCOLccccoeimimrmrnirnieiinssisseseissssnenns 719
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.PassThru()ccummrernnenn. 723
EFI_NVM_EXPRESS_PASS THRU_PROTOCOL.GetNextNamespace() 728
EFI_NVM_EXPRESS_PASS THRU_PROTOCOL.BuildDevicePath() 729
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL.GetNamespace()cuuernerne. 731

13.16 SD MMC Pass Thru ProtOCOI ... 732
EFI_SD_MMC_PASS _THRU_PROTOCOLcccevrmrririnririnrineissinsisssssisssssssssssessssssnns 732
EFI_SD_MMC_PASS _THRU_PROTOCOL.PaSSTNIU() ..ccccoccomrnrrerniieininsirerssesennenes 734
EFI_SD_MMC_PASS THRU_PROTOCOL.GEtNEeXtSIOt()ccooevmrrrrrrrrrrrirrrirrinienne, 738
EFI_SD_MMC_PASS_THRU_PROTOCOL.BuildDevicePath() ... 739
EFI_SD_MMC_PASS_THRU_PROTOCOL.GetSIotNumber().........covervineernirnrenenne. 740
EFI_SD_MMC_PASS _THRU_PROTOCOL.RESEIDEVICE()....ovrrrrrrrrrrrrireirereernesnesneenns 741

13.17 RAM DISK PrOTOCOI ...ttt e 742
EFI_RAM_DISK _PROTOCOL........cvvmrimririnrinieiissssissssisssssssssssssssssssssssessssssesssssessanssnssans 742
EFI_RAM_DISK_PROTOCOL.REQISIEN()cvvvvrrirriririnriesiiriesiiesesisssssssssesessssssssssssessesssnns 743
EFI_RAM_DISK_PROTOCOL.UNIEQISTEN()ovuiererriieirineieresiseissiiseiesssissssisesssssenns 745

13.18 Partition INfOrmMation ProtOCOI ... 745

13.19 NVDIMM Label ProtOCOL ...ttt 747
EFI_NVDIMM_LABEL_PROTOCOL.LabelStoragelnformation().........c.cccccoereureenene. 748
EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageRead()..........cccuermrnrirmirnrernrrnneneenn, 748
EFI_NVDIMM_LABEL_PROTOCOL.LabelStorageWrite()ccocvvrrrminieneineineeneine. 749

13.20 EFI UFS Device CoNfig ProtOCOL ... 765
EFI_UFS_DEVICE_CONFIG_PROTOCOLceemmriirrmiierrineissinsisssssiessissssssssssssssesens 765
EFI_UFS_DEVICE_CONFIG_PROTOCOL.RWUTSDeSCrptor()......cccovrrmernernernrerneenn. 766
EFI_UFS_DEVICE_CONFIG_PROTOCOL.RWUTSFIAQ()cvererrerrrrrerrnrrrirnirneirnrsnsenesnnenss 767
EFI_UFS_DEVICE_CONFIG_PROTOCOL.RWUTfSALtribute()cccoorvrrmrmrrrrrnrrrrinrnnn, 768

14 Protocols — PCI BUS SUPPOITooiiieec et 771

14.1 PCI ROOt Bridge I/O SUPPOIT ..ottt s sssss s sssssssssssesssssssssssssssssessesssens 771

14.1.1 PCI ROOt Bridge /0 OVEIVIEW.......c.ovviieiiireiiiseieeissie e 771

14.2 PCI ROOt Bridge I/O ProtOCOLccoviiiiiiiiciecse s 777
EFI_PCI_ROOT_BRIDGE_IO _PROTOCOL......ccccommiimrmririrniisissssissssssssssssssssssssssssnns 777
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.POIMEM() ..o, 786
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.POHIO() ..., 788
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Mem.Read()

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.MemM.WFite()......ccoocrmrmrrrmrrmrrrrrrnrrrernrens 790
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.lo.Read()

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.IO.WHFItE() .c..vvvrrvrririieirieriseisrissieisnens 792
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Pci.Read()

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.PCI.WIIE().....cccovurrerrmrrrrinrreirirrnsieirnnens 794
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.COPYMEM() ...covvvrrrrererrnririrnireirsesssesesneenes 796
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.MAP()..vrerrrrerrrrrermernreeessssnmssnssnssssessanessssans 798
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.UNMAP()..wrerrrrrerrernreeirmrinriniseisesssssesneenns 800
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.AllocateBuffer() ..., 801
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FreeBuffer()...........mmmn. 803

Version 2.7 May 2017 XXXV

Unified Extensible Firmware Interface Specification

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.FIUSN()....ccocntrmirimirniriininiensiseiseieene, 804
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.GetAttributes().......ccouurmrrmrnerrnernrirnrrnninns 805
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.SetAttributes()ccccovvrmrrmrrrrrnernrirnrrnnenns 807
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.Configuration()ccccourvermrnnrneenneneene. 809
14.2.1 PCI ROOt Bridge DeViCe Paths..........ccociiissssssssises s 811
143 PCIDIVEE MOAEL ...ttt bbb bbb bbbt 814
14.3.1 PCI Driver INItANZATION ..ot 815
14.3.2 PClIBUS DIIVEIS ...ttt ettt 817
14.3.3 PCl DEVICE DIIVEIS ..ottt sttt 822
14.4 EFI PCI /O PrOTOCON ...ttt 823
EFI_PCI_IO_PROTOCOL ouuiiccccceeeessesssssssssssesssesessss st ssesosssssssssenes 824
EFI_PCI_IO_PROTOCOL.POIMEM().......ooooooooeeeerevivvvsresessmseeeseesssesssssssssssssssssssssesssseseeees 834
EFI_PCI_IO_PROTOCOL.POIHIO() ...vvureueerrireiiiieisiisisiissinesssissesssssssssssiessssssessssssssesssesees 836
EFI_PCI_IO_PROTOCOL.Mem.Read()

EFI_PCI_IO_PROTOCOL.MEM.WHIILE()...cevrrrrirrreiereieinsesessssssesssssssesssssssnsssenns 838
EFI_PCI_IO_PROTOCOL.lo.Read()

EFI_PCI_IO_PROTOCOLIOMIILE() ...ooovvvvvvvvvvvveveeeeenesessssssssesssssssssssssssessenesesssssseees 840
EFI_PCI_IO_PROTOCOL.Pci.Read()

EFI_PCI_IO_PROTOCOL.PCLWIILE() ...evvvvvreerrieinrieieinsieessisesssissiessssiesssssesssseenns 842
EFI_PCI_IO_PROTOCOL.COPYMEM() ...vvrrirririrrirrreisensisesssssesssssssesssssssssssssssssssssssssans 844
EFI_PCI_IO_PROTOCOL.MAP() +veeerrrrrermrrmermisesseessseessssssessssessssssassssssssssssssssssssssassssssassans 847
EFI_PCI_IO_PROTOCOL.UNMAP() ..o verrrerrrrermermmisisnssnsesssesssssssssssssssssssessessssssesssssssssasssnes 849
EFI_PCI_IO_PROTOCOL.ANOCAtEBUFTEN()oveevreererrireirsissisrissinsississsssssssssessssssssesssnnens 850
EFI_PCI_IO_PROTOCOL.Fre€BUFTEr() ... 852
EFI_PCI_IO_PROTOCOL.FIUSN()ovtiiiiiiiiiiieiiisisissiesssisesssississsssissssisssssssssssssenens 853
EFI_PCI_IO_PROTOCOL.GELLOCAtION()....cvurrrrirrrninrineieierissisesssiessssesssssessssssesessesssnes 854
EFI_PCI_IO_PROTOCOL.ALIDULES() .vovevvrrerrirrieinrinsiesiesesssesssssssssssessessssssssssssssssnes 855
EFI_PCI_1I0_PROTOCOL.GetBarAttriDULES()c.covvvrvreerrrisrninsiessieesie s 858
EFI_PCI_IO_PROTOCOL.SetBarAttribULES().......cccovrrmirrrerrinrinrnsissrssisssssssessssssesesnseens 861

14.4.1 PCIDEVICE PAtNS ..o 862
14.4.2 PCl OPLION ROMSovviiiiiiiiieiiie sttt 864
14.4.3 NONVOIALIE STOrAgEcccvceicercrrc s s 876
14.4.4 PClHOt-PIUQ EVENLS ..ot 876

15 Protocols — SCSI Driver Models and Bus SUPPOIt.......c.cccccevveviieicieecnnnn, 877
15.1 SCSI Driver MOl OVEIVIBW ..ot 877
15.2 SCSIBUS DIIVEIS ...ttt 877
15.2.1 Driver Binding Protocol for SCSI BUS DIIVETS ... 878
15.2.2 SCSI ENUMEIATION ...ttt 879

15.3 SCSI DEVICE DIIVEIS ...ttt ettt st bbb bbbt s 879
15.3.1 Driver Binding Protocol for SCSI DeVice DIVEIS ... 879

15.4 EFI SCSI 1/O PrOTOCOL.......ooiiiiiiciises et 880
EFI_SCSI_IO_PROTOCOL ...t sssssssssessessanes 880
EFI_SCSI_IO_PROTOCOL.GEIDEVICETYPE() ...vvrerrrrrermrrnrirerrisenssessssssssssssssssssassssssssans 882
EFI_SCSI_I0O_PROTOCOL.GetDeViceLOCAtiON()covrrrrereerrinrsnsieeesissssessssssssennns 884
EFI_SCSI_IO_PROTOCOL.RESEIBUS()vvevrrerrrriirnieieieiisisiesesesesesese s sesessessessesnes 885
EFI_SCSI_IO_PROTOCOL.RESEIDEVICE() ..cucvrrvrriririiiriiieissiseississiessssisssssssssssssessssnns 886

XXXViii

May 2017 Version 2.7

EFI_SCSI_10_PROTOCOL.ExecuteScsiCommand()ccouvererrernmnsnsnsessssesesnsans 887

15.5 SCSIDEVICE PANS ..ottt 891
15.5.1 SCSI Device Path EXAMPIE ... s ssssssessssessssssssssssessens 891
15.5.2 ATAPI Device Path EXaMPIE. ...ttt ssnes 892
15.5.3 Fibre Channel Device Path EXample.........ccconsssesseenns 893
15.5.4 InfiniBand Device Path EXAMPIE ... 894

15.6 SCSI Pass Thru DeVICe PathS ... 895

15.7 Extended SCSI Pass THru ProtOCO] ... 898

EFI_EXT_SCSI_PASS_THRU_PROTOCOLcccevrmrrririnrisinsieissississsssisssssssssssssssssssnns 899
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.PaSSTNIU()ccccovrmrrrrmrinrinirneirsrsnnesesnnens. 902
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTargetLun().......ccccuurvirernnene. 908
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.BuildDevicePath().......cccccccccccccorrvrren 910
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetTargetLun()c.ccovvvvrrnenerrnirneernennn, 912
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetChannel() ..., 914
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.ResetTargetLun().......commrrmrrernenne. 915
EFI_EXT_SCSI_PASS_THRU_PROTOCOL.GetNextTarget()cormnrerneenn. 917
16 ProtoCoOIS — ISCSIBOOTccooieiiie ettt 919

L8. 1 OVEIVIBW ..ottt R 88t 919
16.1.2 iSCSI UEFI DIIVEr LAYETING ..o 919

16.2 EFIiSCSI Initiator Name ProtOCO] ... 919

EFI_ISCSI_INITIATOR_NAME_PROTOCOLooovvoeermeeeesessssssesssesssesssssssssssreessssssenes 920
EFI_ISCSI_INITIATOR_NAME_PROTOCOL. GEL()....csvurrrrmrrrrermrrnirrerinsireirsiseirsisssissesnsenes 921
EFI_ISCSI_INITIATOR_NAME_PROTOCOL.SEL() ...ccvvvrerrrieernriiinirneiersiseessesesssssseens 922
17 ProtoCOlS — USB SUPPOIT.......coiiiiiiiiieieiee e 923

17.1 USB2 HOSt CoNtroller ProtOCOL...........ccccoovviinccee et 923

17.1.1 USB Host Controller ProtoCOl OVEIVIEW............ccviniiiisinesssssssise s 923
EFI_USB2_HC_PROTOCOL. ..ot ssssssssssssssssssssssessssssssssssssssssssens 923
EFI_USB2_HC_PROTOCOL.GetCapability()ccumrrmrmmeeieinirneiernsssssesesnsssnenens 926
EFI_USB2_HC_PROTOCOL.RESEL().....ccrrrrrerrirririrnireinisnsiesesissssssssesssssssssssssassssssessans 928
EFI_USB2_HC_PROTOCOL.GELSLAE()vvvrrrrrrrerrreinisnsissesisssssessssssssssssssssesssssssenns 930
EFI_USB2_HC_PROTOCOL.SELSLALE()vvvevrririerieiisrienieresiessssesesssssssss s esssssensnns 932
EFI_USB2_HC PROTOCOL.ControlTransfer()......innsssssssssssssnnnns 934
EFI_USB2_HC_PROTOCOL.BUIKTFaNSTer() ..o, 937
EFI_USB2_HC PROTOCOL.AsyncinterruptTransfer().........imn. 940
EFI_USB2_HC_PROTOCOL.SyncInterruptTransfer() ..., 943
EFI_USB2_HC_PROTOCOL.ISochronousTransfer().......cneneneeneene. 946
EFI_USB2_HC_PROTOCOL.AsynclsochronousTransfer() ..., 949
EFI_USB2_HC_PROTOCOL.GetROOtHUDBPOItStAtUS()cvvvereerireieinieisieseiesieinns 952
EFI_USB2_HC PROTOCOL.SetRootHUbPoOrtFeature().......ccooovvvvivrieeieienieneenens 956
EFlI_USB2_HC PROTOCOL.ClearRootHubPortFeature().......ccevvvvrcvrenecnnnnnns 958

17.2 USB DFIVEE MOGEL ...ttt sttt sttt 959
L7.2.0 SCOPIE ..ottt bbb bbb bbb 959
17.2.2 USB BUS DIIVEL ..ottt ettt bt bbbt 960
17.2.3 USB DEVICE DIIVET ..ottt 961
17.2.4 USB I/O PrOTOCOL ..ottt 962

EFI_USB_|O_PROTOCOL ...t ssssssssssssssssssssssssssssssssans 963

Version 2.7 May 2017 XXXiX

Unified Extensible Firmware Interface Specification

EFI_USB_IO_PROTOCOL.UsbControlTransfer()........cunnnsseeenens 965
EFI_USB_IO_PROTOCOL.USBBUIKTIaNSTEI()cccvvrvierriirnrenirnsireiseisissississssseessenennes 968
EFI_USB_10_PROTOCOL.UsbAsyncinterruptTransfer()..........conmn, 970
EFI_USB_IO_PROTOCOL.UsbSyncInterruptTransfer().........cn. 975
EFI_USB_IO_PROTOCOL.UsblsochronousTransfer().........cinnnn. 977
EFI_USB_IO_PROTOCOL.UsbAsynclsochronousTransfer() ... 979
EFlI_USB_IO_PROTOCOL.UsbGetDeviceDeSCriptor() ... 981
EFI_USB_I0_PROTOCOL.UsbGetConfigDesCriptor()......cccceormienenreensreieensennees 983
EFI_USB_|I0_PROTOCOL.UsbGetInterfaceDescriptor()......c.onnensenensennnes 985
EFI_USB_IO_PROTOCOL.UsbGetEndpointDeSCriptor() ... 987
EFI_USB_IO_PROTOCOL.UsbGetStringDesCriptor().......ccumrmrieeiinereisseeeeens, 989
EFI_USB_IO_PROTOCOL.UsbGetSupportedLanguages()cmemnernirneenenns. 990
EFI_USB_IO_PROTOCOL.USDPOIRESEL()......covverirriirriiiniineisiissiessssieissssesessssessnenns 991

17.3 USB FUNCLION PrOTOCON ..ottt sttt e 991
EFI_USBFN_IO_PROTOCOLceovvivtiririneieieissisissssssissssssssssssesssssssssssssssssssesssssssssssssssans 992
EFI_USBFN_IO_PROTOCOL.DEtECIPOI()....cvvrrrerrinriernrissinrinsissssiseesssesssssesessenssnes 996
EFI_USBFN_IO_PROTOCOL.ConfigureEnableENdpoints()ccccoovnerminireinniens 998
EFI_USBFN_IO_PROTOCOL.GetEndpointMaxPacketSize()........ccccovvunerrirniinnns 1000
EFI_USBFN_IO_PROTOCOL.GetDeViCelNTO() ... 1002
EFI_USBFN_IO_PROTOCOL.GetVendorldProductld()cccccrmmrermenerninrireineinnns 1004
EFI_USBFN_IO_PROTOCOL.ADOITIanSfer() ... 1005
EFI_USBFN_IO_PROTOCOL.GetEndpointStallState()...........cccovrrernrvrrninrirninninnns 1006
EFI_USBFN_IO_PROTOCOL.SetEndpointStallState()ccovvervrnerineriiniinens 1007
EFI_USBFN_IO_PROTOCOL.EventHandler() ... 1008
EFI_USBFN_IO_PROTOCOL.TranSfer() ... 1012
EFI_USBFN_IO_PROTOCOL.GetMaxTransferSize().......onneneene. 1014
EFI_USBFN_IO_PROTOCOL.AllocateTransferBuffer() ..., 1015
EFI_USBFN_IO_PROTOCOL.FreeTransferBuffer()..........mnnnns 1016
EFI_USBFN_IO_PROTOCOL.StartController() ... 1017
EFI_USBFN_IO_PROTOCOL.StopController() ..., 1018
EFI_USBFN_IO_PROTOCOL.SetENdpOIiNtPOICY()......ccvvverrineiniirinineineinsiseisnins 1019
EFI_USBFN_IO_PROTOCOL.GetENdPOINtPOICY()......vvrrerrrreeinirsinirneisissiseisnnenes 1022

18 Protocols — Debugger SUPPOIT ... 1025
181 OVEIVIBW ...t bbb 1025
18.2 EFI Debug SUPPOIt PrOtOCOL ... 1026
18.2.1 EFI Debug Support ProtoCol OVEIVIEW.........cc.cocvverieninenssssssssesssssssssessssesesens 1026
EFI_DEBUG_SUPPORT_PROTOCOL.....ccccvntimirininninrinsissississsssssssssssssssssssssssssssssens 1026
EFI_DEBUG_SUPPORT_PROTOCOL.GetMaximumProcessorindex() 1029
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterPeriodicCallback()c.ccccrvuvuu 1030
EFI_DEBUG_SUPPORT_PROTOCOL.RegisterExceptionCallback().........c..cc.cc..... 1039
EFlI_DEBUG_SUPPORT_PROTOCOL.InvalidatelnstructionCache()c......c..... 1045

18.3 EFI DebugpOrt ProtOCOI ... 1046
18.3.1 EFI DEDUQGPOIT OVEIVIEW. ... sesees 1046
EFI_DEBUGPORT_PROTOCOL......cocotinrimiiriniresisisssissnsssssssssssssssssssssssssssssssssesssssnssans 1046
EFI_DEBUGPORT_PROTOCOL.RESEL().....vvirriieriireiiiniineineineisessesssisessssssssnenes 1048
EFI_DEBUGPORT_PROTOCOL.WIILE()....cverevrrieereieriniiseissiseisssssisssssiesssssesssssessssnes 1049

May 2017 Version 2.7

EF]_DEBUGPORT_PROTOCOL.REAA().....corerreerrsceessesseessesssssssssssssssesseesseesseen 1050

EFI_DEBUGPORT_PROTOCOL.POI() ...cooivitiiiriiiiiiineriseieeisesisessesssssssssssssssessesssenens 1051

18.3.2 Debugport Device Path ... s, 1051
18.3.3 EFI Debugport Variable ...ttt sseseees 1052

18.4 EFI Debug SUPPOIT TaDIE ... 1053
L18.4. 1 OVEIVIEW ...ttt 1053
18.4.2 EFI System Table LOCAtION........ccccccociviveeiccce s ssessnes 1054

18. 4.3 EFI IMAQE INTO....ciiccrc s st 1054

19 Protocols — Compression Algorithm Specification............ccccceevviiieennen, 1057
19.1 AIGOITTNM OVEIVIEW ...t 1057
19.2 Data FOIMAL.........ccoiiiii e 1058
L. 2.1 Bt OFUEL ... 1058
19.2.2 OVErall SIIUCTUIE.......couiiicce s 1059
19.2.3 BIOCK SEIUCTUIE ..o 1060

19.3 COMPIESSOT DESIGN ...t 1063
19.3.1 OVEIAII PrOCESS ...ttt sttt sse s ssssnsnnes 1063
19.3.2 StHNG INFO LOQ. ...ttt 1064
19.3.3 Huffman Code GENETAtION ... 1067

19.4 DECOMPIESSOT DESIGN....ouiviiieiiniiiieiniisieie ettt s st se et 1069
19.5 DECOMPIESS PIrOTOCOI ..o 1070
EFI_DECOMPRESS_PROTOCOL.....cctviiiniinineinis et sesssssssse s 1070
EFI_DECOMPRESS_PROTOCOL.GEINTO()......cvvvrrirriririiiiiieinsisississsesisesssssinens 1072
EFI_DECOMPRESS_PROTOCOL.DECOMPIESS()ovvvrvrrrrrriiriiiiriisisssisssssessssisnens 1074

20 Protocols — ACPI ProtOCOIS.......cccccviiiiie et 1077
EFI_ACPI_TABLE_PROTOCOLiiiiiiiiiccccceeevessssssssssssssessesssessssssssssssesssssssssssssesssone 1077
EFI_ACPI_TABLE_PROTOCOL.InstallAcpiTable()........cccccoumminiiniiniiriiiens 1078
EFI_ACPI_TABLE_PROTOCOL.UninstallAcpiTable().........omnnnrnrninnnns 1080

21 ProtoCOIS — StrNG SEIVICES......cccciiiiiiiiiiiie ittt 1081
21.1 Unicode Collation ProtOCOl ...ttt 1081
EFI_UNICODE_COLLATION_PROTOCOLcccoeurmiminiriiinsisisisssssssssisessssinens 1081
EFI_UNICODE_COLLATION_PROTOCOL.SErCOI()ccvvvvrrrrrrrrririeininerseiciienns 1083
EFI_UNICODE_COLLATION_PROTOCOL.MetaiMatCch() ..., 1084
EFI_UNICODE_COLLATION_PROTOCOL.SErLWI()cvvrerrerreriereineineeeieeieeseens 1086
EFI_UNICODE_COLLATION_PROTOCOL.SEIUPI()..ccoeveerrerrnerrerneieisneeierserseeseens 1087
EFI_UNICODE_COLLATION_PROTOCOL.FAtTOSLI()....ccerevrrrreerrereereissensensessessnssnnenns 1088
EFI_UNICODE_COLLATION_PROTOCOL.StrTOFAL().......couvevrrmrrreriririnrieriresiresirnnns 1089

21.2 Regular EXPression ProtOCOI ..., 1089
EFI_REGULAR_EXPRESSION_PROTOCOLcccovrimiimiririnereissssseisssisssssessessnens 1090
EFI_REGULAR_EXPRESSION_PROTOCOL.MatchString()ccccouvemeenernerneenennns 1091
EFI_REGULAR_EXPRESSION_PROTOCOL.GELINFO()......ovvvrrrrrrirnerrneineiinerinerieinns 1093

21.2.1 EFI Regular Expression Syntax Type DefinitioNns...........cccoovnnninnennns 1094

22 EFI Byte Code Virtual Machine.........c.ccooviiiiiiiieeee 1097
22,1 OVEIVIBW ...ttt 1097
22.1.1 Processor Architecture INdependencCe ... 1097

Version 2.7 May 2017 xli

Unified Extensible Firmware Interface Specification

xlii

22.1.2 0S INAEPENUENT ..o 1098

22 1.3 EFI COMPEANT ...t 1098
22.1.4 Coexistence of Legacy Option ROMS ... sssesssssssnnes 1098
22.1.5 Relocatable IMAgE ...t 1098
22.1.6 Size Restrictions Based on Memory Available ..., 1098

22.2 MEMOTY OFUEIING ..t 1099
22.3 Virtual Maching REQISTEIS ... ss s 1099
22.4 NATUFAL INAEXING ..ottt 1100
22,41 SIQN Bt 1101
22.4.2 Bits Assigned to Natural UNItS.........coonnnsee s 1101

22 4.3 CONSTANT.......iiiiiieie b bbbt bbb 1101

22 4.4 NALUFAL UNIES ooovoisee sttt 1102

22.5 EBC INSErUCLiION OPEIANGS........ccvvvcieiiece s 1102
22.5.1 DIreCE OPEIANGScvvviviriciis ettt 1102
22.5.2 INAIreCt OPEIANGS......cccovivrcrecrr st 1103
22.5.3 Indirect With INAeX OPEIaNdSc.coviviririe s 1103
2254 Immediate OPEIANGS ...ttt 1103

22.6 EBC INSTIUCTION SYNTAX ...oucvviiiiiiieisiieeiesieisss bbb 1104
22.7 INSTrUCLION ENCOAING ...ovviiisiieieeese s 1104
22.7.1 Instruction Opcode Byte ENCOAING ..o snes 1104
22.7.2 Instruction Operands Byte ENCOAINGccccocoviiiiinniinineeee s 1105
22.7.3 Index/Immediate Data ENCOAING..........ccooiiiieeeseessssssesesnens 1105

22.8 EBC INSTIUCTION ST ...oviiieiciiieieiee e 1106
ADD ...ttt e 1107

AND ... 1108

ASHR L. e 1109

BREAK ... s 1110

CALL oot 1112

CIMP s 1115

CIMPL oo 1117

DIV e 1119

DIVU oo 1120

EXTINDB ...t 1121

EXTINDD ..ottt 1122

EXTINDW ... 1123

JIMIP s 1124

JIMIPB ..o 1127

LOADSP ..ot 1128

IMIOD ...ttt 1129

IMIODWU ..ot 1130

IMIOV Lo 1131

IMIOV Lo 1133

IMIOV TN b 1135

MOV oo 1136

MOV REL ...ttt 1137

IMIOV/ SN .ot 1138

IMIUL oo 1140

May 2017 Version 2.7

INEG .o 1142

N O T e 1143

O R R 1144

POP R et 1145

POPN .. bbbt 1146

PUSH b 1147

PUSHIN oo 1148

RET et 1149

SHL s 1150

SHER e b Rt bR r bRt 1151

STORESP ..ot 1152

SUB e 1153

XOR s 1154

22.9 Runtime and Software CONVENTIONS ... sssees 1155
22.9.1 CalliNng OULSIAE VM.t 1155
22.9.2 CalliNg INSIAE V...t 1155
22.9.3 Parameter PASSING. ... ssssssssssssssssssssssns 1155
22.9.4 RETUIN VAIUES ..ot bbb 1155
22.9.5 BiNArY FOIMAL.......ccoviiiricsccs st 1155
22.10 Architectural REQUITEMENTS.........ccoirrerree et 1155
22.10.1 EBC Image REQUIFEMENTS ..ottt sttt ssesssssessessessessses 1155
22.10.2 EBC Execution Interfacing REQUIrEMENTS ... 1156
22.10.3 Interfacing Function Parameters Requirements..........ccococovvvveeneieieeenenns 1156
22.10.4 Function Return REQUIFEMENTSccvviiinisrscessisssssssssssssssssssssessssssssessessesssssenes 1156
22.10.5 Function Return Values ReqQUIrEMENTS ... sssssesseeenns 1156
2211 EBC INterpreter PrOTOCOL. ...ttt 1157
EFI_EBC_PROTOQCOLooovviririeiiniisieiesissssss st ssssssssssessssssssessssssesssssnssnes 1157
EFI_EBC_PROTOCOL.CreateThUuNK().....c.ccccovivrinrnininrnrininissseses e ssessesseenes 1158
EFI_EBC_PROTOCOL.UNIOAAIMAGE()......rvererrririrniieiniinsissineiesssieesssssisssssiessessees 1159
EFI_EBC_PROTOCOL.RegisterlCacheFIush() ..., 1160
EFI_EBC_PROTOCOL.GELVEISION().....cviirriiereirnreeirnisnsisssnsisssssssssssssssssssssssesssssssssssans 1162

22 .12 EBC TOOIS ..ottt 1162
22.12.1 EBC C COMPIIET ...ttt st 1162
22.12.2 C COAING CONVENTION ...ttt 1162
22.12.3 EBC Interface Assembly INSTrUCLIONS.........cccccovivveiinisecese e 1163
22.12.4 Stack Maintenance and Argument Passing ... 1163
22.12.5 Native to EBC Arguments Calling Convention...........coincnnnennieneennn: 1163
22.12.6 EBC to Native Arguments Calling Convention ... 1163
22.12.7 EBC to EBC Arguments Calling Convention...........c.cooonnnnnnnnnenens 1164
22.12.8 FUNCLION REIUINS ..ottt 1164
22.12.9 FUNCLION RETUIN VAIUEScooiiii e 1164
22.12.10 TRUNKING .ot 1164
22.12. 11 EBC LINKET .ottt 1166
221212 IMAGE LOAAEY ...ttt sttt 1167
22.12.13 DEDUQG SUPPOIT ... 1167
22.13 VM EXCeption HANAIING . ..ot 1167

Version 2.7 May 2017 xliii

Unified Extensible Firmware Interface Specification

22.13.1 Divide BY O EXCEPLION ..ot 1168
22.13.2 Debug Break EXCEPLION ...ttt sssss s sssessesssssnesans 1168
22.13.3 Invalid Opcode EXCEPLION ...t snes 1168
22.13.4 Stack FaUlt EXCEPLION ...t 1168
22.13.5 AHGNMENT EXCEPLION ...oovviicirieieiesisie ettt st ssnens 1168
22.13.6 Instruction ENcoding EXCEPLION ... 1168
22.13.7 Bad Break EXCEPLION ... 1169
22.13.8 Undefined EXCEPLION ..ottt ssnsens 1169
22.14 OptioN ROM FOIMALS.......coiiiiirieieisissss et sssse sttt sssssssssssssssens 1169
22.14.1 EFI Drivers for PCl Add-in Cards........ccccrnnenennenseneensessessssssssssssssssssessessessenes 1169
22.14.2 NON-PCl BUS SUPPOIT ... 1169

23 Firmware Update and REPOITINGccoovvviiiiiiiiieiieeeee e 1171
23.1 Firmware Management ProtOCOL........c.ccciicnccseree s sssssens 1171
EFI_FIRMWARE_MANAGEMENT_PROTOCOL......cccuuimimriminrninsisensisenssnssssssnenns 1171
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.Getlmagelnfo()......ccvevererns 1173
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetImage()cccovrvrrmrrvrnrerrnrinrnns 1180
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetImage().......ccocrmumerrminerrerrnrinnns 1182
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.Checklmage().......cccouremrrrmrrnrennns 1185
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.GetPackagelnfo()ccruurnes 1187
EFI_FIRMWARE_MANAGEMENT_PROTOCOL.SetPackagelnfo()........ccoeruruns 1189

23.2 Delivering Capsules Containing Updates to Firmware Management Protocol.......... 1190
23.2.1 EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUID......c.ccccosvrmimmrrmrrnrrnireirninnns 1190

23.2.2 DEFINED FIRMWARE MANAGEMENT PROTOCOL DATA CAPSULE STRUCTURE
1191
23.2.3 Firmware Processing of the Capsule Identified by

EFI_FIRMWARE_MANAGEMENT_CAPSULE_ID_GUIDccccovinrnmrinireiinrnrinsensennennens 1195

23.3 EFI System ReSOUICE TaBIE ... 1197
EFI_SYSTEM_RESOURCE_TABLE ..ottt 1197

23.3.1 Adding and Removing Devices from the ESRT ... 1200
23.3.2 ESRT and Firmware Management ProtocCol ... 1200
23.3.3 Mapping Firmware Management Protocol Descriptors to ESRT Entries....... 1201

24 Network Protocols — SNP, PXE, BISand HTTP BoOt...........cccccoccvviienienee. 1203
24.1 SIMple NetWOIK PrOtOCOI ..o 1203
EFI_SIMPLE_NETWORK_PROTOCOLcceovrirrimririnirneininsissssississsssisssssssessssss s, 1203
EFI_SIMPLE_NETWORK.SEAT()covrvreririnrieiissinssss s ssssssssessssssssssssssssssessanes 1208
EFI_SIMPLE_NETWORK.STOP(). .. rvererererrierinseeesssssisnsssessssessssssssssssssssssssssssessessssssssans 1209
EFI_SIMPLE_NETWORK.INITIAIZE()cvovrrrirrinrisisrnisseessseeseses e ssessssseenes 1210
EFI_SIMPLE_NETWORK.RESEL()cvrrrurerrriireiriisiniieisissisesssisessssssissssssesssssssssssssssens 1211
EFI_SIMPLE_NETWORK.SRULAOWN()vvviriiiiiieiniiisinesssise e, 1212
EFI_SIMPLE_NETWORK.RECEIVEFIILErS()......covurririnirneinineiieineinessisssesssie e, 1213
EFI_SIMPLE_NETWORK.StatiONAAAIreSS()ccovveremrrrinrnrisinrinsiissississssssesssssssnssans 1216
EFI_SIMPLE_NETWORK.StAtiISTICS()......cvvrrrrirrrnrininriniinsississssssssssssssssssssssssssssenssnns 1217
EFI_SIMPLE_NETWORK.MCaStPTOMAC()ccccvuvrmrnrnrninriniseneseseessssessessssseenes 1221
EFI_SIMPLE_NETWORK.NVDALA()covvvrrrriiiiriiiniisineiseississsssisssssssssssss s sessessens 1222
EFI_SIMPLE_NETWORK.GELSTAtUS()covevriireeriiiiniineieisiesssiseissssissssisessssssessssnes 1224
EFI_SIMPLE_NETWORK.TranSMUL().......cccovurrumrmrmninirninrsisissseissssssssssesssssessssnes 1226

xliv

May 2017 Version 2.7

EFI_SIMPLE_NETWORK.RECEIVE() c.vooeereereerersesesssessseesseesseesssssssssssssssssessees 1228

24.2 Network Interface Identifier PrOtOCOI ..., 1229
EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOLccoourmrmrirrineirerrnrineeneene, 1229
24.3 PXE Base COUE PrOTOCOL ...t 1232
EFI_PXE_BASE_CODE_PROTOCOL ...c.ccccoviviminininsiesississississsssssssssssssssssessessessnns 1232
EFI_PXE_BASE_CODE_PROTOCOL.STAI()....cccocrvrmrirermrrerieresiesissssssssssssesssssessnns 1245
EFI_PXE_BASE_CODE_PROTOCOL.STOP()....ccmurrermirnremmrriereineissssisssseesssssessssnes 1247
EFI_PXE_BASE_CODE_PROTOCOL.DNCP()..eerrrermrrnrermerrieeesnserssssisssssesesssssssessssanes 1248
EFI_PXE_BASE_CODE_PROTOCOL.DISCOVEI()....ccvumrrmrrmrermrrnereinrseesssnsisssnssssesnnsnes 1250
EFI_PXE_BASE_CODE_PROTOCOL.MP() ccvvvvrrerernrimirnrisineiseiissssisssesisessssssesnssnes 1254
EFI_PXE_BASE_CODE_PROTOCOL.UAPWIILE() ..covevverreririerieierssiesesisssssisssessnns 1258
EFI_PXE_BASE_CODE_PROTOCOL.UAPREAA()c.cevvvrrmrirrnrinrieisieiesisesssssssesinns 1260
EFI_PXE_BASE_CODE_PROTOCOL.SetIPFIlter().......coumnninerieineierinniens 1264
EFI_PXE_BASE_CODE_PROTOCOL.AIP() vvrereerermeeermernresssnseesnsssesssssesssassessessnes 1266
EFI_PXE_BASE_CODE_PROTOCOL.SetParameters()........coinninnnnns 1268
EFI_PXE_BASE_CODE_PROTOCOL.SetStationIp() ..o 1270
EFI_PXE_BASE_CODE_PROTOCOL.SetPackets().......ccccvumrneriminriinresissnsieisninns 1272
24,31 NEIDOOLEc.oovocviic s 1273
24.4 PXE Base Code CallDack ProtOCOl ... 1279
EFI_PXE_BASE_CODE_CALLBACK PROTOCOLccoeimrrrrmereiiniieineinsisssnsiesseninns 1280
EFI_PXE_BASE_CODE_CALLBACK.CallBACK()......ccvvrrrmrrrimrnrirninsieississsineiesseninns 1281
24.5 Boot Integrity SErvices PrOtOCOL. ... 1282
EFI_BIS _PROTOCOL ..ottt sssssssssss s s sssssnns 1283
EFI_BIS_PROTOCOLINITIAIHZE() . ..oeverrreeriniieiiisiseiseissississise s sessessens 1286
EFI_BIS_PROTOCOL.SNUEAOWN()cvuivrirriiiieriiisinsieisssssisssssssesssssisssssssssssssssessees 1290
EFI_BIS_PROTOCOL.FIEE() c.uuvvurrreerrrrrernrisiseissessissssesssssssssssssessssssssssssssssssessssssssasssnns 1291
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCertificate()............c.ccccoervvnne 1292
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationCheckFlag()......c..c.coeervrneenne 1293
EFI_BIS_PROTOCOL.GetBootObjectAuthorizationUpdateToken()........c..c..cc..... 1294
EFl_BIS PROTOCOL.GetSignaturelNfo()......cccovrnnenisrnrsississssssesssissssesesisnens 1295
EFl_BIS PROTOCOL.UpdateBootObjectAuthorization()..........cccceeveivivreieiinnns 1300
EFI_BIS_PROTOCOL.VerifyBoOtODJECT()ccovvrrririririinineeississise s 1308
EFI_BIS_PROTOCOL.VerifyObjectWithCredential()...........ccccccoererrrrrrnnrerereneenns 1316
24.6 DHCP 0ptions fOr ISCSI ON IPVG.......c.oiiiisisessiesssies s 1323
2.7 HTTP BOOT ..ottt 1323
24.7.1 BOOT FIOM URL....ooviiiiiiiiiese sttt 1323
24.7.2 Concept configuration for a typical HTTP Boot scenario..........cccooevvererivnnnns 1324

24.7.3 Protocol Layout for UEFI HTTP Boot Client concept configuration for a typical
HTTP BOOT SCENAKIO. ...ttt 1326

24.7.4 Concept of Message Exchange in a typical HTTP Boot scenario (IPv4 in

Corporate ENVIFONMENT).........coviiceisssi st 1329
24.7.5 Concept of Message Exchange in HTTP Boot scenario (IPV6)..........c.cccccovvnan. 1333
24.7.6 EFI HTTP Boot Callback ProtOCol ..., 1336
EFI_HTTP_BOOT_CALLBACK_PROTOCOLcccovmririneirineineisiinsissssisssssssssssssenns 1336
EFI_HTTP_BOOT_CALLBACK_PROTOCOL.Callback()cccosurmrmrrrrermernrirnrneenrinns 1337

Version 2.7 May 2017 xlv

Unified Extensible Firmware Interface Specification

25 Network Protocols — Managed NetworK..........ccccoiviiiiiiienieiicce 1339
25.1 EFl Managed Network ProtOCON ...ttt e, 1339
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOLccccceeeeeerererrrrree 1339
EFI_MANAGED_NETWORK _PROTOCOLccooeniriiniriininineneisinsissesssssissseneenns 1340
EFI_MANAGED_NETWORK_PROTOCOL.GetModeData()..........ccccurvnerererrirennnns 1342
EFI_MANAGED_NETWORK_PROTOCOL.CONfIQUIE()cocvvrrrrireriniiiriierierireninens 1345
EFI_MANAGED_NETWORK_PROTOCOL.McastipTOMAC()c.cnvvevrrnmrernriirinnens 1347
EFI_MANAGED_NETWORK_PROTOCOL.GIrOUPS() ...cvreereererreerersneesersnerssessesseeens 1349
EFI_MANAGED_NETWORK_PROTOCOL.TransSmit().......ccccorvrervrmrmrrnrinrnrensnrinrnns 1351
EFI_MANAGED_NETWORK _PROTOCOL.RECEIVE() ...vvvrerrnrrnrrrsrinrinrnrissssresinrinsenns 1357
EFI_MANAGED_NETWORK_PROTOCOL.CANCEI()ocovvvrmvrrriniririieiineinersereiieens 1359
EFI_MANAGED_NETWORK_PROTOCOL.POH() ...ccvvvirriririerineineensseeisesienieens 1360

26 Network Protocols — VLAN, EAP, Wi-Fi and Supplicant 1361
26.1 VLAN Configuration PrOTOCOL ... 1361
EFI_VLAN_CONFIG_PROTOCOLcecostrirtiiiiiisissieississsissssssissssssssssssesssssssens 1361
EFI_VLAN_CONFIG_PROTOCOL.SEL ()....ccstrrrrrrrirmrmirieiierssesisessesssssssssssssssessesssenens 1362
EFI_VLAN_CONFIG_PROTOCOL.FINA() ct\rreeeererreireinirieiineissrssssessessessesssessessenons 1364
EFI_VLAN_CONFIG_PROTOCOL.REMOVE ()....cvvvrrerrirerrrrinermerieisessnsesssssssessessseens 1366

26.2 EAP PIrOTOCOLcviiciriiic sttt sttt 1366
EFI_EAP_PROTOCOLcoootiitiiiiisisissisi st 1366
EFI_EAP.SetDesiredAUthMethod() ... s 1368
EFI_EAP.RegisterAUtNMETNOA()covvreieicrcsrssesss e seessens 1369

26.2.1 EAPManagement ProtOCOL.............ooncncrecscseissise sttt sssnes 1371
EFI_EAP_MANAGEMENT_PROTOCOL......ccccostiiiiieiiiieiiesissiesssesssessssssssssssssssssens 1371
EFI_EAP_MANAGEMENT.GetSystemConfiguration()coccovreermeneenninenernninnns 1373
EFI_EAP_MANAGEMENT.SetSystemConfiguration().........ccccoevvivrieieinrisrsnninninns 1375
EFI_EAP_MANAGEMENT.INItIAliZEPOIT() ...ccoovviviiiiciiessesene 1376
EFI_EAP_MANAGEMENT.USEILOGON().....courirrerriiiniieiseissiseiessssissssessessssssssens 1377
EFI_EAP_MANAGEMENT.USErLOGOF() ...c.ooeveriicieiieiiieiseeiseesssisssssisessesseens 1378
EFI_EAP_MANAGEMENT.GetSupplicantStatus().......ccooceereenerineenerseiseessenieeens 1379
EFI_EAP_MANAGEMENT.SetSupplicantConfiguration()...........ccccoevervinererniinens 1382
EFI_EAP_MANAGEMENT.GetSupplicantStatisticS()ccouvrmrivrereinrinrisieieieniens 1383

26.2.2 EFI EAP Management2 ProtOCO ... 1385
EFI_EAP_MANAGEMENT2_PROTOCOLcoeniriiiirierierieeiesieessesssssssssssssssesssssssens 1385
EFI_EAP_MANAGEMENT2_PROTOCOL.GELKEY/()cvvvurrrrierieiierinsiisiiesieriesieens 1386

26.2.3 EFI EAP Configuration ProtOCOI ... 1386
EFI_EAP_CONFIGURATION_PROTOCOL.....coctniriiriniininiinisissinseissssssesssesssssssenns 1386
EFI_EAP_CONFIGURATION_PROTOCOL.SetData() ..o 1388
EFI_EAP_CONFIGURATION_PROTOCOL.GetData()ccccouurrrrrrmernreirriierirerirsrinens 1391

26.3 EFI Wireless MAC Connection ProtoCOl ... 1392
EFI_WIRELESS_MAC_CONNECTION_PROTOCOLcccrmrmrrmrmeieineinereieisenns 1392
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.SCAN()...cccvrrrrrmrirrrinrierirrineens 1393
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.ASSOCIAtE()overrerrerrerrenrinrens 1404
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Disassociate().............ccuu... 1409
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Authenticate() 1412
EFI_WIRELESS_MAC_CONNECTION_PROTOCOL.Deauthenticate() 1416

xlvi May 2017 Version 2.7

26.4 EFlI Wireless MAC ConNection [l PrOTOCON ...t sesse s 1417

EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.....ccccrurmrmrirmrrmeireenrisernernsennns 1417
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.GetNetworks()c....... 1419
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.ConnectNetwork().......... 1425
EFlI_WIRELESS_MAC_CONNECTION_II_PROTOCOL.DisconnectNetwork().... 1429

26.5 EFI SUPPHCANT PrOTOCON...........iiiici s 1430
26.5.1 Supplicant Service Binding ProtoCol ... 1430
EFI_SUPPLICANT_SERVICE_BINDING_PROTOCOL......cccccimmrmrrnriminrirernssnsenennss 1430

26.5.2 SUPPLICANT PrOtOCOI ..ottt 1431
EFI_SUPPLICANT _PROTOCOLeviirririniieiniisisssnsisssssssssssssssssssssssssssssssssssassssssasssnes 1431
EFI_SUPPLICANT_PROTOCOL.BuildResponsePacket()..........ccourernineriniiniinnns 1433
EFI_SUPPLICANT_PROTOCOL.ProcessSPaCKet().........couvuevmirrmrmrreneniireinsinsieniees 1435
EFI_SUPPLICANT_PROTOCOL.SEtDALA()vvvrvrrerrreieirrierieiseissssisssssiessssssisenses 1437
EFI_SUPPLICANT_PROTOCOL.GEtDALA()vvrurrrrerrreermerrieirneieisessessssssssssssssesessnes 1444

27 Network Protocols — BIUEtOOthcccveiiiiiiiie e 1445
27.1 EFI Bluetooth Host Controller ProtoCOlc.cninssssnsessssssessesssssssssesssssesseseons 1445
EFI_BLUETOOTH_HC_PROTOCOLc..ceiiiiriiiiiininineseississieisssssisssssssssssss s 1445
BLUETOOTH_HC_PROTOCOL.SendCommand()ccruweermrrrermrrrenenreeinesssesnesnnes 1447
BLUETOOTH_HC_PROTOCOL.RECEIVEEVENL()......vvvririrrrrieinrieisrinrieisssiesssssesneenns 1449
BLUETOOTH_HC_PROTOCOL.AsyncReceiVEEVENT() ..o, 1450
BLUETOOTH_HC_PROTOCOL.SENAACLDALA().......covrvrrmrrrerrnrieisrissiesissiesessessnsenns 1452
BLUETOOTH_HC_PROTOCOL.ReCeiVEACLDALA()ccvvvererrieerniieinrisiseiseiseins 1454
BLUETOOTH_HC_PROTOCOL.AsyncReceiveACLDAta().......c.couvvrreemrniirerneeneinns 1455
BLUETOOTH_HC_PROTOCOL.SENASCODALA().....ccvrrrrrrrierrnirneirnersierssseesssasenns 1456
BLUETOOTH_HC_PROTOCOL.ReceiveSCODALA().......ccvrrrrmrrrernrrnrirnrrnnerernrsnesnenans 1457
BLUETOOTH_HC_PROTOCOL.AsyncReceiveSCODAta()couvvrrrmernrerernrenrenns 1458

27.2 EFI BlUetooth BUS ProtOCOL.........c.cccoviirccc sttt 1459
EFI_BLUETOOTH_IO_SERVICE_BINDING_PROTOCOL......ccccocommrmrrrrnririrrnrrreenanne. 1459
EFI_BLUETOOTH_IO_PROTOCOL......cccstiiniieiiieinisiisssissssssssssssssissssssssssss s 1459
BLUETOOTH_IO_PROTOCOL.GetDeVICeINTO ... 1462
BLUETOOTH_IO_PROTOCOL.GetSAPINTO......ccovrrirrierienessssessie e, 1464
BLUETOOTH_IO_PROTOCOL.L2CapPRAWSENG........cccrvrrrrirrnrieinrinrisisssiesesssssnseans 1465
BLUETOOTH_IO_PROTOCOL.L2CapRAWRECEIVEc.coovvvreiriirerieieseseieseiseieene, 1466
BLUETOOTH_IO_PROTOCOL.L2CapRaWASYNCRECEIVEccvvvvvvrreineirrisrinsinnenns 1467
BLUETOOTH_IO_PROTOCOL.L2CAPSEN ..o, 1469
BLUETOOTH_IO_PROTOCOL.L2CAPRECEIVEovvrirrririnrirrisiinrsirseieissss e, 1471
BLUETOOTH_IO_PROTOCOL.L2CapASYNCRECEIVE.........cccovrrrirriniinrininsiseinsissinns 1473
BLUETOOTH_IO_PROTOCOL.L2CAPCONNECL.......ccovrrrrmrirrnrireinrinrisesssesesssssssnssans 1475
BLUETOOTH_IO_PROTOCOL.L2CapDiSCONNECT........cccvivivrerrierinieeseieeseeseeeenes 1476
BLUETOOTH_IO_PROTOCOL.L2CapReJiStErSEervicCe.cocoveivrenenererreineineone, 1477

27.3 EFI Bluetooth Configuration ProtocCoOl.............ccccoccccseese s, 1477
EFI_BLUETOOTH_CONFIG_PROTOCOL......ccccrmmiimiinirnrnsiernsinsissssissssssssssssssnns 1477
BLUETOOTH_CONFIG_PROTOCOL.INIL ..o s, 1480
BLUETOOTH_CONFIG_PROTOCOL.SCANccovvvrinireirnrnniisisrisisssssisssssssesssssssnssans 1481
BLUETOOTH_CONFIG_PROTOCOL.CONNECTccovurirnriiernriieisrssssssiesssesssseans 1483
BLUETOOTH_CONFIG_PROTOCOL.DISCONNECTcovrrrirrrriieinrieieissieissseinnenes 1484

Version 2.7 May 2017 xlvii

Unified Extensible Firmware Interface Specification

BLUETOOTH_CONFIG_PROTOCOL.GEtDALA...........cocorirririeriinirieisisisieiiens 1485
BLUETOOTH_CONFIG_PROTOCOL.SetDALa...........cocvrrrrerierineinerneiseineiiereeeieens 1488
BLUETOOTH_CONFIG_PROTOCOL.GetRemoteData............cccruwrerniirnrirnriririnnens 1489
BLUETOOTH_CONFIG_PROTOCOL.RegisterPinCallback ... 1490
BLUETOOTH_CONFIG_PROTOCOL.RegisterGetLinkKeyCallback 1492
BLUETOOTH_CONFIG_PROTOCOL.RegisterSetLinkKeyCallback....................... 1494
BLUETOOTH_CONFIG_PROTOCOL.RegisterLinkConnectCompleteCallback 1496

27.4 EFI Bluetooth Attribute ProtOCOL...........c.cocce e, 1498
EFI_BLUETOOTH_ATTRIBUTE_PROTOCOLccemririrneineinerneisesnesieseseeseees 1498
EFI_BLUETOOTH_ATTRIBUTE_SERVICE_BINDING_PROTOCOLcc.coucrvrren. 1509

27.5 EFI Bluetooth LE Configuration ProtOCO! ... 1509
EFl_BLUETOOTH_LE_CONFIG_PROTOCOLooovveermmmmmenessssssssssssesssssssssssssesesssiee 1509
BLUETOOTH_LE_CONFIG_PROTOCOL.SCANcccevvmiririiiiriiiieiissiisssisssisesiesisenens 1513
BLUETOOTH_LE_CONFIG_PROTOCOL.RegisterSmpSetDataCallback............. 1531

28 Network Protocols —TCP, IP, IPsec, FTP, TLS and Configurations 1535
28.1 EFl TCPVA PrOTOCOI ..ot 1535
28.1.1 TCP4 Service Binding ProtoCOL..........cccccvviiisiniississssessss s 1535
EFI_TCP4_SERVICE_BINDING_PROTOCOL.......ccccommrririerieesnerinssississsssessssssens 1535

28.1.2 TCPA PrOtOCON ...ttt 1535
EFI_TCP4_PROTOQCOLcoostiieiineineiseieissie i 1535
EFI_TCP4_PROTOCOL.GEtMOAEDALA()ccorvvrererrereireinsissensensissssssssessssssssssssessesnsessens 1538
EFI_TCP4_PROTOCOL.CONFIQUIE()cvvvrrirririiireiissisniessesissississiessssssssssesinnes 1543
EFI_TCP4_PROTOCOL.ROULES()ootriiriiiiiiiiiiiiisiisiiesississsssssssssssssssssssssessssssesens 1545
EFI_TCP4_PROTOCOL.CONNECT()cvvrvrrrrriimiiiieiiiieiiessesssssssessesssssssssssessesssnens 1547
EFI_TCP4_PROTOCOL.ACCEPL() c..uvruerrrerrrerermerieiieiseesessessesssessesssessssssssssssssssssssssssens 1550
EFI_TCP4_PROTOCOL.TraNSMIL() ...covevrereereriiiiieiseiseesesssessessesssssssssssssessssssssens 1552
EFlI_TCP4_PROTOCOL.RECEIVE()civivieieieiieiieiisieiseie s sssssessssssssssssasssssessessessens 1557
EFI_TCP4_PROTOCOL.CIOSE() ...cotvrrriiiiiiiiiiieiieiisiissiiesiessssssssessssssssissiessesissens 1559
EFI_TCP4_PROTOCOL.CANCEI().....ccvvriririiriiiiiriiiriiissieissississiesississiesiesisinens 1561
EFI_TCP4_PROTOCOL.POH()...ccivuirimiiiiiieiiiiiireiisisiiesieeississiessssssssissiessssssnens 1562

28.2 EFI TCPVB PrOtOCON ...t 1562
28.2.1 TCPV6 Service Binding ProtOCOL..........ccccouiniiisssesseessssessisen s 1563
EFI_TCP6_SERVICE_BINDING_PROTOCOL...........oommmermmmmmmmennnsssssssssesssssssssssssssessssene 1563

28.2.2 TCPVB PrOTOCOL.........iviiiiiisi bbb 1564
EFI_TCPB_PROTOQCOLcoovtiiiiiiriiiinieieisisssissi s 1564
EFI_TCP6_PROTOCOL.GEtMOAEDALA()ccoevrurrrirreieriiierierieeisesissississsiessesssnens 1566
EFI_TCP6_PROTOCOL.CONFIGUIE()ouvvurirririiiiiiiseisinsieeesesssessesse s 1571
EFI_TCP6_PROTOCOL.CONNECT() ...vvvurerrrriiniiiieiieiieisessesisssessessssssssssssssssssesens 1573
EFI_TCP6_PROTOCOLACCEPL()ovvvvvrrrrseesservvvssseessssssssssssssssssesssssssssssssssssssessssssssseee 1576
EFI_TCP6_PROTOCOL.TranSMIt()ccocvrevriririiiiieieiiesisssssssesssssssssssesssessssssesens 1578
EFI_TCP6_PROTOCOL.RECEIVE().....cvviiriiriiiiiiiiieiiniisiiesiesississiesssssissiesiesissssens 1583
EFI_TCP6_PROTOCOL.CIOSE() ...vruevrrierineiirieiieiieeiseisesiessesssssssssssssssssssssessssssssens 1585
EFI_TCP6_PROTOCOL.CANCEI().....convriririirieiiiieiieieiiesiesissssss s ssssssssssssssens 1587
EFI_TCP6_PROTOCOL.POI() ...t sssssissssssssens 1588

28.3 EFI IPVA PrOTOCOL ..o s 1588
28.3.1 IP4 Service BiNdiNg ProtoCOlcccciiisiecsssssssssississssssssssssssssssessesssssnes 1589

xlviii May 2017 Version 2.7

EFI_IP4_SERVICE_BINDING_PROTOCOLcccovininiininiinsisisissisissssssssssinns 1589

28.3.2 IP4 PrOTOCOL.......cooiviiiiie s 1589
EFI_IPA_PROTOQCOL ...ttt 1589
EFI_IP4_PROTOCOL.GEtMOAEDALA().......ccovvrrriniieiieiieiieiieeiesieeiesisseississeesisessens 1591
EFI_IP4_PROTOCOL.CONTIGUIE() ...cvvrrerririiiiriieisiineieississsssiessssssiesssisssssse s 1596
EFI_IP4A_PROTOCOL.GIOUPS() ..vuvrrererrrereerieeisesssiseessssssssssssisssssssssssssssesssssssssssssssesssssnens 1598
EFI_IP4_PROTOCOL.ROULES().....cciiiriiiiiiiiiiiieiieiiesisisssess s 1600
EFI_IP4_PROTOCOL.TraNSMIL().....ccovvuiriririeiiiiinieiessississssssssssssssssesssssesssssesssenes 1602
EFI_IP4_PROTOCOL.RECEIVE() ...couvirriiiriiiiiseisiieeessisssisssssssssssssssss s 1608
EFI_IP4_PROTOCOL.CANCEI()uverreiiiiiiiieiiisississisei e 1610
EFI_IP4_PROTOCOL.POI() ..ucvoeviiririeiiiieiieieieieiisssessessessessssssssssssssssssssssssssssens 1611

28.4 EFI IPv4 Configuration ProtOCOI ... 1611
EFI_IP4_CONFIG_PROTOCOLceiitririintiniiiisisssssssisss s ssssssssssssesssssssens 1612
EFI_IP4_CONFIG_PROTOCOL.STAI()ccovverreriirririseiseieissssssessssessssssssssssssssenons 1614
EFI_IP4_CONFIG_PROTOCOL.STOP()...vuvrreuermsrireseiiiriesieessessssssssssssssssssssssessesssenens 1616
EFI_IP4_CONFIG_PROTOCOL.GEtDALA().......ccvuerrrerrererieiierinerineisseessesssesssesssessesseeens 1617
Related DefiNitiONS........ccciss s 1618

28.5 EFI IPv4 Configuration 1 PrOtOCOL...........cccoviiniiinnininis e, 1618
EFI_IP4_CONFIG2_PROTOCOLcovtriiiitiiiisiisisssississssssssss s sssesssssssens 1619
EFI_IP4_CONFIG2_PROTOCOL.SEDAA()coouvvrrerrrererierierierieessesisesssisesiessesssenens 1621
EFI_IP4_CONFIG2_PROTOCOL.GEtDALA().......vvrmrerrererieiierierieisesissessssssesessssssssens 1626
EFI_IP4_CONFIG2_PROTOCOL.RegisterDataNOtify () ... 1628
EFI_IP4_CONFIG2_PROTOCOL.UnregisterDataNOtify (). 1629

28.6 EFIIPVE PrOTOCOI ..o 1629

28.6.1 IPv6 Service Binding ProtOCOL ... esssssnes 1630
EFI_IP6_SERVICE_BINDING_PROTOCOLccostvmiiiiriiierinerieeisssssssisssssssessessssens 1630

28.6.2 IPVB PrOTOCON ..o 1630
EFI_IPE_PROTOCOL ...ttt 1630
EFI_IP6_PROTOCOL.GEtMOAEDALA()........cveevrrirrirriiiiiniiererieisiissiessssiesssise s 1633
EFI_IP6_PROTOCOL.CONFIGUIE().....ovrurriiiiiiiriiiiisiieiieiississi s sesisssssssissiesssisnens 1642
EFI_IP6_PROTOCOL.GrOUPS() c..uvvvueerrerrrieissiseieiisississssesssssssssssssssssssssssssesssssssens 1644
EFI_IP6_PROTOCOL.ROULES().....coorvvuriiiiiineiiiiiieiiesississsess s 1646
EFI_IP6_PROTOCOL.NEIGNDOIS(). ..o 1648
EFI_IP6_PROTOCOL.TraNSMIL() ..o sssssessesssssnenes 1650
EFI_IP6_PROTOCOL.RECEIVE()coverrerieriiiririsisiineiei e 1656
EFI_IP6_PROTOCOL.CANCEI()cvoiviiriiiiriiiieieissssiss s 1658
EFI_IP6_PROTOCOL.POI() ..o 1659

28.7 EFIIPv6 Configuration ProtOCO] ... sssss s ssssssessssssens 1659
EFI_IP6_CONFIG_PROTOCOLc.vtiiiiineieiieiieeiesiessessess s ssssssns 1659
EFI_IP6_CONFIG_PROTOCOL.SEtDALA()vvumrrrererrerieiierserseessesssssssessssssessesseeens 1661
EFI_IP6_CONFIG_PROTOCOL.GEtDALA()......cevrrrerrirerrireirerieisessseessesssessessessesnns 1667
EFI_IP6_CONFIG_PROTOCOL.RegisterDataNOtify () ... 1669
EFI_IP6_CONFIG_PROTOCOL.UnregisterDataNotify ()cccccovivivierivriniieieininns 1670

288 IPSEC ..ot 1670

28.8.1 IPSEC OVEIVIEBW ..ottt 1670

28.8.2 EFI IPsec Configuration ProtocCol ... essesssnesees 1671
EFI_IPSEC_CONFIG_PROTOCOLceosiritiieieiieiieisessessessessssssssssssssssssssssssssssens 1671

Version 2.7 May 2017 xlix

Unified Extensible Firmware Interface Specification

EFI_IPSEC_CONFIG_PROTOCOL.SEtDALA()cvvvvrreerrereirnrieisineieesssieessssesessssinens 1673
EFI_IPSEC_CONFIG_PROTOCOL.GEtDALA()cvvvvrrerrrrerrernereenirseiseesssseessssssesesssenens 1686
EFI_IPSEC_CONFIG_PROTOCOL.GetNextSelector()......uunnrininns 1688
EFI_IPSEC_CONFIG_PROTOCOL.RegisterDataNOtify ().......ccccovrrermrrerninrirernninnns 1690
EFI_IPSEC_CONFIG_PROTOCOL.UnregisterDataNOtify ().........ccccoumerinirerrniinens 1691
28.8.3 EFIIPSEC PrOtOCOL ..ottt sttt 1691
EFI_IPSEC_PROTOQCOL ..ottt 1691
EFI_IPSEC_PROTOCOL.PrOCESS() «.vuvreererrereerrssisnesnsisssssesssesssssssssssssssesssssssssessssssessasssnns 1693
28.8.4 EFI IPSEC2 PrOTOCOI ...ttt sttt 1694
EFI_IPSEC2_PROTOCOL. ...t ssssssssssssssssssssssssesssssssesssssessnes 1694
EFI_IPSEC2_PROTOCOL.PrOCESSEXL()veeerrriireiiniiiiniississieesisssiessssiessssse s 1696

28.9 Network Protocol - EFI FTP ProtOCOI ...t 1698
EFI_FTP4_SERVICE_BINDING_PROTOCOL SUMMAIYcccconimrmiirniniirerinrineinenne, 1699
EFI_FTP4_PROTOCOL ..ottt ssssssssssssssssssssssesssssssssesssssssssasssnns 1700
EFI_FTP4_PROTOCOL.GEtMOAEDALA().......cccrerrrrrernirrernirrirerinseeiseseessssesssssesessensnees 1702
EFI_FTP4_PROTOCOL.CONNECL()..vvrrrerrrirereirnrieisnsiesssssssssssssesssssssssssssssssssessessssssssans 1703
EFI_FTP4_PROTOCOL.CIOSE()...ceiireiririieieieiieiisisissiseieiessssssssessssssssssssssssssssssssssssssssenes 1705
EFI_FTP4_PROTOCOL.CONFIGUIE()...euvvurerriiiririiieineiei i 1706
EFI_FTP4_PROTOCOL.REAAFIIE() ...vvvvreriiereirneiciniineiisise s, 1709
EFI_FTP4_PROTOCOL.MWIILEFIIE(). .o sssssssesans 1712
EFI_FTP4_PROTOCOL.REAADIr€CLONY().....covurrrrermrrrernernrinesnsisersssssessssssessssssssssssssnssans 1714
EFI_FTP4_PROTOCOL.POI() c..cviiierieririniniieinissssssssssssessssssssssssessessssssssassssssesssnes 1716
28.10 EFI TLS PrOTOCOIS ...ttt bbb bbb 1716
28.10.1 EFI TLS Service Binding ProtocCol..........cccovvvniisisisissssssses s 1716
EFI_TLS_SERVICE_BINDING_PROTOCOLcccovntirmirmirmrniisrnsineissississsssiessssssesssnss 1716
28.10.2 EFI TLS PrOtOCOI ..ot 1717
EFI_TLS _PROTOQCOL.....cosiirinrieiinrineinsisississsesssssss s sssssssssssssssssssssssssesssssssssessssssssasssnns 1717
EFI_TLS _PROTOCOL.SetSesSioNData ().......ccccvrrmirnremirnrininsiernsssessssesssesssssessnes 1719
EFI_TLS_PROTOCOL.GEtSESSIONDALA ()cvvvvreeriiiriieieriseiseeiseieissieisssiessssseesnenes 1725
EFI_TLS PROTOCOL.BUildResponsePaCKet ()cccvvmrvinrnrinrisinreississssenienienens 1726
EFI_TLS PROTOCOL.ProcesSSPaCKEL ()....cccocivrvreiiiiieieeieiee e, 1728
28.10.3 EFI TLS Configuration ProtOCOL.........cccccvvncinnccncnss e ssssssessssnes 1729
EFI_TLS_CONFIGURATION_PROTOCOLccccovirrirnrinrininrisisrinsiesssssssssssssssssssssssnes 1729
EFI_TLS_CONFIGURATION_PROTOCOL.SetDAta()cccvrerrrrrrermerrernernreersnseeesnnenes 1731
EFI_TLS_CONFIGURATION_PROTOCOL.GEtDALA()......ccovrvrvrrerrrrnrrerersrersernrnrinns 1733

29 Network Protocols — ARP, DHCP, DNS, HTTP and RESTccccve.ee. 1735
29.1 ARP PFOTOCON ...t 1735
EFI_ARP_SERVICE_BINDING_PROTOCOLccocevrmrmrimirinineissisississsssisssssssssessnes 1735
EFI_ARP_PROTOCOL ...ccoooesicccceccccceeesssesssssssssssssssssssssses st 1736
EFI_ARP_PROTOCOL.CONTIGUIE() ...uvvrurirrrriieiriiissineisiseississie s ssssssnens 1738
EFI_ARP_PROTOCOLAUA() . .c.cviiiririniiniieissssissss s sssssssssssssssssssssssssessssssens 1740
EFI_ARP_PROTOCOL.FINA() crvvevrveeirririnriseeissisisesssisssssssssssssessssssssessessssssssssssessesssnes 1742
Related DefiNitiONS.........ocs e 1743
EFI_ARP_PROTOCOL.DEIELE()cvvverrrrerrrrrieinirsisinessseisssesissssssssessssssssssssssssssssssessnes 1744
EFI_ARP_PROTOCOL.FIUSN() ...cvvivieiiiieiieieieiieisese e ssssssssssssssssassessessessessns 1745
EFI_ARP_PROTOCOL.REQUESE()vvvriireriiiiiieieissises s sessessees 1746

| May 2017 Version 2.7

EFI_ARP_PROTOCOL.CANCEN() +rsvveerreererseersesesssessseesseesseessesssssessssssssseesseessees 1748

29.2 EFI DHCPVA PrOTOCOL.........iiiiiiiiiiiiiseiiiiesi bbb 1749
EFI_DHCP4_SERVICE_BINDING_PROTOCOLcccsuumriririerieiinerinseississsssessssssenens 1749
EFI_DHCPA_PROTOCOL ...ttt ssssins 1749
EFI_DHCP4_PROTOCOL.GEtMOAEDALA().......vvuevvrrrererneirierineieiissieessieissiseiesssinens 1752
EFI_DHCP4_PROTOCOL.CONFIGUIE()vvoiererreieiiieiiseiseissiseiessssiessssissssssess s 1756
EFI_DHCP4_PROTOCOL.STAT()cvvivviririiiriirieiieiississiessessssssssssssssssssssssessnes 1763
EFI_DHCP4_PROTOCOL.RENeWREDINA().......covvvvrriiriirieiiiisiieeiseeinseississeiesissinens 1765
EFI_DHCP4_PROTOCOL.REIEASE()evrrrrrrirriiririiiriisiserseissisesssse s 1767
EFI_DHCP4_PROTOCOL.STOP() . vrvrurerrerrerersrieiseeseississsisesesssessesssssssssssssssssssssssssesssenes 1768
EFI_DHCP4_PROTOCOL.BUIIA() ...cvvrvreiiieiiiisieesiseissisessise s 1769
EFI_DHCP4_PROTOCOL.TranSMitRECEIVE().......ccovuurrmiirenriniieiniieissiessisesessssinens 1771
EFI_DHCP4_PROTOCOL.PAISE()....ccsuvuriuirriririririiiieiissinsieisesssssssssssssssssssssssssesssenes 1774

29.3 EFI DHCPB PrOtOCOL ...t 1775

29.3.1 DHCP6 Service Binding ProtoCol ... s 1775
EFI_DHCP6_SERVICE_BINDING_PROTOCOLccscimrririnerieineiinesssseisesssessessenens 1775
29.3.2 DHCPB PrOTOCOI ..ot 1776
EFI_DHCPB_PROTOQCOL ..ottt 1776
EFI_DHCP6_PROTOCOL.GetMOdeData ()ccouumrmriiiriiiiiiiiserississsisesisesissienens 1778
EFI_DHCP6_PROTOCOL.CONFIGUIE () c.voevrreriiiiriisiseiesississssss s 1784
EFI_DHCPG6_PROTOCOL.STAI ()cveveeereeiieeiieiseneiei s 1791
EFI_DHCP6_PROTOCOL.INFOREQUEST ()cvvreririiiieiseineieeiseieissiessesieessssesesseninens 1793
EFI_DHCP6_PROTOCOL.RENEWREDING ()ovvvrviieiiriieseisieeeseeienies 1796
EFI_DHCP6_PROTOCOL.DECHNE ()...cviverriiiiiieiiiiiiisiieeiesisssissisesisssissiesiesiesisenens 1798
EFI_DHCP6_PROTOCOL.REIEASE ()cvvurvrririririiiiiiriiiieiississsisessesisssisssssesssessssssnens 1800
EFI_DHCP6_PROTOCOL.STOP () cvvuverrrreeremmiserieieessisessessesssssssssessssssssssssessssssssens 1802
EFI_DHCP6_PROTOCOL.PAISE () ..cvevrrrererieiiiineiieeiesiessessesssssesssssssssssssssssssssens 1803

29.4 EFI DNSVA PrOTOCOL........coiiiiiiiiieiet e 1804
EFI_DNS4_SERVICE_BINDING_PROTOCOLccccovimimrniieiniinirisinsisissiessssseesnenes 1804
EFI_DNS4_PROTOCOL.....costiiiiriiiiniieieisissiisss s 1805
EFI_DNS4_PROTOCOL.GEtMOdEDALA().........evvrireiriiiriiiirissiesisesississsisesiesiesisnens 1806
EFI_DNS4_PROTOCOL.CONFIGUIE()..vuuevrreririeiiiieiieriserieeiesssessessssisssssssssessssssnens 1809
EFI_DNS4_PROTOCOL.HOSINAMETOIP() .. cvrvvreerrerieireiseieeineisissieesesieessesesessssinens 1810
EFI_DNS4_PROTOCOL.IDTOHOSINAME().......cvivriieiieieieeieeissieeesieessssesesssnins 1814
EFI_DNS4_PROTOCOL.GENEralLOOKUP().....vvvrerreriiirniieieiieisissieissieesssssiensesiens 1815
EFI_DNS4_PROTOCOL.UpdateDNSCAaCNE()cccvruiriiiiniiininsssisssisesissienens 1817
EFI_DNS4_PROTOCOL.POI() ...covviiriiriiiiiiiiisiieiissississssssssssssss s 1818
EFI_DNS4_PROTOCOL.CANCEI()vvrrrrrirririiiririiieeiseisssisssessssissesssss s 1819

29.5 EFI DNSVE PrOTOCOL........cooiiiiiiiiiiei bbb 1820

29.5.1 DNS6 Service BiNdiNg ProtOCOL ... 1820
EFI_DNS6_SERVICE_BINDING_PROTOCOLccccovmimrniieiniinirisinsieissiesssseesnenss 1820
29.5.2 DNSB PrOtOCOL ...t 1821
EFI_DNSB_PROTOCOL......ocitiiiiiiiiiiseiisissssississis s 1821
EFI_DNS6_PROTOCOL.GEtMOAEDALA().........cvrurireirrriiierierisrieeiesisssissiseisessesssenens 1823
EFI_DNS6_PROTOCOL.CONFIGUIE().....covviirrirriiiiiineiissiseessiseisisssiessssiesssssessssssinns 1826
EFI_DNS6_PROTOCOL.HOSINAMETOIP() .. v 1827
EFI_DNS6_PROTOCOL.IpTOHOSINAME().......cvrieriiiiiriiiineiesissieessieessisesensninens 1831

Version 2.7

May 2017 li

Unified Extensible Firmware Interface Specification

EFI_DNS6_PROTOCOL.GENEralLOOKUP().....vveerrirniisiniineieissieissssisssssiessesiens 1832
EFI_DNS6_PROTOCOL.UpdateDNSCaCE()cccovurrrrmrrnrinrinrisineieieieesssssiesssseens 1834
EFI_DNS6_PROTOCOL.POLL() ... cvetrrirerrirrereireisisneseisssssisessssssesssssssssssssssssssessssssssssssens 1835
EFI_DNS6_PROTOCOL.CANCEI() ...vvvrvrerrrieisriirisiinsisissississsssssssssssssssssssssssssssssssssnssans 1836

29.6 EFI HTTP PrOtOCOISc.oviieciiisee st 1836
29.6.1 HTTP Service BiNding ProtoCol ... 1837
EFI_HTTP_SERVICE_BINDING_PROTOCOLc.ccecovintiiiineineissieississssssiensssiens 1837

29.6.2 EFI HTTP Protocol Specific DefinitioNS ... 1838
EFI_HTTP_PROTOGCOL ..ottt sssssssssssssssssssssssssessasssnes 1838
EFI_HTTP_PROTOCOL.GEtMOAEDALA().......cvvrrerrrreinrinririsrieissssseessessessssssssssssesssnes 1839
EFI_HTTP_PROTOCOL.CONFIGUIE() cvvuvvuviieriiriiiieiineisessissessses s 1842
EFI_HTTP_PROTOCOL.REQUESL() ..cvvrvriririeieiesisississiesiesisssssessssssssessssssssssssessnes 1844
EFI_HTTP_PROTOCOL.CANCEI() ...evrrrrreririireiriieineieisississsssise s 1850
EFI_HTTP_PROTOCOL.RESPONSE() rvuerrrrerirrrirnerneisesnessesssssesssssssssessssssssssssasssessessanes 1851
EFI_HTTP_PROTOCOL.POI() ...covvrirriiieiniineisssinsie s esssssssesssssssssssssssessesssees 1853

29.6.3 HTTP ULIlILIES PrOtOCOI ...t 1860
EFI_HTTP_UTILITIES_PROTOCOL ...ovvtiirieieisssissisissiesisssssssssssssssssssssasssssessnns 1861
EFI_HTTP_UTILITIES_PROTOCOL.BUIIA()cccivvierireiiirieriieissiseissssissssiessssesssseans 1862
EFI_HTTP_UTILITIES_PROTOCOL.PAISE() ...ccovvvrrrirerirnriiernsineisrississsssiessssseesssnes 1864

29.7 EFI REST PrOTOCON ...ttt 1864
29.7.1 EFI REST Protocol DefiNItiONS ..o ssesessssnes 1865
EFI_REST _PROTOCOL.....ccoiiiriniinriniesisessisiesssssssssssssssesssssssssssssssssssssssesssssesssssnssnes 1865
EFI_REST_PROTOCOL.SENARECEIVE()verivrriiirriiniiiisiieissisesiissiessssiesssise s 1866
EFI_REST_PROTOCOL.GEtSErviCeTIME()covuurrrrieiirneiierssisersssssesssseses e 1867

30 Network Protocols — UDP and MTFTP ..o 1869
30.1 EFIUDP PrOtOCOL ...ttt st 1869
30.1.1 UDP4 Service Binding ProtOCOL ... sesseenes 1869
EFI_UDP4_SERVICE_BINDING_PROTOCOLcccovimiiriirineiisisissssssssisnesiens 1869

30.1.2 UDP4 PrOTOCOI ...t 1869
EFI_UDPA_PROTOCOL ..ot ssssssssssssssasssessssssssssssssssessassanes 1869
EFI_UDP4_PROTOCOL.GEtMOAEDALA()covvvvvvrirerrirerneirisnrieisssssesessesssesssssssessenssnes 1872
EFI_UDP4_PROTOCOL.CONFIQUIE()....virrrrreeiiirisisnsieisssssesssssssssssssssssssssssssssassssssenssnes 1875
EFI_UDP4_PROTOCOL.GrOUPS() .. vuevrereriririeiresssisssssssssssessssssssssssssssssesssssssassssssessnes 1877
EFI_UDP4_PROTOCOL.ROULES()....cerrrerrerieeiseriieisneieisssssissssssessssssssssssssssssssssessees 1878
EFI_UDP4_PROTOCOL.TranSMIt().....c..couvuiummriininrinerneisesssseessssssssssssssssssessessees 1880
EFI_UDP4_PROTOCOL.RECEIVE() .vuvrrerrrrieeirnirsieissseisesssisssssssesssssssssssssssssassssssessanes 1886
EFI_UDP4_PROTOCOL.CANCEI() ..eurvrrrrrerrerrereirnirsisnesnssssssssssssssssssssasssesssssssssssssssssssanssnes 1888
EFI_UDP4_PROTOCOL.POH() ..cvveririeririniineisinssissississsssesssssssssssssssssssssssassssssessanes 1889

30.2 EFI UDPVB PrOtOCOL.......c.coiviiiiieiieensise e 1889
30.2.1 UDP6 Service Binding ProtOCOl ... 1890
EFI_UDP6_SERVICE_BINDING_PROTOCOLcccovimiiriirineisieissiesssssiensssiens 1890

30.2.2 EFlI UDPG PrOtOCON.......ciiiieiineeiecssis st sttt sssssssssnes 1890
EFI_UDPB_PROTOCOLccviirieisiineiesisississiessssssssssssssssssssssssssssssssssasssesssssssssessasssessasssnes 1890
EFI_UDP6_PROTOCOL.GEtMOAEDALA()ocvvvvvririrrireineirisnrieisssssssessesssessssssssessenssnes 1892
EFI_UDP6_PROTOCOL.CONTIGUIE().....vvurvrieririiiisiineinerssississiseiessssiessssssesssssiensesinens 1895
EFI_UDP6_PROTOCOL.GrOUPS() .. eerrrererieeiremssiseisnsseessssesssssssesssssssssssssssssssessessanes 1897

lii May 2017 Version 2.7

EFI_UDP6_PROTOCOL. TIANSIMIL()....coceorerrerreerssessseesseesseessessessessssssssseesseessees 1898

EFI_UDP6_PROTOCOL.RECEIVE() .vurvrerrrrieneirnirsieineiseisesssisssssssessssssessssssssssasssessesssnes 1904
EFI_UDP6_PROTOCOL.CANCEI() ..ouvrrrrrerrerrereiriieisnisneiessessesssssesssssssesssssssssssssssessasssees 1906
EFI_UDP6_PROTOCOL.POH() ..covveririririniinsisisssissiseisssssisssssssssssssssssssssssesssssessanes 1907

30.3 EFI MTFTPVA PrOtOCOI ... 1907
EFI_MTFTP4_SERVICE_BINDING_PROTOCOLccocvmrrmrirmrinrineineiiseiississississineens 1907
EFI_MTFTP4_PROTOQCOLcocitiiiiniiiniisisissieisssise s ssssssssens 1908
EFI_MTFTP4_PROTOCOL.GEtMOAEDALA()vvrvrrerrrnerrerneieieirsseseeresssessssseessenenns 1910
EFI_MTFTP4_PROTOCOL.CONFIGUIE() ..vvvereerrrrinirniieineisissesssssssieesssssesnssssssensessanes 1913
EFI_MTFTP4_PROTOCOL.GELINTO() ...vvvrvrreririrrisineieiissississsssissssssesssssssssssssssessnes 1915
EFI_MTFTP4_PROTOCOL.ParseOPtiONS() ...cccvvvrvrnrnrnrinrinieieeieseseessssessessesseenes 1924
EFI_MTFTP4_PROTOCOL.REAAFIIE().....ccvrerirriiireiierieiieiiesseesessssssssssssssesssssssnens 1926
EFI_MTFTP4_PROTOCOL.WILEFIE()....covvreirriieiniiieisisiseeeisseissse s 1932
EFI_MTFTP4_PROTOCOL.REadDIr€CtOry().....ccccvvrmrrrrrmernreneineesrsnseeisnsssesnssnsesessensnns 1934
EFI_MTFTP4_PROTOCOL.POLL() cstttveereirrieieersierseeeisssssisssssissssssssssssssssssssssssssssees 1936

30.4 EFI MTETPVE PrOtOCON ..ot 1936
30.4.1 MTFTP6 Service BiNdiNg ProtoCol...........ccccuiinssesessseessieens 1937
EFI_MTFTP6_SERVICE_BINDING_PROTOCOLccocvvrrmrirminiiineineineiississsississieens 1937

30.4.2 MTFTPB PrOtOCOL ...t 1937
EFI_MTFTPB_PROTOQCOLcooviiririinrisineisieissis s sesssssssssssssssssessssssessnes 1937
EFI_MTFTP6_PROTOCOL.GEtMOAEDAtA()rvererrerrirnerrirnrisisssssiseesssssissssssessensanes 1939
EFI_MTFTP6_PROTOCOL.CONFIGUIE()vvevrvrririniineieiseissiseisisssssssessssssesssssssessenssnes 1941
EFI_MTFTP6_PROTOCOL.GELINTO() ... sssens 1943
EFI_MTFTP6_PROTOCOL.ParseOPLIONS() ...covvererniriirniiernsieisrissiessssiessssssesnenes 1953
EFI_MTFTP6_PROTOCOL.REAAFIIE().......cocriirrrririniiiriniisiseseeissieissis s 1955
EFI_MTFTP6_PROTOCOL.WTILEFIE()....cvvreirreieineiieiisisssineeissisissse s 1961
EFI_MTFTP6_PROTOCOL.REadDIr€CtOry().....cocvvrvrerrrmrrnrimrrnrisirnseeesssssesnssasesssensnes 1963
EFI_MTFTP6_PROTOCOL.POI() c..cvvevererniirernirnsieirsesseisssssisssssssessssssssssessssssssssssssssesssnes 1965

31 Secure Boot and DrivVer SIgNINGcccooceeiiieiiee e san e 1967
BLL SECUIE BOOT ...t 1967
EFI_AUTHENTICATION_INFO_PROTOCOLcccoovirinririnrinineiseisssesssssssssssssssssssnes 1967
EFI_AUTHENTICATION_INFO_PROTOCOL.GEL() ...vvvrrrerrrernrrneinrrrieiesississsssesnssnes 1968
EFI_AUTHENTICATION_INFO_PROTOCOL.SEL().....ccvvvmrrrmrimrirmireineernerneressseesennns 1969

31.2 UEFI Driver SIgNiNG OVEIVIEW ... s ssssnssnes 1973
31.2.1 Digital SIGNATUIEScovvcieicicssisss s 1973
31.2.2 Embedded SIgNAtUIES ...t seens 1975
31.2.3 Creating Image Digests from IMagES.........cccovvnininssesseessseseseeens 1976
31.2.4 COAE DEFINITIONS ...t 1976
WIN_CERTIFICATE ..ottt 1977
WIN_CERTIFICATE_EFI_PKCSL1_15ccosiiiiiieiiein s 1978
WIN_CERTIFICATE_UEFI_GUIDcoostiiiiininiieinississieissssssss s 1979

31.3 Firmware/OS Key Exchange: creating trust relationships ..., 1980
31.3.1 Enrolling The PIatfOrm KEY ... 1982
31.3.2 Clearing The PIatfOrm KeY ... 1983
31.3.3 Transitioning t0 AUAIT MOTE ... 1983
31.3.4 Transitioning to Deployed MOAE ... 1983

Version 2.7 May 2017 liii

Unified Extensible Firmware Interface Specification

31.3.5 Enrolling Key EXChaNQge KEYS........cociinissssssssissssississesssssssssssessssssesesesessnes 1983
31.3.6 Platform Firmware Key Storage RequUIirements........cccocovveveinennienseneenniennnes 1984

31.4 Firmware/OS Key Exchange: passing public KEYS ... 1984
31.4.1 Signature Database ... 1985
EFI_SIGNATURE_DATA ..ottt sttt 1985

31.4.2 Image Execution Information Table..........ccvens 1990

31.5 UEFI IMage ValidatioN ... sssss s ssssssssss st sssssssssss s ssssssnes 1993
BL5.L OVEIVIBW ...t 1993
31L.5.2 AUTNOTIZEA USET ...ttt 1994
31.5.3 Signature Database UPAate ... 1994

31.6 COUE DEFINITIONS ... 2000
31.6.1 UEFI Image Variable GUID & Variable Name...........c.ccovvnnnneneens 2000

32 Human Interface Infrastructure OVErviEWcccccoceiieniieiinninsie e 2001
B2.1 GOAIS ...t 2001
32.2 DESIGN DISCUSSION.ccvviiiiiiiiieii i 2002
32.2.1 Drivers ANd APPHCATIONS ..o 2003
32.2.2 LOCANZALION ... 2010

B2. 2.3 USEI INPUL.....oi ittt s bt r e 2010
32.2.4 KeYDOoard LAYOULccoviiieieiencseeiese ettt sttt 2011
B2.2.5 FOIMMIS ...ttt bbb 2015
B2.2.8 STIINQGS oot 2044
B2.2.7 FONES...o i 2049
S2.2.8 IMAGES ..ottt bbbt 2056
32.2.9 HII DAADASEooiiiiiis ettt 2057
32.2.10 FOIMS BIOWSET ...ttt bbb bbb 2057
32.2.11 Configuration SETHINGS ..o 2062
32.2.12 FOrm CallDAcK LOGIC.........cciiiiiiiiiiiireisieisises i 2066
32.2.13 Driver Model INTEIraCHION ..o 2069
32.2.14 Human Interface Component INTEractionsccccvvvviersisrinssnssissenienessssenns 2070
32.2.15 Standards Map FOIMS ...t ssessssessesns 2071

32.3 COUE DEFINITIONS ...t 2075
32.3.1 Package Lists and Package Headers...........c.cconinnsessneessesnens 2076
EFI_HII_PACKAGE_HEADERccccoccoiccccirvvsssssssssssessessesessssssssssss st 2076

32.3.2 SIMplified FONT PACKAGEcccvveirirsrsisisssssse st 2078
B2.3. 3 FONTPACKAGE ..ot 2081
32.3.4 Device Path PaCKaAge ...t ssssnns 2093
32.3.5 GUID PACKAGE ...ttt sttt 2094
32.3.6 STINQ PACKAGE ..ottt 2094
32.3.7 IMAQGE PACKAGEcouiiiiiiciie bbb 2110
32.3.B FOIMS PACKAQE......c.ceuiirccsssse st 2128
32.3.9 Keyboard PACKAQE ..ottt sss st sssssens 2210
32.3.10 ANIMALIONS PACKAGE.......ccciiviiinisrissssess sttt ssssessenes 2210

33 HIEPIOTOCOIS ... e 2223
331 FONT PIOTOCOL ...t bbb 2223
EFI_HI_FONT_PROTOQCOL......cciiimiiiiiiiieiisissssiss s sssssssssssssssessssssssssssnes 2223
EFI_HII_FONT_PROTOCOL.StringTOIMAJE()vvverrrrrrrenrineieineieiseseissssssessesennns 2224

liv May 2017 Version 2.7

EFI_HIl_FONT_PROTOCOL.StriNGIATOIMAGE() ccovevrerreeesseesseserssrsssrsssessseess 2228

EFI_HII_FONT_PROTOCOL.GEtGIYPN()...cvererrrrrrernereinirneiieiseiseesesnsisssssiesssesessssssennns 2231
EFI_HII_FONT_PROTOCOL.GEtFONTINTO()cvvvrirrrririrrieineineissssissssssssssseesnsnes 2233

33.2 EFITHITFONTEX PrOTOCOL ...t 2234
EFI_HI_FONT_EX_PROTOCOL.....ccoiimiriiriiinissississssissssssssssssssssssssssssssssssssssssens 2234
EFI_HII_FONT_EX_PROTOCOL.StringToIMAageEX().......ccvvrverrervrriinerineireiiiens 2235
EFI_HII_FONT_EX_PROTOCOL.StringldToImageEX()........cccuvurrmrmrrrrrnirerrnirneirnnnne, 2236
EFI_HII_FONT_EX_PROTOCOL.GEtGIYPNEX()....evvrrrrrrrrieinerneirsisisissensisssssessesnes 2237
EFI_HII_FONT_EX_PROTOCOL.GEetFONINFOEX() ...vvvvrrrrerrrieieineieineieinieseiersninnns 2238
EFI_HII_FONT_EX_PROTOCOL.GetGlyphINfo()cocrvrvrerrnrireiineriniinsssinsiesseninns 2239

33.2.1 COdE DEFINITIONS ..ot 2240
EFI_FONT_DISPLAY _INFO ..ot sssssss s ssasssssessanns 2240
EFI_IMAGE_OUTPUT ...ttt 2242

33.3 SEHNQG PrOTOCON ...t st 2243
EFI_HI_STRING_PROTOQCOL......costmirnriiieieisinsssissssssssssssssssssssssesssssessesssssssssssssnns 2243
EFI_HI_STRING_PROTOCOL.NEWSTIHNG() «..evrerrernerrermrrresnrssressinsseessssesnsssssssssessnns 2244
EFI_HII_STRING_PROTOCOL.GEISLING() ..evvrrvrreereeeieireireiseieiesseseiseesessessssessessssseenes 2246
EFI_HII_STRING_PROTOCOL.SELSTIHNG()....ccrverrrrrerrerrerrensrnrenrenssnssssssssssesesiesessesssesens 2248
EFI_HI_STRING_PROTOCOL.GEetLanguages().......ccuurrrremmreerermiieersieessnesensssenns 2250
EFI_HIl_STRING_PROTOCOL.GetSecondaryLanguages()c.cccvwrrrerreenreererereenns 2251

33,4 IMAGE PrOTOCOL ... 2252
EFI_HI_IMAGE_PROTOCOLc.oiitiririninsieinsisissssssssssssessssssssssssssssesssssssssassssssessanes 2252
EFI_HII_IMAGE_PROTOCOL.NeWIMAGE()cvverrrrrerrerrirrenrrnrensensinssssssssssesesesessesssesens 2253
EFI_HI_IMAGE_PROTOCOL.GELIMAGE() vvrvrvrrrerrereierneieineiesisssiessssessssss s 2255
EFI_HI_IMAGE_PROTOCOL.SEIMAGE()......crrrrrrrreirerniinsisiieieissieessseissssssessesiens 2256
EFI_HI_IMAGE_PROTOCOL.Drawlmage()......ccocruemrrmremermrrrenernsesmssssssssssssssssessssnes 2257
EFI_HI_IMAGE_PROTOCOL.Drawlmageld()......cc.ccocurrmrmremrmreninrieessisenssnsssessenenns 2259

33.5 EFIHIIMage EX PrOtOCOL ...ttt 2260
EFI_HI_IMAGE_EX PROTOCOL ...ccoeiivriiricinisisissies s ssssesssssssssssssssesssessessanns 2260
EFI_HI_IMAGE_EX_PROTOCOL.NeWIMAGEEX()......cocrverrrrrmrrnrirrrniireisieinsiseiensseinns 2262
EFI_HI_IMAGE_EX_PROTOCOL.GEtIMAGEEX()vvvvvrrrrrierniieinrisisinsiseisssnsisnses 2263
EFI_HI_IMAGE_EX_ PROTOCOL.SetIMageEX().....cccsvrmrmrrrrmrrneirnrrrisinsissinssnsesnssnes 2264
EFI_HI_IMAGE_EX_ PROTOCOL.DrawlmageEX()cccrurrrrmrrnrermrnrininsensrnsssresnesenes 2265
EFI_HI_IMAGE_EX PROTOCOL.DrawlmageldEX()ccovrmrmrrmenrirrinrrneirnrrnnenesenes 2266
EFI_HII_IMAGE_EX_ PROTOCOL.GetImagelnfo() ..., 2267

33.6 EFI HIl Image Decoder ProtOCOL............ccccciccec st 2267
EFI_HII_IMAGE_DECODER_PROTOCOL.Decodelmage() ... 2269
EFI_HII_IMAGE_DECODER_PROTOCOL.GetlmageDecoderName()cc...... 2270
EFI_HII_IMAGE_DECODER_PROTOCOL.Getlmagelnfo().......cccommrrninrrnrnrinnns 2272
EFI_HII_IMAGE_DECODER_PROTOCOL.DECOUE() ...vvrrrerrrrrererrnrrsrernereenssnseeesensnes 2275

33.7 Font Glyph Generator ProtOCOI ... 2276
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOLcccccvtmrirniieirmiieissinsiessnsiens 2276
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyph()c....... 2277
EFI_HII_FONT_GLYPH_GENERATOR_PROTOCOL.GenerateGlyphimage() 2278

33.8 DAtabase PrOotOCO] ... 2279
EFI_HII_DATABASE_PROTOCOL.....cccsviriniiriniisinisnsisssssssssssssssssssssssesssssssssssssssasssnns 2279
EFI_HII_DATABASE_PROTOCOL.NewPackageLiSt().......cccormimrmrmminrinrnrninininns 2281

Version 2.7 May 2017 Iv

Unified Extensible Firmware Interface Specification

EFI_HII_DATABASE_PROTOCOL.RemovePackageLiSt() ... 2283
EFI_HII_DATABASE_PROTOCOL.UpdatePackageLiSt()..........cccuumvmrrmernernrrirenens 2284
EFI_HII_DATABASE_PROTOCOL.LiStPackageLiStS().......c.couurrrimmrinmrinirinsrirerisnienens 2286
EFI_HII_DATABASE_PROTOCOL.ExportPackageLisSts() ... 2288
EFI_HII_DATABASE_PROTOCOL.RegisterPackageNotify() ... 2289
EFI_HII_DATABASE_PROTOCOL.UnregisterPackageNotify() ... 2291
EFI_HII_DATABASE_PROTOCOL.FindKeyboardLayouts()cccucuernernirnnnnns 2292
EFI_HII_DATABASE_PROTOCOL.GetKeyboardLayout()ccumnrrnrnirinnens 2293
EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout()..........cummrininnnens 2300
EFI_HII_DATABASE_PROTOCOL.GetPackageListHandle()........c.cccccouurrrnirnnnnn. 2301

33.8.1 DAADASE STIUCTUIEScooviiiiicii s 2301
EFI_HII_DATABASE _NOTIFY ..ottt ssess 2301
EFI_HII_DATABASE_NOTIFY_TYPEccostiitiinintnisisesssssssssssssssisesissisens 2303

34 HII Configuration Processing and Browser Protocol............c.cccccevvnnne 2305
B4 L INEFOAUCTION. ...t 2305
34.1.1 Common Configuration Data FOrMAL...........ccccocvniieseeseeens 2305
34.1.2 DALA FIOW........cviiiiiiii s 2305

34.2 CONFIQUIALION STIINGS ..ottt nes 2305
B4.2. 1 STINQG SYNTAX ..t 2305
B4.2.2 STINQG TYPES ettt sttt sttt s st s bbbttt 2311

34.3 EFI Configuration Keyword Handler Protocol ..., 2311
EFI_CONFIG_KEYWORD_HANDLER_PROTOCOL......ccccommimmriinininsiinesinsiienens 2311
EFI_KEYWORD_HANDLER _PROTOCOL.SetData() ..o 2313
EFI_KEYWORD_HANDLER _PROTOCOL.GetDAta()cccucrrvrrrrrrinrrirnrinerirerinerienens 2316

34.4 EFI HIl Configuration ROULING ProtoCOl ..., 2317
EFI_HII_CONFIG_ROUTING_PROTOCOL.......cccostrmirimrieiiineeinerinerneessessessesssssssseens 2317
EFI_HII_CONFIG_ROUTING_PROTOCOL.EXtractConfig()ccoooeeeeeeeeeeererererrrrriee 2319
EFI_HII_CONFIG_ROUTING_PROTOCOL.EXportConfig().........ccccrmevmrrmerrernerrenns 2321
EFI_HII_CONFIG_ROUTING_PROTOCOL.RouteConfig()cccouurmrermrrrmrrrmrirnrinnens 2322
EFI_HII_CONFIG_ROUTING_PROTOCOL.BIOCKTOCONTIG().....cvvrererrerrvnriririririreens 2324
EFI_HII_CONFIG_ROUTING_PROTOCOL.ConfigTOBIOCK().......ccecemvvmrirrirneirriieens 2326
EFI_HII_CONFIG_ROUTING_PROTOCOL.GEtAILCTG()cvvverrrrrerrnrinrinriineireeirseineens 2328

34.5 EFI HIl Configuration ACCESS PrOtOCON ..o 2329
EFI_HII_CONFIG_ACCESS_PROTOCOLccccstvmiiriiiriiiiiinrinssisssisssisssisssisssssesisssssens 2329
EFI_HII_CONFIG_ACCESS_PROTOCOL.ExtractConfig()cccouummvvrmrrrvrererirnrinnens 2332
EFI_HII_CONFIG_ACCESS_PROTOCOL.ROUtECONTIG()vvvuerrrerieereriirierierierineens 2335
EFI_HII_CONFIG_ACCESS_PROTOCOL.CallBACK()c.vvrrrrerrriieiineirneinerineisneniennns 2337

34.6 FOImM BrowWSEr PTrOTOCOL ..o 2341
EFI_FORM_BROWSER2_PROTOCOLcooovvvrrrrervereenmeeeseesssssssssssssssssssssssssssssessnees 2341
EFI_FORM_BROWSER2_PROTOCOL.SENAFOIM().....ccccsuvmerrmirmiriieineinsisiieeieens 2343
EFI_FORM_BROWSER2_PROTOCOL.BrowserCallback()...........cccccucrmermirnirineirnenns 2346

34.7 HII POPUP PFOTOCOL ...ttt nes 2347
EFI_HII_POPUP_PROTOQCOLcecotiimiiiiiisiieeiesiesissississssssssssssssssssssssississsssessens 2347
EFI_HII_POPUP_PROTOCOL.CreatePOPUP()cwureerreereernerieineissesserssessseessesseeens 2347

35 User 1dentifiCatioNcoceiiiiiiiii e e 2351
35.1 User [dentifiCation OVEIVIEW ... 2351

May 2017 Version 2.7

B5. 1.1 USEI IAENTTY ...oocviic s 2351

35.1.2 USEE PrOfilES..e ettt ettt 2353
35.1.3 Credential PrOVIAEIS. ...t bt 2354
35.1.4 Security CONSIAEIALIONSc.ccoveiiieieereee et 2355
35.1.5 DEfErred EXECULIONcococeiieeeeee sttt st sttt st st 2357
35.2 USEr [deNtifiCAtiON PrOCESS ..ottt ettt sttt sttt 2357
35.2.1 User 1dentifiCation ProCESS.........ccccoiiiiiiec et sssens 2357
35.2.2 Changing The Current User Profile ... 2358
35.2.3 REAAY TO BOOTL ...t 2358
1SRN OLa o [DI=Y i1 L1 [0] o F- T 2359
35.3.1 User Manager PrOTOCOL.........ccouiiiiseissse i 2359
EFl_USER_MANAGER _PROTOCOLccoeveieietciseiseesessrestssssssssssesssessesesssse s ssssens 2359
EFI_USER_MANAGER_PROTOCOL.Create()ccccsurerrrrrrrrnrrssrssssisssssiessssssesesissinsnns 2361
EFI_USER_MANAGER_PROTOCOL.DEIELE() ...ccvvrrrrrrrerrererisrisissierssissiesesiesese s 2362
EFI_USER_MANAGER_PROTOCOL.GEINEXL()....ccovueuerrrrerirrirerssresissiesiessssssesiesesieseens 2363
EFI_USER_MANAGER_PROTOCOL.CUIENL()....ccvvrrrrrmrrrrenrinrisrnsieessssessssseessensnes 2364
EFI_USER_MANAGER_PROTOCOL.IAENTIfY()..c.cvirieriiieririsrineieiesieissiseisssesiessnns 2365
EFI_USER_MANAGER_PROTOCOL.FINA()....ccoirmrmriirinrinninrissssssiessssssssssssessessnns 2366
EFI_USER_MANAGER_PROTOCOL.NOLIfY() ...ccvrrrrirrrrireirerisrisrssersssresesiesssesesenens 2368
EFI_USER_MANAGER_PROTOCOL.GEtINTO() ..covvrrrnrrirrerininiieiierersieees s 2369
EFI_USER_MANAGER_PROTOCOL.SEtINTO().....covvrrrrrrrmrrrieineiseinrrsisesesesssssssesessnes 2372
EFI_USER_MANAGER_PROTOCOL.DeletelNfo().....cccoumrmmrnriininrininsnssnsessinnines 2374
EFI_USER_MANAGER_PROTOCOL.GEtNEXINTO().....cvvrerirririrriiririeiesiseississisninns 2375
35.3.2 Credential Provider ProtOCOIS.......ccciiiccicccesce et 2375
EFI_USER_CREDENTIAL2 PROTOCOLcoooviririesrrsisessssississssessssssseses s 2375
EFI_USER_CREDENTIAL2 PROTOCOL.ENIOH() ..covvveerrrisiseesissesesssssese e 2379
EFI_USER_CREDENTIAL2_PROTOCOL.FOrM()...ccovnrimrrerinernreernsssessseenssnsssssensnes 2380
EFI_USER_CREDENTIAL2_PROTOCOL.THE() .cccevvrrrrrmrrnrimrinrisirnsieissssesssssssessesenns 2381
EFI_USER_CREDENTIAL2 _PROTOCOL.TIHIE() c.covvvvrerrrririerieeisissieiesissssisessseesiens 2383
EFI_USER_CREDENTIAL2 PROTOCOL.USEI() ..cccovrrirerrrririrsissrssiesississiessssssssessesssseseans 2384
EFI_USER_CREDENTIAL2 PROTOCOL.SEIECL()....ccovrvrirnrnrirersrsresesisrsseniesiennns 2386
EFI_USER_CREDENTIAL2 PROTOCOL.DeSEIECT()....cccviirererrirercrcveseeseseieine, 2387
EFI_USER_CREDENTIAL2_PROTOCOL.Default().......ccourrmrmrrmimrimirneininsinsinrennenns 2388
EFI_USER_CREDENTIAL2_PROTOCOL.GEtINFO() ...ovvvrrerirrrrireiineirineissnisssiessenenns 2389
EFI_USER_CREDENTIAL2_PROTOCOL.GEtNeXtINfO().....cccouvrvermrvrieierirerisrisniens 2390
EFI_USER_CREDENTIAL2 PROTOCOL.DEIEte() .cccvvvrrvrvrnrrirersrierierisrissesesssieninns 2391
35.3.3 Deferred Image Load ProtOCOL............cisinesssssssessssse s 2391
EFlI_DEFERRED IMAGE_LOAD PROTOCOL.....ccccoininisinrinsinsnsissssissiesississsesesessseens 2391
EFI_DEFERRED_IMAGE_LOAD_PROTOCOL.Getimagelnfo()......ccccourmrmrrrnrnrinnns 2393

1Y A W YT o () 4 1 1= 1T] o [P 2394
35.4.1 EFl_USER_INFO_ACCESS POLICY _RECORD.......ccoocosiminieiniinisiessissesiesee e, 2395
35.4.2 EFI_USER_INFO_CBEFF_RECORDccecosininrsisinsisiseissssessse s 2401
35.4.3 EFI_USER_INFO_CREATE_DATE _RECORDccccccosiimrisrinrinrinreieisie e 2401
35.4.4 EFl_USER_INFO_CREDENTIAL_PROVIDER _RECORD......cccconimiimininrinsinsissinrennens 2401
35.45 EFlI_USER_INFO _CREDENTIAL PROVIDER _NAME_RECORDccccovrvirrrnne. 2401
35.4.6 EFI_USER_INFO _CREDENTIAL TYPE_RECORDcccccooeimiiiiiiiiiiecee e 2402
35.4.7 EFl_USER_INFO CREDENTIAL_TYPE_NAME_RECORDcccocovvvviriirnrerrernnnn, 2402

Version 2.7

May 2017 Ivii

Unified Extensible Firmware Interface Specification

35.4.8 EFI_USER_INFO_GUID_RECORDc.ccostiminiirsrissnsississssssisssesssissesesessssssesessssenes 2402

35.4.9 EFl_USER_INFO_FAR _RECORD......cccooiiminiiesene st isssssisssss st sssssessesssssssssens 2403

35.4.10 EFI_USER_INFO_IDENTIFIER_RECORD.......cccccovtriieinereteiessissississsssisssesssssessessaseens 2403

35.4.11 EFI_USER_INFO_IDENTITY_POLICY_RECORD.......cccceevtiirriririieceisere e 2404

35.4.12 EFI_USER_INFO_NAME_RECORDooovvvmemeenisssssssssesssssssssssssesssssosssssessssssssssssenen 2405

35.4.13 EFl_USER_INFO_PKCS11 RECORDcccoeeiiiiimimiismsmssssssssssssessssssssssssssssssesssesessnssnnnnns 2406

35.4.14 EFl_USER_INFO_RETRY_RECORDcc.cccosimimisrininieississssesssssssesesssse s 2406

35.4.15 EFI_USER_INFO_USAGE_DATE _RECORDc.cccooisiimrininrereisrnsisne e, 2407

35.4.16 EFI_USER_INFO_USAGE_COUNT_RECORDccccocosimrimrinnininriereesssese e, 2407

35.5 User INTOrmation TaBIE ...ttt 2407

36 Secure TeChNOIOQIES.......c.coiiiecie e 2409

BT ST I 21T a W O AV L=T Y/ =T 2409

36.1.1 HASHh RETFEIENCES.......coceeeeeee sttt et 2409

EFlI_ HASH_SERVICE_BINDING PROTOCOL......ccccocsiniinirerinrsessesiesiesiesesssiessessseneens 2409

EFI_HASH_PROTOCOLoooiceeeereisssssssssssssseseesssss s ssssssessssssossssssssssens 2410

EFI_HASH_PROTOCOL.GEtHASNSIZE()......ccovvivveereieireieiseissiseissssssessissesssssssssessesnsnssens 2411

EFI_ HASH _PROTOCOL.HASRN() ...cvoovcviiecceceees st sssssssesse e 2412

36.1.2 Other Code DefiNItIONS ... e 2413
EFlI_SHA1 HASH, EFI_SHA224 HASH, EFI_SHA256 HASH, EFI_SHA384 HASH,

EFI_SHABS12HASH, EFI_ MD5 HASH ... 2413

36.2 HASNZ PrOTOCOIS ..ottt ettt ettt sttt et ettt st n s bbbt 2415

36.2.1 EFI Hash2 Service Binding Protocol ... 2415

EFI_HASH2 SERVICE_BINDING _PROTOCOLc.cccovivrinrivrivineeeree e, 2415

36.2.2 EFI HASN2 PrOtOCOL ...ttt 2416

EFI_ HASH2 PROTOCOL. ..ottt stesbes st 2416

EFI_HASH2_PROTOCOL.GEtHASNSIZE()....cvvvrrieinrieiineisrisinsisissisessssesssssesssensnns 2420

EFI_HASH2 PROTOCOL.HASN()...ccoviiiiiririeiniiniinieees e 2421

EFI_HASH2 PROTOCOL.HAShINIL()....cccvvviieiriereiieisssessssssississssssessssssessssssessessssseens 2423

EFI_ HASH2 PROTOCOL.HashUpPdate() ..o 2424

EFlI_ HASH2 PROTOCOL.HaShFINAI()......ccocoviriureiriirrninessesssissssesssissieses s sessneens 2425

36.2.3 Other Code DEefiNITIONS ..o s 2427

EFI HASH2 OUTPUT ..ottt sttt bbb s 2427

36.3 KeY MANAGEMENT SEIVICE ..ot 2428

EFI_KEY_MANAGEMENT_SERVICE _PROTOCOLcccoeoovrvrrrirsrnrinsesssssiesesissienenns 2428

EFI_KMS PROTOCOL.GEtSErviceStatus()ccvvrmrnrieiereeieessesee e, 2442

EFI_KMS PROTOCOL.ReQIStErClHent()......ccccouvveeriiiieeeiee e, 2443

EFI_KMS_PROTOCOL.CreateKeY() .o.vvrrrerrrnrrrirnisnsisrnsssssssssessssssssessesssssssssssssessasssnns 2445

EFI_KMS_PROTOCOL.GELKEY(). . rerrrrerrirrieireissisesnsssssssssssssssssssssssssssssssssssssassssssesssnes 2448

EFI_KMS_PROTOCOLAAUKEY() .vrrrrrvvrrrrivvvvvrvsvssssssseeeeeeeeesesssssssssssssssssssssssssssssssssssssene 2451

EFI_KMS_PROTOCOL.DEIELEKEY() ..ottt ssssssssssssessssssssse s ssseens 2454

EFI_KMS_PROTOCOL.GEtKeYALLNBDULES()ccvvveierreireiseierississssesssissiesss s 2457

EFI_KMS_PROTOCOL.AAAKeYALNDULES().....cccvvererrieieisrsiesess s 2460

EFI_KMS_PROTOCOL.DeleteKeyAttribULeS().....cccoumrrmrnrimrnrininrsisseessseeesnnenns 2463

EFI_KMS_PROTOCOL.GetKeyBYALLIDULES().....cccovrrrrrernririniineisirsissssssesssisssensnes 2466

36.4 PKCST VErify PrOTOCOL ..ot 2469

EFI_PKCS7_VERIFY_PROTOCOLccceoiiiicrrscsesssese st sssssssssssssssssssesse s ssessns 2469

May 2017 Version 2.7

EFI_PKCS7_VERIFY_PROTOCOL.VEfYBUFFEI()....oooocrsererrseessessesseessessessenn 2471

EFI_PKCS7_VERIFY_PROTOCOL.VerifySignature() ..., 2475
36.5 Random Number Generator ProtOCOL ... 2477
EFI_ RNG_PROTOCOL. ...ttt bbbt es st st sse s ssensns 2478
EFI_RNG_PROTOCOL.GELINFO ...coeeeeeeeeceeeveevvivveeseeeesnssssssssssssssssssssssesssssssssssssssssenees 2479
EFI_RNG_PROTOCOL.GEIRNGcccovicictcsrs ettt ssse s 2481
36.5.1 EFI RNG Algorithm DefinitioNsccoouvisisssccsssssssssssssssssssssssssessesesssssenes 2482
36.5.2 RNG REFEIENCES ..ottt bbb 2483

36.6
Smart Card Reader and Smart Card Edge ProtocColIs...........cccoovvnnnnininnnnseeens 2483
36.6.1 Smart Card Reader ProtOCOl ... 2484
EFI_SMART_CARD_READER_PROTOCOL SUMMAIYccccoeesmmmmmmmmmmmmmimsrerereessssssssseee 2484
EFI_SMART_CARD_READER _PROTOCOL.SCardConnect()coerverrerrerrernernens 2486
EFI_SMART_CARD_READER PROTOCOL.SCardDisconnect().........cccouververiernrens 2488
EFI_SMART_CARD_READER PROTOCOL.SCardStatus().......cccccosrerimrsrererierinrnns 2489
EFI_SMART_CARD_READER_PROTOCOL.SCardTransmit()ccccoermrnrrrnrrnrennns 2491
EFI_SMART_CARD_READER_PROTOCOL.SCardControl()............ee.e 2493
EFI_SMART_CARD_READER_PROTOCOL.SCardGetAttrib()........ooovvvvvvvvvvvverveeee 2495
36.6.2 Smart Card EAQe ProtOCOI ... 2496
EFI_ SMART_CARD _EDGE_PROTOCOL ...t ssssens 2496
EFI_SMART_CARD_EDGE_PROTOCOL.GetCoNteXt()covvvrrvrrnreeernereinirnrernesanenns 2499
EFI_SMART_CARD_EDGE_PROTOCOL. CONNECL() cevvvrrerrrrrrernerrinernsiressnssssesnnsnes 2501
EFI_SMART_CARD_EDGE_PROTOCOL.DISCONNECL()........ccesemrerrrrrerrrerrrerereeseesessesee 2503
EFI_SMART_CARD _EDGE_PROTOCOL.GEICSNcccvvvvrrvrirrrrrirsrississiesssissssenssinsens 2504
EFI_SMART_CARD_EDGE_PROTOCOL.GetReaderNameccocoveverrerrerrerrennens 2505
EFI_SMART_CARD _EDGE_PROTOCOL.VerifyPin() ..., 2506
EFI_SMART_CARD_EDGE_PROTOCOL.GetPinRemaining().......cc.coeeeeerermeerrenrrnnes 2508
EFI_SMART_CARD_EDGE_PROTOCOL.GEtDAtA()......cocvrermrrrerrrrnrireernereirnssnseessnnenes 2509
EFI_SMART_CARD_EDGE_PROTOCOL.GetCredentialS()...........ooovvwvvvvevvvvvveeeneeeen 2511
EFI_SMART_CARD_EDGE_PROTOCOL.SIgNDAta()cc.cevermrmrersrnrereriererenienienens 2514
EFI_SMART_CARD_EDGE_PROTOCOL.DecryptData()......c..ccourererreerermrrererierinrnns 2516
EFI_SMART_CARD_EDGE_PROTOCOL.BuildDHAgreement()..........ccccceerververinrens 2519
37 Miscellaneous ProtOCOIS ...t 2521
37.1 EFI TIMeStamp ProtOCOI ... 2521
EFI_TIMESTAMP_PROTOCOLcooviiriirisssssetssississississsssssssssssssessesssssessesssssssessessesssssens 2521
EFI_TIMESTAMP_PROTOCOL.GetTimestamp().......ccocoverenenensneinsissssssiesesiesinsens 2521
EFI_TIMESTAMP_PROTOCOL.GEtProperti€s ()ccummmrnrrimrrnremensenssnssesnnsnes 2522
37.2 Reset NOtification PrOtOCOL. ... 2523
EFI_RESET NOTIFICATION PROTOCOL. ... 2523
EFI_RESET _NOTIFICATION_PROTOCOL.RegisterResetNotify()........c.ccoverernee, 2523
EFlI_RESET_NOTIFICATION_PROTOCOL.UnregisterResetNotify().........coueuu... 2525

Version 2.7 May 2017 lix

Unified Extensible Firmware Interface Specification

Appendix A GUID and Time FOrMAtSccooviiiiiiniinniesie e 2527
APPENIX B CONSOIE.......ooiiiii e 2529
Appendix C Device Path EXampPlesS........cccccoviiiiiiiiiiiie e 2533
APPENAIX D STAtUS COUESoooiiieiiciiecee e 2541
Appendix E Universal Network Driver Interfaces..........cccccoocvevieeviveivenneennnn. 2545
Appendix F Using the Simple Pointer Protocol.............cccccooiiiiiiiiiciiein 2633
Appendix G

Using the EFI Extended SCSI Pass Thru Protocol..............cccoociieiiiiinnnns 2635
Appendix H Compression SOUrce Codeccooviiiiieiiieiiie i 2639
Appendix | Decompression SOUrce Codeoocevviiiiieiie e 2667
Appendix J

EFI Byte Code Virtual Machine Opcode LiStccccoviviiniiiiiniienieiieans 2683
Appendix K Alphabetic FUNCTION LiSTS.........ccccoviiiiiiiiiiiecie e 2687
Appendix L

EFI 1.10 Protocol Changes and Deprecation LiStccccccoevviieiieiiennnns 2689
Appendix M Formats —

Language Codes and Language Code Arrays.......ccccoeereeeieeiieesieesieesninens 2693
Appendix N Common Platform Error Record..........cccoovviiiiiiiieicne e 2695
Appendix O UEFI ACPI Data Table.........ccooviiiiiiiiiicec e 2751
Appendix P

Hardware Error Record Persistence USagecccccvvvvvieiiieiiesce s e 2755
ApPPEeNdiX Q RETEIENCES.......ccvi e 2757
APPENAIX R GIOSSAIY ...cciiiciiie ettt ae e e nneeenneas 2765

T L= PR 1

Ix May 2017 Version 2.7

List of Figures

Figure 1. UEFI CONCEPTUAI OVEIVIEW ..o 12
FIgUre 2. BOOTING SEUUENCE.........c.ivieieieiesisisissis st 19
Figure 3. Stack after AddressOfEntryPoint Called, IA- 32.........cccoveiieieciee e, 30
Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems..........cccecovvvrnnen. 32
Figure 5. Construction Of @ ProtOCO] ... ssnes 53
FIgure 6. DESKEOP SYSTEIM ...t 59
FIQUIE 7. SEIVET SYSTEIMciiuiiiitiieie bbb 59
Figure 8. 1mMage HaNAIE ...t 62
Figure 9. Driver IMage HANAIE ...t 63
Figure 10. HOSt BUS CONTIOIIEIS ...ttt ssnes 64
Figure 11. PCI Root Bridge DeVvice HaNAIE ... sssssssesesnes 64
Figure 12. CONNECEING DEVICE DIIVELSc.ovieririeinceineisein sttt sttt ssesssssesssssessesans 65
Figure 13. CONNECTING BUS DIIVEIS........ccoiiiiieie s 67
Figure 14. Child Device Handle with a Bus SPecCific OVErride ... 68
Figure 15. Software Service RelatioNShiPS ... 70
Figure 16. MBRDisk Layout with legacy MBR eXample ... 127
Figure 17. GPT disk layout with protective MBR eXample..........ccccovnnnnsnesneeeennn, 130
Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA
OXFFFFFFFF @XAMPIE.oiiii e 130
Figure 19. GUID Partition Table (GPT) @XamMPIE ..o, 132
Figure 20. The BTT LayOout in @ BTT AFENaA.......cccociviininininiisieseiessisseses s 141
Figure 21. A BTT With Multiple Arenas in a Large NameSPaCeccccevevrivnrsneenssneessesnssennees 142
Figure 22. Cyclic Sequence Numbers for FIOg ENTFES ... 147
Figure 23. BTT Read Path OVEIVIEW............coiiii e 154
Figure 24. BTT Write Path OVEIVIEW ... 156
Figure 25. Device Handle to Protocol Handler Mapping.........ccocrinssinsnsssssssssesssnnens 196
Figure 26. Handle DAtabase. ...t 198
Figure 27. Scatter-Gather List of EFI_CAPSULE_BLOCK_DESCRIPTOR Structures............... 317
Figure 28. Text to BiNary CONVEISION ..ot ssesssnes 394
Figure 29. Binary t0 TeXt CONVEISIONcviriinieieissseeeie e sss st sssssessesnsenes 394
Figure 30. Device Path Text REPreSentation ... ssssssssssssssssssnes 396
Figure 31. Text Device NOAE NAIMES ...ttt 396
Figure 32. Device NOde OPLiON NAMIES........cccoviiiiine sttt 397
Figure 33. Driver Health Status States ... s 484
Figure 34. SOftWare BLT BUTTET ... 568
Figure 35. Nesting of Legacy MBR Partition RECOIdS..........ccccocvnnnnenerenesenerene e, 595
Figure 36. Cyclic Sequence Numbers in Label Index BIOCK ..., 752
Figure 37. HOSt BUS CONTIOIIEIS ... 772
Figure 38. Device Handle for a PCI Root Bridge Controller ... 773
Figure 39. Desktop System with One PCl ROOt BridQe........ccooevvvrivcinnncnnsnss s 774
Figure 40. Server System with Four PCI ROOt Bridges ..o 775
Figure 41. Server System with TWO PCl SEGMENTSccoiieieererere e ssesens 776
Figure 42. Server System with TWO PCl HOSE BUSES..........cccoviiiniiinsesssssisnsnns 777

Version 2.7

May 2017 Ixi

Unified Extensible Firmware Interface Specification

Ixii

Figure 43. IMage HANAIE ...t 815
Figure 44. PCI Driver IMage HandIE ...t sssssessssssesssens 816
Figure 45, PCI HOSt BUS CONTIOIIET ..ottt sssss st sse s 817
Figure 46. Device Handle for a PCI HOSt BuS CONTIOIIEN ... 818
Figure 47. Physical PCI BUS STTUCTUIEc.cociiiiiieieies s 819
Figure 48. Connecting @ PCl BUS DIIVET ... 820
Figure 49. Child Handle Created by a PCl BUS DIIVET ..., 820
Figure 50. Connecting a PCl DEVICE DIIVEN ... ssssssssssssessssssssssssesnssens 823
Figure 51. Unsigned PCI Driver IMage LaYOUL ... ssessssssssssssssessssessssssens 870
Figure 52. Signed and Compressed PCI Driver Image FIOW...........ccooinnnnnnenns 871
Figure 53. Signed and Compressed PCI Driver Image Layout ..., 872
Figure 54. Signed but not Compressed PCI Driver Image FIOW ..., 873
Figure 55. Signed and Uncompressed PCI Driver Image Layout........c..cccovviviinrinvinisnieinninnnns 874
Figure 56. Device Handle for a SCSI Bus CONrOlIEr ... 878
Figure 57. Child Handle Created by a SCSI BUS DFIVETcccvivmnrnnnrsnssessissssesssessssssssssnens 879
Figure 58. Software Triggered State Transitions of a USB Host Controller............ccccoce..e. 932
Figure 59. USB Bus Controller HANAIE ... 959
Figure 60. Sequence of Operations with Endpoint Policy Changes............ccceovnniniiininens 1024
Figure 61. Debug Support Table Indirection and Pointer Usage ..., 1054
Figure 62. Bit Sequence of ComPressed Data ... 1059
Figure 63. Compressed Data STIUCTUNE...........cc.coiecece ettt st senenes 1059
FIgQUIre B4. BIOCK STIUCTUIE ...ttt 1060
FIgure 65. BIOCK BOAYcccccoiiiiciescsssssiss sttt 1063
Figure 66. String INfO LOQ SEAICN TIEE ..ottt 1065
FIQUre 67. NOAE SPIIL......coicccecr bbb 1067
Figure 68. Firmware Image with no Authentication SUPPOIt ... 1178
Figure 69. Firmware Image with Authentication SUPPOIt..........cccoovvnenneeeee e, 1178

Figure 70.

Optional Scatter-Gather Construction of Capsule Submitted to UpdateCapsule().

1191
Figure 71. Capsule Header and Firmware Management Capsule Headercccccovunui.. 1192
Figure 72. Firmware Management and Firmware Image Management headers................. 1193
Figure 73. IPV6-based PXE DOOT ...ttt sssssse s ssssssens 1275
Figure 74. netboot6 (DHCP6 and ProxyDHCP6 reside on the same Server)o.... 1278
Figure 75. IPv6-based PXE boot (DHCP6 and ProxyDHCP6 reside on the different server).....

1279
Figure 76. HTTP Boot Network Topology Concept — Corporate Environment 1325
Figure 77. HTTP Boot Network Topology Concept2 — Home environments........................ 1326
Figure 78. UEFI HTTP BOOt ProtoCOl LayOUL ..o 1327
Figure 79. HTTP BOOt OVEIall FIOW ...ttt 1330
Figure 80. Creating A Digital SIGNaATUIE ... 1974
Figure 81. Verifying a Digital SIQNATUIEcccoviiiiniieee e 1975
Figure 82. Embedded Digital CertifiCates ..., 1976
Figure 83. SECUIre BOOL MOAES.......c.cccoviiieiisisie st 1982
FIGUIE 84, SIgNATUIE lISTS ..ottt 1986
Figure 85. Process for adding a new signature by the OS..........c.ccccooovvinnnnnnnesenn, 1996
Figure 86. Platform Configuration OVEIVIEW.............ccoviireeine e, 2002
Figure 87. Hll Resources In Drivers & APPlICAtiONS.........ccoocnsesessseesniens 2003

May 2017 Version 2.7

Figure 88. Creating Ul Resources With ReSOUrce FileS ..., 2004
Figure 89. Creating Ul Resources With Intermediate Source Representation.................... 2005
Figure 90. The Platform and Standard User INteractions...........ccccocoivneninnnenenesneinssnennnns 2006
Figure 91. User and Platform Component INteraction.............cccoocovvvnnininnnnnninneenenn, 2006
Figure 92. User Interface COMPONENTS..........ccoiiiiniisisie s 2007
Figure 93. Connected FOrms BroWSEr/PIrOCESSON ... 2008
Figure 94. Disconnected FOrms BrowWSEIr/PrOCESSON ... sssssnes 2008
Figure 95. O/S-Present FOrmS BrOWSEI/PIrOCESSONoucuiirenmninesseeensssssssssssssssssssssssssssesnes 2009
Figure 96. Platform Data STOrage.......cccviiniccniense e st ssssssssssssssessssssssssens 2009
Figure 97. Keyboard LAYOUL...........con s 2012
Figure 98. Forms-based Interface EXamMpPle...........coviese e, 2015
Figure 99. Platform Configuration OVEIVIEW............ccuiiiisseissisessssesssssssessss s, 2016
Figure 100. Question Value Retrieval PrOCESS.........ccccieccsssssee st ssssssesssens 2025
Figure 101. Question Value Change PrOCESS ... sesssssssssssssssssssssssssssssssesens 2026
Figure 102. StrNG IAENTIFIEIS ..ot 2045
FIGUIE 103, FONTS ..ottt 2051
Figure 104. FONT DESCHIPTION TEIMNSo.vviiiiiiiieiseieienisssi st 2052
Figure 105. 16 X 19 FONT PAFQMETEISc.ooiiiiiiiiiseiei s 2053
Figure 106. FONt STrUCLUIE LAYOUL...........oveieeeeieressssssssssssss s 2054
Figure 107. Proportional Font Parameters and Byte Padding...........cccocveevrivniinncniinncinieinenns 2055
Figure 108. AHGNING GIYPNS. ... 2055
Figure 109. HII DAADASE ...ttt 2057
FIQUre 110, SETUP BIOWSET ..ottt sssssssssssss s ssssnnsnns 2058
Figure 111. Storing Configuration SEtNGS ..., 2063
Figure 112. OS RUNEIME ULHIZALIONcooviiciiieessee st 2064
Figure 113. Standard Application Obtaining Setting EXample.........c.cccccovovivnininniinicinsniinnns 2065
Figure 114. Typical Forms Processor Decisions Necessitating a Callback (1)c..c......... 2067
Figure 115. Typical Forms Processor Decisions Necessitating a Callback (2) 2068
Figure 116. Typical Forms Processor Decisions Necessitating a Callback (3)cc.cc..c..... 2069
Figure 117. Driver Model INTEraclioNS..........ccooviviiiiincnise e, 2070
Figure 118. Managing Human Interface COMPONENLS ..., 2071
Figure 119. EFI IFR Form set coNfiguIration ... ssssssssenssessens 2072
Figure 120. EFI IFR Form Set question Changes ..., 2073
Figure 121. Glyph Information Encoded in BIOCKS ..., 2082
Figure 122. Glyph BIOCK ProCESSING........ccoviiiiieisineisiseissis s 2085
Figure 123. EFI_HIl_GIBT_GLYPH_VARIABLITY Glyph Drawing Processing..........cc.ccoc.... 2093
Figure 124. String Information Encoded in BIOCKS.........c.ccooviiiinninnssssssssssssssese e, 2096
Figure 125. String Block Processing: Base ProCeSSING.......ccuvnnnnnenseessssesssessssssesennns 2098
Figure 126. String Block Processing: SCSU ProCeSSIiNg ..., 2099
Figure 127. String Block Processing: UTF ProCessing ..., 2100
Figure 128. Image Information Encoded in BIOCKS...........cccocivnnceseens 2111
Figure 129. Palette Structure of a Black & White, One-Bit Image ..., 2127
Figure 130. Palette Structure of a FOUr-Bit IMage ..., 2127
Figure 131. Palette Structure of a Four-Bit, Six-Color IMmage...........cccceovivnrinncnninnneinenessiens 2128
Figure 132. SIMple BiNary ODJECT.........core et 2129
Figure 133. Password FIOWChArt (Part ONE) ... 2176
Figure 134. Password FIOWChArt (Part tWO) ..., 2177

May 2017 Ixiii

Version 2.7

Unified Extensible Firmware Interface Specification

Ixiv

Figure 135.
Figure 136.
Figure 137.

Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142,
Figure 143.
Figure 144,
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.

Animation Information Encoded in BIOCKS...........ccccovnnesseseens 2211
GIYPN EXAMPIE ..ottt 2239
How EFI_HIl_IMAGE_EX_PROTOCOL uses
EFI_HII_IMAGE_DECODER_PROTOCOLcceovtrinrininrninsieississ s sssssssssssssssssssssssssesens 2268
KeYDOArd LAYOUL ... 2297
USEE TAENTITY ... 2352
HaSh WOTKFIOW ... 2419
Example COMPULET SYSTEM ... 2533
Partial ACPI Name Space for Example SYStem ..., 2534
EFI Device Path Displayed As a Name SPaCE........cccouvnnninnnninseeeneees 2539
Network Stacks with Three Classes Of DIVErS.........cccinennenesesssseeens 2550
IPXE Structures for H/W and S/W UNDI ..o, 2552
IsSUING UNDI COMMANAS.......ccoviiiiiisisie s sssens 2556
UNDI Command Descriptor BIOCK (CDB)cccocvennininsncnsssssnessssssssssssssssesseens 2557
Y 0] = Vo TSI Y/ 01 PP 2562
UNDI States, Transitions & Valid Commands ... 2583
LINKEA CDBS ...ttt bbb bbb e 2584
QUEUEA CDBS ..ot 2585
Error RECOIM FOIMAL.........covviiieiesei b 2695

Figure 152.

May 2017 Version 2.7

List of Tables

TADIE L. SIPFEIIXES ... 18
Table 2. BINAIY PreFiXES ..ottt 18
Table 3. UEFI IMage MEMOIY TYPES...c.cirriisiseiessssssssssssssesssss s ssssssssssssssessssesssssssssssssssessees 21
Table 4. UEFI RUNTIME SEIVICEScoviiiiieeeieeere ettt sttt sttt 24
Table 5. COMMON UEF] DAta TYPES.....ccccuieicersse ettt ssssssssssssse st ssssessessessessenns 26
Table 6. Modifiers for Common UEFI Data TYPES ... ssiseessissessississssssensnes 27
Table 7. Map: EFl memory types to AArch64 Memory tYPES......oiinssssssssiens 45
TaBIE 8. UEFI PIrOTOCOIS ...ttt 55
Table 9. Required UEFI Implementation EIEMENLS ... 72
Table 10. GIODal VariabIes ... 94
Table 11, UEFI IMAQE TYPES ..ot 101
Table 12. Usage of Memory Attribute Definitions ... 119
Table 13. LEJACY MBR ... bbb 126
Table 14. Legacy MBR Partition RECOIM ...t 126
Table 15. ProteCtiVe IMBR ...ttt 129
Table 16. Protective MBR Partition Record protecting the entire diskcccccccoevveivivnnine, 129
TADIE 17, GPT HEAET ...t 135
Table 18. GPT Partition ENTIY ... 137
Table 19. Defined GPT Partition Entry - Partition Type GUIDS ..., 138
Table 20. Defined GPT Partition ENtry - AttHDULES ..o 139
Table 21. Event, Timer, and Task Priority FUNCLIONS ... 158
TADIE 22. TPL USAQEcvcvevreir ettt sttt 159
Table 23, TPL RESIICTIONS. ...t 159
Table 24. Memory AlOCation FUNCLIONS ... 181
Table 25. Memory Type Usage before EXitBOOTSErviCes().......covneinneeneeeesesssssenees 182
Table 26. Memory Type Usage after EXitBOOTSErviCes() ... 182
Table 27. Protocol INterface FUNCLIONS ... 195
Table 28. Image Type DIfferences SUMMAIY ..., 243
Table 29. IMAQE FUNCLIONS ...ttt 244
Table 30. Miscellaneous BOOt Services FUNCLIONS...........cooinsessssssssesssienns 256
Table 31. Rules for Reentry INt0 RUNTIME SEIVICES ..o 269
Table 32. Functions that may be called after Machine Check ,INIT and NMIc.ccccocueenee. 270
Table 33. Variable Services FUNCLIONS ...t 270
Table 34. Hardware Error Record Persistence Variables ... 293
Table 35. Time ServiCes FUNCLIONS. ... 294
Table 36. Virtual MemOry FUNCHIONS. ...t 302
Table 37. Miscellaneous RUNTIME SEIVICES ... sse s 306
Table 38. Flag FIrmware BENAVIOX ...ttt 314
Table 39. Variables Using EFI_CAPSULE_REPORT_GUID........cccccccimmmmmrnnrinininsresssssiessensnens 323
Table 40. Generic Device Path NOdE STIUCTUIE ...t 333
Table 41. Device Path EN STFUCTUIE ...t 334
Table 42, PCIDEVICE PALN........cooiiii s 335
Table 43. PCCARD DEVICE Pl ...ttt ettt 335
Table 44. Memory Mapped Device Path ... 335
Table 45. Vendor-Defined DeViCe Path ... s 336
Table 46. Controller DEVICE PAth ... 336
Table 47. BMC DEVICE PALNccoiii s 336
Table 48. ACPI DEVICE PAtN.........ccccooiiiii s 338
Table 49. Expanded ACPI DeVICE Path...........ccccccoviiiiccce st ssssse s 338
Table 50. ACPl _ADR DEVICE PaAth ..ot ssssssse s 339

Version 2.7 May 2017 Ixv

Unified Extensible Firmware Interface Specification

Ixvi

Table 51. ATAPI DEVICE PATN ...ttt sttt ettt sttt eranatenas 340
TADIE 52. SCSIDEVICE PATN ...ttt ettt ettt ettt st st et ettt st e s esasas e s e et ntsennenenns 340
Table 53. Fibre Channel DEVICE PatN.........c.ooooieeeeeeeeeeeete et ettt sttt sttt sesnenens 340
Table 54. Fibre Channel EX DEVICE PATN ..ottt sttt ettt st nssnaneons 340
Table 55. Fibre Channel Ex Device Path EXamPIe.........ccccoivininncincinneee s, 342
TabIE 56. 1394 DEVICE PAN.....ooiiieceeee ettt sttt sttt ettt b b et st st ab e es et sesrenens 343
TabIE 57. USB DEVICE PAN ...ttt sttt sttt sttt erana b nas 343
Table 58. USB Device Path EXAMPIES........ccc v 344
Table 59. Another USB Device Path EXamPIe........ccoovssesseesssssesssiessnes 345
TabIE B60. SATA DEVICE PAtN ..ottt ettt ettt sttt ettt sttt sttt et at et s s et senrananns 345
Table 61. USB WWID DEVICE PANocvoiiieeee ettt sttt sttt sttt eb e st sesnanens 346
Table 62. DeVice LOGICAl UNIL.........cccocovviiiirrnsnse st sssesssssssssssssssesnsnes 347
Table 63. USB Class DEVICE PATN ...ttt sttt sttt ss s ana st 348
TADIE B4, 20 DEVICE PALN ...ttt ettt ettt sttt ettt at et e et s s ar e s et st sensenens 348
Table 65. MAC AAAreSS DEVICE PAN........c.ooeeeeeeeoeeeeetet ettt ettt sttt st er sttt e enenns 348
TaADIE B6. IPVA DEVICE PALN ...ttt ettt ettt sttt ettt et st an ettt st et asar s et senreneens 350
TaADIE B7. IPVO DEVICE PALNoovieeeest ettt sttt sttt sttt b ettt sttt b e es et sesrenens 350
Table 68. INfINIBANA DEVICE PALNcovieiieceeee ettt sttt sttt e rerens 352
Table 69. UART DEVICE PAtN ...ttt sttt n et 352
Table 70. Vendor-Defined Messaging Device Path ... 353
Table 71. UART Flow Control Messaging Device Path............ccooonns 354
Table 72. Messaging Device Path STTUCTUIE ... s 355
Table 73. Messaging Device Path STTUCTUIE ... 357
Table 74. iISCSI Device Path Node (Base INformation) ... 358
Table 75. IPVA CONFIGUIALION ..o s 360
Table 76. IPV6 CONFIGUIALIONc.cviiiississ s s 365
Table 77. NVM Express Namespace Device Path...........cccsseeens 370
TaADIE 78. URIDEVICE PAN ...ttt ettt sttt ettt st sttt et st st s s et atssaren s et st senranees 371
TADIE 79. UFS DEVICE PATN ...ttt ettt sttt sttt ar ettt st s s en e et atsnarenes et st senranees 371
TabIE 80. SD DEVICE PAtN ..ottt sttt sttt ettt b ettt s b e et b e b s et st sesrerens 372
Table 81. BIUETOOTN DEVICE PALN ..ottt sttt et 372
Table 82. Wi=Fi DEVICE PAtN.......ooeeiee ettt sttt sttt nana b 372
TabIe 83. EMMUEC DEVICE PATN.......oooeoeeeeeeeoooeeeee ettt ettt ettt st st s ettt s te s eens e s e et et aennanens 372
Table 84. EFI BIUBTOOTNLE DEVICE PALccooioieeceeeeeetee ettt sttt sttt sttt are st nnanens 374
TaADIE 85. DINS DEVICE PALI ..ottt ettt ettt sttt sttt ettt st st r sttt atan b er e et senrenees 374
Table 86. Hard Drive Media DEVICE PAtR ...ttt sttt enens 376
Table 87. CD-ROM Media DEVICE PAtN ..ottt sttt sn st 377
Table 88. Vendor-Defined Media DEVICE Path ...ttt 377
Table 89. File Path Media DEVICE PAN..........cooooeeeeeeeeeeeeeeee ettt ettt sttt ene st anenns 377
Table 90. Media Protocol Media DEVICE PAtN ..ottt ettt enees 378
Table 91. PIWG Firmware Volume DEVICE PaAth ..ottt 378
Table 92. PIWG Firmware Volume DEVICE Path ... s 379
Table 93. Relative OffSEt RANGE.......cccviiicsis s 379
Table 94. RAM DiSK DEVICE PATNcooiiiirssisisse ettt sttt sttt sttt enana s 379
Table 95. BIOS Boot Specification DeViCe Path ... 381
Table 96. ACPI _CRS to EFI Device Path Mappingccconnssssssssssessesssssenes 382
Table 97. ACPI _ADR to EFI Device Path Mapping ... 383
Table 98. EFI Device Path Option Parameter VAlUES........c..cccocvvrcnncinenicnse e 398
Table 99. DEVICE NOUE TADIE ..ottt ettt ettt sttt rar bt 398
Table 100. Supported Unicode Control CharacCters...........ccieiieesineiee s 510
Table 101. EFI Scan Codes for EFI_SIMPLE_TEXT _INPUT_PROTOCOLcccccoveviveverrerrernirnns 510
Table 102. EFI Scan Codes for EFI_SIMPLE_TEXT _INPUT_EX PROTOCOLccccevovvivrrernne, 511
Table 103. EFI Cursor Location/AdVANCE RUIES............cooeeceeeeeeeee ettt st ena s 531
Table 104. PS/2 MOUSE DEVICE PATN........cooeiicieeeeetet ettt sttt sttt er e st sesranens 546
Table 105. Serial MOUSE DEVICE PANcccvvieceteee sttt sttt et 548

May 2017 Version 2.7

Table 106. USB MOUSE DEVICE PAth ... 549
Table 107. BIt Operation TabIe ... 578
Table 108. Attributes Definition TabIe ... s 583
Table 109. Tape Header FOIMMALS.........cccooiireie et 642
Table 110. PATA device mapping to ports and port multiplier ports..........ccovivnciniennnn, 696
Table 111. Special programming CONSIAEIratiONS ... 702
Table 112. PCI Configuration AQAIESS.........ccccviiineisee e ssssens 795
Table 113. QWORD Address Space DESCIIPLON ...t 810
TADIE 114, ENA TAQG. ..ttt bbb 810
Table 115. PCI Root Bridge Device Path for a Desktop SyStem........ccoovvrnnnnincneneniennns 811
Table 116. PCI Root Bridge Device Path for Bridge #0 in a Server Systemcccccevvvvne, 813
Table 117. PCI Root Bridge Device Path for Bridge #1 in a Server Systemccccoevvvvnne, 813
Table 118. PCI Root Bridge Device Path for Bridge #2 in a Server Systemcccocovevivvnnes 813
Table 119. PCI Root Bridge Device Path for Bridge #3 in a Server System ..., 814
Table 120. PCI Root Bridge Device Path Using Expanded ACPI Device Path..............ccccccuuuee, 814
Table 121. QWORD Address SPace DESCHPION ...t ssseees 859
QIR L o 100 2 = o T N = Vo SRRSO 859
Table 123. PCI Device 7, Function O on PClI ROOt Bridge O ... 863
Table 124. PCI Device 7, Function 0 behind PCI to PCl bridge ... 864
Table 125. Standard PCI Expansion ROM Header (Example from PCI Firmware Specification

B0 e 867
Table 126. PCI Expansion ROM Code Types (Example from PCI Firmware Specification 3.0).

867
Table 127. EFI PCI EXpansion ROM HEAET ... sssssssessssessssnnes 867
Table 128. Device Path for an EFI Driver loaded from PCI Option ROM........cccccocoveveneineineinns 869
Table 129. Recommended PCI DeviCce Driver LAYOUL...........cccocvveeeieeeese s 875
Table 130. SCSI Device Path EXAMPIES ... 892
Table 131. ATAPI Device Path EXAMPIES ..o 893
Table 132. Fibre Channel Device Path EXamPIEs.........cccvcneccereese s 894
Table 133. InfiniBand Device Path EXaMPIES..........cccovoviicnicnssssess s essssssssssssesessssenees 895
Table 134. Single Channel PCI SCSI CONIOIET ... 896
Table 135. Single Channel PCI SCSI Controller behind a PCI Bridgec..ccovvvvviiviiniisrsrsinns 897
Table 136. Channel #3 of a PCI SCSI Controller behind a PCI Bridge.........cccouvnvninininiinns 898
Table 137. USB Hub POrt Status BitMap.......c.cocoviiisin s 954
Table 138. Hub Port Change Status Bitmap ... 955
Table 139. USB POIt FEATUIES ...ttt s 957
Table 140. Payload-associated Messages and DesCriptiONS.........cccooveeinrinnnierierinnisnenenenns 1009
Table 141. Debugport Messaging Device Path ... 1052
Table 142. BIOCK Header FIEIAS ...t ssees 1061
Table 143. General PUrpoSe VIM REQISTEIS ...t sseees 1099
Table 144. Dedicated VIM REQISTEISc.ccovirireree et 1100
Table 145. VM FIaQgS REGISTEN ...ttt ssess s ssssnns 1100
Table 146. INAEX ENCOAING.......ccooiiiiiiisse sttt 1101
Table 147. Index Size in INdeX ENCOAING ..o 1101
Table 148. Opcode BYte ENCOAING ... 1105
Table 149. Operand Byt ENCOTINGccoovviiiiieiieicese ettt sttt sssssssees 1105
Table 150. ADD INStruction ENCOQINGc.cc.vriiiiierenereeesesese st sssssessesssssees 1107
Table 151. AND INStruCtion ENCOAINGc.ccvvvvieiinieeeessssssssssssssssssss s sssssssssssssssssssenns 1108
Table 152. ASHR INStruction ENCOAINGcccocviiieiciicccce s ssssssssssssssessnns 1109
Table 153. VM Version FOMMIAL.........c.ouiiiisssssse st sssssssssssnes 1110
Table 154. BREAK INStruction ENCOAING ..o 1111
Table 155. CALL INStruction ENCOAING ..ottt essees 1113
Table 156. CMP INStruction ENCOING.........ccoviiirireieeee et ssssssees 1116
Table 157. CMPI INStruction ENCOAINGccocovvvvicicncsrees sttt ssessssssenns 1118
Table 158. DIV INStruction ENCOAING ..o ssens 1119

Version 2.7

May 2017 Ixvii

Unified Extensible Firmware Interface Specification

Table 159. DIVU INStruction ENCOAINGcccoovviviiiieieiciecee s sssssssssssssssssssens 1120
Table 160. EXTNDB INStruction ENCOAINGcccovviiiiiiinessesnisessssssssisesssssssessssesees 1121
Table 161. EXTNDD INStruction ENCOAINGcccoviiiiiiisneesssisesssesssses s 1122
Table 162. EXTNDW INStruction ENCOAINGccccovueiiiiinirirescneinensessiscisessissssssssssesse e 1123
Table 163. IMP INStruCtion ENCOAINGc.ccovveivieicnrecns s sssss s ssssssessssssssssssssssssessssenns 1125
Table 164. IMP8 INStruction ENCOAINGcccovviniiicnrscn s sessenns 1127
Table 165. LOADSP INStruction ENCOAING.......ccccccovviiiiiicccese s ssssssssssssssssssssssssenns 1128
Table 166. MOD INStruction ENCOTING ..o 1129
Table 167. MODU INStruction ENCOAING.........ccouiiessiseiesssses e 1130
Table 168. MOV INStruCtion ENCOAING ..ot 1132
Table 169. MOVI INStruction ENCOING ...t sssssssssssesssssssssssssssssssenns 1133
Table 170. MOVIN INStruction ENCOAING ... ssssssssessenns 1135
Table 171. MOVN INStruction ENCOAING ..ot ssssssssessanns 1136
Table 172. MOVREL INStruction ENCOTINGccooiiiiineisssesssssssssssisssesssssnes 1137
Table 173. MOVsSN INStruction ENCOAING ... ssessens 1138
Table 174. MUL INStruction ENCOAINGcooviiireeiecee et ssssssees 1140
Table 175. MULU INStruction ENCOQING........cc.ccoviininicnieenisssissesssessssssssssssssssssessssessssssessssessenns 1141
Table 176. NEG INStruCtion ENCOAINGcc.ccovvvviieiicirsecnsiesssseess st ssssssesssssssssssenns 1142
Table 177. NOT INStruction ENCOAINGcc.ccovieiicccicecse sttt sssssssssssnns 1143
Table 178. OR INStruction ENCOAINGc.ccciiiiiiiiiniise s 1144
Table 179. POP INStruCtion ENCOTINGcc.viiiiiiiiiicsseissssissssissssss s 1145
Table 180. POPN INStruction ENCOTINGc.ouiuiiiiiererereinescsese et sse s ssessessessees 1146
Table 181. PUSH INStruction ENCOAINGccooeiiiieicereecserese et ssssssssssssssseseees 1147
Table 182. PUSHN INStruction ENCOAING.........cccoinieiinienrisssisssssssssss s ssssssssssssssssssenns 1148
Table 183. RET INStruction ENCOAING ...ttt 1149
Table 184. SHL INStruction ENCOAINGccoviiiiiiinecisee s ssssssssnns 1150
Table 185. SHR INSruCtion ENCOING........ccvuiiiiiiieicissse e 1151
Table 186. STORESP INStruction ENCOAINGcooviiiiiiiesiesesssessssies s 1152
Table 187. SUB INSTruction ENCOOINGcooviiiiieieene ettt ssssssees 1153
Table 188. XOR INStruction ENCOAING ...t sssse s sssenns 1154
Table 189. ESRT and FIMP FIElaS.........ccociiiiiiiiscss s 1201
Table 190. PXE Tag Definitions fOr EF ... 1243
Table 191. Destination IP Filter OPeration ... 1262
Table 192. Destination UDP Port Filter OPeration ... 1262
Table 193. Source IP Filter OPeration ...t ssssees 1262
Table 194. Source UDP Port Filter Operation.........c..coveninnnnsnsnsesssessessssssesssseseens 1262
Table 195. DHCP4 ENUMEIATIONS. ...ttt sssanes 1754
Table 196. Field DESCIIPLIONSc.cccvviiirieiesiee ettt 1781
Table 197. Callback RETUIN VAIUES ..ottt sssens 1787
Table 198. Descriptions of Parameters in MTFTPv4 Packet Structures ... 1919
Table 199. Descriptions of Parameters in MTFTPv6 Packet Structures ..., 1947
Table 200. MTFTP Packet OpCode DeSCHPLIONS ... sesssesseesssssssssesssseseens 1950
Table 201. MTFTP ERROR Packet ErrorCode DeSCriptions ... 1950
Table 202. Generic Authentication NOde STrUCTUTE ... 1970
Table 203. CHAP Authentication Node Structure using RADIUS ... 1971
Table 204. CHAP Authentication Node Structure using Local Database.............cccocceeneenee. 1972
Table 205. PE/COFF Certificates Types and UEFI Signature Database Certificate Types........
1978
Table 206. Authorization ProCess flIOW..........cccccvvic s 1998
Table 207. LOCAlIZAtION ISSUES..........cuiiiiiiieiiessisss s 2010
Table 208. Information for TYPeS OF STOTAQE. ... s 2035
Table 209. Common Control Codes for Font Display Information.............cccccocovvvivinnernin. 2047
Table 210. Guidelines for UEFI SYStemM FONLTS ... 2054
Table 211. Truth table: Mapping a single question to three configuration settings.......... 2074
Table 212. Multiple configuration settings EXample #2 ... 2075

Ixviii May 2017 Version 2.7

Table 214, PACKAGE TYPES.....ciiiiiiiiiiiie ettt 2077
Table 215. BIOCK TYPES ...ttt 2112
TabIe 216. IFR OPCOUES ...ttt 2133
Table 217. VarStoreTYPe DESCIHPLIONS........ccc v sssesssssesns 2155
Table 218. ANIMAtioN BIOCK TYPES ... ssss st sssss st sssesssssssessessssenns 2212
Table 219. CallDAaCK BENAVION ..o 2339
Table 220. Record values and deSCriPtiONS. ... 2395
Table 221. Standard values for access to configure the platform............cccoovevnnnnninnns 2399
Table 222. EFI Hash AIGOTTNMIS.........oireere e 2415
Table 223. Identical NASh rESUILS ... s 2418
Table 224. Algorithms that may be used with EFI._ HASH2 PROTOCOLcccccoouivrvvrinrnnen, 2426
Table 225. Encryption algorithm Properties. ... ssssssssenns 2437
Table 226. Details of Supported Signature FOrMAL. ... 2470
Table 227. EFI GUID FOIMAL ...ttt sss bbb sse st e 2527
Table 228. Text representation relationShiPsS...........cccoe s 2528
Table 229. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_PROTOCOLcccoecrvrrnurrrrnrrnen. 2530
Table 230. EFI Scan Codes for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOLcccceuurnrrnncn. 2530
Table 231. Control Sequences to Implement EFI_SIMPLE _TEXT_INPUT_PROTOCOL.2532
Table 232. Legacy FIOppy DevViCe Path ... 2535
Table 233. IDE Disk DEVICE PAtN........cccccoiiiiiice sttt 2536
Table 234. Secondary Root PCI Bus with PCI to PCI Bridge Device Path...............c.cccccoovven.o. 2538
Table 235. EFI_STATUS COE RANGESc.covvriirieieieie et ssss s ssssssnees 2542
Table 236. EFI_STATUS Success Codes (High Bit Clear).........ccocovvivvninicniinncnisnssenseneens 2542
Table 237. EFI_STATUS Error Codes (High Bit Set)......cc.cccovvivvininiiniiniisssssssessesssesssenns 2542
Table 238. EFI_STATUS Warning Codes (High Bit Clear).........cccocvevenereneneineienesesesessseiens 2544
Table 239. DEFINITIONS ..o bbb bbb bbbt 2546
Table 240. Referenced SPeCITICALIONS.........ccouiiiee s 2548
Table 241. Driver TYPeS: ProS @nd CONS ...t ssssssssssssssessessessassassees 2551
Table 242. IPXE Structure Field Definitions ... 2553
Table 243. UNDI CDB Field DefiNitioNS........ccccviness e sesssssssssensnes 2558
Table 244. EBC Virtual Machine Opcode SUMMANY ... 2684
Table 245. Protocol Name ChaNQES ... 2690
Table 246. Revision Identifier Name Changes..........ccoonesse s 2691
Table 247. Alias codes supported in addition t0 RFC 4646 ... 2693
Table 248. Error reCOrd NBAUE ... 2696
Table 249. Error Record Header FIAQS ... 2699
Table 250. SECLION DESCIIPLON ..o 2702
Table 251. Processor GENEriC ErfOr SECLION ...t sssssssssssessnes 2706
Table 252. ProCessor ErrOr RECOIM ...ttt st ssss s 2708
Table 253. IA32/X64 Processor Error Information StruCture ... 2709
Table 254. IA32/X64 Cache ChecCk STIUCTUIE ... 2710
Table 255. IA32/X64 TLB CheCK StrUCTUIEcccoviiiiiciiseseese s 2711
Table 256. IA32/X64 BUS CheCK STIUCTUIEcccovviiine e 2713
Table 257. 1A32/X64 MS Check Field DeSCrPLION........cc.cocieseessiseiessiensees 2715
Table 258. IA32/X64 Processor Context INformation.............cccoovvnnnnnneenseeens 2716
Table 259. IA32 REQISTEN STALE ... 2717
Table 260. X64 REQISTEN STALEcccccovvvicriccn st 2718
Table 261. ARM ProcesSOr ErrOr SECHION..........ccviinne e 2720
Table 262. ARM Processor Error INformation STrUCKUIE ... 2722
Table 263. ARM CaChe EFrOr STIUCKLUIEc.cooeeieiieieeseee st sssssssassssnes 2724
Table 264. ARM TLB EIrOr STFUCTUIEc.cc.ovviieiieeecese ettt 2725
Table 265. ARM BUS EFTOF STIUCTUIEc.oouiiieeeceie ettt sttt s ssesssssssees 2726
Table 266. ARM Processor Error Context Information Header Structure.............ccccooovoveenee. 2729
Table 267. ARMV8 AAICh32 GPRS (TYPE O) ..ocvireiieseeissssiessssissississ st ssessssssssesssssessessesessnes 2729

Version 2.7 May 2017 IXix

Unified Extensible Firmware Interface Specification

Ixx

Table 268. ARM AArch32 EL1 Context System Registers (TYPe 1)...ccccvvivivieivrininieiernnns 2730
Table 269. ARM AArch32 EL2 Context System Registers (TYPe 2)......cconneneeneneinnineens 2730
Table 270. ARM AArch32 secure Context System Registers (TYPe 3)......ccconeivineirnineens 2732
Table 271. ARMV8 AAIChB4 GPRS (TYPE 4) ..cveirisineiiniinsiseiisssss st ssssassssssassssssesssnens 2732
Table 272. ARM AArch64 EL1 Context System Registers (TYPe 5)....cccvvivnnivnenneenniennnens 2733
Table 273. ARM AArch64 EL2 Context System Registers (TYPe 6)......cccvvnrrvrnrsineensiennens 2734
Table 274. ARM AArch64 EL3 Context System Registers (TYPE 7)..cvvvivierierisvininieniennnns 2734
Table 275. ARM Misc. Context System Register (Type 8) — Single Register Entry............... 2735
Table 276. MemMOry EFrOr RECOTNU ...t 2736
Table 277. MemMOry ErfOr RECOTA 2.ttt sttt nes 2739
Table 278. PCI EXPress ErfOr RECOIU ... iessissesss st ssssssssssessssssssssssssssssssessssenns 2741
Table 279. PCI/PCI-X BUS ErTOr SECHION.........ccccciiiecesreeesesese sttt 2743
Table 280. PCI/PCI-X Component Error SECHON ... 2744
Table 281. Firmware Error Record REFEIrENCE..........cvvveivvseesesrssssss s 2745
Table 282. DMATI GENEIIC EFTOIS ...t sssssssssnnes 2746
Table 283. Intel® VT for Directed 1/0 specific DMATI EITOIS ... 2747
Table 284. IOMMU SPECITIC DMAI EITOIS ..ottt sssessssssssssssssenns 2748
Table 285. Error STatus FIEIAS ... 2749
TaDIE 286. EFTOI TYPIES ...ttt sttt 2749
Table 287. UEFI TADIE STIUCTUIE........ccooeeceeee sttt ssees 2751
Table 288. SMM Communication ACPI TabIe. ... 2752

May 2017 Version 2.7

UEFI Specification

1 Introduction

This Unified Extensible Firmware Interface (hereafter known as UEFI) Specification
describes an interface between the operating system (OS) and the platform firmware.
UEFI was preceded by the Extensible Firmware Interface Specification 1.10 (EFI). As a
result, some code and certain protocol names retain the EFI designation. Unless
otherwise noted, EFI designations in this specification may be assumed to be part of UEFI.

The interface is in the form of data tables that contain platform-related information, and
boot and runtime service calls that are available to the OS loader and the OS. Together,
these provide a standard environment for booting an OS. This specification is designed as
a pure interface specification. As such, the specification defines the set of interfaces and
structures that platform firmware must implement. Similarly, the specification defines the
set of interfaces and structures that the OS may use in booting. How either the firmware
developer chooses to implement the required elements or the OS developer chooses to
make use of those interfaces and structures is an implementation decision left for the
developer.

The intent of this specification is to define a way for the OS and platform firmware to
communicate only information necessary to support the OS boot process. This is
accomplished through a formal and complete abstract specification of the software-
visible interface presented to the OS by the platform and firmware.

Using this formal definition, a shrink-wrap OS intended to run on platforms compatible
with supported processor specifications will be able to boot on a variety of system
designs without further platform or OS customization. The definition will also allow for
platform innovation to introduce new features and functionality that enhance platform
capability without requiring new code to be written in the OS boot sequence.

Furthermore, an abstract specification opens a route to replace legacy devices and
firmware code over time. New device types and associated code can provide equivalent
functionality through the same defined abstract interface, again without impact on the OS
boot support code.

The specification is applicable to a full range of hardware platforms from mobile systems
to servers. The specification provides a core set of services along with a selection of
protocol interfaces. The selection of protocol interfaces can evolve over time to be
optimized for various platform market segments. At the same time, the specification
allows maximum extensibility and customization abilities for OEMs to allow
differentiation. In this, the purpose of UEFI is to define an evolutionary path from the
traditional “PC-AT"-style boot world into a legacy-API free environment.

1.1 UEFI Driver Model Extensions

Access to boot devices is provided through a set of protocol interfaces. One purpose of
the UEFI Driver Model is to provide a replacement for “PC-AT”-style option ROMs. It is
important to point out that drivers written to the UEFI Driver Model are designed to

Version 2.7 May 2017 1

Introduction UEFI Specification

access boot devices in the preboot environment. They are not designed to replace the
high-performance, OS-specific drivers.

The UEFI Driver Model is designed to support the execution of modular pieces of code,
also known as drivers, that run in the preboot environment. These drivers may manage or
control hardware buses and devices on the platform, or they may provide some software-
derived, platform-specific service.

The UEFI Driver Model also contains information required by UEFI driver writers to design
and implement any combination of bus drivers and device drivers that a platform might
need to boot a UEFI-compliant OS.

The UEFI Driver Model is designed to be generic and can be adapted to any type of bus or
device. The UEFI Specification describes how to write PCI bus drivers, PCI device drivers,
USB bus drivers, USB device drivers, and SCSI drivers. Additional details are provided that
allow UEFI drivers to be stored in PCI option ROMs, while maintaining compatibility with
legacy option ROM images.

One of the design goals in the UEFI Specification is keeping the driver images as small as
possible. However, if a driver is required to support multiple processor architectures, a
driver object file would also be required to be shipped for each supported processor
architecture. To address this space issue, this specification also defines the EFI Byte Code
Virtual Machine. A UEFI driver can be compiled into a single EFI Byte Code obiject file.
UEFI Specification-complaint firmware must contain an EFI Byte Code interpreter. This
allows a single EFI Byte Code object file that supports multiple processor architectures to
be shipped. Another space saving technique is the use of compression. This specification
defines compression and decompression algorithms that may be used to reduce the size
of UEFI Drivers, and thus reduce the overhead when UEFI Drivers are stored in ROM
devices.

The information contained in the UEFI Specification can be used by OSVs, IHVs, OEMs,
and firmware vendors to design and implement firmware conforming to this specification,
drivers that produce standard protocol interfaces, and operating system loaders that can
be used to boot UEFI-compliant operating systems.

2 May 2017 Version 2.7

UEFI Specification

Introduction

1.2 Organization

The high-level organization of this specification is as follows:

Section(s)
Introduction / Overview
Boot Manager

EFI System Table and
Partitions

Block Transition Table

Boot Services
Runtime Services

Protocols

EFI Byte Code Virtual
Machine

Firmware Update and
Reporting

Network Protocols

Description
Introduces the UEFI Specification, and describes the major components of UEFI.
Manager used to load drivers and applications written to this specification.

Describes an EFI System Table that is passed to every compliant driver and application, and
defines a GUID-based partitioning scheme.

A layout and set of rules for doing block I/O that provide powerfail write atomicity of a single block.

Contains the definitions of the fundamental services that are present in a UEFI-compliant system
before an OS is booted.

Contains definitions for the fundamental services that are present in a compliant system before and
after an OS is booted.

* The EFI Loaded Image Protocol describes a UEFI Image that has been loaded into memory.

» The Device Path Protocol provides the information needed to construct and manage device
paths in the UEFI environment.

» The UEFI Driver Model describes a set of services and protocols that apply to every bus and
device type.

* The Console Support Protocol defines I/0 protocols that handle input and output of text-based
information intended for the system user while executing in the boot services environment.

* The Media Access Protocol defines the Load File protocol, file system format and media formats
for handling removable media.

» PCI Bus Support Protocols define PCI Bus Drivers, PCI Device Drivers, and PCI Option ROM
Ely(iuts.lThe protocols described include the PCI Root Bridge 1/0 Protocol and the PCI I/O

rotocol.

» SCSI Driver Models and Bus support defines the SCSI I/0 Protocol and the Extended SCSI
Pass Thru Protocol that is used to abstract access to a SCSI channel that is produced by a SCSI
host controller.

» The iSCSI protocol defines a transport for SCSI data over TCP/IP.

» The USB Support Protocol defines USB Bus Drivers and USB Device Drivers.

« Debugger Support Protocols describe an optional set of protocols that provide the services
required to implement a source-level debugger for the UEFI environment.

» The Compression Algorithm Specification describes the compression/decompression algorithm
in detail, plus a standard EFI decompression interface for use at boot time.

» ACPI Protocols may be used to install or remove an ACPI table from a platform.

» String Services: the Unicode Collation protocol allows code running in the boot services
environment to perform lexical comparison functions on Unicode strings for given languages; the
Retgt;ular Expression Protocol is used to match Unicode strings against Regular Expression
patterns.

Defines the EFI Byte Code virtual processor and its instruction set. It also defines how EBC object
files are loaded into memory, and the mechanism for transitioning from native code to EBC code
and back to native code.

Provides an abstraction for devices to provide firmware management support.

* SNP, PXE, BIS, and HTTP Boot protocols define the protocols that provide access to network
devices while executing in the UEFI boot services environment.

* Managed Network protocols define the EFI Managed Network Protocol, which provides raw
(unformatted) asynchronous network packet 1/0 services and Managed Network Service
Binding Protocol, used to locate communication devices that are supported by an MNP driver.

* VLAN, EAP, Wi-Fi and Supplicant protocols define a protocol that is to provide a manageability
interface for VLAN configurations.

» Bluetooth protocol definitions.

e TCP,IP, PIPsec, FTP, GTLS, and Configurations protocols define the EFI TCPv4 (Transmission
Control Protocol version 4) Protocol and the EFI IPv4 (Internet Protocol version 4) Protocol.

* ARP,DHCP, DNS, HTTP, and REST protocols define the EFl Address Resolution Protocol (ARP)
Protocol interface and the EFI DHCPv4 Protocol.

* UDP and MTFTP protocols define the EFI UDPv4 (User Datagram Protocol version 4) Protocol
that interfaces over the EFI IPv4 Protocol and defines the EFI MTFTPv4 Protocol interface that
is built on the EFI UDPv4 Protocol.

Version 2.7

May 2017 3

Introduction UEFI Specification

Section(s) Description

Secure Boot and Driver Describes Secure Boot and a means of generating a digital signature for UEFI.

Signing

Human Interface « Defines the core code and services that are required for an implementation of the Human
Infrastructure (HII) Interface Infrastructure (HIl), including basic mechanisms for managing user input and code

definitions for related protocols.

» Describes the data and APIs used to manage the system’s configuration: the actual data that
describes the knobs and settings.

User Identification Describes services that describe the current user of the platform.

Secure Technologies Describes the protocols for utilizing security technologies, including cryptographic hashing and key
management.

Miscellaneous Protocols The Timestamp protocol provides a platform independent interface for retrieving a high

resolution timestamp counter. The Reset Notification Protocol provides services to register for a
notification when ResetSystem is called.
Appendices ¢ GUID and Time Formats.

» Console requirements for a basic text-based console required by EFl-conformant systems to
provide communication capabilities.

» Device Path examples of use of the data structures that define various hardware devices to the
boot services.

» Status Codes lists success, error, and warning codes returned by UEFI interfaces.

¢ Universal Network Driver Interfaces defines the 32/64-bit hardware and software Universal
Network Driver Interfaces (UNDIs).

» Using the Simple Pointer Protocol.

» Using the EFI Extended SCISI Pass-thru Protocol .

* Compression Source Code for an implementation of the Compression Algorithm.

« Decompression Source Code for an implementation of the EFI Decompression Algorithm.

* The EFI Byte Code Virtual Machine Opcode List provides a summary of the corresponding
instruction set.

» Alphabetic Function Lists identify all UEFI interface functions alphabetically.

e EFI 1.10 Protocol Changes and Depreciation List identifies the Protocol, GUID, and revision
identifier name changes and the deprecated protocols compared to the EFI Specification 1.10.

* Formats: Language Codes and Language Code Arrays list the formats for language codes and
language code arrays.

* The Common Platform Error Record describes the common platform error record format for
representing platform hardware errors.

* The UEFI ACPI Data Table defines the UEFI ACPI table format.
« Hardware Error Record Persistence Usage.

» References

e Glossary

Index Provides an index to the key terms and concepts in the specification.

4 May 2017 Version 2.7

UEFI Specification

1.3 Organization

Introduction

The high-level organization of this specification is as follows:

Section/Appendix
1. Introduction

2. Overview

3. Boot Manager

1. EFI System Table

5. GUID Partition Table (GPT) Disk
Layout
6. Block Translation Table (BTT) Layout

1. Services — Boot Services

1. Services — Runtime Services

1. Protocols — EFI| Loaded Image

1. Protocols — Device Path Protocol

11. Protocols — UEFI Driver Model

1. Protocols — Console Support

13. Protocols — Media Access

Description

Introduces the UEFI Specification and topics related to using the
specification.

Describes the major components of UEFI, including the boot
manager, firmware core, calling conventions, protocols, and
requirements.

Describes the boot manager, which is used to load drivers and
applications written to this specification.

Describes the EFI System Table that is passed to every compliant
driver and application.

Defines a new partitioning scheme that must be supported by
firmware conforming to this specification.

A namespace defines a contiguously-addressed range of Non-
Volatile Memory conceptually similar to a SCSI Logical Unit (LUN)
or a NVM Express namespace. Any namespace being utilized for
block storage may contain a Block Translation Table (BTT), which
is a layout and set of rules for doing block I/O that provide
powerfail write atomicity of a single block.

Contains the definitions of the fundamental services that are
present in a UEFI-compliant system before an OS is booted.

Contains definitions for the fundamental services that are present
in a compliant system before and after an OS is booted.

Defines the EFI Loaded Image Protocol that describes a UEFI
Image that has been loaded into memory.

Defines the device path protocol and provides the information
needed to construct and manage device paths in the UEFI
environment.

Describes a generic driver model for UEFI. This includes the set
of services and protocols that apply to every bus and device type,
including the Driver Binding Protocol, the Platform Driver Override
Protocol, the Bus Specific Driver Override Protocol, the Driver
Diagnostics Protocol, the Driver Configuration Protocol, and the
Component Name Protocol.

Defines the Console I/O protocols, which handle input and output
of text-based information intended for the system user while
executing in the boot services environment. These protocols
include the Simple Input Protocol, the Simple Text Output
Protocol, the Graphics Output Protocol, the Simple Pointer
Protocol, and the Serial 1/0 Protocol.

Defines the Load File protocol, file system format and media
formats for handling removable media.

Version 2.7

May 2017 5

Introduction

UEFI Specification

Section/Appendix
14. Protocols — PCI Bus Support

15. Protocols — SCSI Driver Models
and Bus Support

16. Protocols — iSCSI Boot

1. Protocols — USB Support

18. Protocols — Debugger Support

1. Protocols — Compression Algorithm
Specification

20. Protocols — ACPI Protocols

21. Protocols — String Services

22. EFI Byte Code Virtual Machine

1. Firmware Update and Reporting

1. Network Protocols — SNP, PXE, BIS

and HTTP Boot

Description

Defines PCI Bus Drivers, PCI Device Drivers, and PCI Option
ROM layouts. The protocols described include the PCI Root
Bridge 1/0 Protocol and the PCI 1/O Protocol.

Defines the SCSI I/0 Protocol and the Extended SCSI Pass Thru
Protocol that is used to abstract access to a SCSI channel that is
produced by a SCSI host controller.

The iSCSI protocol defines a transport for SCSI data over TCP/
IP.

Defines USB Bus Drivers and USB Device Drivers. The protocols
described include the USB2 Host Controller Protocol and the USB
1/0 Protocol.

An optional set of protocols that provide the services required to
implement a source-level debugger for the UEFI environment.
The EFI Debug Port Protocol provides services to communicate
with a remote debug host. The Debug Support Protocol provides
services to hook processor exceptions, save the processor
context, and restore the processor context. These protocols can
be used in the implementation of a debug agent on the target
system that interacts with the remote debug host.

Describes in detail the compression/decompression algorithm, as
well as the EFI Decompress Protocol. The EFlI Decompress
Protocol provides a standard decompression interface for use at
boot time. The EFI Decompress Protocol is used by a PCI Bus
Driver to decompress UEFI drivers stored in PCI Option ROMs.

Defines a protocol that may be used to install or remove an ACPI
table from a platform.

The Unicode Collation protocol allows code running in the boot
services environment to perform lexical comparison functions on
Unicode strings for given languages. The Regular Expression
Protocol is used to match Unicode strings against Regular
Expression patterns

Defines the EFI Byte Code virtual processor and its instruction
set. It also defines how EBC object files are loaded into memory,
and the mechanism for transitioning from native code to EBC
code and back to native code. The information in this document is
sufficient to implement an EFI Byte Code interpreter, an EFI Byte
Code compiler, and an EFI Byte Code linker.

Provides an abstraction for devices to provide firmware
management support.

Defines the protocols that provide access to network devices

while executing in the UEFI boot services environment. These
protocols include the Simple Network Protocol, the PXE Base
Code Protocol, and the Boot Integrity services (BIS) Protocol.

May 2017 Version 2.7

UEFI Specification

Introduction

Section/Appendix

25. Network Protocols — Managed
Network

26. Network Protocols — VLAN, EAP,
Wi-Fi and Supplicant

27. Network Protocols — Bluetooth

28. Network Protocols —TCP, IP, IPsec,

FTP, TLS and Configurations

1. Network Protocols — ARP, DHCP,
DNS. HTTP and REST

1. Network Protocols — UDP and
MTFETP

1. Secure Boot and Driver Signing

1. Human Interface Infrastructure
Overview

1. HII Protocols

1. HII Configuration Processing and
Browser Protocol

1. User Identification

1. Secure Technologies

1. Miscellaneous Protocols

Appendix A: GUID and Time Formats
Appendix B: Console

Appendix C: Device Path Examples

Appendix D: Status Codes

Description

Defines the EFI Managed Network Protocol, which provides raw
(unformatted) asynchronous network packet 1/0 services and
Managed Network Service Binding Protocol, which is used to
locate communication devices that are supported by an MNP
driver.

Defines a protocol is to provide a manageability interface for
VLAN configurations.

Bluetooth network protocol definitions.

Defines the EFI TCPv4 (Transmission Control Protocol version 4)
Protocol and the EFI IPv4 (Internet Protocol version 4) Protocol
interface.

Defines the EFI Address Resolution Protocol (ARP) Protocol
interface and the EFI DHCPv4 Protocol.

Defines the EFI UDPv4 (User Datagram Protocol version 4)
Protocol that interfaces over the EFI IPv4 Protocol and defines
the EFI MTFTPv4 Protocol interface that is built on the EFI
UDPV4 Protocol.

Describes Secure Boot and a means of generating a digital
signature for UEFI.

Defines the core code and services that are required for an
implementation of the Human Interface Infrastructure (HII),
including basic mechanisms for managing user input and code
definitions for related protocols.

Provides code definitions for the Hll-related protocols, functions,
and type definitions, including management of font, strings,
images and databases.

Describes the data and APIs used to manage the system’s
configuration: the actual data that describes the knobs and
settings.

Describes services which describe the current user of the
platform.

Describes the protocols for utilizing security technologies
including cryptographic hashing and key management.

The Timestamp protocol provides a platform independent
interface for retrieving a high resolution timestamp counter. The
Reset Notification Protocol provides services to register for a
notification when ResetSystem is called.

Explains the GUID (Guaranteed Unique Identifier) format.

Describes the requirements for a basic text-based console
required by EFl-conformant systems to provide communication
capabilities.

Examples of use of the data structures that define various
hardware devices to the boot services.

Lists success, error, and warning codes returned by UEFI
interfaces.

Version 2.7

May 2017 7

Introduction

UEFI Specification

Section/Appendix

Appendix E: Universal Network Driver
Interfaces

Appendix F: Using the Simple Pointer
Protocol

Appendix G: Using the EFIl Extended
SCSI Pass Thru Protocoln

Appendix H: Compression Source Code

Appendix |: Decompression Source
Code

Appendix J: EFI Byte Code Virtual
Machine Opcode List

Appendix K: Alphabetic Function Lists
Appendix L: EFI 1.10 Protocol Changes

and Deprecation List

Appendix M: Formats — Language
Codes and Language Code Arrays

Appendix N: Common Platform Error
Record

Appendix O: UEFI ACPI Data Table

Appendix P: Hardware Error Record
Persistence Usage

Appendix Q: References

Appendix R: Glossary

1. Index

Description

Defines the 32/64-bit hardware and software Universal Network
Driver Interfaces (UNDIs).

Provides the suggested usage of the Simple Pointer Protocol.

Provides an example of how the SCSI Pass Thru Protocol can be
used.

The C source code to an implementation of the Compression
Algorithm.

The C source code to an implementation of the EFI
Decompression Algorithm.

A summary of the opcodes in the instruction set of the EFI Byte
Code Virtual Machine.

Lists all UEFI interface functions alphabetically.

Lists the Protocol, GUID, and revision identifier name changes
and the deprecated protocols compared to the EFI Specification
1.10.

Lists the formats for language codes and language code arrays.

Describes the common platform error record format for
representing platform hardware errors.

Defines the UEFI ACPI table format.
Defines Hardware Error Record Persistence usage.

Lists all necessary or useful specifications, web sites, and other
documentation that is referenced in this UEFI specification.

Briefly describes terms defined or referenced by this specification.

Provides an index to the key terms and concepts in the
specification.

1.4 Goals

The “PC-AT” boot environment presents significant challenges to innovation within the
industry. Each new platform capability or hardware innovation requires firmware
developers to craft increasingly complex solutions, and often requires OS developers to
make changes to their boot code before customers can benefit from the innovation. This
can be a time-consuming process requiring a significant investment of resources.

The primary goal of the UEFI specification is to define an alternative boot environment
that can alleviate some of these considerations. In this goal, the specification is similar to
other existing boot specifications. The main properties of this specification can be

summarized by these attributes:

» Coherent, scalable platform environment. The specification defines a complete
solution for the firmware to describe all platform features and surface platform

May 2017 Version 2.7

UEFI Specification Introduction

capabilities to the OS during the boot process. The definitions are rich enough to
cover a range of contemporary processor designs.

» Abstraction of the OS from the firmware. The specification defines interfaces to
platform capabilities. Through the use of abstract interfaces, the specification allows
the OS loader to be constructed with far less knowledge of the platform and firmware
that underlie those interfaces. The interfaces represent a well-defined and stable
boundary between the underlying platform and firmware implementation and the OS
loader. Such a boundary allows the underlying firmware and the OS loader to change
provided both limit their interactions to the defined interfaces.

» Reasonable device abstraction free of legacy interfaces. “PC-AT” BIOS interfaces
require the OS loader to have specific knowledge of the workings of certain hardware
devices. This specification provides OS loader developers with something different:
abstract interfaces that make it possible to build code that works on a range of
underlying hardware devices without having explicit knowledge of the specifics for
each device in the range.

» Abstraction of Option ROMs from the firmware. This specification defines interfaces
to platform capabilities including standard bus types such as PCI, USB, and SCSI. The
list of supported bus types may grow over time, so a mechanism to extend to future
bus types is included. These defined interfaces, and the ability to extend to future bus
types, are components of the UEFI Driver Model. One purpose of the UEFI Driver
Model is to solve a wide range of issues that are present in existing “PC-AT” option
ROMs. Like OS loaders, drivers use the abstract interfaces so device drivers and bus
drivers can be constructed with far less knowledge of the platform and firmware that
underlie those interfaces.

» Architecturally shareable system partition. Initiatives to expand platform
capabilities and add new devices often require software support. In many cases, when
these platform innovations are activated before the OS takes control of the platform,
they must be supported by code that is specific to the platform rather than to the
customer’s choice of OS. The traditional approach to this problem has been to embed
code in the platform during manufacturing (for example, in flash memory devices).
Demand for such persistent storage is increasing at a rapid rate. This specification
defines persistent store on large mass storage media types for use by platform
support code extensions to supplement the traditional approach. The definition of
how this works is made clear in the specification to ensure that firmware developers,
OEMSs, operating system vendors, and perhaps even third parties can share the space
safely while adding to platform capability.

Defining a boot environment that delivers these attributes could be accomplished in
many ways. Indeed, several alternatives, perhaps viable from an academic point of view,
already existed at the time this specification was written. These alternatives, however,
typically presented high barriers to entry given the current infrastructure capabilities
surrounding supported processor platforms. This specification is intended to deliver the
attributes listed above, while also recognizing the unigue needs of an industry that has
considerable investment in compatibility and a large installed base of systems that
cannot be abandoned summarily. These needs drive the requirements for the additional
attributes embodied in this specification:

Version 2.7 May 2017 9

Introduction UEFI Specification

» Evolutionary, not revolutionary. The interfaces and structures in the specification are
designed to reduce the burden of an initial implementation as much as possible.
While care has been taken to ensure that appropriate abstractions are maintained in
the interfaces themselves, the design also ensures that reuse of BIOS code to
implement the interfaces is possible with a minimum of additional coding effort. In
other words, on PC-AT platforms the specification can be implemented initially as a
thin interface layer over an underlying implementation based on existing code. At the
same time, introduction of the abstract interfaces provides for migration away from
legacy code in the future. Once the abstraction is established as the means for the
firmware and OS loader to interact during boot, developers are free to replace legacy
code underneath the abstract interfaces at leisure. A similar migration for hardware
legacy is also possible. Since the abstractions hide the specifics of devices, it is
possible to remove underlying hardware, and replace it with new hardware that
provides improved functionality, reduced cost, or both. Clearly this requires that new
platform firmware be written to support the device and present it to the OS loader via
the abstract interfaces. However, without the interface abstraction, removal of the
legacy device might not be possible at all.

» Compatibility by design. The design of the system partition structures also preserves
all the structures that are currently used in the “PC-AT” boot environment. Thus, itis a
simple matter to construct a single system that is capable of booting a legacy OS or an
EFl-aware OS from the same disk.

« Simplifies addition of OS-neutral platform value-add. The specification defines an
open, extensible interface that lends itself to the creation of platform “drivers.” These
may be analogous to OS drivers, providing support for new device types during the
boot process, or they may be used to implement enhanced platform capabilities, such
as fault tolerance or security. Furthermore, this ability to extend platform capability is
designed into the specification from the outset. This is intended to help developers
avoid many of the frustrations inherent in trying to squeeze new code into the
traditional BIOS environment. As a result of the inclusion of interfaces to add new
protocols, OEMs or firmware developers have an infrastructure to add capability to
the platform in a modular way. Such drivers may potentially be implemented using
high-level coding languages because of the calling conventions and environment
defined in the specification. This in turn may help to reduce the difficulty and cost of
innovation. The option of a system partition provides an alternative to nonvolatile
memory storage for such extensions.

* Built on existing investment. Where possible, the specification avoids redefining
interfaces and structures in areas where existing industry specifications provide
adequate coverage. For example, the ACPI specification provides the OS with all the
information necessary to discover and configure platform resources. Again, this
philosophical choice for the design of the specification is intended to keep barriers to
its adoption as low as possible.

1.5 Target Audience

This document is intended for the following readers:

10 May 2017 Version 2.7

UEFI Specification Introduction

IHVs and OEMs who will be implementing UEFI drivers.

OEMs who will be creating supported processor platforms intended to boot shrink-
wrap operating systems.

BIOS developers, either those who create general-purpose BIOS and other firmware
products or those who modify these products for use in supported processor-based
products.

Operating system developers who will be adapting their shrink-wrap operating
system products to run on supported processor-based platforms.

1.6 UEFI Design Overview

The design of UEFI is based on the following fundamental elements:

Reuse of existing table-based interfaces. In order to preserve investment in existing
infrastructure support code, both in the OS and firmware, a number of existing
specifications that are commonly implemented on platforms compatible with
supported processor specifications must be implemented on platforms wishing to
comply with the UEFI specification. (For additional information, see Appendix Q:
References.)

System partition. The System partition defines a partition and file system that are
designed to allow safe sharing between multiple vendors, and for different purposes.
The ability to include a separate, sharable system partition presents an opportunity to
increase platform value-add without significantly growing the need for nonvolatile
platform memory.

Boot services. Boot services provide interfaces for devices and system functionality
that can be used during boot time. Device access is abstracted through “handles” and
“protocols.” This facilitates reuse of investment in existing BIOS code by keeping
underlying implementation requirements out of the specification without burdening
the consumer accessing the device.

Runtime services. A minimal set of runtime services is presented to ensure
appropriate abstraction of base platform hardware resources that may be needed by
the OS during its normal operations.

Figure 1 shows the principal components of UEFI and their relationship to platform
hardware and OS software.

Version 2.7 May 2017 11

Introduction UEFI Specification

OPERATING SYSTEM

EFI OS LOADER

EFI BOOT SERVICES EFI RUNTIME
SERVICES

INTERFACES
FROM
OTHER
REQUIRED
SPECS

PLATFORM HARDWARE

EFI SYSTEM PARTITION
LOADER

OM13141

Figure 1. UEFI Conceptual Overview

Figure 1 illustrates the interactions of the various components of an UEFI specification-
compliant system that are used to accomplish platform and OS boot.

The platform firmware is able to retrieve the OS loader image from the System Partition.
The specification provides for a variety of mass storage device types including disk, CD-
ROM, and DVD as well as remote boot via a network. Through the extensible protocol
interfaces, it is possible to add other boot media types, although these may require OS
loader modifications if they require use of protocols other than those defined in this
document.

Once started, the OS loader continues to boot the complete operating system. To do so, it
may use the EFI boot services and interfaces defined by this or other required
specifications to survey, comprehend, and initialize the various platform components and
the OS software that manages them. EFI runtime services are also available to the OS
loader during the boot phase.

1.7 UEFI Driver Model

12

This section describes the goals of a driver model for firmware conforming to this
specification. The goal is for this driver model to provide a mechanism for implementing
bus drivers and device drivers for all types of buses and devices. At the time of writing,
supported bus types include PCI, USB, and so on.

As hardware architectures continue to evolve, the number and types of buses present in
platforms are increasing. This trend is especially true in high-end servers. However, a
more diverse set of bus types is being designed into desktop and mobile systems and
even some embedded systems. This increasing complexity means that a simple method

May 2017 Version 2.7

UEFI Specification Introduction

for describing and managing all the buses and devices in a platform is required in the
preboot environment. The UEFI Driver Model provides this simple method in the form of
protocols services and boot services.

1.7.1 UEFI Driver Model Goals

The UEFI Driver Model has the following goals:

e Compatible - Drivers conforming to this specification must maintain compatibility
with the EFI 1.10 Specification and the UEFI Specification. This means that the UEFI
Driver Model takes advantage of the extensibility mechanisms in the UEFI 2. 0
Specification to add the required functionality.

» Simple - Drivers that conform to this specification must be simple to implement and
simple to maintain. The UEFI Driver Model must allow a driver writer to concentrate on
the specific device for which the driver is being developed. A driver should not be
concerned with platform policy or platform management issues. These
considerations should be left to the system firmware.

» Scalable - The UEFI Driver Model must be able to adapt to all types of platforms.
These platforms include embedded systems, mobile, and desktop systems, as well as
workstations and servers.

* Flexible — The UEFI Driver Model must support the ability to enumerate all the
devices, or to enumerate only those devices required to boot the required OS. The
minimum device enumeration provides support for more rapid boot capability, and
the full device enumeration provides the ability to perform OS installations, system
maintenance, or system diagnostics on any boot device present in the system.

» Extensible — The UEFI Driver Model must be able to extend to future bus types as they
are defined.

» Portable - Drivers written to the UEFI Driver Model must be portable between
platforms and between supported processor architectures.

» Interoperable — Drivers must coexist with other drivers and system firmware and
must do so without generating resource conflicts.

» Describe complex bus hierarchies — The UEFI Driver Model must be able to describe a
variety of bus topologies from very simple single bus platforms to very complex
platforms containing many buses of various types.

« Small driver footprint — The size of executables produced by the UEFI Driver Model
must be minimized to reduce the overall platform cost. While flexibility and
extensibility are goals, the additional overhead required to support these must be
kept to a minimum to prevent the size of firmware components from becoming
unmanageable.

* Address legacy option rom issues — The UEFI Driver Model must directly address and
solve the constraints and limitations of legacy option ROMs. Specifically, it must be
possible to build add-in cards that support both UEFI drivers and legacy option ROMs,
where such cards can execute in both legacy BIOS systems and UEFI-conforming
platforms, without modifications to the code carried on the card. The solution must

Version 2.7 May 2017 13

Introduction UEFI Specification

provide an evolutionary path to migrate from legacy option ROMs driver to UEFI
drivers.

1.7.2 Legacy Option ROM Issues

This idea of supporting a driver model came from feedback on the UEFI Specification that
provided a clear, market-driven requirement for an alternative to the legacy option ROM
(sometimes also referred to as an expansion ROM). The perception is that the advent of
the UEFI Specification represents a chance to escape the limitations implicit in the
construction and operation of legacy option ROM images by replacing them with an
alternative mechanism that works within the framework of the UEFI Specification.

1.8 Migration Requirements

Migration requirements cover the transition period from initial implementation of this
specification to a future time when all platforms and operating systems implement to this
specification. During this period, two major compatibility considerations are important:

* The ability to continue booting legacy operating systems;

* The ability to implement UEFI on existing platforms by reusing as much existing
firmware code to keep development resource and time requirements to a minimum.

1.8.1 Legacy Operating System Support

The UEFI specification represents the preferred means for a shrink-wrap OS and firmware
to communicate during the boot process. However, choosing to make a platform that
complies with this specification in no way precludes a platform from also supporting
existing legacy OS binaries that have no knowledge of the UEFI specification.

The UEFI specification does not restrict a platform designer who chooses to support both
the UEFI specification and a more traditional “PC-AT” boot infrastructure. If such a legacy
infrastructure is to be implemented, it should be developed in accordance with existing
industry practice that is defined outside the scope of this specification. The choice of
legacy operating systems that are supported on any given platform is left to the
manufacturer of that platform.

1.8.2 Supporting the UEFI Specification on a Legacy Platform

The UEFI specification has been carefully designed to allow for existing systems to be
extended to support it with a minimum of development effort. In particular, the abstract
structures and services defined in the UEFI specification can all be supported on legacy
platforms.

For example, to accomplish such support on an existing and supported 32-bit-based
platform that uses traditional BIOS to support operating system boot, an additional layer
of firmware code would need to be provided. This extra code would be required to
translate existing interfaces for services and devices into support for the abstractions
defined in this specification.

14 May 2017 Version 2.7

UEFI Specification Introduction

1.9 Conventions Used in this Document

This document uses typographic and illustrative conventions described below.

1.9.1 Data Structure Descriptions

Supported processors are “little endian” machines. This distinction means that the low-
order byte of a multibyte data item in memory is at the lowest address, while the high-
order byte is at the highest address. Some supported 64-bit processors may be
configured for both “little endian” and “big endian” operation. All implementations
designed to conform to this specification use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must
initialize such fields to zero and ignore them when read. On an update operation,
software must preserve any reserved field.

1.9.2 Protocol Descriptions
A protocol description generally has the following format:

Protocol Name:the formal name of the protocol interface.

Summary:A brief description of the protocol interface.
GUID:The 128-bit Globally Unique Identifier (GUID) for the protocol interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the
procedures and data fields produced by this protocol
interface.

Parameters:A brief description of each field in the protocol interface structure.

Description:A description of the functionality provided by the interface, including any
limitations and caveats of which the caller should be
aware.

Related Definitions:The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

1.9.3 Procedure Descriptions
A procedure description generally has the following format:

ProcedureN ame() .The formal name of the procedure.

Summary:A brief description of the procedure.
Prototype:A “C-style” procedure header defining the calling sequence.
Parameters:A brief description of each field in the procedure prototype.

Version 2.7 May 2017 15

Introduction UEFI Specification

Description:A description of the functionality provided by the interface, including any
limitations and caveats of which the caller should be
aware.

Related Definitions:The type declarations and constants that are used only by this
procedure.

Status Codes Returned:A description of any codes returned by the interface. The
procedure is required to implement any status codes
listed in this table. Additional error codes may be
returned, but they will not be tested by standard
compliance tests, and any software that uses the
procedure cannot depend on any of the extended error
codes that an implementation may provide.

1.9.4 Instruction Descriptions
An instruction description for EBC instructions generally has the following format:

InstructionNameThe formal name of the instruction.

Syntax: A brief description of the instruction.

Description:A description of the functionality provided by the instruction accompanied
by a table that details the instruction encoding.

Operation:Details the operations performed on operands.

Behaviors and Restrictions:
An item-by-item description of the behavior of each
operand involved in the instruction and any restrictions
that apply to the operands or the instruction.

1.9.5 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the
algorithms in this document are intended to be compiled directly. The code is presented
at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue
is an ordered list of homogeneous objects. Unless otherwise noted, the ordering is
assumed to be FIFO.

Pseudo code is presented in a C-like format, using C conventions where appropriate. The
coding style, particularly the indentation style, is used for readability and does not
necessarily comply with an implementation of the UEFI Specification.

1.9.6 Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of
the descriptive text in a specification.

16 May 2017 Version 2.7

UEFI Specification Introduction

Plain text (blue) Any plain text that is underlined and in blue indicates an
active link to the cross-reference. Click on the word to
follow the hyperlink.

Bold In text, a Bold typeface identifies a processor register
name. In other instances, a Bold typeface can be used as a
running head within a paragraph.

Italic In text, an Italic typeface can be used as emphasis to
introduce a new term or to indicate a manual or
specification name.

BOLD Monospace Computer code, example code segments, and all
prototype code segments use a BOLD Monospace
typeface with a dark red color. These code listings
normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a
normal text paragraph.

Bold Monospace Words in a Bold Monaospace typeface that is underlined
and in blue indicate an active hyperlink to the code
definition for that function or type definition. Click on the
word to follow the hyperlink.

Note: Due to management and file size considerations, only the first occurrence of the reference on
each page is an active link. Subsequent references on the same page will not be actively linked to
the definition and will use the standard, nonunderlined BOLD Monospace typeface. Find the

first instance of the name (in the underlined BOLD Monospace typeface) on the page and click
on the word to jump to the function or type definition.

Italic Monospace In code or in text, words in Italic Monospace indicate
placeholder names for variable information that must be
supplied (i.e., arguments).

1.9.7 Number formats

A binary number is represented in this standard by any sequence of digits consisting of
only the Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g.,
0101b).

Underscores or spaces may be included between characters in binary number
representations to increase readability or delineate field boundaries (e.g., 0 0101 1010b
or 0_0101_1010b).

1.9.7.1 Hexadecimal

A hexadecimal number is represented in this standard by Ox preceding any sequence of
digits consisting of only the Western-Arabic numerals O through 9 and/or the upper-case
English letters A through F (e.g., OXFA23).

Underscores or spaces may be included between characters in hexadecimal number
representations to increase readability or delineate field boundaries (e.g., OxB FD8C FA23
or OxB_FD8C_FA23).

Version 2.7 May 2017 17

Introduction UEFI Specification

1.9.7.2 Decimal

A decimal number is represented in this standard by any sequence of digits consisting of

only the Arabic numerals O through 9 not immediately followed by a lower-case b or

lower-case h (e.g., 25).

This standard uses the following conventions for representing decimal numbers:

» the decimal separator (i.e., separating the integer and fractional portions of the
number) is a period,;

» the thousands separator (i.e., separating groups of three digits in a portion of the
number) is a comma;

» the thousands separator is used in the integer portion and is not used in the fraction
portion of a number.

1.9.8 Binary prefixes

This standard uses the prefixes defined in the International System of Units (SI) for values
that are powers of ten. See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under
the heading "SI Binary Prefixes”.

Table 1. Sl prefixes

103 1,000 kilo K
106 1,000,000 mega M
10° 1,000,000,000 giga G

This standard uses the binary prefixes defined in ISO/IEC 80000-13 Quantities and units -
- Part 13: Information science and technology and IEEE 1514 Standard for Prefixes for
Binary Multiples for values that are powers of two.

Table 2. Binary prefixes

Factor Factor Name Symbol
210 1,024 kibi Ki
220 1,048,576 mebi Mi
230 1,073,741,824 gibi Gi

For example, 4 KB means 4,000 bytes and 4 KiB means 4,096 bytes.

18 May 2017 Version 2.7

UEFI Specification Overview

2 Overview

UEFI allows the extension of platform firmware by loading UEFI driver and UEFI
application images. When UEFI drivers and UEFI applications are loaded they have access
to all UEFI-defined runtime and boot services. See Figure 2.

EFI EFI -
Application Bootcode kg OS Loader

EFI API

"""""""""""""" Boot
Platform EFl Image 0S Loader Services
Init Load Load Jerminate

Standard Drivers and Boot from Operation
firmware applications ordered list handed off

platform loaded of EFIOS to OS loader
initialization iteratively loaders
—>» APl specified =----»Value add implementation

I:l Boot Manager - EFI binaries

OM13144

Figure 2. Booting Sequence

UEFI allows the consolidation of boot menus from the OS loader and platform firmware
into a single platform firmware menu. These platform firmware menus will allow the
selection of any UEFI OS loader from any partition on any boot medium that is supported
by UEFI boot services. An UEFI OS loader can support multiple options that can appear
on the user interface. It is also possible to include legacy boot options, such as booting
from the A: or C: drive in the platform firmware boot menus.

UEFI supports booting from media that contain an UEFI OS loader or an UEFI-defined
System Partition. An UEFI-defined System Partition is required by UEFI to boot from a
block device. UEFI does not require any change to the first sector of a partition, so it is
possible to build media that will boot on both legacy architectures and UEFI platforms.

2.1 Boot Manager

UEFI contains a boot manager that allows the loading of applications written to this
specification (including OS 1st stage loader) or UEFI drivers from any file on an UEFI-
defined file system or through the use of an UEFI-defined image loading service. UEFI
defines NVRAM variables that are used to point to the file to be loaded. These variables
also contain application-specific data that are passed directly to the UEFI application. The

Version 2.7 May 2017 19

Overview UEFI Specification

variables also contain a human readable string that can be displayed in a menu to the
user.

The variables defined by UEFI allow the system firmware to contain a boot menu that can
point to all of the operating systems, and even multiple versions of the same operating
systems. The design goal of UEFI was to have one set of boot menus that could live in
platform firmware. UEFI specifies only the NVRAM variables used in selecting boot
options. UEFI leaves the implementation of the menu system as value added
implementation space.

UEFI greatly extends the boot flexibility of a system over the current state of the art in the
PC-AT-class system. The PC-AT-class systems today are restricted to boot from the first
floppy, hard drive, CD-ROM, USB keys, or network card attached to the system. Booting
from a common hard drive can cause many interoperability problems between operating
systems, and different versions of operating systems from the same vendor.

2.1.1 UEFI Images

20

UEFI Images are a class of files defined by UEFI that contain executable code. The most
distinguishing feature of UEFI Images is that the first set of bytes in the UEFI Image file
contains an image header that defines the encoding of the executable image.

UEFI uses a subset of the PE32+ image format with a modified header signature. The
modification to the signature value in the PE32+ image is done to distinguish UEFI images
from normal PE32 executables. The “+” addition to PE32 provides the 64-bit relocation
fix-up extensions to standard PE32 format.

For images with the UEFI image signature, the Subsystem values in the PE image header
are defined below. The major differences between image types are the memory type that
the firmware will load the image into, and the action taken when the image’s entry point
exits or returns. A UEFI application image is always unloaded when control is returned
from the image’s entry point. A UEFI driver image is only unloaded if control is passed
back with a UEFI error code.

// PE32+ Subsystem type for EFl images

#define EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION 10

#define EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER 11

#define EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER 12

// PE32+ Machine type for EFI images

#define EFI_IMAGE_MACHINE_IA32 0x014c

#define EFI_IMAGE_MACHINE_IA64 0x0200

#define EFI_IMAGE_MACHINE_EBC OxOEBC

#define EFI_IMAGE_MACHINE_x64 0x8664

#define EFI_IMAGE_MACHINE_ARMTHUMB_MIXED 0x01C2
#define EFI_IMAGE_MACHINE_AARCH64 O0xAA64
#define EFI_IMAGE_MACHINE_RISCV32 0x5032

#define EFI_IMAGE_MACHINE_RISCV64 0x5064

#define EFI_IMAGE_MACHINE_RISCV128 0x5128

May 2017 Version 2.7

UEFI Specification Overview

Note: Thisimage type is chosen to enable UEFI images to contain Thumb and Thumb?2 instructions
while defining the EFI interfaces themselves to be in ARM mode.

Table 3. UEFI Image Memory Types

Subsystem Type Code Memory Type Data Memory Type
EFI_IMAGE_SUSBSYTEM_EFI_APPLICATION EfiLoaderCode EfiLoaderData
EFlI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE DRIV | EfiBootServicesCode EfiBootServicesData

ER

EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER EfiRuntimeServicesCode EfiRuntimeServicesData

The Machine value that is found in the PE image file header is used to indicate the
machine code type of the image. The machine code types for images with the UEFI image
signature are defined below. A given platform must implement the image type native to
that platform and the image type for EFI Byte Code (EBC). Support for other machine
code types is optional to the platform.

A UEFI image is loaded into memory through the EFI_ BOOT_SERVICES.Loadlmage()
Boot Service. This service loads an image with a PE32+ format into memory. This PE32+
loader is required to load all sections of the PE32+ image into memory. Once the image is
loaded into memory, and the appropriate fix-ups have been performed, control is
transferred to a loaded image at the AddressOfEntryPoint reference according to the
normal indirect calling conventions of applications based on supported 32-bit, 64-bit, or
128-bit processors. All other linkage to and from an UEFI image is done
programmatically.

2.1.2 UEFI Applications

Applications written to this specification are loaded by the Boot Manager or by other UEFI
applications. To load a UEFI application the firmware allocates enough memory to hold
the image, copies the sections within the UEFI application image to the allocated memory,
and applies the relocation fix-ups needed. Once done, the allocated memory is set to be
the proper type for code and data for the image. Control is then transferred to the UEFI
application’s entry point. When the application returns from its entry point, or when it
calls the Boot Service EFI_BOOT_SERVICES.EXit(), the UEFI application is unloaded from
memory and control is returned to the UEFI component that loaded the UEFI application.

When the Boot Manager loads a UEFI application, the image handle may be used to locate
the “load options” for the UEFI application. The load options are stored in nonvolatile
storage and are associated with the UEFI application being loaded and executed by the
Boot Manager.

2.1.3 UEFI OS Loaders

A UEFI OS loader is a special type of UEFI application that normally takes over control of
the system from firmware conforming to this specification. When loaded, the UEFI OS
loader behaves like any other UEFI application in that it must only use memory it has
allocated from the firmware and can only use UEFI services and protocols to access the
devices that the firmware exposes. If the UEFI OS loader includes any boot service style

Version 2.7 May 2017 21

Overview UEFI Specification

driver functions, it must use the proper UEFI interfaces to obtain access to the bus
specific-resources. That is, I/0 and memory-mapped device registers must be accessed
through the proper bus specific I/0 calls like those that a UEFI driver would perform.

If the UEFI OS loader experiences a problem and cannot load its operating system
correctly, it can release all allocated resources and return control back to the firmware via
the Boot Service Exit() call. The Exit() call allows both an error code and ExitData to be
returned. The ExitData contains both a string and OS loader-specific data to be returned.

If the UEFI OS loader successfully loads its operating system, it can take control of the
system by using the Boot Service EFI_BOOT_SERVICES.ExitBootServices(). After
successfully calling ExitBootServices(), all boot services in the system are terminated,
including memory management, and the UEFI OS loader is responsible for the continued
operation of the system.

2.1.4 UEFI Drivers

UEFI drivers are loaded by the Boot Manager, firmware conforming to this specification,
or by other UEFI applications. To load a UEFI driver the firmware allocates enough
memory to hold the image, copies the sections within the UEFI driver image to the
allocated memory and applies the relocation fix-ups needed. Once done, the allocated
memory is set to be the proper type for code and data for the image. Control is then
transferred to the UEFI driver’s entry point. When the UEFI driver returns from its entry
point, or when it calls the Boot Service EEl_ BOOT_SERVICES .Exit(), the UEFI driver is
optionally unloaded from memory and control is returned to the component that loaded
the UEFI driver. A UEFI driver is not unloaded from memory if it returns a status code of
EFI_SUCCESS. If the UEFI driver’s return code is an error status code, then the driver is
unloaded from memory.

There are two types of UEFI drivers: boot service drivers and runtime drivers. The only
difference between these two driver types is that UEFI runtime drivers are available after
a UEFI OS loader has taken control of the platform with the Boot Service

EFI_BOOT_SERVICES.ExitBootServices().
UEFI boot service drivers are terminated when ExitBootServices() is called, and all the

memory resources consumed by the UEFI boot service drivers are released for use in the
operating system environment.

A runtime driver of type EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER gets fixed up
with virtual mappings when the OS calls SetVirtualAddressMap().

2.2 Firmware Core

This section provides an overview of the services defined by UEFI. These include boot
services and runtime services.

2.2.1 UEFI Services

22

The purpose of the UEFI interfaces is to define a common boot environment abstraction
for use by loaded UEFI images, which include UEFI drivers, UEFI applications, and UEFI OS

May 2017 Version 2.7

UEFI Specification Overview

loaders. The calls are defined with a full 64-bit interface, so that there is headroom for
future growth. The goal of this set of abstracted platform calls is to allow the platform
and OS to evolve and innovate independently of one another. Also, a standard set of
primitive runtime services may be used by operating systems.

Platform interfaces defined in this section allow the use of standard Plug and Play Option
ROMs as the underlying implementation methodology for the boot services. The
interfaces have been designed in such as way as to map back into legacy interfaces. These
interfaces have in no way been burdened with any restrictions inherent to legacy Option
ROMs.

The UEFI platform interfaces are intended to provide an abstraction between the
platform and the OS that is to boot on the platform. The UEFI specification also provides
abstraction between diagnostics or utility programs and the platform; however, it does
not attempt to implement a full diagnostic OS environment. It is envisioned that a small
diagnostic OS-like environment can be easily built on top of an UEFI system. Such a
diagnostic environment is not described by this specification.

Interfaces added by this specification are divided into the following categories and are
detailed later in this document:

* Runtime services

» Boot services interfaces, with the following subcategories:
— Global boot service interfaces
— Device handle-based boot service interfaces
— Device protocols
— Protocol services

2.2.2 Runtime Services

This section describes UEFI runtime service functions. The primary purpose of the
runtime services is to abstract minor parts of the hardware implementation of the
platform from the OS. Runtime service functions are available during the boot process
and also at runtime provided the OS switches into flat physical addressing mode to make
the runtime call. However, if the OS loader or OS uses the Runtime Service
SetVirtualAddressMap() service, the OS will only be able to call runtime services in a
virtual addressing mode. All runtime interfaces are non-blocking interfaces and can be
called with interrupts disabled if desired.To ensure maximum compatibility with existing
platforms it is recommended that all UEFI modules that comprise the Runtime Services
be represented in the MemoryMap as a single EFI_MEMORY_DESCRIPTOR of Type
EfiRuntimeServicesCode.

In all cases memory used by the runtime services must be reserved and not used by the
OS. runtime services memory is always available to an UEFI function and will never be
directly manipulated by the OS or its components. UEFI is responsible for defining the
hardware resources used by runtime services, so the OS can synchronize with those
resources when runtime service calls are made, or guarantee that the OS never uses
those resources.

Table 4 lists the Runtime Services functions.

Version 2.7 May 2017 23

Overview

Table 4. UEFI Runtime Services

UEFI Specification

Name

GetTime()

SetTime()
GetWakeupTime()
SetWakeupTime()
GetVariable()
GetNextVariableName()
SetVariable()
SetVirtualAddressMap()

ConvertPointer()
GetNextHighMonotonicCount()
ResetSystem()
UpdateCapsule()
QueryCapsuleCapabilities()

uervVariablelnfo

Description

Returns the current time, time context, and time
keeping capabilities.

Sets the current time and time context.

Returns the current wakeup alarm settings.

Sets the current wakeup alarm settings.

Returns the value of a named variable.
Enumerates variable names.

Sets, and if needed creates, a variable.

Switches all runtime functions from physical to virtual
addressing.

Used to convert a pointer from physical to virtual
addressing.

Subsumes the platform's monotonic counter
functionality.

Resets all processors and devices and reboots the
system.

Passes capsules to the firmware with both virtual and
physical mapping.

Returns if the capsule can be supported via
UpdateCapsule().

Returns information about the EFI variable store.

2.3 Calling Conventions

Unless otherwise stated, all functions defined in the UEFI specification are called through
pointers in common, architecturally defined, calling conventions found in C compilers.
Pointers to the various global UEFI functions are found in the EFI_RUNTIME_SERVICES
and EFI_BOOT_SERVICES tables that are located via the system table. Pointers to other
functions defined in this specification are located dynamically through device handles. In
all cases, all pointers to UEFI functions are cast with the word EFIAPI. This allows the
compiler for each architecture to supply the proper compiler keywords to achieve the
needed calling conventions. When passing pointer arguments to Boot Services, Runtime
Services, and Protocol Interfaces, the caller has the following responsibilities:

It is the caller’'s responsibility to pass pointer parameters that reference physical
memory locations. If a pointer is passed that does not point to a physical memory
location (i.e., a memory mapped I/0 region), the results are unpredictable and the

24

system may halt.

It is the caller’s responsibility to pass pointer parameters with correct alignment. If an
unaligned pointer is passed to a function, the results are unpredictable and the

system may halt.

May 2017 Version 2.7

UEFI Specification Overview

» Itisthe caller’'s responsibility to not pass in a NULL parameter to a function unless itis
explicitly allowed. If a NULL pointer is passed to a function, the results are
unpredictable and the system may hang.

* Unless otherwise stated, a caller should not make any assumptions regarding the
state of pointer parameters if the function returns with an error.

» Acaller may not pass structures that are larger than native size by value and these
structures must be passed by reference (via a pointer) by the caller. Passing a
structure larger than native width (4 bytes on supported 32-bit processors; 8 bytes on
supported 64-bit processor instructions) on the stack will produce undefined results.

Calling conventions for supported 32-bit and supported 64-bit applications are
described in more detail below. Any function or protocol may return any valid return
code.

All public interfaces of a UEFI module must follow the UEFI calling convention. Public
interfaces include the image entry point, UEFI event handlers, and protocol member
functions. The type EFIAPI is used to indicate conformance to the calling conventions
defined in this section. Non public interfaces, such as private functions and static library
calls, are not required to follow the UEFI calling conventions and may be optimized by the
compiler.

2.3.1 Data Types

Table 5 lists the common data types that are used in the interface definitions, and Table 6
lists their modifiers. Unless otherwise specified all data types are naturally aligned.
Structures are aligned on boundaries equal to the largest internal datum of the structure
and internal data are implicitly padded to achieve natural alignment.

The values of the pointers passed into or returned by the UEFI interfaces must provide
natural alignment for the underlying types.

Version 2.7 May 2017 25

Overview

26

UEFI Specification

Table 5. Common UEFI Data Types

Mnemonic
BOOLEAN

INTN

UINTN

INT8
UINT8
INT16
UINT16
INT32
UINT32
INT64
UINT64
INT128
UINT128

CHARS

CHAR16

VOID
EFI_GUID

EFI_STATUS
EFI_HANDLE
EFI_EVENT
EFI_LBA

EFI_TPL
EFI_MAC_ADDRESS
EFI_IPv4_ADDRESS
EFI_IPv6_ADDRESS
EFI_IP_ADDRESS

<Enumerated Type>

Description
Logical Boolean. 1-byte value containing a 0 for FALSE or a 1 for TRUE. Other
values are undefined.

Signed value of native width. (4 bytes on supported 32-bit processor instructions,
8 bytes on supported 64-bit processor instructions, 16 bytes on supported 128-
bit processor instructions)

Unsigned value of native width. (4 bytes on supported 32-bit processor
instructions, 8 bytes on supported 64-bit processor instructions, 16 bytes on
supported 128-bit processor instructions)

1-byte signed value.
1-byte unsigned value.
2-byte signed value.
2-byte unsigned value.
4-byte signed value.
4-byte unsigned value.
8-byte signed value.
8-byte unsigned value.
16-byte signed value.
16-byte unsigned value.

1-byte character. Unless otherwise specified, all 1-byte or ASCII characters and
strings are stored in 8-bit ASCIl encoding format, using the ISO-Latin-1 character
set.

2-byte Character. Unless otherwise specified all characters and strings are stored
in the UCS-2 encoding format as defined by Unicode 2.1 and ISO/IEC 10646
standards.

Undeclared type.

128-bit buffer containing a unique identifier value. Unless otherwise specified,
aligned on a 64-bit boundary.

Status code. Type UINTN.

A collection of related interfaces. Type VOID *.

Handle to an event structure. Type VOID *.

Logical block address. Type UINT64.

Task priority level. Type UINTN.

32-byte buffer containing a network Media Access Control address.
4-byte buffer. An IPv4 internet protocol address.

16-byte buffer. An IPv6 internet protocol address.

16-byte buffer aligned on a 4-byte boundary. An IPv4 or IPv6 internet protocol
address.

Element of a standard ANSI C enum type declaration. Type INT32.or UINT32.
ANSI C does not define the size of sign of an enum so they should never be used in
structures. ANSI C integer promotion rules make INT32 or UINT32
interchangeable when passed as an argument to a function.

May 2017 Version 2.7

UEFI Specification Overview

Mnemonic Description

sizeof (VOID *) 4 bytes on supported 32-bit processor instructions. 8 bytes on supported 64-bit

processor instructions. 16 bytes on supported 128-bit processor.

Bitfields Bitfields are ordered such that bit O is the least significant bit.

Table 6. Modifiers for Common UEFI Data Types

Mnemonic Description

IN Datum is passed to the function.

ouT Datum is returned from the function.

OPTIONAL Passing the datum to the function is optional, and a NULL may be
passed if the value is not supplied.

CONST Datum is read-only.

EFIAPI Defines the calling convention for UEFI interfaces.

2.3.2 IA-32 Platforms

All functions are called with the C language calling convention. The general-purpose

registers that are volatile across function calls are eax, ecx, and edx. All other general-
purpose registers are nonvolatile and are preserved by the target function. In addition,
unless otherwise specified by the function definition, all other registers are preserved.

Firmware boot services and runtime services run in the following processor execution
mode prior to the OS calling ExitBootServices():

Version 2.7

Uniprocessor, as described in chapter 8.4 of:

— Intel 64 and IA-32 Architectures Software Developer's Manual
— Volume 3, System Programming Guide, Part 1

— Order Number: 253668-033US, December 2009

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
"Intel Processor Manuals.

Protected mode

Paging mode may be enabled. If paging mode is enabled, PAE (Physical Address
Extensions) mode is recommended. If paging mode is enabled, any memory space
defined by the UEFI memory map is identity mapped (virtual address equals physical
address). The mappings to other regions are undefined and may vary from
implementation to implementation.

Selectors are set to be flat and are otherwise not used

Interrupts are enabled-though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling.”)

Direction flag in EFLAGs is clear
Other general purpose flag registers are undefined
128 KiB, or more, of available stack space

May 2017 27

Overview

28

UEFI Specification

The stack must be 16-byte aligned. Stack may be marked as non-executable in
identity mapped page tables.

Floating-point control word must be initialized to 0x027F (all exceptions masked,
double-precision, round-to-nearest)

Multimedia-extensions control word (if supported) must be initialized to Ox1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow).

CRO.EM must be zero
CRO.TS must be zero

An application written to this specification may alter the processor execution mode, but
the UEFI image must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime
services are still available and may be called with paging enabled and virtual address
pointers if SetVirtualAddressMap() has been called describing all virtual address ranges
used by the firmware runtime service.

For an operating system to use any UEFI runtime services, it must:

Preserve all memory in the memory map marked as runtime code and runtime data

Call the runtime service functions, with the following conditions:
— In protected mode

— Paging may or may not be enabled, however if paging is enabled and
SetVirtualAddressMap() has not been called, any memory space defined by the
UEFI memory map is identity mapped (virtual address equals physical address),
although the attributes of certain regions may not have all read, write, and execute
attributes or be unmarked for purposes of platform protection. The mappings to
other regions are undefined and may vary from implementation to
implementation. See description of SetVirtualAddressMap() for details of
memory map after this function has been called.

— Direction flag in EFLAGS clear
— 4 KiB, or more, of available stack space
— The stack must be 16-byte aligned

— Floating-point control word must be initialized to 0x027F (all exceptions masked,
double-precision, round-to-nearest)

— Multimedia-extensions control word (if supported) must be initialized to 0x1F80
(all exceptions masked, round-to-nearest, flush to zero for masked underflow)

— CRO.EM must be zero

— CRO.TS must be zero

— Interrupts disabled or enabled at the discretion of the caller

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

May 2017 Version 2.7

UEFI Specification Overview

» EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the systerm memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

» ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used for the storage of any EFI
Configuration Tables. Also, only OSes conforming to the UEFI Specification are guaranteed to
handle SMBIOS table in memory of type EfiBootServicesData.

2.3.2.1 Handoff State

When a 32-bit UEFI OS is loaded, the system firmware hands off control to the OS in flat
32-bit mode. All descriptors are set to their 4GiB limits so that all of memory is accessible
from all segments.

Figure 3 shows the stack after AddressOfEntryPoint in the image’s PE32+ header has
been called on supported 32-bit systems. All UEFI image entry points take two
parameters. These are the image handle of the UEFI image, and a pointer to the EFI
System Table.

Version 2.7 May 2017 29

Overview

UEFI Specification

Stack Location

EFI_SYSTEM_TABLE * ESP + 8
EFI_HANDLE ESP +4
<return address> ESP

OM13145

Figure 3. Stack after AddressOfEntryPoint Called, IA- 32

2.3.2.2 Calling Convention

All functions are called with the C language calling convention. The general-purpose
registers that are volatile across function calls are eax, ecx, and edx. All other general-
purpose registers are nonvolatile and are preserved by the target function.

In addition, unless otherwise specified by the function definition, all other CPU registers
(including MMX and XMM) are preserved.

The floating point status register is not preserved by the target function. The floating
point control register and MMX control register are saved by the target function.

If the return value is a float or a double, the value is returned in ST(O).

2.3.3 Intel® Itanium®-Based Platforms

UEFI executes as an extension to the SAL execution environment with the same rules as
laid out by the SAL specification.

During boot services time the processor is in the following execution mode:
Uniprocessor, as detailed in chapter 13.1.2 of:

30

Intel Itanium Architecture Software Developer's Manual
Volume 2: System Architecture

Revision 2.2

January 2006

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Intel Itanium Documentation”.

Document Number: 245318-005

Physical mode
128 KiB, or more, of available stack space

16 KiB, or more, of available backing store space

FPSR.traps:Set to all 1's (all exceptions disabled)
FPSR.sfO:

.pc:Precision Control - 11b (extended precision)
.rc:Rounding Control - O (round to nearest)
.wre:Widest Range Exponent - O (IEEE mode)
ftz:Flush-To-Zero mode - O (off)

May 2017 Version 2.7

UEFI Specification Overview

— FPSR.sfl:

e .td:Traps Disable = 1 (traps disabled)

* .pc:Precision Control - 11b (extended precision)

» .rc:Rounding Control - O (round to nearest)

* wreWidest Range Exponent - 1 (full register exponent range)

» ftzFlush-To-Zero mode - O (off)
— FPSR.sf2,3:

» tdTraps Disable = 1 (traps disabled)

» pc:Precision Control - 11b (extended precision)
» .rc:Rounding Control - O (round to nearest)

* .wre:Widest Range Exponent - O (IEEE mode)

o ftz:Flush-To-Zero mode - O (off)

An application written to this specification may alter the processor execution mode, but
the UEFI image must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

After an Operating System calls ExitBootServices(), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime
services are still available When calling runtime services, paging may or may not be
enabled, however if paging is enabled and SetVirtualAddressMap() has not been called,
any memory space defined by the UEFI memory map is identity mapped (virtual address
equals physical address). The mappings to other regions are undefined and may vary
from implementation to implementation. See description of SetVirtualAddressMap() for
details of memory map after this function has been called. After ExitBootServices(),
runtime service functions may be called with interrupts disabled or enabled at the
discretion of the caller.

* ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

* The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

* EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS.
must be aligned on an 8 KiB boundary and must be a multiple of 8 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on an 8 KiB boundary and must be a multiple of 8 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the system memory map does not contain cacheability attributes the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

» ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime

Version 2.7 May 2017 31

Overview UEFI Specification

should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

Refer to the IA-64 System Abstraction Layer Specification (see Appendix Q) for details.

UEFI procedures are invoked using the P64 C calling conventions defined for Intel®

ltanium®-based applications. Refer to the document 64 Bit Runtime Architecture and
Software Conventions for 1A-64 (seeAppendix Q) for more information.

2.3.3.1 Handoff State

UEFI uses the standard P64 C calling conventions that are defined for Itanium-based
operating systems. Figure 4 shows the stack after ImageEntryPoint has been called on
[tanium-based systems. The arguments are also stored in registers: outO contains
EFI_HANDLE and outl contains the address of the EFI_SYSTEM_TABLE. The gp for the
UEFI Image will have been loaded from the plabel pointed to by the AddressOfEntryPoint
in the image’s PE32+ header. All UEFI image entry points take two parameters. These are
the image handle of the image, and a pointer to the System Table.

Stack Location Register

EFI_SYSTEM_TABLE * SP +8 outl
EFI_HANDLE SP outO

OM13146

32

Figure 4. Stack after AddressOfEntryPoint Called, Itanium-based Systems

The SAL specification (see Appendix Q) defines the state of the system registers at boot
handoff. The SAL specification also defines which system registers can only be used after
UEFI boot services have been properly terminated.

May 2017 Version 2.7

UEFI Specification Overview

2.3.3.2 Calling Convention

UEFI executes as an extension to the SAL execution environment with the same rules as
laid out by

the SAL specification. UEFI procedures are invoked using the P64 C calling conventions
defined for Intel® Itanium@-based applications. Refer to the document 64 Bit Runtime
Architecture and Software Conventions for 1A-64 (see Glossary for more information.

For floating point, functions may only use the lower 32 floating point registers Return
values appear in f8-f15 registers. Single, double, and extended values are all returned
using the appropriate format. Registers f6-f7 are local registers and are not preserved for
the caller. All other floating point registers are preserved. Note that, when compiling UEFI
programs, a special switch will likely need to be specified to guarantee that the compiler
does not use f32-f127, which are not normally preserved in the regular calling
convention for Itanium. A procedure using one of the preserved floating point registers
must save and restore the caller's original contents without generating a NaT
consumption fault.

Floating point arguments are passed in f8-f15 registers when possible. Parameters
beyond the registers appear in memory, as explained in Section 8.5 of the Itanium
Software Conventions and Runtime Architecture Guide. Within the called function, these
are local registers and are not preserved for the caller. Registers f6-f7 are local registers
and are not preserved for the caller. All other floating point registers are preserved. Note
that, when compiling UEFI programs, a special switch will likely need to be specified to
guarantee that the compiler does not use f32-f127, which are not normally preserved in
the regular calling convention for Itanium. A procedure using one of the preserved
floating point registers must save and restore the caller's original contents without
generating a NaT consumption fault.

The floating point status register must be preserved across calls to a target function.
Flags fields in SF1,2,3 are not preserved for the caller. Flags fields in SFO upon return will
reflect the value passed in, and with bits set to 1 corresponding to any IEEE exceptions
detected on non-speculative floating-point operations executed as part of the callee.

Floating-point operations executed by the callee may require software emulation. The
caller must be prepared to handle FP Software Assist (FPSWA) interruptions. Callees
should not raise IEEE traps by changing FPSR.traps bits to O and then executing floating-
point operations that raise such traps.

2.3.4 x64 Platforms
All functions are called with the C language calling convention. See Section 2.3.4.2 for
more detail.
During boot services time the processor is in the following execution mode:
* Uniprocessor, as described in chapter 8.4 of:

— Intel 64 and |A-32 Architectures Software Developer's Manual, Volume 3, System
Programming Guide, Part 1, Order Number: 253668-033US, December 2009

— See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading
“Intel Processor Manuals”.

Version 2.7 May 2017 33

Overview UEFI Specification

e Long mode, in 64-bit mode

» Paging mode is enabled and any memory space defined by the UEFI memory map is
identity mapped (virtual address equals physical address), although the attributes of
certain regions may not have all read, write, and execute attributes or be unmarked
for purposes of platform protection. The mappings to other regions are undefined
and may vary from implementation to implementation.

e Selectors are set to be flat and are otherwise not used.

* Interrupts are enabled-though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling.”)

» Direction flag in EFLAGs is clear
» Other general purpose flag registers are undefined
« 128 KiB, or more, of available stack space

» The stack must be 16-byte aligned. Stack may be marked as non-executable in
identity mapped page tables.

* Floating-point control word must be initialized to 0x037F (all exceptions masked,
double-extended-precision, round-to-nearest)

» Multimedia-extensions control word (if supported) must be initialized to Ox1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow).

* CRO.EM must be zero

* CRO.TS must be zero

For an operating system to use any UEFI runtime services, it must:

* Preserve all memory in the memory map marked as runtime code and runtime data
» Call the runtime service functions, with the following conditions:

* Inlong mode, in 64-bit mode

» Paging enabled

» All selectors set to be flat with virtual = physical address. If the UEFI OS loader or OS
used SetVirtualAddressMap() to relocate the runtime services in a virtual address
space, then this condition does not have to be met. See description of
SetVirtualAddressMap() for details of memory map after this function has been
called.

» Direction flag in EFLAGSs clear
* 4 KiB, or more, of available stack space
» The stack must be 16-byte aligned

* Floating-point control word must be initialized to 0x037F (all exceptions masked,
double-extended-precision, round-to-nearest)

* Multimedia-extensions control word (if supported) must be initialized to Ox1F80 (all
exceptions masked, round-to-nearest, flush to zero for masked underflow)

e CRO.EM must be zero

34 May 2017 Version 2.7

UEFI Specification Overview

* CRO.TS must be zero
* Interrupts may be disabled or enabled at the discretion of the caller.

» ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS.

* The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

» EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_ MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

* An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the systern memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPl name
space, then the region must be assumed to be non-cacheable.

* ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

* In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the
EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.4.1 Handoff State
Rex — EFI_ HANDLE
Rdx — EFI_SYSTEM_TABLE *
RSP - <return address>

2.3.4.2 Detailed Calling Conventions

The caller passes the first four integer arguments in registers. The integer values are
passed from left to right in Rcx, Rdx, R8, and R9 registers. The caller passes arguments

Version 2.7 May 2017 35

Overview UEFI Specification

five and above onto the stack. All arguments must be right-justified in the register in
which they are passed. This ensures the callee can process only the bits in the register
that are required.

The caller passes arrays and strings via a pointer to memory allocated by the caller. The
caller passes structures and unions of size 8, 16, 32, or 64 bits as if they were integers of
the same size. The caller is not allowed to pass structures and unions of other than these
sizes and must pass these unions and structures via a pointer.

The callee must dump the register parameters into their shadow space if required. The
most common requirement is to take the address of an argument.

If the parameters are passed through varargs then essentially the typical parameter
passing applies, including spilling the fifth and subsequent arguments onto the stack. The
callee must dump the arguments that have their address taken.

Return values that fix into 64-bits are returned in the Rax register. If the return value does
not fit within 64-bits, then the caller must allocate and pass a pointer for the return value
as the first argument, Rcx. Subsequent arguments are then shifted one argument to the
right, so for example argument one would be passed in Rdx. User-defined types to be
returned must be 1,2,4,8,16,32, or 64 bits in length.

The registers Rax, Rcx Rdx R8, R9, R10, R11, and XMMO-XMMS5 are volatile and are,
therefore, destroyed on function calls.

The registers RBX, RBP, RDI, RSI, R12, R13, R14, R15, and XMM6-XMM15 are considered
nonvolatile and must be saved and restored by a function that uses them.

Function pointers are pointers to the label of the respective function and don’t require
special treatment.

A caller must always call with the stack 16-byte aligned.

For MMX, XMM and floating-point values, return values that can fit into 64-bits are
returned through RAX (including MMX types). However, XMM 128-bit types, floats, and
doubles are returned in XMMO. The floating point status register is not saved by the
target function. Floating-point and double-precision arguments are passed in XMMO -
XMM3 (up to 4) with the integer slot (RCX, RDX, R8, and R9) that would normally be used
for that cardinal slot being ignored (see example) and vice versa. XMM types are never
passed by immediate value but rather a pointer will be passed to memory allocated by
the caller. MMX types will be passed as if they were integers of the same size. Callees
must not unmask exceptions without providing correct exception handlers.

In addition, unless otherwise specified by the function definition, all other CPU registers
(including MMX and XMM) are preserved.

2.3.4.3 Enabling Paging or Alternate Translations in an Application

36

Boot Services define an execution environment where paging is not enabled (supported
32-bit) or where translations are enabled but mapped virtual equal physical (x64) and this
section will describe how to write an application with alternate translations or with paging
enabled. Some Operating Systems require the OS Loader to be able to enable OS
required translations at Boot Services time.

May 2017 Version 2.7

UEFI Specification Overview

If a UEFI application uses its own page tables, GDT or IDT, the application must ensure
that the firmware executes with each supplanted data structure. There are two ways that
firmware conforming to this specification can execute when the application has paging
enabled.

» Explicit firmware call
* Firmware preemption of application via timer event

An application with translations enabled can restore firmware required mapping before
each UEFI call. However the possibility of preemption may require the translation
enabled application to disable interrupts while alternate translations are enabled. It's
legal for the translation enabled application to enable interrupts if the application
catches the interrupt and restores the EFI firmware environment prior to calling the UEFI
interrupt ISR. After the UEFI ISR context is executed it will return to the translation
enabled application context and restore any mappings required by the application.

2.3.5 AArch32 Platforms

All functions are called with the C language calling convention specified in
Section 2.3.5.3. In addition, the invoking OSs can assume that unaligned access support is
enabled if it is present in the processor.

During boot services time the processor is in the following execution mode:

» Unaligned access should be enabled if supported; Alignment faults are
enabled otherwise.

* Uniprocessor.

* A privileged mode.

« The MMU is enabled (CP15 c1 System Control Register (SCTLR) SCTLR.M=1) and any
RAM defined by the UEFI memory map is identity mapped (virtual address equals

physical address). The mappings to other regions are undefined and may vary from
implementation to implementation

* The core will be configured as follows (common across all processor architecture
revisions):
* MMU enabled
* Instruction and Data caches enabled
» Access flag disabled
» Translation remap disabled
* Little endian mode

» Domain access control mechanism (if supported) will be configured to check
access permission bits in the page descriptor

» Fast Context Switch Extension (FCSE) must be disabled
This will be achieved by:

e Configuring the CP15 c1 System Control Register (SCTLR) as follows: I=1, C=1,
B=0, TRE=0, AFE=0, M=1

* Configuring the CP15 ¢3 Domain Access Control Register (DACR) to 0x33333333.

Version 2.7 May 2017 37

Overview UEFI Specification

» Configuring the CP15 c1 System Control Register (SCTLR), A=1 on ARMv4 and
ARMV5, A=0, U=1 on ARMv6 and ARMv7.

The state of other system control register bits is not dictated by this specification.

* Implementations of boot services will enable architecturally manageable caches and
TLBs i.e., those that can be managed directly using CP15 operations using
mechanisms and procedures defined in the ARM Architecture Reference Manual. They
should not enable caches requiring platform information to manage or invoke non-
architectural cache/TLB lockdown mechanisms

* MMU configuration--Implementations must use only 4k pages and a single translation
base register. On devices supporting multiple translation base registers, TTBRO must
be used solely. The binding does not mandate whether page tables are cached or un-
cached.

* On processors implementing the ARMv4 through ARMv6K architecture
definitions, the core is additionally configured to disable extended page tables
support, if present.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR)
as follows: XP=0

* On processors implementing the ARMv7 and later architecture definitions, the
core will be configured to enable the extended page table format and disable the
TEX remap mechanism.

This will be achieved by configuring the CP15 c1 System Control Register (SCTLR)
as follows: XP=1, TRE=0

» Interrupts are enabled-though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling.”)

» 128 KiB or more of available stack space

For an operating system to use any runtime services, it must;

* Preserve all memory in the memory map marked as runtime code and runtime data

» Call the runtime service functions, with the following conditions:

* Inaprivileged mode.

» The system address regions described by all the entries in the EFl memory map
that have the EFI._ MEMORY_RUNTIME bit set must be identity mapped as they
were for the EFI boot environment. If the OS Loader or OS used
SetVirtualAddressMap() to relocate the runtime services in a virtual address space,
then this condition does not have to be met. See description of
SetVirtualAddressMap() for details of memory map after this function has been
called.

* The processor must be in a mode in which it has access to the system address
regions specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

* 4KiB, or more, of available stack space
* Interrupts may be disabled or enabled at the discretion of the caller

38 May 2017 Version 2.7

UEFI Speci

fication Overview

An application written to this specification may alter the processor execution mode, but

the

invoking OS must ensure firmware boot services and runtime services are executed

with the prescribed execution environment.

If ACPI is supported :

Note: Pr

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS

The system firmware must not request a virtual mapping for any memory descriptor
of type EfiACPIReclaimMemory or EfiACPIMemoryNVS.

EFlI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the system memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name
space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfiACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

evious EFI specifications allowed ACPI tables loaded at runtime to be in the

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. Also, only OSes
conforming to the UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.5.1 Handoff State
RO - EFI_HANDLE
R1-EFI_SYSTEM_TABLE *
R14 - Return Address

Version 2.7

May 2017 39

Overview UEFI Specification

2.3.5.2 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to
write an application that creates an alternative execution environment. Some Operating
Systems require the OS Loader to be able to enable OS required translations at Boot
Services time, and make other changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application
must ensure that the firmware executes with each supplanted functionality. There are two
ways that firmware conforming to this specification can execute in this alternate
execution environment:

» Explicit firmware call
* Firmware preemption of application via timer event

An application with an alternate execution environment can restore the firmware
environment before each UEFI call. However the possibility of preemption may require
the alternate execution-enabled application to disable interrupts while the alternate
execution environment is active. It's legal for the alternate execution environment
enabled application to enable interrupts if the application catches the interrupt and
restores the EFI firmware environment prior to calling the UEFI interrupt ISR. After the
UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the
semantics or behavior of the MMU configuration created by the UEFI firmware prior to
invoking ExitBootServices(), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception
vector to point to appropriate code.

2.3.5.3 Detailed Calling Convention

40

The base calling convention for the ARM binding is defined here:

Procedure Call Standard for the ARM Architecture V2.06 (or later)
See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “Arm
Architecture Base Calling Convention”.

This binding further constrains the calling convention in these ways:

» Calls to UEFI defined interfaces must be done assuming that the target code requires
the ARM instruction set state. Images are free to use other instruction set states
except when invoking UEFI interfaces.

* Floating point, SIMD, vector operations and other instruction set extensions must not
be used.

* Only little endian operation is supported.

» The stack will maintain 8 byte alignment as described in the AAPCS for public
interfaces.

» Use of coprocessor registers for passing call arguments must not be used

e Structures (or other types larger than 64-bits) must be passed by reference and not
by value

May 2017 Version 2.7

UEFI Specification Overview

The EFI ARM platform binding defines register r9 as an additional callee-saved
variable register.

2.3.6 AArch64 Platforms

AArch64 UEFI will only execute 64-bit ARM code, as the ARMv8 architecture does not
allow for the mixing of 32-bit and 64-bit code at the same privilege level.

All functions are called with the C language calling convention specified in Detailed
calling Convention section below. During boot services only a single processor is used for
execution. All secondary processors must be either powered off or held in a quiescent
state.

The primary processor is in the following execution mode:

Unaligned access must be enabled.

Use the highest 64 bit non secure privilege level available; Non-secure EL2 (Hyp) or
Non-secure EL1(Kernel).

The MMU is enabled and any RAM defined by the UEFI memory map is identity
mapped (virtual address equals physical address). The mappings to other regions are
undefined and may vary from implementation to implementation

The core will be configured as follows:

e MMU enabled

* Instruction and Data caches enabled
e Little endian mode

o Stack Alignment Enforced

 NOT Top Byte Ignored

» Valid Physical Address Space

* 4K Translation Granule

This will be achieved by:

1.

2.

Configuring the System Control Register SCTLR_EL2 or SCTLR_EL1:
EE=0, I=1, SA=1, C=1, A=0, M=1
Configuring the appropriate Translation Control Register:

TCR_EL2

« TBI=O

* PS must contain the valid Physical Address Space Size.
+ TGO=00

TCR_EL1

+ TBIO=0

* IPS must contain the valid Intermediate Physical Address Space Size.
« TGO=00

Version 2.7 May 2017 41

Overview

UEFI Specification

Note: The state of other system control register bits is not dictated by this specification.

All floating point traps and exceptions will be disabled at the relevant exception levels
(FPCR=0, CPACR_EL1.FPEN=11, CPTR_EL2.TFP=0). This implies that the FP unit will
be enabled by default.

Implementations of boot services will enable architecturally manageable caches and
TLBs i.e., those that can be managed directly using implementation independent
registers using mechanisms and procedures defined in the ARM Architecture
Reference Manual. They should not enable caches requiring platform information to
manage or invoke non-architectural cache/TLB lockdown mechanisms.

MMU configuration: Implementations must use only 4k pages and a single translation
base register. On devices supporting multiple translation base registers, TTBRO must
be used solely. The binding does not mandate whether page tables are cached or un-
cached.

Interrupts are enabled, though no interrupt services are supported other than the
UEFI boot services timer functions (All loaded device drivers are serviced
synchronously by “polling”). All UEFI interrupts must be routed to the IRQ vector only.

The architecture generic timer must be initialized and enabled. The Counter
Frequency register (CNTFRQ) must be programmed with the timer frequency. Timer
access must be provided to non-secure EL1 and ELO by setting bits ELLPCTEN and
EL1PCEN in register CNTHCTL_EL2.

128 KiB or more of available stack space

The ARM architecture allows mapping pages at a variety of granularities, including
4KiB and 64KiB. If a 64KiB physical page contains any 4KiB page with any of the
following types listed below, then all 4KiB pages in the 64KiB page must use identical
ARM Memory Page Attributes (as described in Table 7):

— EfiRuntimeServicesCode

— EfiRuntimeServicesData

— EfiReserved

— EfiACPIMemoryNVS

Mixed attribute mappings within a larger page are not allowed.

Note: This constraint allows a 64K paged based Operating System to safely map runtime services

memory.

For an operating system to use any runtime services, Runtime services must:

Support calls from either the EL1 or the EL2 exception levels.
Once called, simultaneous or nested calls from EL1 and EL2 are not permitted.

Note: Sequential, non-overlapping, calls from EL1 and EL2 are permitted.

42

Runtime services are permitted to make synchronous SMC and HVC calls into higher
exception levels.

May 2017 Version 2.7

UEFI Specification Overview

Note:

These rules allow Boot Services to start at EL2, and Runtime services to be assigned to an EL1
Operating System. In this case a call to SetVirtualAddressMap()is expected to provided an
EL1 appropriate set of mappings.

For an operating system to use any runtime services, it must;

Enable unaligned access support.

Preserve all memory in the memory map marked as runtime code and runtime data
Call the runtime service functions, with the following conditions:

* From either EL1 or EL2 exception levels.

» Consistently call runtime services from the same exception level. Sharing of
runtime services between different exception levels is not permitted.

* Runtime services must only be assigned to a single operating system or
hypervisor. They must not be shared between multiple guest operating systems.

» The system address regions described by all the entries in the EFI memory map
that have the EFI_ MEMORY_RUNTIME bit set must be identity mapped as they
were for the EFI boot environment. If the OS Loader or OS used
SetVirtualAddressMap() to relocate the runtime services in a virtual address
space, then this condition does not have to be met. See description of
SetVirtualAddressMap() for details of memory map after this function has been
called.

* The processor must be in a mode in which it has access to the system address
regions specified in the EFI memory map with the EFI_MEMORY_RUNTIME bit set.

» 8KiB, or more, of available stack space.
* The stack must be 16-byte aligned (128-bit).
* Interrupts may be disabled or enabled at the discretion of the caller

An application written to this specification may alter the processor execution mode, but
the invoking OS must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

If ACPI is supported :

ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfiIACPIMemoryNVS.

ACPI FACS must be contained in memory of type EfiACPIMemoryNVS. The system
firmware must not request a virtual mapping for any memory descriptor of type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS
must be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

Any UEFI memory descriptor that requests a virtual mapping via the
EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

An ACPI Memory Op-region must inherit cacheability attributes from the UEFI
memory map. If the systern memory map does not contain cacheability attributes, the
ACPI Memory Op-region must inherit its cacheability attributes from the ACPI name

Version 2.7 May 2017 43

Overview UEFI Specification

space. If no cacheability attributes exist in the system memory map or the ACPI name
space, then the region must be assumed to be non-cacheable.

ACPI tables loaded at runtime must be contained in memory of type
EfiACPIMemoryNVS. The cacheability attributes for ACPI tables loaded at runtime
should be defined in the UEFI memory map. If no information about the table location
exists in the UEFI memory map, cacheability attributes may be obtained from ACPI
memory descriptors. If no information about the table location exists in the UEFI
memory map or ACPI memory descriptors, the table is assumed to be non-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the
system firmware must not request a virtual mapping), EfiBootServicesdata,
EfiACPIReclaimMemory or EfiIACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

44

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration

Tables. EfiReservedMemoryType is not intended to be used by firmware. UEFI 2.0 clarified the

May 2017 Version 2.7

UEFI Specification

Overview

situation moving forward. Also, only OSes conforming to UEFI Specification are guaranteed to
handle SMBIOS table in memory of type EfiBootServiceData.

2.3.6.1 Memory types

Table 7. Map: EFI memory types to AArch64 memory types

EFI Memory Type

EFI_MEMORY_UC (Not
cacheable)

EFI_MEMORY_WC (Write
combine)

EFI_MEMORY_WT (Write
through)

EFI_MEMORY_WB (Write back)

EFI_MEMORY_XP,
EFI_MEMORY_WP,
EFI_MEMORY _RP,
EFI_MEMORY_UCE

2.3.6.2 Handoff State
X0 — EFI_HANDLE

X1 - EFI_SYSTEM_TABLE *

X30 - Return Address

ARM Memory Type:
MAIR attribute encoding
Attr<n> [7:4] [3:0]

0000 0000

0100 0100

10111011

11111111

ARM Memory Type:
Meaning

Device-nGnRnE

(Device non-Gathering,
non-Reordering,

no Early Write Acknowledgement)

Normal Memory
QOuter non-cacheable
Inner non-cacheable

Normal Memory
Outer Write-through non-transient
Inner Write-through non-transient

Normal Memory
Outer Write-back non-transient
Inner Write-back non-transient

Not used or defined

2.3.6.3 Enabling Paging or Alternate Translations in an Application

Boot Services define a specific execution environment. This section will describe how to
write an application that creates an alternative execution environment. Some Operating
Systems require the OS Loader to be able to enable OS required translations at Boot
Services time, and make other changes to the UEFI defined execution environment.

If a UEFI application uses its own page tables, or other processor state, the application
must ensure that the firmware executes with each supplanted functionality. There are two
ways that firmware conforming to this specification can execute in this alternate

execution environment;
» Explicit firmware call

» Firmware preemption of application via timer event

Version 2.7

May 2017

45

Overview UEFI Specification

An application with an alternate execution environment can restore the firmware
environment before each UEFI call. However the possibility of preemption may require
the alternate execution-enabled application to disable interrupts while the alternate
execution environment is active. It's legal for the alternate execution environment
enabled application to enable interrupts if the application catches the interrupt and
restores the EFI firmware environment prior to calling the UEFI interrupt ISR. After the
UEFI ISR context is executed it will return to the alternate execution environment enabled
application context.

An alternate execution environment created by a UEFI application must not change the
semantics or behavior of the MMU configuration created by the UEFI firmware prior to
invoking ExitBootServices(), including the bit layout of the page table entries.

After an OS loader calls ExitBootServices() it should immediately configure the exception
vector to point to appropriate code.

2.3.6.4 Detailed Calling Convention

The base calling convention for the AArch64 binding is defined in the document
Procedure Call Standard for the ARM 64-bit Architecture Version A-0.06 (or later):

See “Links to UEFI-Related Documents” (http://uefi.org/uefi) under the heading “ARM 64-
bit Base Calling Convention”

This binding further constrains the calling convention in these ways:

* The AArch64 execution state must not be modified by the callee.

» All code exits, normal and exceptional, must be from the A64 instruction set.

* Floating point and SIMD instructions may be used.

» Optional vector operations and other instruction set extensions may only be used:
» After dynamically checking for their existence.
e Saving and then later restoring any additional execution state context.

» Additional feature enablement or control, such as power, must be explicitly
managed.

* Only little endian operation is supported.
* The stack will maintain 16 byte alignment.

e Structures (or other types larger than 64-bits) must be passed by reference and not
by value.

* The EFI AArch64 platform binding defines the platform register (r18) as “do not use”.
Avoiding use of r18 in firmware makes the code compatible with both a fixed role for
r18 defined by the OS platform ABI and the use of r18 by the OS and its applications
as a temporary register.

2.3.7 RISC-V Platforms

All functions are called with the C language calling convention. See 2.3.7.3 for more detail.

46 May 2017 Version 2.7

UEFI Specification Overview

On RISC-V platform, four privileged levels are introduced in RISC-V architecture. Beyond
the User privilege, Supervisor, Hypervisor and Machine privileges cover all aspects of
RISC-V system. The privileged instructions are also defined in each privilege level.

RISC-V UEFI will only execute in machine mode. The machine mode has the highest
privilege and this mode is the only mandatory privilege level for RISC-V platform, all other
privilege levels are optional. Machine mode is the first mode entered at the power-on
reset. This level is used in UEFI for low-level access to a hardware platform.

The processor is in the following execution mode during boot service:

Total 32 general-purpose registers x1-x31. Register x0 is hardwired to 0. Each register
has its ABI (Application Binary Interface) name. See 2.3.7.3 for more detail.

The width of the processor registers depends on the processor architecture. XLEN is a
term which used to refer the current width of register in bits.

- For the RV32I (Base Integer ISA), XLEN = 32
The registers are 32 bits wide to support 32-bit user address space.
- For the RV64I, XLEN = 64

RV64l is built upon RV32 variant. It widens the integer registers and supported
user address space to 64-bit.

- For the Rv128I, XLEN = 128

A variant of the RISC-V ISA which support flat 128-bit address space and 128-bit
registers. RvV128I builds upon RV64I in the same way RV64I builds upon RV32l.

Processor reset vector is platform specified. In UEFI, it is configured to the highest
processor addressing space, The value in mtvec (Machine Trap Vector Base Address)
register is set to OxF...FFEOOH. The reset vector is at offset 100h of mtvec. The reset
vector address is the first instruction which fetched by RISC-V processor when the
power-on reset.

The mstatus.PRV stores the current processor privilege mode. Upon the reset, the
privilege mode is set to M (Machine mode).

- mstatus.PRV = 11b for the machine mode.
The mstatus.IE indicates the current processor interrupt activation in current mode.
- mstatus.lE=1b

The machine mode interrupt is enabled during boot service in UEFI. Two kinds of
interrupts are enabled, one is for timer interrupt and another is software interrupt.

- mieMSIE=1

Version 2.7 May 2017 47

Overview UEFI Specification

48

mie.MTIE=1

The memory is in physical addressing mode. Page is disabled in RISC-V machine mode
during UEFI boot service.

I/0 access is through memory map 1/0.
Only support Machine level Control and Status Registers (CSRs) in UEFI.

Machine ISA (misa) register contains the information regarding to the capabilities of
CPU implementation. The Base field encodes the native base integer ISA width.

misa.Base =1 is 32
misa.Base = 2 is 64
misa.Base = 3is 128

RISC-V processor supports extensive customization and specialization instruction sets.
RISC-V variations provide various purposes of processor implementations and the
processor capability is reported in the extension bits in in misa register. UEFI drivers will
need to know the capabilities of processor before executing the specified RISC-V
extension instructions. The extensions fields encodes the presence of the standard
extensions, with a single bit per letter of the alphabet. (Bit O encodes presence of
extension “A”, Bit 1 encodes presence of extension “B” and so on. Currently the single
letter extension mnemonics are as below,

A — Atomic extension

B — Tentatively reserved for Bit operations extension

C - Compressed extension

D - Double-Precision Floating-Point extension

E - Reduced Register Set Indicator RV32E (16 registers)

F - Single-Precision Floating-Point extension

G - Additional standard extensions present

H — Hypervisor mode implemented

| - RV321/641/128| base ISA

J - Reserved

K — Reserved

L — Tentatively reserved for Decimal Floating-Point extension
M - Integer Multiplication and Division extension

N — User-level interrupts supported
O - Reserved

P - Tentatively reserved for Packed-SIMD extension
Q - Quad-Precision Floating-Point extension
S — Supervisor mode implemented

May 2017 Version 2.7

UEFI Specification Overview

T - Tentatively reserved for Transactional Memory extension
U — User mode implemented

V - Tentatively reserved for Vector extension
W - Reserved

X - Non-standard extension present

Y - Reserved

Z - Reserved

Machine Vendor ID Register

This is the read-only register encoding the manufacture of the part. Value of O
indicates this field is not implemented or this is a non-commercial implementation.

Implementation ID Register

This provides a unique encoding of the source and version of processor
implementation.

mimpid.Source is in 16-bit which describe the origin of the processor design,

For example, mimpid.Source = 0x0000 is UC Berkeley Rocket repo.

An application written to this specification may alter the processor execution mode, but
the UEFI image must ensure firmware boot services and runtime services are executed
with the prescribed execution environment.

After an Operating System calls ExitBootServices (), firmware boot services are no longer
available and it is illegal to call any boot service. After ExitBootServices, firmware runtime
services are still available and may be called with paging enabled and virtual address
pointers if SetVirtualAddressMap () has been called describing all virtual address ranges
used by the firmware runtime service.

If ACPI is supported:

» ACPI Tables loaded at boot time can be contained in memory of type
EfiACPIReclaimMemory (recommended) or EfIACPIMemoryNVS. ACPI FACS must be
contained in memory of type EfiACPIMemoryNVS

* The system firmware must not request a virtual mapping for any memory descriptor of

type
EfiACPIReclaimMemory or EfiACPIMemoryNVS.

» EFI memory descriptors of type EfiACPIReclaimMemory and EfiACPIMemoryNVS must
be aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

» Any UEFI memory descriptor that requests a virtual mapping via the

Version 2.7 May 2017 49

Overview UEFI Specification

EFI_MEMORY_DESCRIPTOR having the EFI_MEMORY_RUNTIME bit set must be
aligned on a 4 KiB boundary and must be a multiple of 4 KiB in size.

» An ACPI Memory Op-region must inherit cacheability attributes from the UEFI memory

map. If the system memory map does not contain cacheability attributes, the ACPI
Memory Op-region must inherit its cacheability attributes from the ACPI name space. If
no cacheability attributes exist in the system memory map or the ACPI name space,
then the region must be assumed to be non-cacheable.

» ACPI tables loaded at runtime must be contained in memory of type

EfiIACPIMemoryNVS.

The cacheability attributes for ACPI tables loaded at runtime should be defined in the
UEFI memory map. If no information about the table location exists in the UEFI memory
map, cacheability attributes may be obtained from ACPI memory descriptors. If no
information about the table location exists in the UEFI memory map or ACPI memory
descriptors, the table is assumed to be non-cached.

In general, UEFI Configuration Tables loaded at boot time (e.g., SMBIOS table) can be
contained in memory of type EfiRuntimeServicesData (recommended and the system
firmware must not request a virtual mapping), EfiBootServicesData,
EfiACPIReclaimMemory or EfIACPIMemoryNVS. Tables loaded at runtime must be
contained in memory of type EfiRuntimeServicesData (recommended) or
EfiIACPIMemoryNVS.

Note: Previous EFI specifications allowed ACPI tables loaded at runtime to be in the

EfiReservedMemoryType and there was no guidance provided for other EFI Configuration
Tables. EfiReservedMemoryType is not intended to be used by firmware. The UEFI
Specification intends to clarify the situation moving forward. Also, only OSes conforming to the
UEFI Specification are guaranteed to handle SMBIOS table in memory of type
EfiBootServicesData.

2.3.7.1 Handoff State

50

When UEFI firmware handoff control to OS, the RISC-V is operated in machine-mode
privilege.

All UEFI image takes two parameters, these are UEFI image handle and the pointer to
EFI System Table. According to the RISC-V calling convention, EFI_ HANDLE is passed
through a0 register and EFI_SYSTEM_TABLE is passed through al register.

x10 - EFI_HANDLE(ABI name: a0)
x11 - EFI_SYSTEM_TABLE *(ABI name: al)

May 2017 Version 2.7

UEFI Specification

x1 - Return Address

2.3.7.2 Data alignment

(ABI name: ra)

Overview

In the RV32l and RV64l, the datatypes must be aligned at its natural size when stored in

memory.

The following table describes the datatype and its alignment in RV32l and RV64l in

UEFI.
Datatype Description Alignment
BOOLEAN Logical Boolean 1
INTN Signed value in native width. 4
UINTN Unsigned value in native width. 4
INT8 1-byte signed value 1
UINT8 1-byte unsigned value 1
INT16 2-byte signed value 2
UINT16 2-byte unsigned value 2
INT32 4-byte signed value 4
UINT32 4-byte unsigned value 4
INT64 8-byte signed value 8
UINT64 8-byte unsigned value 8
ICHAR8 1-byte character 1
CHAR16 2-byte character 2
VOID Undeclared type 4
RV32 datatype alignment
Datatype Description Alignment
OOLEAN Logical Boolean 1
INTN Signed value in native width. 8
UINTN Unsigned value in native width. 8
INT8 1-byte signed value 1
UINT8 1-byte unsigned value 1
INT16 2-byte signed value 2
UINT16 2-byte unsigned value 2
INT32 U-byte signed value 4
UINT32 K-byte unsigned value 4
INT64 8-byte signed value 8
UINT64 8-byte unsigned value 8
CHAR8 1-byte character 1
CHAR16 2-byte character 2
VOID Undeclared type 8

RV64 datatype alignment

2.3.7.3 Detailed Calling Convention

Version 2.7

May 2017

51

Overview UEFI Specification

The RISC-V calling convention passes arguments in register when necessary. In RISC-V,
total 32 general registers are declared, each register has its corresponding ABI hame.
Below table shows the register name and ABI name.

egister IABT Name Description
XO Zero Hardwired to zero
X1 ra Return address
X2 sp Stack pointer
X3 ap Global pointer
x4 tp Thread pointer
x5-7 t0-2 Temporaries
X8 sO/fp Saved register/frame pointer
X9 s1 Saved register
x10-11 a0-1 Function arguments/Return values
x12-17 az2-7 Function arguments
x18-27 s2-11 Saved registers
x28-31 t3-6 [Temporaries

In RISC-V calling convention, up to eight integer registers are used for passing argument,
a0-a7. a0-a7 are the ABI names and the corresponding registers are x10-x17. Values are
returned from functions in integer registers a0 and al, those are register x10 and x11. In
the standard RISC-V calling convention, the stack grows downward and the stack point is
always kept 16-byte aligned. Five integer register t0-t6 are temporary registers that are
volatile across calls and must be saved by the caller if later used. Twelve integer registers
s0-s11 are preserved across calls and must be saved by the callee if used.

2.4 Protocols

52

The protocols that a device handle supports are discovered through the

EFI_BOOT_SERVICES.HandleProtocol() Boot Service or the

EFlI_ BOOT_SERVICES.OpenProtocol() Boot Service. Each protocol has a specification
that includes the following:

* The protocol’s globally unique ID (GUID)
 The Protocol Interface structure
e« The Protocol Services

Unless otherwise specified a protocol’s interface structure is not allocated from runtime
memory and the protocol member functions should not be called at runtime. If not
explicitly specified a protocol member function can be called at a TPL level of less than or
equal to TPL_NOTIFY (see Section 7.1). Unless otherwise specified a protocol’s member
function is not reentrant or MP safe.

Any status codes defined by the protocol member function definition are required to be
implemented, Additional error codes may be returned, but they will not be tested by

May 2017 Version 2.7

UEFI Specification Overview

standard compliance tests, and any software that uses the procedure cannot depend on
any of the extended error codes that an implementation may provide.

To determine if the handle supports any given protocol, the protocol’'s GUID is passed to
HandleProtocol() or OpenProtocol(). If the device supports the requested protocol, a
pointer to the defined Protocol Interface structure is returned. The Protocol Interface
structure links the caller to the protocol-specific services to use for this device.

Figure 5 shows the construction of a protocol. The UEFI driver contains functions specific
to one or more protocol implementations, and registers them with the Boot Service
EFI_BOOT_SERVICES.InstallProtocolinterface(). The firmware returns the Protocol
Interface for the protocol that is then used to invoke the protocol specific services. The
UEFI driver keeps private, device-specific context with protocol interfaces.

HandleProtocol (GUID, ...)

D— Handle EFI Driver
i GuD 1 |
) Protocol Interface Protocol
Invoking one of - - specific
the protocol > | Function Pointer functions
services Function Pointer
- > Device, or
P m next Driver
Protocol
specific
functions

OM13147

Figure 5. Construction of a Protocol

The following C code fragment illustrates the use of protocols;

Version 2.7 May 2017 53

Overview

// There is a global “EffectsDevice” structure. This
// structure contains information pertinent to the device.

// Connect to the ILLUSTRATION_PROTOCOL on the EffectsDevice,
// by calling HandleProtocol with the device’s EFI device handle
// and the ILLUSTRATION_PROTOCOL GUID.

EffectsDevice.Handle = DeviceHandle;

Status = HandleProtocol (
EffectsDevice.EFIHandle,
&lllustrationProtocolGuid,
&EffectsDevice.lllustrationProtocol

);

// Use the EffectsDevice illustration protocol’s “MakeEffects”
// service to make flashy and noisy effects.

Status = EffectsDevice.lllustrationProtocol->MakeEffects (
EffectsDevice.lllustrationProtocol,
TheFlashyAndNoisyEffect

);

Table 8 lists the UEFI protocols defined by this specification.

54

May 2017

UEFI Specification

Version 2.7

UEFI Specification

Table 8. UEFI Protocols

Overview

Protocol
EFlI_LOADED _IMAGE_PROTOCOL

EFl_LOADED_IMAGE_DEVICE_PATH_PROT

ocoL
EFl_DEVICE_PATH_PROTOCOL
EFl_DRIVER_BINDING_PROTOCOL

EFl_DRIVER FAMILY_ OVERRIDE _PROTOC

OL

EFl_PLATFORM_DRIVER_OVERRIDE_PROT

OCOL

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PR

OTOCOL

EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

EFI_COMPONENT NAME2 PROTOCOL

EFI_SIMPLE_TEXT_INPUT_PROTOCOL

EFlI_SIMPLE TEXT OUTPUT_ PROTOCOL

EFI_SIMPLE_POINTER_PROTOCOL
EFI_SERIAL_IO_PROTOCOL

EFI_LOAD_FILE PROTOCOL
EFlI_LOAD_FILE2 PROTOCOL

EFl_SIMPLE FILE SYSTEM _PROTOCOL

EFI_FILE_PROTOCOL
EFI_DISK_1O0_PROTOCOL

EFI_BLOCK_lO_PROTOCOL

EFI_BLOCK_l02_PROTOCOL

EFlI_UNICODE_COLLATION_PROTOCOL

Description
Provides information on the image.

Specifies the device path that was used when a PE/COFF
image was loaded through the EFI Boot Service Loadlmage().

Provides the location of the device.

Provides services to determine if an UEFI driver supports a
given controller, and services to start and stop a given
controller.

Provides a the Driver Family Override mechanism for
selecting the best driver for a given controller.

Provide a platform specific override mechanism for the
selection of the best driver for a given controller.

Provides a bus specific override mechanism for the selection
of the best driver for a given controller.

Provides diagnostics services for the controllers that UEFI
drivers are managing.

Provides human readable names for UEFI Drivers and the
controllers that the drivers are managing.

Protocol interfaces for devices that support simple console
style text input.

Protocol interfaces for devices that support console style text
displaying.

Protocol interfaces for devices such as mice and trackballs.
Protocol interfaces for devices that support serial character
transfer.

Protocol interface for reading a file from an arbitrary device.
Protocol interface for reading a non-boot option file from an
arbitrary device

Protocol interfaces for opening disk volume containing a UEFI
file system.

Provides access to supported file systems.
A protocol interface that layers onto any BLOCK_IO or
BLOCK_IO_EX interface.

Protocol interfaces for devices that support block /0 style
accesses.

Protocol interfaces for devices that support block /0 style
accesses. This interface is capable of non-blocking
transactions.

Protocol interfaces for string comparison operations.

Version 2.7

May 2017

55

Overview

56

UEFI Specification

Protocol

EFI_PCI_ROOT_BRIDGE_|O_PROTOCOL

EFI_PCI_IO_PROTOCOL

EFl_USB_|O_PROTOCOL

EFl_SIMPLE_NETWORK_PROTOCOL

EFl_PXE_BASE_CODE_PROTOCOL
EFI_BIS_PROTOCOL

EFI_DEBUG_SUPPORT_PROTOCOL

EFl_DEBUGPORT_PROTOCOL
EFl_DECOMPRESS PROTOCOL

EFlI_EBC_PROTOCOL

EFlI_GRAPHICS_OUTPUT_PROTOCOL

EFI_NVM_EXPRESS_PASS_THRU_PROTOC

oL

EFI_EXT_SCSI_PASS_THRU_PROTOCOL

EFl_USB2_HC_PROTOCOL

EFI_AUTHENTICATION_INFO_PROTOCOL

EFl_DEVICE PATH UTILITIES PROTOCOL

EFI_DEVICE_PATH_TO_TEXT_PROTOCOL

EFI_DEVICE_PATH_FROM_TEXT_PROTOCO

L

EFlI_EDID_DISCOVERED PROTOCOL

EFl_EDID_ACTIVE_PROTOCOL

EFlI_EDID_OVERRIDE _PROTOCOL

EFL_ISCSI_INITIATOR_NAME_PROTOCOL

EFI_TAPE_IO_PROTOCOL

Description

Protocol interfaces to abstract memory, 1/0, PCI
configuration, and DMA accesses to a PCI root bridge
controller.

Protocol interfaces to abstract memory, 1/0, PCI
configuration, and DMA accesses to a PCI controller on a PCI
bus.

Protocol interfaces to abstract access to a USB controller.
Provides interface for devices that support packet based
transfers.

Protocol interfaces for devices that support network booting.
Protocol interfaces to validate boot images before they are
loaded and invoked.

Protocol interfaces to save and restore processor context and
hook processor exceptions.

Protocol interface that abstracts a byte stream connection
between a debug host and a debug target system.

Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

Protocols interfaces required to support an EFl Byte Code
interpreter.

Protocol interfaces for devices that support graphical output.

Protocol interfaces that allow NVM Express commands to be
issued to an NVM Express controller.

Protocol interfaces for a SCSI channel that allows SCSI
Request Packets to be sent to SCSI devices.

Protocol interfaces to abstract access to a USB Host
Controller.

Provides access for generic authentication information
associated with specific device paths

Aids in creating and manipulating device paths.
Converts device nodes and paths to text.

Converts text to device paths and device nodes.

Contains the EDID information retrieved from a video output
device.

Contains the EDID information for an active video output
device.

Produced by the platform to allow the platform to provide
EDID information to the producer of the Graphics Output
protocol

Sets and obtains the iSCSI Initiator Name.

Provides services to control and access a tape drive.

May 2017

Version 2.7

UEFI Specification

Overview

Protocol

EFI_ MANAGED_NETWORK_PROTOCOL

EFI_ARP_SERVICE_BINDING_PROTOCOL

EFI_ARP_PROTOCOL

EFI_DHCP4_SERVICE_BINDING_PROTOCOL

EFl_DHCP4_ PROTOCOL

EFI_TCP4_SERVICE_BINDING_PROTOCOL

EFlI_TCP4 PROTOCOL

EFI_IP4_SERVICE_BINDING_PROTOCOL

EFl_IP4_PROTOCOL
EFL_IP4_CONFIG_PROTOCOL

EFI_IP4_CONFIG2_PROTOCOL

EFI_UDP4_SERVICE_BINDING_PROTOCOL

EFI_UDP4_PROTOCOL

EFI_MTFTP4_SERVICE_BINDING_PROTOC

OL

EFI MTFTP4 PROTOCOL

EFI_HASH_PROTOCOL

Description

Used to locate communication devices that are supported by
an MNP driver and create and destroy instances of the MNP
child protocol driver that can use the underlying
communications devices.

Used to locate communications devices that are supported by
an ARP driver and to create and destroy instances of the ARP
child protocol driver.

Used to resolve local network protocol addresses into
network hardware addresses.

Used to locate communication devices that are supported by
an EFlI DHCPv4 Protocol driver and to create and destroy EFI
DHCPv4 Protocol child driver instances that can use the
underlying communications devices.

Used to collect configuration information for the EFI IPv4
Protocol drivers and to provide DHCPv4 server and PXE boot
server discovery services.

Used to locate EFI TCPv4Protocol drivers to create and
destroy child of the driver to communicate with other host
using TCP protocol.

Provides services to send and receive data stream.

Used to locate communication devices that are supported by
an EFI IPv4 Protocol Driver and to create and destroy
instances of the EFI IPv4 Protocol child protocol driver that
can use the underlying communication device.

Provides basic network IPv4 packet I/0 services.

The EFI IPv4 Config Protocol driver performs platform- and
policy-dependent configuration of the EFI IPv4 Protocol
driver.

The EFI IPv4 Configuration Il Protocol driver performs
platform- and policy-dependent configuration of the EFI IPv4
Protocol driver.

Used to locate communication devices that are supported by
an EFl UDPv4 Protocol driver and to create and destroy
instances of the EFl UDPv4 Protocol child protocol driver that
can use the underlying communication device.

Provides simple packet-oriented services to transmit and
receive UDP packets.

Used to locate communication devices that are supported by
an EFI MTFTPv4 Protocol driver and to create and destroy
instances of the EFI MTFTPv4 Protocol child protocol driver
that can use the underlying communication device.

Provides basic services for client-side unicast or multicast
TFTP operations.

Allows creating a hash of an arbitrary message digest using
one or more hash algorithms.

Version 2.7

May 2017

57

Overview UEFI Specification

Protocol Description

EFI_HASH SERVICE BINDING PROTOCOL Used to locate hashing services support provided by a driver
and create and destroy instances of the EFl Hash Protocol so
that a multiple drivers can use the underlying hashing
services.

EFI_ SD_ MMC _PASS THRU PROTOCOL Protocol interface that allows SD/eMMC commands to be
sent to an SD/eMMC controller.

2.5 UEFI Driver Model

58

The UEFI Driver Model is intended to simplify the design and implementation of device
drivers, and produce small executable image sizes. As a result, some complexity has been
moved into bus drivers and in a larger part into common firmware services.

A device driver is required to produce a Driver Binding Protocol on the same image
handle on which the driver was loaded. It then waits for the system firmware to connect
the driver to a controller. When that occurs, the device driver is responsible for producing
a protocol on the controller’s device handle that abstracts the 1/0 operations that the
controller supports. A bus driver performs these exact same tasks. In addition, a bus
driver is also responsible for discovering any child controllers on the bus, and creating a
device handle for each child controller found.

One assumption is that the architecture of a system can be viewed as a set of one or more
processors connected to one or more core chipsets. The core chipsets are responsible for
producing one or more I/0O buses. The UEFI Driver Model does not attempt to describe the
processors or the core chipsets. Instead, the UEFI Driver Model describes the set of I/0
buses produced by the core chipsets, and any children of these I/O buses. These children
can either be devices or additional 1/0 buses. This can be viewed as a tree of buses and
devices with the core chipsets at the root of that tree.

The leaf nodes in this tree structure are peripherals that perform some type of I/O. This
could include keyboards, displays, disks, network, etc. The nonleaf nodes are the buses
that move data between devices and buses, or between different bus types. Figure 6
shows a sample desktop system with four buses and six devices.

May 2017 Version 2.7

UEFI Specification

Overview

CPU om <«>| Keyboard
USB Bus

ATA

!

T Hard Mouse
or ar
Bridge ’“" “>| Drive

-

> CD-ROM

}

VGA

Bus Controller

PCl Bus |Device Controller

OM13142

Figure 6. Desktop System

Figure 7 is an example of a more complex server system. The idea is to make the UEFI
Driver Model simple and extensible so more complex systems like the one below can be
described and managed in the preboot environment. This system contains six buses and

eight devices.

PCl Bus
USB Bus

A

Hard
«>| KBD Drive

Hard
VGA a0 Drive

!

CPU

Hard
Drive

PClI Bus

Hard
Drive

[-

OM13143

Figure 7. Server System

The combination of firmware services, bus drivers, and device drivers in any given
platform is likely to be produced by a wide variety of vendors including OEMs, IBVs, and
IHVs. These different components from different vendors are required to work together
to produce a protocol for an 1/0 device than can be used to boot a UEFI compliant
operating system. As a result, the UEFI Driver Model is described in great detail in order to

increase the interoperability of these components.

Version 2.7 May 2017

59

Overview UEFI Specification

This remainder of this section is a brief overview of the UEFI Driver Model. It describes the
legacy option ROM issues that the UEFI Driver Model is designed to address, the entry
point of a driver, host bus controllers, properties of device drivers, properties of bus
drivers, and how the UEFI Driver Model can accommodate hot-plug events.

2.5.1 Legacy Option ROM lIssues

Legacy option ROMs have a number of constraints and limitations that restrict innovation
on the part of platform designers and adapter vendors. At the time of writing, both ISA
and PCl adapters use legacy option ROMs. For the purposes of this discussion, only PCI
option ROMs will be considered; legacy ISA option ROMs are not supported as part of the
UEFI Specification.

The following is a list of the major constraints and limitations of legacy option ROMs. For
each issue, the design considerations that went into the design of the UEFI Driver Model
are also listed. Thus, the design of the UEFI Driver Model directly addresses the
requirements for a solution to overcome the limitations implicit to PC-AT-style legacy
option ROMs.

2.5.1.1 32-bit/16-Bit Real Mode Binaries

Legacy option ROMs typically contain 16-bit real mode code for an 1A-32 processor. This
means that the legacy option ROM on a PCI card cannot be used in platforms that do not
support the execution of IA-32 real mode binaries. Also, 16-bit real mode only allows the
driver to access directly the lower 1 MiB of system memory. It is possible for the driver to
switch the processor into modes other than real mode in order to access resources above
1 MiB, but this requires a lot of additional code, and causes interoperability issues with
other option ROMs and the system BIOS. Also, option ROMs that switch the processor
into to alternate execution modes are not compatible with Itanium Processors.

UEFI Driver Model design considerations:
» Drivers need flat memory mode with full access to system components.
» Drivers need to be written in C so they are portable between processor architectures.

» Drivers may be compiled into a virtual machine executable, allowing a single binary
driver to work on machines using different processor architectures.

2.5.1.2 Fixed Resources for Working with Option ROMs

60

Since legacy option ROMs can only directly address the lower 1 MiB of system memory,
this means that the code from the legacy option ROM must exist below 1 MiB. In a PC-AT
platform, memory from 0x00000-0x9FFFF is system memory. Memory from 0xA0000-
OxBFFFF is VGA memory, and memory from OxFOO00-OxFFFFF is reserved for the system
BIOS. Also, since system BIOS has become more complex over the years, many platforms
also use OXEOOOO-OXEFFFF for system BIOS. This leaves 128 KiB of memory from
0xCO000-0xDFFFF for legacy option ROMs. This limits how many legacy option ROMs can
be run during BIOS POST.

Also, it is not easy for legacy option ROMs to allocate system memory. Their choices are
to allocate memory from Extended BIOS Data Area (EBDA), allocate memory through a
Post Memory Manager (PMM), or search for free memory based on a heuristic. Of these,

May 2017 Version 2.7

UEFI Specification Overview

only EBDA is standard, and the others are not used consistently between adapters, or
between BIOS vendors, which adds complexity and the potential for conflicts.

UEFI Driver Model design considerations:
» Drivers need flat memory mode with full access to system components.

» Drivers need to be capable of being relocated so that they can be loaded anywhere in
memory (PE/COFF Images)

» Drivers should allocate memory through the boot services. These are well-specified
interfaces, and can be guaranteed to function as expected across a wide variety of
platform implementations.

2.5.1.3 Matching Option ROMs to their Devices

It is not clear which controller may be managed by a particular legacy option ROM. Some
legacy option ROMs search the entire system for controllers to manage. This can be a
lengthy process depending on the size and complexity of the platform. Also, due to
limitation in BIOS design, all the legacy option ROMs must be executed, and they must
scan for all the peripheral devices before an operating system can be booted. This can
also be a lengthy process, especially if SCSI buses must be scanned for SCSI devices. This
means that legacy option ROMs are making policy decision about how the platform is
being initialized, and which controllers are managed by which legacy option ROMs. This
makes it very difficult for a system designer to predict how legacy option ROMs will
interact with each other. This can also cause issues with on-board controllers, because a
legacy option ROM may incorrectly choose to manage the on-board controller.

UEFI Driver Model design considerations:
» Driver to controller matching must be deterministic

* Give OEMs more control through Platform Driver Override Protocol and Driver
Configuration Protocol

* It must be possible to start only the drivers and controllers required to boot an
operating system.

2.5.1.4 Ties to PC-AT System Design

Legacy option ROMs assume a PC-AT-like system architecture. Many of them include
code that directly touches hardware registers. This can make them incompatible on
legacy-free and headless platforms. Legacy option ROMs may also contain setup
programs that assume a PC-AT-like system architecture to interact with a keyboard or
video display. This makes the setup application incompatible on legacy-free and headless
platforms.

UEFI Driver Model design considerations:

» Drivers should use well-defined protocols to interact with system hardware, system
input devices, and system output devices.

2.5.1.5 Ambiguities in Specification and Workarounds Born of Experience

Many legacy option ROMs and BIOS code contain workarounds because of
incompatibilities between legacy option ROMs and system BIOS. These incompatibilities

Version 2.7 May 2017 61

Overview UEFI Specification

exist in part because there are no clear specifications on how to write a legacy option
ROM or write a system BIOS.

Also, interrupt chaining and boot device selection is very complex in legacy option ROMs.
It is not always clear which device will be the boot device for the OS.

UEFI Driver Model design considerations:

» Drivers and firmware are written to follow this specification. Since both components
have a clearly defined specification, compliance tests can be developed to prove that
drivers and system firmware are compliant. This should eliminate the need to build
workarounds into either drivers or system firmware (other than those that might be
required to address specific hardware issues).

* Give OEMs maore control through Platform Driver Override Protocol and Driver
Configuration Protocol and other OEM value-add components to manage the boot
device selection process.

2.5.2 Driver Initialization

The file for a driver image must be loaded from some type of media. This could include
ROM, FLASH, hard drives, floppy drives, CD-ROM, or even a network connection. Once a
driver image has been found, it can be loaded into system memory with the boot service
EFI_BOOT_SERVICES.Loadlmage(). Loadlmage() loads a PE/COFF formatted image into
system memory. A handle is created for the driver, and a Loaded Image Protocol instance
is placed on that handle. A handle that contains a Loaded Image Protocol instance is
called an Image Handle. At this point, the driver has not been started. It is just sitting in
memory waiting to be started. Figure 8 shows the state of an image handle for a driver
after Loadlmage() has been called.

Image Handle

’ EF_LOADED_IMAGE PROTOCOL H

’ BEA_LOADED_IMAGE _DEVICE _PATH_ PROTOCOL m

OM13148

62

Figure 8. Image Handle

After a driver has been loaded with the boot service Loadlmage(), it must be started with
the boot service EFI_BOOT_SERVICES.Startimage(). This is true of all types of UEFI
Applications and UEFI Drivers that can be loaded and started on an UEFI-compliant
system. The entry point for a driver that follows the UEFI Driver Model must follow some
strict rules. First, it is not allowed to touch any hardware. Instead, the driver is only
allowed to install protocol instances onto its own Image Handle. A driver that follows the
UEFI Driver Model is required to install an instance of the Driver Binding Protocol onto its
own Image Handle. It may optionally install the Driver Configuration Protocol, the Driver
Diagnostics Protocol, or the Component Name Protocol. In addition, if a driver wishes to

May 2017 Version 2.7

UEFI Specification Overview

be unloadable it may optionally update the Loaded Image Protocol (see Section 9) to
provide its own Unload() function. Finally, if a driver needs to perform any special
operations when the boot service EFl_BOOT_SERVICES.ExitBootServices() is called, it
may optionally create an event with a notification function that is triggered when the boot
service ExitBootServices() is called. An Image Handle that contains a Driver Binding
Protocol instance is known as a Driver Image Handle. Figure 9 shows a possible
configuration for the Image Handle from Figure 8 after the boot service Startimage() has
been called.

Image Handle

EFI_LOADED_IMAGE_PROTOCOL

EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL

EFI_DRIVER_BINDING_PROTOCOL

Optional E> EFI_DRIVER_FAMILY_OVERRIDE_PROTOCOL

Optional > EFI_DRIVER_DIAGNOSTICS2_PROTOCOL

Optional [—> EFI_COMPONENT_NAME2_PROTOCOL

Figure 9. Driver Image Handle

2.5.3 Host Bus Controllers

Drivers are not allowed to touch any hardware in the driver’s entry point. As a result,
drivers will be loaded and started, but they will all be waiting to be told to manage one or
more controllers in the system. A platform component, like the Boot Manager, is
responsible for managing the connection of drivers to controllers. However, before even
the first connection can be made, there has to be some initial collection of controllers for
the drivers to manage. This initial collection of controllers is known as the Host Bus
Controllers. The I/0 abstractions that the Host Bus Controllers provide are produced by
firmware components that are outside the scope of the UEFI Driver Model. The device
handles for the Host Bus Controllers and the I/O abstraction for each one must be
produced by the core firmware on the platform, or a driver that may not follow the UEFI
Driver Model. See the PCI Root Bridge I/O Protocol Specification for an example of an I/0
abstraction for PCI buses.

A platform can be viewed as a set of processors and a set of core chipset components
that may produce one or more host buses. Figure 10 shows a platform with n processors
(CPUSs), and a set of core chipset components that produce m host bridges.

Version 2.7 May 2017 63

Overview UEFI Specification

CPU1 CPU 2 s e CPUn

JC JT T

Front Side Bus

J L

Core Chipset Components

HB 1 HB 2 HB m

= = =
O ==

OM13150

Figure 10. Host Bus Controllers

Each host bridge is represented in UEFI as a device handle that contains a Device Path
Protocol instance, and a protocol instance that abstracts the I/O operations that the host
bus can perform. For example, a PCI Host Bus Controller supports one or more PCl Root
Bridges that are abstracted by the PCI Root Bridge I/O Protocol. Figure 11 shows an
example device handle for a PCI Root Bridge.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_PCI_ROOT_BRIDGE_PROTOCOL

OM13151

64

Figure 11. PCI Root Bridge Device Handle

A PCI Bus Driver could connect to this PCI Root Bridge, and create child handles for each
of the PCI devices in the system. PCI Device Drivers should then be connected to these
child handles, and produce I/O abstractions that may be used to boot a UEFI compliant
OS. The following section describes the different types of drivers that can be
implemented within the UEFI Driver Model. The UEFI Driver Model is very flexible, so all

May 2017 Version 2.7

UEFI Specification Overview

the possible types of drivers will not be discussed here. Instead, the major types will be
covered that can be used as a starting point for designing and implementing additional
driver types.

2.5.4 Device Drivers

A device driver is not allowed to create any new device handles. Instead, it installs
additional protocol interfaces on an existing device handle. The most common type of
device driver will attach an 1/0 abstraction to a device handle that was created by a bus
driver. This I/0O abstraction may be used to boot a UEFI compliant OS. Some example 1/0
abstractions would include Simple Text Output, Simple Input, Block 1/0, and Simple
Network Protocol. Eigure 12 shows a device handle before and after a device driver is
connected to it. In this example, the device handle is a child of the XYZ Bus, so it contains
an XYZ 1/0 Protocol for the 1/0 services that the XYZ bus supports. It also contains a
Device Path Protocol that was placed there by the XYZ Bus Driver. The Device Path
Protocol is not required for all device handles. It is only required for device handles that
represent physical devices in the system. Handles for virtual devices will not contain a
Device Path Protocol.

Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

Stop() Start()

Device Handle

EFI_DEVICE_PATH_PROTOCOL

= | EFI_XYZ_I/O_PROTOCOL

Installed by Start() _)
Uninstalled by Stop() EFI_BLOCK_I/O_PROTOCOL

OM13152

Figure 12. Connecting Device Drivers

The device driver that connects to the device handle in Figure 12 must have installed a
Driver Binding Protocol on its own image handle. The Driver Binding Protocol (see

Version 2.7 May 2017 65

Overview UEFI Specification

Section 11.1) contains three functions called Supported(), Start(), and Stop(). The
Supported() function tests to see if the driver supports a given controller. In this example,
the driver will check to see if the device handle supports the Device Path Protocol and the
XYZ 1/0 Protocol. If a driver’s Supported() function passes, then the driver can be
connected to the controller by calling the driver’s Start() function. The Start() function is
what actually adds the additional I/O protocols to a device handle. In this example, the
Block I/0 Protocol is being installed. To provide symmetry, the Driver Binding Protocol
also has a Stop() function that forces the driver to stop managing a device handle. This
will cause the device driver to uninstall any protocol interfaces that were installed in
Start().

The Supported(), Start(), and Stop() functions of the EFI Driver Binding Protocol are
required to make use of the boot service EEFl_BOOT_SERVICES.OpenProtocol() to get a
protocol interface and the boot service EFl_BOOT_SERVICES.CloseProtocol() to release
a protocol interface. OpenProtocol() and CloseProtocol() update the handle database
maintained by the system firmware to track which drivers are consuming protocol
interfaces. The information in the handle database can be used to retrieve information
about both drivers and controllers. The new boot service

EFI_BOOT_SERVICES.OpenProtocolinformation() can be used to get the list of

components that are currently consuming a specific protocol interface.

2.5.5 Bus Drivers

66

Bus drivers and device drivers are virtually identical from the UEFI Driver Model’s point of
view. The only difference is that a bus driver creates new device handles for the child
controllers that the bus driver discovers on its bus. As a result, bus drivers are slightly
more complex than device drivers, but this in turn simplifies the design and
implementation of device drivers. There are two major types of bus drivers. The first
creates handles for all child controllers on the first call to Start(). The other type allows
the handles for the child controllers to be created across multiple calls to Start(). This
second type of bus driver is very useful in supporting a rapid boot capability. It allows a
few child handles or even one child handle to be created. On buses that take a long time
to enumerate all of their children (e.g. SCSI), this can lead to a very large timesaving in
booting a platform. Eigure 13 shows the tree structure of a bus controller before and after
Start() is called. The dashed line coming into the bus controller node represents a link to
the bus controller’s parent controller. If the bus controller is a Host Bus Controller, then it
will not have a parent controller. Nodes A, B, C D, and E represent the child controllers of
the bus controller.

May 2017 Version 2.7

UEFI Specification Overview

L4
'
@s Controller> Bus Controller
Start()
R g E]

Figure 13. Connecting Bus Drivers

OM13153

A bus driver that supports creating one child on each call to Start() might choose to
create child C first, and then child E, and then the remaining children A, B, and D. The
Supported(), Start(), and Stop() functions of the Driver Binding Protocol are flexible
enough to allow this type of behavior.

A bus driver must install protocol interfaces onto every child handle that is creates. At a
minimum, it must install a protocol interface that provides an 1/0 abstraction of the bus’s
services to the child controllers. If the bus driver creates a child handle that represents a
physical device, then the bus driver must also install a Device Path Protocol instance onto
the child handle. A bus driver may optionally install a Bus Specific Driver Override
Protocol onto each child handle. This protocol is used when drivers are connected to the
child controllers. The boot service EFI_BOOT_SERVICES.ConnectController() uses
architecturally defined precedence rules to choose the best set of drivers for a given
controller. The Bus Specific Driver Override Protocol has higher precedence than a
general driver search algorithm, and lower precedence than platform overrides. An
example of a bus specific driver selection occurs with PCI. A PCI Bus Driver gives a driver
stored in a PCI controller’'s option ROM a higher precedence than drivers stored
elsewhere in the platform. Figure 14 shows an example child device handle that was
created by the XYZ Bus Driver that supports a bus specific driver override mechanism.

Version 2.7 May 2017 67

Overview UEFI Specification

Child Device Handle

EFI_DEVICE_PATH_PROTOCOL

EFI_XYZ_I/O_PROTOCOL

Optional I::>

EFI_BUS_SPECIFIC_DRIVER_OVERRIDE_PROTOCOL

OM13154

Figure 14. Child Device Handle with a Bus Specific Override

2.5.6 Platform Components

68

Under the UEFI Driver Model, the act of connecting and disconnecting drivers from
controllers in a platform is under the platform firmware’s control. This will typically be
implemented as part of the UEFI Boot Manager, but other implementations are possible.

The boot services EFI_BOOT_SERVICES.ConnectController() and
EFI_BOOT_ SERVICES.DisconnectController() can be used by the platform firmware to

determine which controllers get started and which ones do not. If the platform wishes to
perform system diagnostics or install an operating system, then it may choose to connect
drivers to all possible boot devices. If a platform wishes to boot a preinstalled operating
system, it may choose to only connect drivers to the devices that are required to boot the
selected operating system. The UEFI Driver Model supports both these modes of
operation through the boot services ConnectController() and DisconnectController(). In
addition, since the platform component that is in charge of booting the platform has to
work with device paths for console devices and boot options, all of the services and
protocols involved in the UEFI Driver Model are optimized with device paths in mind.

Since the platform firmware may choose to only connect the devices required to produce
consoles and gain access to a boot device, the OS present device drivers cannot assume
that a UEFI driver for a device has been executed. The presence of a UEFI driver in the
system firmware or in an option ROM does not guarantee that the UEFI driver will be
loaded, executed, or allowed to manage any devices in a platform. All OS present device
drivers must be able to handle devices that have been managed by a UEFI driver and
devices that have not been managed by an UEFI driver.

The platform may also choose to produce a protocol named the Platform Driver Override
Protocol. This is similar to the Bus Specific Driver Override Protocol, but it has higher
priority. This gives the platform firmware the highest priority when deciding which drivers
are connected to which controllers. The Platform Driver Override Protocol is attached to a
handle in the system. The boot service ConnectController() will make use of this protocol
if it is present in the system.

May 2017 Version 2.7

UEFI Specification Overview

2.5.7 Hot-Plug Events

In the past, system firmware has not had to deal with hot-plug events in the preboot
environment. However, with the advent of buses like USB, where the end user can add
and remove devices at any time, it is important to make sure that it is possible to describe
these types of buses in the UEFI Driver Model. It is up to the bus driver of a bus that
supports the hot adding and removing of devices to provide support for such events. For
these types of buses, some of the platform management is going to have to move into the
bus drivers. For example, when a keyboard is hot added to a USB bus on a platform, the
end user would expect the keyboard to be active. A USB Bus driver could detect the hot-
add event and create a child handle for the keyboard device. However, because drivers
are not connected to controllers unless EFl_ BOOT_SERVICES.ConnectController() is
called, the keyboard would not become an active input device. Making the keyboard
driver active requires the USB Bus driver to call ConnectController() when a hot-add
event occurs. In addition, the USB Bus Driver would have to call

EFI_BOOT_SERVICES.DisconnectController()when a hot-remove event occurs. If
EFI_BOOT_SERVICES.DisconnectController() returns an error the USB Bus Driver needs
to retry the EFI_ BOOT_SERVICES.DisconnectController() from a timer event until it

succeeds.

Device drivers are also affected by these hot-plug events. In the case of USB, a device can
be removed without any notice. This means that the Stop() functions of USB device
drivers will have to deal with shutting down a driver for a device that is no longer present
in the system. As a result, any outstanding 1/0 requests will have to be flushed without
actually being able to touch the device hardware.

In general, adding support for hot-plug events greatly increases the complexity of both
bus drivers and device drivers. Adding this support is up to the driver writer, so the extra
complexity and size of the driver will need to be weighed against the need for the feature
in the preboot environment.

2.5.8 EFI Services Binding

The UEFI Driver Model maps well onto hardware devices, hardware bus controllers, and
simple combinations of software services that layer on top of hardware devices. However,
the UEFI driver Model does not map well onto complex combinations of software
services. As a result, an additional set of complementary protocols are required for more
complex combinations of software services.

Figure 15 contains three examples showing the different ways that software services
relate to each other. In the first two cases, each service consumes one or more other
services, and at most one other service consumes all of the services. Case #3 differs
because two different services consume service A. The
EFI_DRIVER_BINDING_PROTOCOL can be used to model cases #1 and #2, but it cannot
be used to model case #3 because of the way that the UEFI Boot Service
OpenProtocol()behaves. When used with the BY_DRIVER open mode,
OpenProtocol()allows each protocol to have only at most one consumer. This feature is
very useful and prevents multiple drivers from attempting to manage the same controller.
However, it makes it difficult to produce sets of software services that look like case #3.

Version 2.7 May 2017 69

Overview UEFI Specification

Case #1: Linear Stack o

Case #3: Multiple Consumers

Case #2: Multiple Dependencies

70

Figure 15. Software Service Relationships

The EFI_SERVICE_BINDING_PROTOCOL provides the mechanism that allows protocols
to have more than one consumer. The EFI_SERVICE_BINDING_PROTOCOL is used with
the EFI_DRIVER_BINDING_PROTOCOL. A UEFI driver that produces protocols that need
to be available to more than one consumer at the same time will produce both the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL. This
type of driver is a hybrid driver that will produce the EFI_DRIVER_BINDING_PROTOCOL
in its driver entry point.

When the driver receives a request to start managing a controller, it will produce the
EFI_SERVICE_BINDING_PROTOCOL on the handle of the controller that is being started.
The EFI_SERVICE_BINDING_PROTOCOL is slightly different from other protocols
defined in the UEFI Specification. It does not have a GUID associated with it. Instead, this
protocol instance structure actually represents a family of protocols. Each software
service driver that requires an EFI_SERVICE_BINDING_PROTOCOL instance will be
required to generate a new GUID for its own type of EFI_SERVICE_BINDING_PROTOCOL.
This requirement is why the various network protocols in this specification contain two
GUIDs. One is the EFI_SERVICE_BINDING_PROTOCOL GUID for that network protocol,
and the other GUID is for the protocol that contains the specific member services
produced by the network driver. The mechanism defined here is not limited to network
protocol drivers. It can be applied to any set of protocols that the
EFI_DRIVER_BINDING_PROTOCOL cannot directly map because the protocols contain
one or more relationships like case #3 in Figure 15.

Neither the EFI_DRIVER_BINDING_PROTOCOL nor the combination of the
EFI_DRIVER_BINDING_PROTOCOL and the EFI_SERVICE_BINDING_PROTOCOL can
handle circular dependencies. There are methods to allow circular references, but they
require that the circular link be present for short periods of time. When the protocols
across the circular link are used, these methods also require that the protocol must be
opened with an open mode of EXCLUSIVE, so that any attempts to deconstruct the set of

May 2017 Version 2.7

UEFI Specification Overview

protocols with a call to DisconnectController() will fail. As soon as the driver is finished
with the protocol across the circular link, the protocol should be closed.

2.6 Requirements

This document is an architectural specification. As such, care has been taken to specify
architecture in ways that allow maximum flexibility in implementation. However, there are
certain requirements on which elements of this specification must be implemented to
ensure that operating system loaders and other code designed to run with UEFI boot
services can rely upon a consistent environment.

For the purposes of describing these requirements, the specification is broken up into
required and optional elements. In general, an optional element is completely defined in
the section that matches the element name. For required elements however, the
definition may in a few cases not be entirely self contained in the section that is named
for the particular element. In implementing required elements, care should be taken to
cover all the semantics defined in this specification that relate to the particular element.

2.6.1 Required Elements

Table 9 lists the required elements. Any system that is designed to conform to this
specification must provide a complete implementation of all these elements. This means
that all the required service functions and protocols must be present and the
implementation must deliver the full semantics defined in the specification for all
combinations of calls and parameters. Implementers of applications, drivers or operating
system loaders that are designed to run on a broad range of systems conforming to the
UEFI specification may assume that all such systems implement all the required
elements.

A system vendor may choose not to implement all the required elements, for example on
specialized system configurations that do not support all the services and functionality
implied by the required elements. However, since most applications, drivers and
operating system loaders are written assuming all the required elements are present on a
system that implements the UEFI specification; any such code is likely to require explicit
customization to run on a less than complete implementation of the required elements in
this specification.

Version 2.7 May 2017 71

Overview UEFI Specification

Table 9. Required UEFI Implementation Elements

Element Description

EFI_SYSTEM_TABLE Provides access to UEFI Boot Services, UEFI Runtime Services,
consoles, firmware vendor information, and the system
configuration tables.

EFlI_ BOOT SERVICES All functions defined as boot services.

EFI_ RUNTIME_SERVICES All functions defined as runtime services.
EFl_LOADED_IMAGE_PROTOC Provides information on the image.

oL

EFl_LOADED_IMAGE_DEVICE_ Specifies the device path that was used when a PE/COFF image
PATH PROTOCOL was loaded through the EFI Boot Service Loadlmage().

EFl_DEVICE_PATH_PROTOCOL Provides the location of the device.

EFI_DECOMPRESS PROTOCOL Protocol interfaces to decompress an image that was
compressed using the EFI Compression Algorithm.

EFI_DEVICE_PATH UTILITIES Protocol interfaces to create and manipulate UEFI device paths
PROTOCOL and UEFI device path nodes.

2.6.2 Platform-Specific Elements

72

There are a number of elements that can be added or removed depending on the specific
features that a platform requires. Platform firmware developers are required to
implement UEFI elements based upon the features included. The following is a list of
potential platform features and the elements that are required for each feature type:

1. If aplatform includes console devices, the EFI_SIMPLE_TEXT_INPUT PROTOCOL,
EFI_SIMPLE TEXT INPUT_EX PROTOCOL, and
EFlI_ SIMPLE TEXT OUTPUT PROTOCOL must be implemented.

2. If a platform includes a configuration infrastructure, then the
EFl_HII DATABASE PROTOCOL, EFI_HIl_STRING_PROTOCOL,
EFI_ HII CONFIG_ROUTING PROTOCOL, and EEl_HII_ CONFIG_ACCESS PROTOCOL
are required. If you support bitmapped fonts, you must support
EFl_HIl FONT_PROTOCOL.

3. Ifaplatform includes graphical console devices, then the
EFI_GRAPHICS OUTPUT_PROTOCOL, EFI_EDID_DISCOVERED_PROTOCOL, and
EFI_EDID_ACTIVE_PROTOCOL must be implemented. In order to support the
EFI_GRAPHICS_OUTPUT_PROTOCOL, a platform must contain a driver to consume
EFI_GRAPHICS_OUTPUT_PROTOCOL and produce
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL even if the
EFI_GRAPHICS_OUTPUT_PROTOCOL is produced by an external driver.

4. |If a platform includes a pointer device as part of its console support, the
EFlI SIMPLE POINTER_PROTOCOL must be implemented.

5. If a platform includes the ability to boot from a disk device, then the
EFI BLOCK 10 PROTOCOL, the EFI_DISK _10_PROTOCOL, the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, and the
EFI_UNICODE_COLLATION_PROTOCOL are required. In addition, partition support for
MBR, GPT, and El Torito must be implemented. For disk devices supporting the security
commands of the SPC-4 or ATA8-ACS command set, the
EFI_STORAGE_SECURITY COMMAND_PROTOCOL is also required._An external driver

May 2017 Version 2.7

UEFI Specification Overview

may produce the Block I/0 Protocol and the
EFI_STORAGE_SECURITY_COMMAND_PROTOCOL. All other protocols required to boot
from a disk device must be carried as part of the platform.

6. If a platform includes the ability to perform a TFTP-based boot from a network device, then
the EFl_PXE_BASE_CODE_PROTOCOL is required. The platform must be prepared to
produce this protocol on any of EFI_NETWORK_INTERFACE_IDENTIFIER_PROTOCOL
(UNDI), EFI_SIMPLE_NETWORK_PROTOCOL, or the
EFI_MANAGED NETWORK_PROTOCOL Ifa platform includes the ability to validate a
boot image received through a network device, it is also required that image verification be
supported, including SetupMode equal zero and the boot image hash or a verification
certificate corresponding to the image exist in the 'db' variable and not in the 'dbx’ variable. An
external driver may produce the UNDI interface. All other protocols required to boot from a
network device must be carried by the platform.

7. If a platform supports UEFI general purpose network applications, then the
EFI MANAGED _NETWORK PROTOCOL,
EFI_MANAGED_NETWORK_SERVICE_BINDING_PROTOCOL, EFI_ARP_PROTOCOL,
EFI_ARP_SERVICE_BINDING_PROTOCOL, EFI_DHCP4_PROTOCOL,
EFI_DHCP4_SERVICE_BINDING_PROTOCOL, EFI_TCP4_PROTOCOL,
EFI_TCP4_SERVICE_BINDING_PROTOCOL, IP4 Protocol,
EFI_IP4_SERVICE_BINDING_PROTOCOL, EFl_IP4_CONFIG2_PROTOCOL,
EFI_UDP4_PROTOCOL, and EFI_UDP4_SERVICE_BINDING_PROTOCOL are required. If
additional IPv6 support is needed for the platform, then EFI_DHCP6_PROTOCOL,

EFlI_ DHCP6_SERVICE BINDING_PROTOCOL, EFI_TCP6_PROTOCOL,
EFlI_TCP6_SERVICE BINDING PROTOCOL, EFI_IP6_PROTOCOL,
EFI_IP6_SERVICE_BINDING_PROTOCOL, EFI_IP6_CONFIG_PROTOCOL,
EFI_UDP6_PROTOCOL, and EFl_UDP6_SERVICE_BINDING_PROTOCOL are
additionally required. If the network application requires DNS capability,

EFlI_ DNS4 SERVICE BINDING_PROTOCOL and EEI_DNS4 PROTOCOL are required
for the IPv4 stack. EEl_DNS6_SERVICE BINDING_PROTOCOL and
EFI_DNS6_PROTOCOL are required for the IPv6 stack. If the network environment requires
TLS features, EFl_TLS SERVICE BINDING PROTOCOL,EFI_ TLS PROTOCOL and
EFlI TLS CONFIGURATION_PROTOCOL are required. If the network environment
requires IPSEC feature, EFl_IPSEC_CONFIG_PROTOCOL and EFI_IPSEC2 PROTOCOL
are required. If the network environment requires VLAN features,
EFI_VLAN_CONFIG_PROTOCOL is required.

8. Ifaplatform includes a byte-stream device such as a UART, then the
EFI_SERIAL_1O_PROTOCOL must be implemented.

9. Ifaplatform includes PCI bus support, then the EFI_PCI ROOT BRIDGE_ |0 PROTOCOL,
the EEI_PCI_10_PROTOCOL, must be implemented.

10. If a platform includes USB bus support, then the EEl_USB2_HC PROTOCOL and the
EFI_ USB_IO_PROTOCOL must be implemented. An external device can support USB by
producing a USB Host Controller Protocol.

11. . If a platform includes an NVM Express controller, then the
EFI_NVM_EXPRESS PASS THRU_PROTOCOL must be implemented.

12. If a platform supports booting from a block-oriented NVM Express controller, then the
EFlI BLOCK 10_PROTOCOL must be implemented. An external driver may produce the
EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL . All other protocols required to boot from
an NVM Express subsystem must be carried by the platform.

13. If a platform includes an I/0O subsystem that utilizes SCSI command packets, then the
EFlI_ EXT _SCSI_PASS THRU PROTOCOL must be implemented.

14. If a platform supports booting from a block oriented SCSI peripheral, then the
EFI_SCSI_ 10_PROTOCOL and EFI_ BLOCK 10 PROTOCOL must be implemented. An

external driver may produce the EFI_EXT_SCSI_PASS_THRU_PROTOCOL. All other
protocols required to boot from a SCSI I/0 subsystem must be carried by the platform.

Version 2.7 May 2017 73

Overview

74

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

UEFI Specification

If a platform supports booting from an iSCSI peripheral, then the
EF1_ISCSI_INITIATOR_NAME_PROTOCOL and the
EFI_ AUTHENTICATION_INFO_PROTOCOL must be implemented.

If a platform includes debugging capabilities, then the

EFlI_ DEBUG_SUPPORT_PROTOCOL, the EFI_ DEBUGPORT PROTOCOL, and the EEL
Image Info Table must be implemented.

If a platform includes the ability to override the default driver to the controller matching
algorithm provided by the UEFI Driver Model, then the
EFI_PLATFORM_DRIVER_OVERRIDE_PROTOCOL must be implemented.

If a platform includes an 1/0 subsystem that utilizes ATA command packets, then the
EFI_ATA_PASS_THRU PROTOCOL must be implemented

If a platform supports option ROMs from devices not permanently attached to the platform
and it supports the ability to authenticate those option ROMs, then it must support the option
ROM validation methods described in Network Protocols — UDP and MTFTP and the
authenticated EFI variables described in Section 8.2.

If a platform includes the ability to authenticate UEFI images and the platform potentially
supports more than one OS loader, it must support the methods described in Network
Protocols — UDP and MTFTP and the authenticated UEFI variables described in Section 8.2.
If a platform policy supports the inclusion or addition of any device that provides a container
for one or more UEFI Drivers that are required for initialization of that device then an EBC
interpreter must be implemented. If an EBC interpreter is implemented, then it must produce
the EFI_EBC_PROTOCOL interface.

If a platform includes the ability to perform a HTTP-based boot from a network device, then
the EFl_ HTTP_SERVICE BINDING PROTOCOL, EFI HTTP_PROTOCOL and

EFI_ HTTP_UTILITIES PROTOCOL are required. If it includes the ability to perform a
HTTPS-based boot from network device, besides above protocols,

EFI_TLS SERVICE BINDING PROTOCOL, EFlI TLS PROTOCOL and
EFI_TLS_CONFIGURATION_PROTOCOL are also required. If it includes the ability to
perform a HTTP(S)-based boot with DNS feature, then

EFI_DNS4 SERVICE_BINDING_PROTOCOL, EFI_DNS4 PROTOCOL are required for
the IPv4 stack; EFI_DNS6_SERVICE_BINDING_PROTOCOL and EFI_DNS6_PROTOCOL
are required for the IPv6 stack.

If a platform includes the ability to perform a wireless boot from a network device with EAP
feature, and if this platform provides a standalone wireless EAP driver, then
EFI_EAP_PROTOCOL, EFI_EAP_CONFIGURATION_PROTOCOL, and
EFI_EAP_MANAGEMENT2_PROTOCOL are required; if the platform provides a
standalone wireless supplicant, then EFI_SUPPLICANT_PROTOCOL and

EFlI EAP_CONFIGURATION_PROTOCOL are required. If itincludes the ability to perform a
wireless boot with TLS feature, then EEl_TLS SERVICE_BINDING PROTOCOL,

EFI_ TLS PROTOCOL and EFI_TLS CONFIGURATION_PROTOCOL are required.

If a platform supports classic Bluetooth, then EFI_ BLUETOOTH HC PROTOCOL,

EFlI BLUETOOTH 10_PROTOCOL, and EEI_ BLUETOOTH_CONFIG_PROTOCOL must
be implemented, and EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL may be implemented. If a
platform supports Bluetooth Smart (Bluetooth Low Energy), then

EFlI BLUETOOTH HC PROTOCOL, EFI BLUETOOTH ATTRIBUTE PROTOCOL and
EFlI_ BLUETOOTH_LE_CONFIG_PROTOCOL must be implemented. If a platform supports
both Bluetooth classic and BluetoothLE, then both above requirements should be satisfied.
24. If a platform supports RESTful communication over HTTP or over an in-band path to a
BMC, then the EEI_REST _PROTOCOL must be implemented.

If a platform includes the ability to use a hardware feature to create high quality random
numbers, this capability should be exposed by instance of EFI_RNG PROTOCOL with at
least one EFI RNG Algorithm supported.

If a platform permits the installation of Load Option Variables, (Boot####, or Driver###, or
SysPrep##i##), the platform must support and recognize all defined values for Attributes
within the variable and report these capabilities in BootOptionSupport. If a platform supports

May 2017 Version 2.7

UEFI Specification Overview

28.
29.

30.

31.
32.

33.

26.3D

installation of Load Option Variables of type Driver####, all installed Driver#### variables
must be processed and the indicated driver loaded and initialized during every boot. And all
installed SysPrep#### options must be processed prior to processing Boot#### options.

If the platform supports UEFI secure boot as described in Secure Boot and Driver Signing , the
platform must provide the PKCS verification functions described in Section 36.4.

If a platform includes an 1/0 subsystem that utilizes SD or eMMC command packets, then the
EFI_SD_MMC _PASS THRU PROTOCOL must be implemented.

If a platform includes the ability to create/destroy a specified RAM disk, the

EFI_ RAM_DISK_PROTOCOL must be implemented and only one instance of this protocol
exists.

If a platform includes a mass storage device which supports hardware-based erase on a
specified range, then the EFI_ERASE_BLOCK_PROTOCOL must be implemented.

If a platform includes the ability to register for notifications when a call to ResetSystem is
called, then the EFI_RESET NOTIFICATION_PROTOCOL must be implemented.

If a platform includes UFS devices, the EFI_UFS_DEVICE_CONFIG_PROTOCOL must be
implemented.

river-Specific Elements

There are a number of UEFI elements that can be added or removed depending on the
features that a specific driver requires. Drivers can be implemented by platform firmware

dev

elopers to support buses and devices in a specific platform. Drivers can also be

implemented by add-in card vendors for devices that might be integrated into the
platform hardware or added to a platform through an expansion slot.

The following list includes possible driver features, and the UEFI elements that are
required for each feature type:

1

Version 2.7

If a driver follows the driver model of this specification, the

EFlI_ DRIVER BINDING PROTOCOL must be implemented. It is strongly recommended
that all drivers that follow the driver model of this specification also implement the

EFI COMPONENT_NAME2_PROTOCOL.

If a driver requires configuration information, the driver must use the
EFI_HIl DATABASE _PROTOCOL. A driver should not otherwise display information to the
user or request information from the user.

If a driver requires diagnostics, the EEl_DRIVER_DIAGNOSTICS2 PROTOCOL must be
implemented. In order to support low boot times, limit diagnostics during normal boots. Time
consuming diagnostics should be deferred until the

EFlI_ DRIVER_DIAGNOSTICS2 PROTOCOL is invoked.

If a bus supports devices that are able to provide containers for drivers (e.g. option ROMSs),
then the bus driver for that bus type must implement the

EFlI_ BUS SPECIFIC_ DRIVER_OVERRIDE _PROTOCOL.

If a driver is written for a console output device, then the
EFlI_SIMPLE TEXT OUTPUT PROTOCOL must be implemented.

If a driver is written for a graphical console output device, then the

EFlI_GRAPHICS OUTPUT PROTOCOL, EFI_EDID_DISCOVERED PROTOCOL and
EFl_EDID_ACTIVE_PROTOCOL must be implemented.

If a driver is written for a console input device, then the

EFlI SIMPLE TEXT INPUT PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL must be implemented.

If a driver is written for a pointer device, then the EFl_SIMPLE POINTER_PROTOCOL must
be implemented.

May 2017 75

Overview

76

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

UEFI Specification

If a driver is written for a network device, then the

EFI_ NETWORK_INTERFACE_IDENTIFIER_PROTOCOL,
EFl_SIMPLE_NETWORK_PROTOCOL or EFI_MANAGED_NETWORK_PROTOCOL
must be implemented. If VLAN is supported in hardware, then driver for the network device
may implement the EFI_VLAN_CONFIG_PROTOCOL. If a network device chooses to only
produce the EFl_ MANAGED_NETWORK_PROTOCOL, then the driver for the network
device must implement the EFl_VLAN_CONFIG_PROTOCOL. If a driver is written for a
network device to supply wireless feature, besides above protocols,

EFI_ ADAPTER_INFORMATION_PROTOCOL must be implemented. If the wireless driver
does not provide user configuration capability,
EFI_WIRELESS_MAC_CONNECTION_II_PROTOCOL must be implemented. If the
wireless driver is written for a platform which provides a standalone wireless EAP driver,
EFI_ EAP_PROTOCOL must be implemented.

If a driver is written for a disk device, then the EFI_BLOCK 10 _PROTOCOL and the
EFlI BLOCK 102 PROTOCOL must be implemented. In addition, the

EFlI STORAGE SECURITY COMMAND_PROTOCOL must be implemented for disk
devices supporting the security commands of the SPC-4 or ATA8-ACS command set. In
addition, for devices that support incline encryption in the host storage controller, the
EFlI BLOCK 10_CRYPTO PROTOCOL must be supported.

If a driver is written for a disk device, then the EFI_BLOCK I0_PROTOCOL and the
EFlI BLOCK 102 PROTOCOL must be implemented. In addition, the
EFI_STORAGE_SECURITY _COMMAND_PROTOCOL must be implemented for disk
devices supporting the security commands of the SPC-4 or ATA8-ACS command set.

If a driver is written for a device that is not a block oriented device but one that can provide a
file system-like interface, then the EEl_SIMPLE _FILE SYSTEM_PROTOCOL must be
implemented.

If a driver is written for a PCI root bridge, then the
EFI_PCI_ ROOT BRIDGE_IO_PROTOCOL and the EEI_PCI_IO_PROTOCOL must be
implemented.

If a driver is written for an NVM Express controller, then the
EFI NVM_EXPRESS PASS THRU PROTOCOL must be implemented.

If a driver is written for a USB host controller, then the EFI_USB2 HC PROTOCOL and the
EFlI_ USB_I0_PROTOCOL must be implemented.If a driver is written for a USB host
controller, then the must be implemented.

If a driver is written for a SCSI controller, then the
EFlI_ EXT _SCSI_PASS THRU PROTOCOL must be implemented.

If a driver is digitally signed, it must embed the digital signature in the PE/COFF image as
described in “Embedded Signatures” on page 1975.

If a driver is written for a boot device that is not a block-oriented device, a file system-based
device, or a console device, then the EFI_LOAD_FILE PROTOCOL must be implemented.

If a driver follows the driver model of this specification, and the driver wants to produce
warning or error messages for the user, then the EFl_DRIVER_HEALTH PROTOCOL must
be used to produce those messages. The Boot Manager may optionally display the messages
to the user.

If a driver follows the driver model of this specification, and the driver needs to perform a
repair operation that is not part of the normal initialization sequence, and that repair operation
requires an extended period of time, then the EFI_DRIVER_HEALTH _PROTOCOL must be
used to provide the repair feature. If the Boot Manager detects a boot device that requires a
repair operation, then the Boot Manager must use the EFl_DRIVER HEALTH PROTOCOL
to perform the repair operation. The Boot Manager can optionally display progress indicators
as the repair operation is performed by the driver.

If a driver follows the driver model of this specification, and the driver requires the user to
make software and/or hardware configuration changes before the boot devices that the driver
manages can be used, then the EFl_DRIVER HEALTH PROTOCOL must be produced. If
the Boot Manager detects a boot device that requires software and/or hardware configuration

May 2017 Version 2.7

UEFI Specification Overview

changes to make the boot device usable, then the Boot Manager may optionally allow the user
to make those configuration changes.

22. If adriver is written for an ATA controller, then the EFI_ATA PASS THRU PROTOCOL
must be implemented.

23. If a driver follows the driver model of this specification, and the driver wants to be used with
higher priority than the Bus Specific Driver Override Protocol when selecting the best driver
for controller, then the EEl_ DRIVER_FAMILY_ OVERRIDE_PROTOCOL must be produced
on the same handle as the EFI_DRIVER_BINDING_PROTOCOL.

24. If a driver supports firmware management by an external agent or application, then the
EFI_FIRMWARE MANAGEMENT PROTOCOL must be used to support firmware
management.

25. If adriver follows the driver model of this specification and a driver is a device driver as
defined in Section 2.5, it must perform bus transactions via the bus abstraction protocol
produced by a parent bus driver. Thus a driver for a device that conforms to the PCI
specification must use EEl_PCI_IO_PROTOCOL for all PCI memory space, PCI I/0, PCI
configuration space, and DMA operations.

26. If a driver is written for a classic Bluetooth controller, then
EFI_BLUETOOTH HC PROTOCOL, EFI_ BLUETOOTH_ 10_PROTOCOL and
EFI_BLUETOOTH_CONFIG_PROTOCOL must be implemented, and
EFI_BLUETOOTH_ATTRIBUTE_PROTOCOL may be implemented. If a driver written for a
Bluetooth Smart (Bluetooth Low Energy) controller, then
EFlI BLUETOOTH HC PROTOCOL, EFI BLUETOOTH ATTRIBUTE PROTOCOL and
EFlI_ BLUETOOTH_LE_CONFIG_PROTOCOL must be implemented. If a driver supports
both Bluetooth classic and BluetoothLE, then both above requirements should be satisfied.

27. If adriver is written for an SD controller or eMMC controller, then the
EFI SD_ MMC PASS THRU PROTOCOL must be implemented.

28. If a driver is written for a UFS device, then EFI_UFS_DEVICE_CONFIG_PROTOCOL must be
implemented.

2.6.4 Extensions to this Specification published elsewhere

This specification has been extended over time to include support for new devices and
technologies. As the name of the specification implies, the original intent in its definition
was to create a baseline for firmware interfaces that is extensible without the need to
include extensions in the main body of this specification.

Readers of this specification may find that a feature or type of device is not treated by the
specification. This does not necessarily mean that there is no agreed "standard" way to
support the feature or device in implementations that claim conformance to this
Specification. On occasion, it may be more appropriate for other standards organizations
to publish their own extensions that are designed to be used in concert with the
definitions presented here. This may for example allow support for new features in a
more timely fashion than would be accomplished by waiting for a revision to this
specification or perhaps that such support is defined by a group with a specific expertise
in the subject area. Readers looking for means to access features or devices that are not
treated in this document are therefore recommended to inquire of appropriate standards
groups to ascertain if appropriate extension publications already exist before creating
their own extensions.

By way of examples, at the time of writing the UEFI Forum is aware of a number of
extension publications that are compatible with and designed for use with this
specification. Such extensions include:

Version 2.7 May 2017 77

Overview

UEFI Specification

Developers Interface Guide for Itanium® Architecture Based Servers:
published and hosted by the DIG64 group (See “Links to UEFI-Related
Documents” (http://uefi.org/uefi) under the heading “Developers Interface
Guide for Itanium® Architecture Based Servers”). This document is a set of
technical guidelines that define hardware, firmware, and operating system
compatibility for Itanium™-based servers;

TCG EFI Platform Specification: published and hosted by the Trusted
Computing Group (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “TCG EFI Platform Specification”). This document is
about the processes that boot an EFI platform and boot an OS on that
platform. Specifically, this specification contains the requirements for
measuring boot events into TPM PCRs and adding boot event entries into
the Event Log.

TCG EFI Protocol Specification: published and hosted by the Trusted
Computing Group (See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “TCG EFI Protocol Specification”). This document
defines a standard interface to the TPM on an EFI platform.

Other extension documents may exist outside the view of the UEFI Forum or may have
been created since the last revision of this document.

78

May 2017 Version 2.7

UEFI Specification Boot Manager

3 Boot Manager

The UEFI boot manager is a firmware policy engine that can be configured by modifying
architecturally defined global NVRAM variables. The boot manager will attempt to load
UEFI drivers and UEFI applications (including UEFI OS boot loaders) in an order defined
by the global NVRAM variables. The platform firmware must use the boot order specified
in the global NVRAM variables for normal boot. The platform firmware may add extra
boot options or remove invalid boot options from the boot order list.

The platform firmware may also implement value added features in the boot manager if
an exceptional condition is discovered in the firmware boot process. One example of a
value added feature would be not loading a UEFI driver if booting failed the first time the
driver was loaded. Another example would be booting to an OEM-defined diagnostic
environment if a critical error was discovered in the boot process.

The boot sequence for UEFI consists of the following:

* The boot order list is read from a globally defined NVRAM variable. Modifications to
this variable are only guaranteed to take effect after the next platform reset. The boot
order list defines a list of NVRAM variables that contain information about what is to
be booted. Each NVRAM variable defines a name for the boot option that can be
displayed to a user.

* The variable also contains a pointer to the hardware device and to a file on that
hardware device that contains the UEFI image to be loaded.

* The variable might also contain paths to the OS partition and directory along with
other configuration specific directories.

The NVRAM can also contain load options that are passed directly to the UEFI image. The
platform firmware has no knowledge of what is contained in the load options. The load
options are set by higher level software when it writes to a global NVRAM variable to set
the platform firmware boot policy. This information could be used to define the location
of the OS kernel if it was different than the location of the UEFI OS loader.

3.1 Firmware Boot Manager

The boot manager is a component in firmware conforming to this specification that
determines which drivers and applications should be explicitly loaded and when. Once
compliant firmware is initialized, it passes control to the boot manager. The boot
manager is then responsible for determining what to load and any interactions with the
user that may be required to make such a decision.

The actions taken by the boot manager depend upon the system type and the policies set
by the system designer. For systems that allow the installation of new Boot Variables
(Section 3.4), the Boot Manager must automatically or upon the request of the loaded
item, initialize at least one system console, as well as perform all required initialization of
the device indicated within the primary boot target. For such systems, the Boot Manager
is also required to honor the priorities set in BootOrder variable.

Version 2.7 May 2017 79

Boot Manager UEFI Specification

In particular, likely implementation options might include any console interface
concerning boot, integrated platform management of boot selections, and possible
knowledge of other internal applications or recovery drivers that may be integrated into
the system through the boot manager.

3.1.1 Boot Manager Programming

80

Programmatic interaction with the boot manager is accomplished through globally
defined variables. On initialization the boot manager reads the values which comprise all
of the published load options among the UEFI environment variables. By using the
SetVariable() function the data that contain these environment variables can be
modified. Such modifications are guaranteed to take effect after the next system boot
commences. However, boot manager implementations may choose to improve on this
guarantee and have changes take immediate effect for all subsequent accesses to the
variables that affect boot manager behavior without requiring any form of system reset

Each load option entry resides in a Boot####, Driver####, SysPrep###i#, OsRecovery####
or PlatformRecovery#### variable where #### is replaced by a unique option number in
printable hexadecimal representation using the digits 0-9, and the upper case versions of
the characters A-F (OOO0-FFFF).

The #### must always be four digits, so small numbers must use leading zeros. The load
options are then logically ordered by an array of option numbers listed in the desired
order. There are two such option ordering lists when booting normally. The first is
DriverOrder that orders the Driver#### load option variables into their load order. The
second is BootOrder that orders the Boot#### load options variables into their load
order.

For example, to add a new boot option, a new Boot#### variable would be added. Then
the option number of the new Boot#### variable would be added to the BootOrder
ordered list and the BootOrder variable would be rewritten. To change boot option on an
existing Boot###+#, only the Boot#### variable would need to be rewritten. A similar
operation would be done to add, remove, or modify the driver load list.

If the boot via Boot#### returns with a status of EFI_SUCCESS, platform firmware
supports boot manager menu, and if firmware is configured to boot in an interactive
mode, the boot manager will stop processing the BootOrder variable and present a boot
manager menu to the user. If any of the above-mentioned conditions is not satisfied, the
next Boot#### in the BootOrder variable will be tried until all possibilities are exhausted.
In this case, boot option recovery must be performed (see Section 3.4).

The boot manager may perform automatic maintenance of the database variables. For
example, it may remove unreferenced load option variables or any load option variables
that cannot be parsed, and it may rewrite any ordered list to remove any load options that
do not have corresponding load option variables. The boot manager can also, at its own
discretion, provide an administrator with the ability to invoke manual maintenance
operations as well. Examples include choosing the order of any or all load options,
activating or deactivating load options, initiating OS-defined or platform-defined
recovery, etc. In addition, if a platform intends to create PlatformRecovery####, before
attempting to load and execute any DriverOrder or BootOrder entries, the firmware must

May 2017 Version 2.7

UEFI Specification Boot Manager

create any and all PlatformRecovery###+# variables (see Section 3.4.2). The firmware
should not, under normal operation, automatically remove any correctly formed
Boot#### variable currently referenced by the BootOrder or BootNext variables. Such
removal should be limited to scenarios where the firmware is guided by direct user
interaction.

The contents of PlatformRecovery#### represent the final recovery options the firmware
would have attempted had recovery been initiated during the current boot, and need not
include entries to reflect contingencies such as significant hardware reconfiguration, or
entries corresponding to specific hardware that the firmware is not yet aware of.

The behavior of the UEFI Boot Manager is impacted when Secure Boot is enabled, See
Section 31.4.

3.1.2 Load Option Processing

The boot manager is required to process the Driver load option entries before the Boot
load option entries. If the EFI_OS_INDICATIONS _START_OS_RECOVERY bit has been
set in OsIndications, the firmware shall attempt OS-defined recovery (see Section 3.4.1)
rather than normal boot processing. If the
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit has been set in
Oslndications, the firmware shall attempt platform-defined recovery (see Section 3.4.2)
rather than normal boot processing or handling of the

EFI_OS_INDICATIONS START_OS_RECOVERY bit. In either case, both bits should be
cleared.

Otherwise, the boot manager is also required to initiate a boot of the boot option
specified by the BootNext variable as the first boot option on the next boot, and only on
the next boot. The boot manager removes the BootNext variable before transferring
control to the BootNext boot option. After the BootNext boot option is tried, the normal
BootOrder list is used. To prevent loops, the boot manager deletes BootNext before
transferring control to the preselected boot option.

If all entries of BootNext and BootOrder have been exhausted without success, or if the
firmware has been instructed to attempt boot order recovery, the firmware must attempt
boot option recovery (see Section 3.4).

The boot manager must call EFI_BOOT_ SERVICES.Loadlmage() which supports at least
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL and EFl_LOAD_FILE_PROTOCOL for resolving
load options. If Loadlmage() succeeds, the boot manager must enable the watchdog
timer for 5 minutes by using the EFI_ BOOT_SERVICES.SetWatchdogTimer() boot service
prior to calling EFI_BOOT_SERVICES.Startimage(). If a boot option returns control to the
boot manager, the boot manager must disable the watchdog timer with an additional call
to the SetWatchdogTimer() boot service.

If the boot image is not loaded via EFI_BOOT_SERVICES.Loadlmage() the boot manager
is required to check for a default application to boot. Searching for a default application
to boot happens on both removable and fixed media types. This search occurs when the
device path of the boot image listed in any boot option points directly to an
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL device and does not specify the exact file to
load. The file discovery method is explained in Section 3.4. The default media boot case

Version 2.7 May 2017 81

Boot Manager UEFI Specification

82

of a protocol other than EFI_SIMPLE_FILE_SYSTEM_PROTOCOL is handled by the
EFI_LOAD FILE PROTOCOL for the target device path and does not need to be handled
by the boot manager.

The UEFI boot manager must support booting from a short-form device path that starts
with the first element being a USB WWID (see Table 61) or a USB Class (see Table 63)
device path. For USB WWID, the boot manager must use the device vendor ID, device
product id, and serial number, and must match any USB device in the system that
contains this information. If more than one device matches the USB WWID device path,
the boot manager will pick one arbitrarily. For USB Class, the boot manager must use the
vendor ID, Product ID, Device Class, Device Subclass, and Device Protocol, and must
match any USB device in the system that contains this information. If any of the ID,
Product ID, Device Class, Device Subclass, or Device Protocol contain all F's (OXFFFF or
OxFF), this element is skipped for the purpose of matching. If more than one device
matches the USB Class device path, the boot manager will pick one arbitrarily.

The boot manager must also support booting from a short-form device path that starts
with the first element being a hard drive media device path (see Table 86). The boot
manager must use the GUID or signature and partition number in the hard drive device
path to match it to a device in the system. If the drive supports the GPT partitioning
scheme the GUID in the hard drive media device path is compared with the
UniquePartitionGuid field of the GUID Partition Entry (see Table 18). If the drive supports
the PC-AT MBR scheme the signature in the hard drive media device path is compared
with the UniqueMBRSignature in the Legacy Master Boot Record (see Table 13). If a
signature match is made, then the partition number must also be matched. The hard drive
device path can be appended to the matching hardware device path and normal boot
behavior can then be used. If more than one device matches the hard drive device path,
the boot manager will pick one arbitrarily. Thus the operating system must ensure the
uniqueness of the signatures on hard drives to guarantee deterministic boot behavior.

The boot manager must also support booting from a short-form device path that starts
with the first element being a File Path Media Device Path (see Table 89). When the boot
manager attempts to boot a short-form File Path Media Device Path, it will enumerate all
removable media devices, followed by all fixed media devices, creating boot options for
each device. The boot option FilePathList[0] is constructed by appending short-form File
Path Media Device Path to the device path of a media. The order within each group is
undefined. These new boot options must not be saved to non volatile storage, and may
not be added to BootOrder. The boot manager will then attempt to boot from each boot
option. If a device does not support the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but
supports the EFI_BLOCK_IO_PROTOCOL protocol, then the EFI Boot Service
ConnectController must be called for this device with DriverimageHandle and
RemainingDevicePath set to NULL and the Recursive flag is set to TRUE. The firmware will
then attempt to boot from any child handles produced using the algorithms outlined
above.

The boot manager must also support booting from a short-form device path that starts
with the first element being a URI Device Path (see Table 78). When the boot manager
attempts to boot a short-form URI Device Path, it could attempt to connect any device
which will produce a device path protocol including a URI device path node until it
matches a device, or fail to match any device. The boot manager will enumerate all

May 2017 Version 2.7

UEFI Specification Boot Manager

LoadFile protocol instances, and invoke LoadFile protocol with FilePath set to the short-
form device path during the matching process.

3.1.3 Load Options

Each load option variable contains an EFI_LOAD_OPTION descriptor that is a byte
packed buffer of variable length fields.
typedef struct _EFI_ LOAD_OPTION {

UINT32 Attributes;

UINT16 FilePathListLength;

// CHAR16 Description(];

// EFI_DEVICE_PATH_PROTOCOL FilePathList[];
// UINT8 OptionalData[];

} EFI_LOAD_OPTION;

Parameters

Attributes The attributes for this load option entry. All unused bits
must be zero and are reserved by the UEFI specification
for future growth. See “Related Definitions.”

FilePathListLength Length in bytes of the FilePathList. OptionalData starts at
offset sizeof(UINT32) + sizeof(UINT16) +
StrSize(Description) + FilePathListLength of the
EFI_LOAD_OPTION descriptor.

Description The user readable description for the load option. This
field ends with a Null character.
FilePathList A packed array of UEFI device paths. The first element of

the array is a device path that describes the device and
location of the Image for this load option. The
FilePathList[0] is specific to the device type. Other device
paths may optionally exist in the FilePathList, but their
usage is OSV specific. Each element in the array is variable
length, and ends at the device path end structure. Because
the size of Description is arbitrary, this data structure is not
guaranteed to be aligned on a natural boundary. This data
structure may have to be copied to an aligned natural
boundary before it is used.

OptionalData The remaining bytes in the load option descriptor are a
binary data buffer that is passed to the loaded image. If
the field is zero bytes long, a NULL pointer is passed to the
loaded image. The number of bytes in OptionalData can
be computed by subtracting the starting offset of
OptionalData from total size in bytes of the
EFI_LOAD_OPTION.

Related Definitions
W ki * HHHAKIFRAKIIRAXIHAKIIRAKIIRAAK
// Attributes

Version 2.7 May 2017 83

Boot Manager UEFI Specification

84

Y kkkkkkddkokokdkkokkdkkkdokkokok

#define LOAD_OPTION_ACTIVE 0x00000001
#define LOAD_OPTION_FORCE_RECONNECT 0x00000002
#define LOAD_OPTION_HIDDEN 0x00000008

#define LOAD_OPTION_CATEGORY 0x00001F00

#define LOAD_OPTION_CATEGORY_BOOT 0x00000000
#define LOAD_OPTION_CATEGORY_APP 0x00000100
// All values 0x00000200-0x00001F00 are reserved

Description

Calling SetVariable() creates a load option. The size of the load option is the same as the
size of the DataSize argument to the SetVariable() call that created the variable. When
creating a new load option, all undefined attribute bits must be written as zero. When
updating a load option, all undefined attribute bits must be preserved.

If a load option is marked as LOAD_OPTION_ACTIVE, the boot manager will attempt to
boot automatically using the device path information in the load option. This provides an
easy way to disable or enable load options without needing to delete and re-add them.

If any Driver#### load option is marked as LOAD_OPTION_FORCE_RECONNECT, then all
of the UEFI drivers in the system will be disconnected and reconnected after the last
Driver#### load option is processed. This allows a UEFI driver loaded with a Driver####
load option to override a UEFI driver that was loaded prior to the execution of the UEFI
Boot Manager.

The executable indicated by FilePathList[0] in Driver#### load option must be of type
EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER or
EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER otherwise the indicated executable will
not be entered for initialization.

The executable indicated by FilePathList[0] in SysPrep###, Boot####, or
OsRecovery#### load option must be of type
EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION, otherwise the indicated executable will not
be entered.

The LOAD_OPTION_CATEGORY is a sub-field of Attributes that provides details to the
boot manager to describe how it should group the Boot#### load options. This field is
ignored for variables of the form Driver####, SysPrep####,0r OsRecovery####.

Boot#### load options with LOAD_OPTION_CATEGORY set to
LOAD_OPTION_CATEGORY_BOOT are meant to be part of the normal boot processing.

Boot#### load options with LOAD_OPTION_CATEGORY set to
LOAD_OPTION_CATEGORY_APP are executables which are not part of the normal boot
processing but can be optionally chosen for execution if boot menu is provided, or via
Hot Keys. See Section 3.1.6 for details.

Boot options with reserved category values, will be ignored by the boot manager.

May 2017 Version 2.7

UEFI Specification Boot Manager

If any Boot#### load option is marked as LOAD_OPTION_HIDDEN, then the load option
will not appear in the menu (if any) provided by the boot manager for load option
selection.

3.1.4 Boot Manager Capabilities

The boot manager can report its capabilities through the global variable
BootOptionSupport. If the global variable is not present, then an installer or application
must act as if a value of O was returned.

#define EFI_BOOT_OPTION_SUPPORT_KEY 0x00000001

#define EFI_BOOT_OPTION_SUPPORT_APP 0x00000002

#define EFI_BOOT_OPTION_SUPPORT_SYSPREP 0x00000010

#define EFI_BOOT_OPTION_SUPPORT _COUNT 0x00000300

If EFI_BOOT_OPTION_SUPPORT _KEY is set then the boot manager supports launching
of Boot#### load options using key presses. If EFI_BOOT_OPTION_SUPPORT_APP is set
then the boot manager supports boot options with LOAD_OPTION_CATEGORY_APP. If
EFI_BOOT_OPTION_SUPPORT_SYSPREP is set then the boot manager supports boot
options of form SysPrep####.

The value specified in EFI_BOOT_OPTION_SUPPORT_COUNT describes the maximum
number of key presses which the boot manager supports in the
EFI_KEY_OPTION.KeyData.InputKeyCount. This value is only valid if
EFI_BOOT_OPTION_SUPPORT_KEY is set. Key sequences with more keys specified are
ignored.

3.1.5 Launching Boot#### Applications

The boot manager may support a separate category of Boot#### load option for
applications. The boot manager indicates that it supports this separate category by
setting the EFI_BOOT_OPTION_SUPPORT_APP in the BootOptionSupport global
variable.

When an application’s Boot#### option is being added to the BootOrder, the installer
should clear LOAD_OPTION_ACTIVE so that the boot manager does not attempt to
automatically “boot” the application. If the boot manager indicates that it supports a
separate application category, as described above, the installer should set
LOAD_OPTION_CATEGORY_APP. If not, it should set
LOAD_OPTION_CATEGORY_BOOT.

3.1.6 Launching Boot#### Load Options Using Hot Keys

The boot manager may support launching a Boot#### load option using a special key
press. If so, the boot manager reports this capability by setting
EFI_BOOT_OPTION_SUPPORT_KEY in the BootOptionSupport global variable.

A boot manager which supports key press launch reads the current key information from
the console. Then, if there was a key press, it compares the key returned against zero or
more Key#### global variables. If it finds a match, it verifies that the Boot#### load
option specified is valid and, if so, attempts to launch it immediately. The #### in the

Version 2.7 May 2017 85

Boot Manager UEFI Specification

Key###t is a printable hexadecimal number (‘0’-'9’, ‘A’-'F’) with leading zeroes. The order
which the Key#### variables are checked is implementation-specific.

The boot manager may ignore Key#### variables where the hot keys specified overlap
with those used for internal boot manager functions. It is recommended that the boot
manager delete these keys.

The Key###+# variables have the following format:

Prototype
typedef struct _EFI_KEY_OPTION {
EFI_BOOT_KEY_DATA KeyData,;
UINT32 BootOptionCrc;
UINT16 BootOption;
// EFI_INPUT_KEY Keys]];
} EFI_KEY_OPTION,;

Parameters

KeyData
Specifies options about how the key will be processed. Type
EFI_BOOT_KEY_DATA is defined in “Related Definitions” below.

BootOptionCrc
The CRC-32 which should match the CRC-32 of the entire
EFI_LOAD_OPTION to which BootOption refers. If the CRC-32s do not match
this value, then this key option is ignored.

BootOption
The Boot#### option which will be invoked if this key is pressed and the
boot option is active (LOAD_OPTION_ACTIVE is set).

Keys
The key codes to compare against those returned by the
EFI_SIMPLE_TEXT_INPUT and EFl_SIMPLE_TEXT_INPUT_EX protocols.
The number of key codes (0-3) is specified by the EFI_KEY_CODE_COUNT
field in KeyOptions.

86 May 2017 Version 2.7

UEFI Specification Boot Manager

Related Definitions

typedef union {

struct {
UINT32 Revision : 8;
UINT32 ShiftPressed : 1;
UINT32 ControlPressed : 1;
UINT32 AltPressed : 1;
UINT32 LogoPressed : 1;
UINT32 MenuPressed : 1;
UINT32 SysReqPressed : 1;
UINT32 Reserved : 16;
UINT32 InputKeyCount : 2;
} Options;

UINT32 PackedValue;

} EFI_BOOT_KEY_DATA;

Revision

Indicates the revision of the EFI_KEY_OPTION structure. This revision level
should be 0.

ShiftPressed

Either the left or right Shift keys must be pressed (1) or must not be pressed
0.
ControlPressed

Either the left or right Control keys must be pressed (1) or must not be
pressed (0O).

AltPressed

Either the left or right Alt keys must be pressed (1) or must not be pressed
(0).
LogoPressed
Either the left or right Logo keys must be pressed (1) or must not be pressed
(0).
MenuPressed
The Menu key must be pressed (1) or must not be pressed (0).
SysReqPressed
The SysReq key must be pressed (1) or must not be pressed (0).
InputKeyCount

Specifies the actual number of entries in EFI_KEY_OPTION.Keys, from 0-3. If
zero, then only the shift state is considered. If more than one, then the boot
option will only be launched if all of the specified keys are pressed with the

same shift state.

Example #1: ALT is the hot key. KeyData.PackedValue = 0x00000400.

Version 2.7 May 2017 87

Boot Manager UEFI Specification

Example #2: CTRL-ALT-P-R. KeyData.PackedValue = 0x80000600.
Example #3: CTRL-F1. KeyData.PackedValue = 0x40000200.

3.1.7 Required System Preparation Applications

A load option of the form SysPrep#### is intended to designate a UEFI application that is
required to execute in order to complete system preparation prior to processing of any
Boot###+# variables. The execution order of SysPrep#### applications is determined by
the contents of the variable SysPrepOrder in a way directly analogous to the ordering of
Boot#### options by BootOrder.

The platform is required to examine all SysPrep###+# variables referenced in
SysPrepOrder. If Attributes bit LOAD_OPTION_ACTIVE is set, and the application
referenced by FilePathList[0] is present, the UEFI Applications thus identified must be
loaded and launched in the order they appear in SysPrepOrder and prior to the launch of
any load options of type Boot####.

When launched, the platform is required to provide the application loaded by
SysPrep####, with the same services such as console and network as are normally
provided at launch to applications referenced by a Boot#### variable. SysPrep####
application must exit and may not call ExitBootServices(). Processing of any Error Code
returned at exit is according to system policy and does not necessarily change processing
of following boot options. Any driver portion of the feature supported by SysPrep####
boot option that is required to remain resident should be loaded by use of Driver####
variable.

The Attributes option LOAD_OPTION_FORCE_RECONNECT is ignored for SysPrep####
variables, and in the event that an application so launched performs some action that
adds to the available hardware or drivers, the system preparation application shall itself
utilize appropriate calls to ConnectController() or DisconnectController() to revise
connections between drivers and hardware.

After all SysPrep###+# variables have been launched and exited, the platform shall notify
EFI_EVENT_GROUP_READY_TO_BOOT event group and begin to evaluate Boot####
variables with Attributes set to LOAD_OPTION_CATEGORY_BOOT according to the
order defined by BootOrder. The FilePathList of variables marked
LOAD_OPTION_CATEGORY_BOOT shall not be evaluated prior to the completion of
EFI_EVENT_GROUP_READY_TO_BOOT event group processing.

3.2 Boot Manager Policy Protocol

EFI_ BOOT_MANAGER_POLICY _PROTOCOL
Summary

This protocol is used by EFI Applications to request the UEFI Boot Manager to connect
devices using platform policy.

88 May 2017 Version 2.7

UEFI Specification Boot Manager

GUID
#define EFI_BOOT_MANAGER_POLICY_PROTOCOL_GUID \
{ OXFEDF8EOC, OxE147, Ox11E3,\
{ 0x99, 0x03, 0xB8, OXE8, 0x56, 0x2C, OXxBA, OxFA } }

Protocol Interface Structure
typedef struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL
EFI_BOOT_MANAGER_POLICY_PROTOCOL;
struct _EFI_BOOT_MANAGER_POLICY PROTOCOL {

UINT64 Revision;
EFI_ BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH ConnectDevicePath;

EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS ConnectDeviceClass;

3
ConnectDevicePath Connect a Device Path following the platforms EFI Boot
Manager policy.
ConnectDeviceClass Connect a class of devices, named by EFI_GUID, following
the platforms UEFI Boot Manager policy.
Description

The EFI_BOOT_MANAGER_PROTOCOL is produced by the platform firmware to expose

Boot Manager policy and platform specific EFI_ BOOT_SERVICES.ConnectController()

behavior.

Related Definitions
#define EFI_BOOT_MANAGER_POLICY PROTOCOL_REVISION 0x00010000

Version 2.7 May 2017 89

Boot Manager UEFI Specification

EFI BOOT_MANAGER_PROTOCOL.ConnectDevicePath()

Summary

Connect a device path following the platform’s EFl Boot Manager policy.
Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_PATH)(
IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,
IN EFI_DEVICE_PATH *DevicePath,

IN BOOLEAN Recursive
)i
Parameters
This A pointer to the

EFI_BOOT_MANAGER_POLICY_PROTOCOL instance.
Type EFI_BOOT_MANAGER_POLICY_PROTOCOL defined
above.

DevicePath Points to the start of the EFI device path to connect. If
DevicePath is NULL then all the controllers in the system
will be connected using the platform’s EFl Boot Manager
policy.

Recursive If TRUE, then ConnectController() is called recursively
until the entire tree of controllers below the controller
specified by DevicePath have been created. If FALSE, then
the tree of controllers is only expanded one level. If
DevicePath is NULL then Recursive is ignored.

Description
The ConnectDevicePath() function allows the caller to connect a DevicePath using the
same policy as the EFI Boot Manager.

If Recursive is TRUE, then ConnectController() is called recursively until the entire tree of
controllers below the controller specified by DevicePath have been created. If Recursive is
FALSE, then the tree of controllers is only expanded one level. If DevicePath is NULL then
Recursive is ignored.

Status Codes Returned

EFI_SUCCESS The DevicePath was connected

EFI_NOT_FOUND The DevicePath was not found

EFI_NOT_FOUND No driver was connected to DevicePath.

EFI_SECURITY_VIOLATION The user has no permission to start UEFI device drivers on the
DevicePath.

EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.

90 May 2017 Version 2.7

UEFI Specification Boot Manager

EFI BOOT_MANAGER_PROTOCOL.ConnectDeviceClass()

Summary
Connect a class of devices using the platform Boot Manager policy.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_MANAGER_POLICY_CONNECT_DEVICE_CLASS)(
IN EFI_BOOT_MANAGER_POLICY_PROTOCOL *This,
IN EFI_GUID *Class

)i

Parameters

This A pointer to the
EFI_BOOT_MANAGER_POLICY_PROTOCOL instance.
Type EFI_BOOT_MANAGER_POLICY_PROTOCOL is
defined above.

Class A pointer to an EFI_GUID that represents a class of
devices that will be connected using the Boot Manager's
platform policy.

Description

The ConnectDeviceClass() function allows the caller to request that the Boot Manager
connect a class of devices.

If Class is EFI_BOOT_MANAGER_POLICY_CONSOLE_GUID then the Boot Manager will
use platform policy to connect consoles. Some platforms may restrict the number of
consoles connected as they attempt to fast boot, and calling ConnectDeviceClass() with a
Class value of EFI_ BOOT_MANAGER_POLICY_CONSOLE_GUID must connect the set of
consoles that follow the Boot Manager platform policy, and the
EFI_SIMPLE_TEXT_INPUT_PROTOCOL, EFl_SIMPLE_TEXT_INPUT_EX_PROTOCOL,and
the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL are produced on the connected handles.
The Boot Manager may restrict which consoles get connect due to platform policy, for
example a security policy may require that a given console is not connected.

If Class is EFI_BOOT_MANAGER_POLICY_NETWORK_GUID then the Boot Manager will
connect the protocols the platform supports for UEFI general purpose network
applications on one or more handles. The protocols associated with UEFI general
purpose network applications are defined in Section 2.6.2, list item number 7. If more
than one network controller is available a platform will connect, one, many, or all of the
networks based on platform policy. Connecting UEFI networking protocols, like
EFI_DHCP4_PROTOCOL, does not establish connections on the network. The UEFI
general purpose network application that called ConnectDeviceClass() may need to use
the published protocols to establish the network connection. The Boot Manager can
optionally have a policy to establish a network connection.

Version 2.7 May 2017 91

Boot Manager UEFI Specification

If Class is EFI._ BOOT_MANAGER_POLICY_CONNECT_ALL_GUID then the Boot Manager
will connect all UEFI drivers using the UEFI Boot Service

EFI_BOOT_SERVICES.ConnectController(). If the Boot Manager has policy associated

with connect all UEFI drivers this policy will be used.

A platform can also define platform specific Class values as a properly generated
EFI_GUID would never conflict with this specification.

Related Definitions
#define EFI_ BOOT_MANAGER_POLICY_CONSOLE_GUID\
{ OXCABOE94C, OXE15F, OXx11E3\
{ 0x91, 0x8D, 0xB8, OxE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT_MANAGER_POLICY_NETWORK_GUID \
{0xD04159DC, OXE15F, Ox11E3\
{0xB2, 0x61, 0xB8, OXE8, 0x56, 0x2C, OxBA, OxFA } }
#define EFI_BOOT_MANAGER_POLICY_CONNECT_ALL _GUID\
{0x113B2126, OXFC8A, Ox11E3\
{ 0OxBD, Ox6C, 0xB8, OXE8, 0x56, 0x2C, OXBA, OxFA } }

Status Codes Returned

EFI_SUCCESS At least one devices of the Class was connected.
EFI_DEVICE_ERROR Devices were not connected due to an error.
EFI_NOT_FOUND The Class is not supported by the platform.
EFI_UNSUPPORTED The current TPL is not TPL_APPLICATION.

3.3 Globally Defined Variables

92

This section defines a set of variables that have architecturally defined meanings. In
addition to the defined data content, each such variable has an architecturally defined
attribute that indicates when the data variable may be accessed. The variables with an
attribute of NV are nonvolatile. This means that their values are persistent across resets
and power cycles. The value of any environment variable that does not have this attribute
will be lost when power is removed from the system and the state of firmware reserved
memory is not otherwise preserved. The variables with an attribute of BS are only
available before EFI_BOOT_SERVICES.ExitBootServices() is called. This means that
these environment variables can only be retrieved or modified in the preboot
environment. They are not visible to an operating system. Environment variables with an
attribute of RT are available before and after ExitBootServices() is called. Environment
variables of this type can be retrieved and modified in the preboot environment, and
from an operating system. The variables with an attribute of AT are variables with a time-
based authenticated write access defined in Section 8.2.1. All architecturally defined
variables use the EFI_GLOBAL_VARIABLE VendorGuid:

#define EFI_GLOBAL_VARIABLE \
{Ox8BE4DF61,0x93CA,0x11d2\

May 2017 Version 2.7

UEFI Specification Boot Manager

{OxAA,0x0D,0x00,0xE0,0x98,0x03,0x2B,0x8C}}

To prevent name collisions with possible future globally defined variables, other internal
firmware data variables that are not defined here must be saved with a unique
VendorGuid other than EFI_GLOBAL_VARIABLE or any other GUID defined by the UEFI
Specification. Implementations must only permit the creation of variables with a UEFI
Specification-defined VendorGuid when these variables are documented in the UEFI
Specification.

Version 2.7 May 2017 93

Boot Manager

94

Table 10. Global Variables

UEFI Specification

Variable Name
AuditMode

Boot####

BootCurrent
BootNext
BootOrder
BootOptionSupport

Conin
ConinDev
ConOut
ConOutDev
dbDefault

dbrDefault

dbtDefault

dbxDefault

DeployedMode

Driver##i#
DriverOrder
ErrOut

ErrOutDev
HwErrRecSupport

KEK

KEKDefault

Key#H###

Lang

Attribute
BS, RT

NV, BS, RT

BS, RT
NV, BS, RT
NV, BS, RT
BS,RT,

NV, BS, RT
BS,RT
NV, BS, RT
BS,RT
BS, RT

BS,RT

BS, RT

BS,RT

BS, RT

NV, BS, RT
NV, BS, RT
NV, BS, RT
BS, RT

NV, BS, RT

NV, BS, RT AT

BS,RT

NV, BS, RT

NV, BS, RT

Description

Whether the system is operating in Audit Mode (1) or not
(0). All other values are reserved. Should be treated as
read-only except when DeployedMode is 0. Always
becomes read-only after ExitBootServices() is called.

A boot load option. #### is a printed hex value. No Ox or
his included in the hex value.

The boot option that was selected for the current boot.
The boot option for the next boot only.
The ordered boot option load list.

The types of boot options supported by the boot
manager. Should be treated as read-only.

The device path of the default input console.

The device path of all possible console input devices.
The device path of the default output console.

The device path of all possible console output devices.

The OEM's default secure boot signature store. Should
be treated as read-only.

The OEM's default OS Recovery signature store. Should
be treated as read-only.

The OEM's default secure boot timestamp signature
store. Should be treated as read-only.

The OEM's default secure boot blacklist signature store.
Should be treated as read-only.

Whether the system is operating in Deployed Mode (1)
or not (0). All other values are reserved. Should be
treated as read-only when its value is 1. Always becomes
read-only after ExitBootServices() is called.

A driver load option. #### is a printed hex value.
The ordered driver load option list.

The device path of the default error output device.
The device path of all possible error output devices.

Identifies the level of hardware error record persistence
support implemented by the platform. This variable is
only modified by firmware and is read-only to the OS.

The Key Exchange Key Signature Database.

The OEM's default Key Exchange Key Signature
Database. Should be treated as read-only.
Describes hot key relationship with a Boot#### load
option.

The language code that the system is configured for.
This value is deprecated.

May 2017

Version 2.7

UEFI Specification Boot Manager

Variable Name Attribute Description

LangCodes BS, RT The language codes that the firmware supports. This
value is deprecated.

OslIndications NV, BS, RT Allows the OS to request the firmware to enable certain
features and to take certain actions.

OslndicationsSupported BS, RT Allows the firmware to indicate supported features and
actions to the OS.

OsRecoveryOrder BS,RT,NVAT OS-specified recovery options.

PK NV, BS, RT, AT The public Platform Key.

PKDefault BS,RT The OEM's default public Platform Key. Should be
treated as read-only.

PlatformLangCodes BS, RT The language codes that the firmware supports.

PlatformLang NV, BS, RT The language code that the system is configured for.

PlatformRecovery#### BS, RT Platform-specified recovery options. These variables are
only modified by firmware and are read-only to the OS.

SignatureSupport BS,RT Array of GUIDs representing the type of signatures
supported by the platform firmware. Should be treated
as read-only.

SecureBoot BS, RT Whether the platform firmware is operating in Secure

boot mode (1) or not (0). All other values are reserved.
Should be treated as read-only.

SetupMode BS,RT Whether the system should require authentication on
SetVariable() requests to Secure Boot policy variables (0)
or not (1). Should be treated as read-only.

The system is in "Setup Mode" when SetupMode==1,
AuditMode==0, and DeployedMode==0.

SysPrep##ii NV, BS, RT A System Prep application load option containing a
EFI_LOAD_OPTION descriptor. #### is a printed
hex value.

SysPrepOrder NV, BS, RT The ordered System Prep Application load option list.

Timeout NV, BS, RT The firmware’s boot managers timeout, in seconds,

before initiating the default boot selection.

VendorKeys BS, RT Whether the system is configured to use only vendor-
provided keys or not. Should be treated as read-only.

The PlatformLangCodes variable contains a null- terminated ASCII string representing
the language codes that the firmware can support. At initialization time the firmware
computes the supported languages and creates this data variable. Since the firmware
creates this value on each initialization, its contents are not stored in nonvolatile memory.
This value is considered read-only. PlatformLangCodes is specified in Native RFC 4646
format. See Appendix M. LangCodes is deprecated and may be provided for backwards
compatibility.

The PlatformLang variable contains a null- terminated ASCII string language code that
the machine has been configured for. This value may be changed to any value supported
by PlatformLangCodes. If this change is made in the preboot environment, then the

Version 2.7 May 2017 95

Boot Manager UEFI Specification

96

change will take effect immediately. If this change is made at OS runtime, then the change
does not take effect until the next boot. If the language code is set to an unsupported
value, the firmware will choose a supported default at initialization and set PlatformLang
to a supported value. PlatformLang is specified in Native RFC 4646 array format. See
Appendix M. Lang is deprecated and may be provided for backwards compatibility.

Lang has been deprecated. If the platform supports this variable, it must map any
changes in the Lang variable into PlatformLang in the appropriate format.

Langcodes has been deprecated. If the platform supports this variable, it must map any
changes in the Langcodes variable into PlatformLang in the appropriate format.

The Timeout variable contains a binary UINT16 that supplies the number of seconds that
the firmware will wait before initiating the original default boot selection. A value of O
indicates that the default boot selection is to be initiated immediately on boot. If the
value is not present, or contains the value of OXFFFF then firmware will wait for user input
before booting. This means the default boot selection is not automatically started by the
firmware.

The Conln, ConOut, and ErrOut variables each contain an EFI_DEVICE PATH PROTOCOL
descriptor that defines the default device to use on boot. Changes to these values made
in the preboot environment take effect immediately. Changes to these values at OS
runtime do not take effect until the next boot. If the firmware cannot resolve the device
path, it is allowed to automatically replace the values, as needed, to provide a console for
the system. If the device path starts with a USB Class device path (see Table 63), then any
input or output device that matches the device path must be used as a console if it is
supported by the firmware.

The ConlInDev, ConOutDev, and ErrOutDev variables each contain an
EFI_DEVICE_PATH_PROTOCOL descriptor that defines all the possible default devices to
use on boot. These variables are volatile, and are set dynamically on every boot. Conin,
ConOut, and ErrOut are always proper subsets of ConinDev, ConOutDev, and ErrOutDev.

Each Boot#### variable contains an EFI_LOAD_OPTION. Each Boot#### variable is the
name “Boot” appended with a unique four digit hexadecimal number. For example,
Boot0001, Boot0002, BootOAO2, etc.

The OsRecoveryOrder variable contains an array of EFI_GUID structures. Each EFI_GUID
structure specifies a namespace for variables containing OS-defined recovery entries (see
Section 3.4.1). Write access to this variable is controlled by the security key database dbr
(see Section 8.2.1).

PlatformRecovery#### variables share the same structure as Boot#### variables. These
variables are processed when the system is performing recovery of boot options

The BootOrder variable contains an array of UINT16'’s that make up an ordered list of the
Boot###+# options. The first element in the array is the value for the first logical boot
option, the second element is the value for the second logical boot option, etc. The
BootOrder order list is used by the firmware’s boot manager as the default boot order.

The BootNext variable is a single UINT16 that defines the Boot#### option that is to be
tried first on the next boot. After the BootNext boot option is tried the normal BootOrder
list is used. To prevent loops, the boot manager deletes this variable before transferring
control to the preselected boot option.

May 2017 Version 2.7

UEFI Specification Boot Manager

The BootCurrent variable is a single UINT16 that defines the Boot#### option that was
selected on the current boot.

The BootOptionSupport variable is a UINT32 that defines the types of boot options
supported by the boot manager.

Each Driver#### variable contains an EFI_LOAD_OPTION. Each load option variable is
appended with a unique number, for example DriverO001, Driver0002, etc.

The DriverOrder variable contains an array of UINT16’s that make up an ordered list of
the Driver#### variable. The first element in the array is the value for the first logical
driver load option, the second element is the value for the second logical driver load
option, etc. The DriverOrder list is used by the firmware’s boot manager as the default
load order for UEFI drivers that it should explicitly load.

The Key#### variable associates a key press with a single boot option. Each Key####
variable is the name "Key" appended with a unique four digit hexadecimal number. For
example, Key0001, Key0002, KeyOOAOQ, etc.

The HwErrRecSupport variable contains a binary UINT16 that supplies the level of
support for Hardware Error Record Persistence (see Section 8.2.4) that is implemented by
the platform. If the value is not present, then the platform implements no support for
Hardware Error Record Persistence. A value of zero indicates that the platform
implements no support for Hardware Error Record Persistence. A value of 1 indicates that
the platform implements Hardware Error Record Persistence as defined in Section 8.2.4.
Firmware initializes this variable. All other values are reserved for future use.

The SetupMode variable is an 8-bit unsigned integer that defines whether the system is
should require authentication (0) or not (1) on SetVariable() requests to Secure Boot
Policy Variables. Secure Boot Policy Variables include:

* The global variables PK, KEK, and OsRecoveryOrder
» All variables named OsRecovery#### under all VendorGuids
e All variables with the VendorGuid EFI_IMAGE_SECURITY_DATABASE_GUID.

Secure Boot Policy Variables must be created using the
EFI_VARIABLE_AUTHENTICATION_2 structure.

The AuditMode variable is an 8-bit unsigned integer that defines whether the system is
currently operating in Audit Mode.

The DeployedMode variable is an 8-bit unsigned integer that defines whether the system
is currently operating in Deployed Mode.

The KEK variable contains the current Key Exchange Key database.
The PK variable contains the current Platform Key.

The VendorKeys variable is an 8-bit unsigned integer that defines whether the Security
Boot Policy Variables have been modified by anyone other than the platform vendor or a
holder of the vendor-provided keys. A value of O indicates that someone other than the
platform vendor or a holder of the vendor-provided keys has modified the Secure Boot
Policy Variables Otherwise, the value will be 1.

The KEKDefault variable, if present, contains the platform-defined Key Exchange Key
database. This is not used at runtime but is provided in order to allow the OS to recover

Version 2.7 May 2017 97

Boot Manager UEFI Specification

98

the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION or EFl_VARIABLE_AUTHENTICATION2 structure.

The PKDefault variable, if present, contains the platform-defined Platform Key. This is not
used at runtime but is provided in order to allow the OS to recover the OEM's default key
setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATIONZ structure.

The dbDefault variable, if present, contains the platform-defined secure boot signature
database. This is not used at runtime but is provided in order to allow the OS to recover
the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION2Z structure.

The dbrDefault variable, if present, contains the platform-defined secure boot authorized
recovery signature database. This is not used at runtime but is provided in order to allow
the OS to recover the OEM's default key setup. The contents of this variable do not
include an EFI_VARIABLE_AUTHENTICATIONZ structure.

The dbtDefault variable, if present, contains the platform-defined secure boot timestamp
signature database. This is not used at runtime but is provided in order to allow the OS to
recover the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATIONZ structure.

The dbxDefault variable, if present, contains the platform-defined secure boot blacklist
signature database. This is not used at runtime but is provided in order to allow the OS to
recover the OEM's default key setup. The contents of this variable do not include an
EFI_VARIABLE_AUTHENTICATION2Z structure.

The SignatureSupport variable returns an array of GUIDs, with each GUID representing a
type of signature which the platform firmware supports for images and other data. The
different signature types are described in "Signature Database".

The SecureBoot variable is an 8-bit unsigned integer that defines whether the platform
firmware is operating with Secure Boot enabled. A value of 1 indicates that platform
firmware performs driver and boot application signature verification as specified in UEFI
Image Validation during the current boot. A value of O indicates that driver and boot
application signature verification is not active during the current boot. The SecureBoot
variable is initialized prior to Secure Boot image authentication and thereafter should be
treated as read-only and immutable. Its initialization value is determined by platform
policy but must be 0 if the platform is in Setup Mode or Audit Mode during its
initialization.

The OslIndicationsSupported variable indicates which of the OS indication features and
actions that the firmware supports. This variable is recreated by firmware every boot, and
cannot be modified by the OS (see SetVariable()Attributes usage rules once
ExitBootServices() is performed).

The OslIndications variable is used to indicate which features the OS wants firmware to
enable or which actions the OS wants the firmware to take. The OS will supply this data
with a SetVariable() call. See Section 8.5.4 for the variable definition.

May 2017 Version 2.7

UEFI Specification Boot Manager

3.4 Boot Option Recovery

Boot option recovery consists of two independent parts, operating system-defined
recovery and platform-defined recovery. OS-defined recovery is an attempt to allow
installed operating systems to recover any needed boot options, or to launch full
operating system recovery. Platform-defined recovery includes any remedial actions
performed by the platform as a last resort when no operating system is found, such as the
Default Boot Behavior (see Section 3.4.3). This could include behaviors such as warranty
service reconfiguration or diagnostic options.

In the event that boot option recovery must be performed, the boot manager must first
attempt OS-defined recovery, re-attempt normal booting via Boot#### and BootOrder
variables, and finally attempt platform-defined recovery if no options have succeeded.

3.4.1 OS-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS _START_OS_RECOVERY bit is set in OsIndications, or if
processing of BootOrder does not result in success, the platform must process OS-
defined recovery options. In the case where OS-defined recovery is entered due to
Oslndications, SysPrepOrder and SysPrep#### variables should not be processed. Note
that in order to avoid ambiguity in intent, this bit is ignored in OsIndications if
EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY is set.

0OS-defined recovery uses the OsRecoveryOrder variable, as well as variables created with
vendor specific VendorGuid values and a name following the pattern OsRecovery###+#.
Each of these variables must be an authenticated variable with the
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute set.

To process these variables, the boot manager iterates over the array of EFI_GUID
structures in the OsRecoveryOrder variable, and each GUID specified is treated as a
VendorGuid associated with a series of variable names. For each GUID, the firmware
attempts to load and execute, in hexadecimal sort order, every variable with that GUID
and a name following the pattern OsRecovery####. These variables have the same
format as Boot###+# variables, and the boot manager must verify that each variable it
attempts to load was created with a public key that is associated with a certificate
chaining to one listed in the authorized recovery signature database dbr and not in the
forbidden signature database, or is created by a key in the Key Exchange Key database
KEK or the current Platform Key PK.

If the boot manager finishes processing OsRecovery#### options without

EFlI_BOOT_SERVICES.ExitBootServices() or ResetSystem() having been called, it must

attempt to process BootOrder a second time. If booting does not succeed during that
process, OS-defined recovery has failed, and the boot manager must attempt platform-
based recovery.

If, while processing OsRecovery#### variables, the boot manager encounters an entry
which cannot be loaded or executed due to a security policy violation, it must ignore that
variable.

Version 2.7 May 2017 99

Boot Manager UEFI Specification

3.4.2 Platform-Defined Boot Option Recovery

If the EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY bit is set in OsIndications,
or if OS-defined recovery has failed, the system firmware must commence with platform-
specific recovery by iterating its PlatformRecovery#### variables in the same manner as
OsRecovery####, but must stop processing if any entry is successful. In the case where
platform-specific recovery is entered due to OsIndications, SysPrepOrder and
SysPrep###+# variables should not be processed.

3.4.3 Boot Option Variables Default Boot Behavior

The default state of globally-defined variables is firmware vendor specific. However the
boot options require a standard default behavior in the exceptional case that valid boot
options are not present on a platform. The default behavior must be invoked any time the
BootOrder variable does not exist or only points to nonexistent boot options, or if no
entry in BootOrder can successfully be executed.

If system firmware supports boot option recovery as described in Section 3.4, system
firmware must include a PlatformRecovery#### variable specifying a short-form File Path
Media Device Path (see Section 3.1.2) containing the platform default file path for
removable media (see Table 11). It is recommended for maximal compatibility with prior
versions of this specification that this entry be the first such variable, though it may be at
any position within the list.

It is expected that this default boot will load an operating system or a maintenance utility.
If this is an operating system setup program it is then responsible for setting the requisite
environment variables for subsequent boots. The platform firmware may also decide to
recover or set to a known set of boot options.

3.5 Boot Mechanisms

EFI can boot from a device using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or the
EFI_LOAD_FILE_PROTOCOL. A device that supports the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL must materialize a file system protocol for that
device to be bootable. If a device does not wish to support a complete file system it may
produce an EFI_LOAD_FILE_PROTOCOL which allows it to materialize an image directly.
The Boot Manager will attempt to boot using the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL first. If that fails, then the
EFI_LOAD_FILE_PROTOCOL will be used.

3.5.1 Boot via the Simple File Protocol

100

When booting via the EFI_SIMPLE_FILE_ SYSTEM_PROTOCOL, the FilePath will start
with a device path that points to the device that implements the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL or the EFI_BLOCK_IO_PROTOCOL. The next
part of the FilePath may point to the file name, including subdirectories, which contain
the bootable image. If the file name is a null device path, the file name must be generated
from the rules defined below.

May 2017 Version 2.7

UEFI Specification Boot Manager

If the FilePathList[O] device does not support the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, but supports the EFI_BLOCK_IO_PROTOCOL
protocol, then the EFI Boot Service EFI_BOOT_SERVICES.ConnectController() must be
called for FilePathList[0] with DriverimageHandle and RemainingDevicePath set to NULL
and the Recursive flag is set to TRUE.The firmware will then attempt to boot from any
child handles produced using the algorithms outlined below.

The format of the file system specified is contained in Section 13.3. While the firmware
must produce an EFI_SIMPLE_FILE_SYSTEM_PROTOCOL that understands the UEFI file
system, any file system can be abstracted with the
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL interface.

3.5.1.1 Removable Media Boot Behavior
To generate a file name when none is present in the FilePath, the firmware must append a
default file name in the form \EFNBOOT\BOOT{machine type short-name}.EFl where
machine type short-name defines a PE32+ image format architecture. Each file only
contains one UEFI image type, and a system may support booting from one or more
images types. Table 11 lists the UEFI image types.

Table 11. UEFI Image Types

File Name Convention PE Executable Machine Type *
32-bit BOOTIA32.EFI 0x14c
x64 BOOTx64.EFI 0x8664
Itanium architecture BOOTIA64.EFI 0x200
AArch32 architecture BOOTARM.EFI 0x01c2
AArch64 architecture BOOTAAG4.EFI OxAA6G4

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Obiject File Format Specification, Revision
6.0

Media may support multiple architectures by simply having a \EF\N\BOOT\BOOT{machine
type short-name}.EFI file of each possible machine type.

3.5.2 Boot via the Load File Protocol

When booting via the EFI_LOAD _FILE PROTOCOL protocol, the FilePath is a device path
that points to a device that “speaks” the EFI_LOAD_FILE_PROTOCOL. The image is
loaded directly from the device that supports the EFI_LOAD_FILE PROTOCOL. The
remainder of the FilePath will contain information that is specific to the device. Firmware
passes this device-specific data to the loaded image, but does not use it to load the
image. If the remainder of the FilePath is a null device path it is the loaded image's
responsibility to implement a policy to find the correct boot device.

The EFI_LOAD_FILE_PROTOCOL is used for devices that do not directly support file
systems. Network devices commonly boot in this model where the image is materialized
without the need of a file system.

Version 2.7 May 2017 101

Boot Manager UEFI Specification

3.5.2.1 Network Booting

Network booting is described by the Preboot eXecution Environment (PXE) BIOS Support
Specification that is part of the Wired for Management Baseline specification. PXE
specifies UDP, DHCP, and TFTP network protocols that a booting platform can use to
interact with an intelligent system load server. UEFI defines special interfaces that are
used to implement PXE. These interfaces are contained in the
EFI_PXE_BASE_CODE_PROTOCOL (see Section 24.3).

3.5.2.2 Future Boot Media

102

Since UEFI defines an abstraction between the platform and the OS and its loader it
should be possible to add new types of boot media as technology evolves. The OS loader
will not necessarily have to change to support new types of boot. The implementation of
the UEFI platform services may change, but the interface will remain constant. The OS will
require a driver to support the new type of boot media so that it can make the transition
from UEFI boot services to OS control of the boot media.

May 2017 Version 2.7

UEFI Specification EFI System Table

4 EFI System Table

This section describes the entry point to a UEFI image and the parameters that are passed
to that entry point. There are three types of UEFI images that can be loaded and executed
by firmware conforming to this specification. These are UEFI applications (see

Section 2.1.2), UEFI boot service drivers (see Section 2.1.4), and UEFI runtime drivers (see
Section 2.1.4). UEFI applications include UEFI OS loaders (see Section 2.1.3). There are no
differences in the entry point for these three image types.

4.1 UEFI Image Entry Point

The most significant parameter that is passed to an image is a pointer to the System
Table. This pointer is EEI_IMAGE_ENTRY_POINT (see definition immediately below), the
main entry point for a UEFI Image. The System Table contains pointers to the active
console devices, a pointer to the Boot Services Table, a pointer to the Runtime Services
Table, and a pointer to the list of system configuration tables such as ACPI, SMBIOS, and
the SAL System Table. This section describes the System Table in detail.

EFI_IMAGE_ENTRY_POINT

Summary

This is the main entry point for a UEFI Image. This entry point is the same for UEFI
applications and UEFI drivers.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IMAGE_ENTRY_POINT) (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)i

Parameters
ImageHandle The firmware allocated handle for the UEFI image.
SystemTable A pointer to the EFI System Table.

Description

This function is the entry point to an EFl image. An EFl image is loaded and relocated in
system memory by the EFI Boot Service EFI_BOOT_SERVICES.Loadlmage(). An EFI
image is invoked through the EFI Boot Service EFI_BOOT_SERVICES.Startlmage().

The first argument is the image’s image handle. The second argument is a pointer to the
image’s system table. The system table contains the standard output and input handles,
plus pointers to the EFI_ BOOT_SERVICES and EFI_RUNTIME_SERVICES tables. The

Version 2.7 May 2017 103

EFIl System Table UEFI Specification

service tables contain the entry points in the firmware for accessing the core EFI system
functionality. The handles in the system table are used to obtain basic access to the
console. In addition, the System Table contains pointers to other standard tables that a
loaded image may use if the associated pointers are initialized to nonzero values.
Examples of such tables are ACPI, SMBIOS, SAL System Table, etc.

The ImageHandle is a firmware-allocated handle that is used to identify the image on
various functions. The handle also supports one or more protocols that the image can
use. All images support the EFI_LOADED_IMAGE_PROTOCOL and the
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL that returns the source location of the
image, the memory location of the image, the load options for the image, etc. The exact
EFI_LOADED_IMAGE_PROTOCOL and

EFI_LOADED IMAGE_DEVICE_PATH_PROTOCOL structures are defined in Section 9.

If the UEFI image is a UEFI application that is not a UEFI OS loader, then the application
executes and either returns or calls the EFI Boot Services EFl_BOOT_SERVICES.Exit(). A
UEFI application is always unloaded from memory when it exits, and its return status is
returned to the component that started the UEFI application.

If the UEFI image is a UEFI OS Loader, then the UEFI OS Loader executes and either
returns, calls the EFI Boot Service Exit(), or calls the EFI Boot Service

EFlI_ BOOT_SERVICES.ExitBootServices(). If the EFI OS Loader returns or calls Exit(), then
the load of the OS has failed, and the EFI OS Loader is unloaded from memory and
control is returned to the component that attempted to boot the UEFI OS Loader. If
ExitBootServices() is called, then the UEFI OS Loader has taken control of the platform,
and EFI will not regain control of the system until the platform is reset. One method of
resetting the platform is through the EFlI Runtime Service ResetSystem().

If the UEFI image is a UEFI Driver, then the UEFI driver executes and either returns or calls
the Boot Service Exit(). If the UEFI driver returns an error, then the driver is unloaded from
memory. If the UEFI driver returns EFI_SUCCESS, then it stays resident in memory. If the
UEFI driver does not follow the UEFI Driver Model, then it performs any required
initialization and installs its protocol services before returning. If the driver does follow
the UEFI Driver Model, then the entry point is not allowed to touch any device hardware.
Instead, the entry point is required to create and install the
EFl_DRIVER_BINDING_PROTOCOL (see Section 11.1) on the ImageHandle of the UEFI
driver. If this process is completed, then EFI_SUCCESS is returned. If the resources are
not available to complete the UEFI driver initialization, then EFI_OUT_OF_RESOURCES
is returned.

Status Codes Returned

EFI_SUCCESS The driver was initialized.
EFI_OUT_OF RESOURCES The request could not be completed due to a lack of resources.

4.2 EFl Table Header

104

The data type EFI_TABLE_HEADER is the data structure that precedes all of the standard
EFI table types. It includes a signature that is unique for each table type, a revision of the

May 2017 Version 2.7

UEFI Specification EFI System Table

table that may be updated as extensions are added to the EFI table types, and a 32-bit
CRC so a consumer of an EFI table type can validate the contents of the EFI table.

EFlI_TABLE_HEADER

Summary
Data structure that precedes all of the standard EFI table types.

Related Definitions
typedef struct {
UINT64 Signature;
UINT32 Revision;
UINT32 HeaderSize;
UINT32 CRC32;
UINT32 Reserved:;
}EFI_TABLE_HEADER;

Parameters

Signature A 64-bit signature that identifies the type of table that
follows. Unique signatures have been generated for the
EFI System Table, the EFI Boot Services Table, and the EFI
Runtime Services Table.

Revision The revision of the EFI Specification to which this table
conforms. The upper 16 bits of this field contain the major
revision value, and the lower 16 bits contain the minor
revision value. The minor revision values are binary coded
decimals and are limited to the range of 00..99.

When printed or displayed UEFI spec revision is referred
as (Major revision).(Minor revision upper decimal).(Minor
revision lower decimal) or (Major revision).(Minor revision
upper decimal) in case Minor revision lower decimal is set
to 0. For example:

A specification with the revision value ((2<<16) | (30))
would be referred as 2.3;

A specification with the revision value ((2<<16) | (31))
would be referred as 2.3.1

HeaderSize The size, in bytes, of the entire table including the
EFI_TABLE_HEADER.
CRC32 The 32-bit CRC for the entire table. This value is computed

by setting this field to 0, and computing the 32-bit CRC for
HeaderSize bytes.

Reserved Reserved field that must be set to O.

Note: The capabilities found in the EFI system table, runtime table and boot services table may change
over time. The first field in each of these tables is an EFI_TABLE_HEADER. This header’s Revision

Version 2.7 May 2017 105

EFIl System Table

Note:

Note:

4.3

UEFI Specification

field is incremented when new capabilities and functions are added to the functions in the table.
When checking for capabilities, code should verify that Revision is greater than or equal to the
revision level of the table at the point when the capabilities were added to the UEFI specification.

Unless otherwise specified, UEFI uses a standard CCITT32 CRC algorithm with a seed polynomial

value of 0x04c11db7 for its CRC calculations.

The size of the system table, runtime services table, and boot services table may increase over
time. It is very important to always use the HeaderSize field of the EFI_TABLE_HEADER to

determine the size of these tables.

EFI System Table

UEFI uses the EFI System Table, which contains pointers to the runtime and boot services
tables. The definition for this table is shown in the following code fragments. Except for
the table header, all elements in the service tables are pointers to functions as defined in

Section 7 and Section 8. Prior to a call to EFI_BOOT_SERVICES.ExitBootServices(), all of
the fields of the EFI System Table are valid. After an operating system has taken control

of the platform with a call to ExitBootServices(), only the Hdr, FirmwareVendor,

FirmwareRevision, RuntimeServices, NumberOfTableEntries, and ConfigurationTable

fields are valid.

EFI_SYSTEM_TABLE

Summary

Contains pointers to the runtime and boot services tables.

Related Definitions

106

#define EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249

#define EFI_2_70_SYSTEM_TABLE_REVISION ((2<<16) | (70))
#define EFI_2_60_SYSTEM_TABLE_REVISION ((2<<16) | (60))
#define EFI_2_50 SYSTEM_TABLE_REVISION ((2<<16) | (50))
#define EFI_2_40_SYSTEM_TABLE_REVISION ((2<<16) | (40))
#define EFI_2_31_SYSTEM_TABLE_REVISION ((2<<16) | (31))
#define EFI_2_30_SYSTEM_TABLE_REVISION ((2<<16) | (30))
#define EFI_2_20_SYSTEM_TABLE_REVISION ((2<<16) | (20))
#define EFI_2_10_SYSTEM_TABLE_REVISION ((2<<16) | (10))
#define EFI_2_00_SYSTEM_TABLE_REVISION ((2<<16) | (00))
#define EFI_1_10_SYSTEM_TABLE_REVISION ((1<<16) | (10))
#define EFI_1_02_SYSTEM_TABLE_REVISION ((1<<16) | (02))

#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION
#define EFI_SYSTEM_TABLE_REVISION EFI_2_70_SYSTEM_TABLE_REVISION

typedef struct {
EFI_TABLE_HEADER Hdr;

CHAR16 *FirmwareVendor;
UINT32 FirmwareRevision;

May 2017

Version 2.7

UEFI Specification EFI System Table

EFI_HANDLE ConsolelnHandle;
EFl_SIMPLE_TEXT_INPUT_PROTOCOL *Conln;
EFI_HANDLE ConsoleOutHandle;
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut;
EFI_HANDLE StandardErrorHandle;
EFl_SIMPLE_TEXT_OUTPUT_PROTOCOL *StdErr;
EFI_RUNTIME_SERVICES *RuntimeServices;
EFI_BOOT_SERVICES *BootServices;

UINTN NumberOfTableEntries;
EFI_CONFIGURATION_TABLE *ConfigurationTable;
}EFI_SYSTEM_TABLE;

Parameters

Hdr The table header for the EFI System Table. This header
contains the EFI_SYSTEM_TABLE_SIGNATURE and
EFI_SYSTEM_TABLE_REVISION values along with the size
of the EFI_SYSTEM_TABLE structure and a 32-bit CRC to
verify that the contents of the EFI System Table are valid.

FirmwareVendor A pointer to a null terminated string that identifies the
vendor that produces the system firmware for the
platform.

FirmwareRevision A firmware vendor specific value that identifies the
revision of the system firmware for the platform.

ConsolelnHandle The handle for the active console input device. This
handle must support
EFI_SIMPLE_TEXT_INPUT_PROTOCOL and
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.

Conin A pointer to the EFI_SIMPLE_TEXT_INPUT_PROTOCOL
interface that is associated with ConsolelnHandle.

ConsoleOutHandle The handle for the active console output device. This
handle must support the
EFl_SIMPLE_TEXT OUTPUT PROTOCOL.

ConOut A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with ConsoleOutHandle.

StandardErrorHandle The handle for the active standard error console device.
This handle must support the
EFl_SIMPLE_TEXT_OUTPUT_PROTOCOL.

StdErr A pointer to the EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL
interface that is associated with StandardErrorHandle.
RuntimeServices A pointer to the EFI Runtime Services Table. See
Section 4.5.
BootServices A pointer to the EFI Boot Services Table. See Section 4.4.

NumberOfTableEntries The number of system configuration tables in the buffer
ConfigurationTable.

Version 2.7 May 2017 107

EFIl System Table UEFI Specification

ConfigurationTable A pointer to the system configuration tables. The number
of entries in the table is NumberOfTableEntries.

4.4 EFI Boot Services Table

UEFI uses the EFI Boot Services Table, which contains a table header and pointers to all of
the boot services. The definition for this table is shown in the following code fragments.
Except for the table header, all elements in the EFI Boot Services Tables are prototypes of
function pointers to functions as defined in Section 7. The function pointers in this table
are not valid after the operating system has taken control of the platform with a call to
EFlI_BOOT_SERVICES.ExitBootServices().

EFI_BOOT_SERVICES

108

Summary
Contains a table header and pointers to all of the boot services.

Related Definitions
#define EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42
#define EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION

typedef struct {
EFI_TABLE_HEADER Hdr;

//

// Task Priority Services

//

EFI_RAISE_TPL RaiseTPL; // EF1 1.0+

EFI_RESTORE_TPL RestoreTPL; // EFI 1.0+

//

// Memory Services

//

EFI_ALLOCATE_PAGES AllocatePages;, //EFI 1.0+
EFI_FREE_PAGES FreePages; // EFI 1.0+

EFI_GET_MEMORY_MAP GetMemoryMap; // EFI 1.0+
EFI_ALLOCATE_POOL AllocatePool; //EFI 1.0+

EFI_FREE_POOL FreePool; /1 EFI 1.0+

//

// Event & Timer Services

/!

EFI_CREATE_EVENT CreateEvent; // EF1 1.0+

May 2017 Version 2.7

UEFI Specification EFI System Table

EFI_SET_TIMER SetTimer; // EFI 1.0+
EFI_WAIT_FOR_EVENT WaitForEvent, // EFI 1.0+
EFI_SIGNAL_EVENT SignalEvent; // EF1 1.0+
EFI_CLOSE_EVENT CloseEvent; // EFI 1.0+
EFI_CHECK_EVENT CheckEvent; // EFI 1.0+

//

// Protocol Handler Services

//

EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolinterface; // EFI 1.0+
EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolinterface; // EFI 1.0+
EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolinterface; // EFI 1.0+
EFI_HANDLE_PROTOCOL HandleProtocol; //EFI 1.0+

VOID* Reserved; // EFI 1.0+

EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; //EFI 1.0+
EFI_LOCATE_HANDLE LocateHandle; //EFI 1.0+
EFI_LOCATE_DEVICE_PATH LocateDevicePath; // EFI 1.0+
EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; // EFI 1.0+

//

// Image Services

/!

EFI_IMAGE_LOAD Loadlmage; // EFI 1.0+
EFI_IMAGE_START Startimage; // EF1 1.0+
EFI_EXIT Exit; // EF1 1.0+
EFI_IMAGE_UNLOAD Unloadlmage; //EFI 1.0+

EFI_EXIT_BOOT_SERVICES ExitBootServices; // EFl 1.0+

//

// Miscellaneous Services

//

EFI_GET_NEXT_MONOTONIC _COUNT GetNextMonotonicCount; // EFI 1.0+
EFI_STALL Stall; // EF1 1.0+

EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; //EFI 1.0+

/!

// DriverSupport Services

//

EFI_CONNECT_CONTROLLER ConnectController; //EFI 1.1
EFI_DISCONNECT_CONTROLLER DisconnectController;// EFI 1.1+

Version 2.7 May 2017 109

EFIl System Table UEFI Specification

//

// Open and Close Protocol Services

//

EFI_OPEN_PROTOCOL OpenProtocol; //EFI 1.1+
EFI_CLOSE_PROTOCOL CloseProtocol; // EFI 1.1+

EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolinformation; // EFI 1.1+

//
// Library Services
//

EFI_PROTOCOLS PER_HANDLE ProtocolsPerHandle; //EFI 1.1+
EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; //EFI 1.1+

EFI_LOCATE_PROTOCOL LocateProtocol; // EFI 1.1+
EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES InstallMultipleProtocolinterfaces;
// EFl 1.1+

EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES UninstallMultipleProtocolinterfaces
. //EFI 1.1+

/!

// 32-bit CRC Services

/!

EFI_CALCULATE_CRC32 CalculateCrc32; // EFl 1.1+

/!

// Miscellaneous Services

/!

EFI_COPY_MEM CopyMem; // EFI 1.1+

EFl_SET_MEM SetMem: // EFI 1.1+

EFI_CREATE_EVENT_EX CreateEventEx; // UEFI 2.0+

} EFI_BOOT_SERVICES;

Parameters

Hdr The table header for the EFI Boot Services Table. This
header contains the EFI_BOOT_SERVICES_SIGNATURE
and EFI_BOOT_SERVICES_REVISION values along with
the size of the EFI_BOOT_SERVICES structure and a
32-bit CRC to verify that the contents of the EFI Boot
Services Table are valid.

RaiseTPL Raises the task priority level.

RestoreTPL Restores/lowers the task priority level.

AllocatePages Allocates pages of a particular type.

FreePages Frees allocated pages.

110 May 2017 Version 2.7

UEFI Specification

Version 2.7

EFI System Table

GetMemoryMap Returns the current boot services memory map and
memory map key.

AllocatePool Allocates a pool of a particular type.

FreePool Frees allocated pool.

CreateEvent Creates a general-purpose event structure.

SetTimer Sets an event to be signaled at a particular time.

WaitForEvent Stops execution until an event is signaled.

SignalEvent Signals an event.

CloseEvent Closes and frees an event structure.

CheckEvent Checks whether an event is in the signaled state.

InstallProtocolinterface

Installs a protocol interface on a device handle.

ReinstallProtocolinterface

Reinstalls a protocol interface on a device handle.

UninstallProtocolinterface

Removes a protocol interface from a device handle.

HandleProtocol Queries a handle to determine if it supports a specified
protocol.
Reserved Reserved. Must be NULL.

RegisterProtocolNotify

Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Returns an array of handles that support a specified
protocol.
LocateDevicePath Locates all devices on a device path that support a

specified protocol and returns the handle to the device

that is closest to the path.
InstallConfigurationTable

Adds, updates, or removes a configuration table from the

EFI System Table.

Loadlmage Loads an EFl image into memory.

Startimage Transfers control to a loaded image’s entry point.
Exit Exits the image’s entry point.

Unloadlmage Unloads an image.

ExitBootServices Terminates boot services.

GetNextMonotonicCount

Returns a monotonically increasing count for the platform.

Stall Stalls the processor.

SetWatchdogTimer Resets and sets a watchdog timer used during boot

services time.

ConnectController Uses a set of precedence rules to find the best set of

drivers to manage a controller.

May 2017

111

EFIl System Table

DisconnectController
OpenProtocol

CloseProtocol

UEFI Specification

Informs a set of drivers to stop managing a controller.

Adds elements to the list of agents consuming a protocol
interface.

Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolinformation

ProtocolsPerHandle

LocateHandleBuffer

LocateProtocol

Retrieve the list of agents that are currently consuming a
protocol interface.

Retrieves the list of protocols installed on a handle. The
return buffer is automatically allocated.

Retrieves the list of handles from the handle database that
meet the search criteria. The return buffer is automatically
allocated.

Finds the first handle in the handle database the supports
the requested protocol.

InstallMultipleProtocolinterfaces

Installs one or more protocol interfaces onto a handle.

UninstallMultipleProtocolinterfaces

CalculateCrc32
CopyMem
SetMem
CreateEventEx

Uninstalls one or more protocol interfaces from a handle.
Computes and returns a 32-bit CRC for a data buffer.
Copies the contents of one buffer to another buffer.

Fills a buffer with a specified value.

Creates an event structure as part of an event group.

4.5 EFI Runtime Services Table

UEFI uses the EFI Runtime Services Table, which contains a table header and pointers to
all of the runtime services. The definition for this table is shown in the following code
fragments. Except for the table header, all elements in the EFI Runtime Services Tables
are prototypes of function pointers to functions as defined in Section 8. Unlike the EFI
Boot Services Table, this table, and the function pointers it contains are valid after the
UEFI OS loader and OS have taken control of the platform with a call to
EFl_BOOT_SERVICES.ExitBootServices(). If a call to SetVirtualAddressMap() is made by

the OS, then the function pointers in this table are fixed up to point to the new virtually

mapped entry points.

EFI_RUNTIME_SERVICES

Summary

Contains a table header and pointers to all of the runtime services.

Related Definitions

#define EFI_RUNTIME_SERVICES_SIGNATURE 0x56524553544e5552

112

May 2017 Version 2.7

UEFI Specification EFI System Table

#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION
typedef struct {
EFI_TABLE_HEADER Hdr;

/!

// Time Services

//

EFI_GET_TIME GetTime;

EFI_SET_TIME SetTime;
EFI_GET_WAKEUP_TIME GetWakeupTime;
EFI_SET_WAKEUP_TIME SetWakeupTime;

//

// Virtual Memory Services

//

EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;
EFI_CONVERT_POINTER ConvertPointer;

//

// Variable Services

/!

EFI_GET_VARIABLE GetVariable;
EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;
EFI_SET_VARIABLE SetVariable;

//

// Miscellaneous Services

//

EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;
EFlI_RESET _SYSTEM ResetSystem;

//

// UEFI 2.0 Capsule Services

//

EFI_UPDATE_CAPSULE UpdateCapsule;
EFI_QUERY_CAPSULE_CAPABILITIES QueryCapsuleCapabilities;

//
// Miscellaneous UEFI 2.0 Service
//

EFlI_QUERY_VARIABLE_INFO QueryVariablelnfo;
} EFI_RUNTIME_SERVICES;

Version 2.7 May 2017 113

EFIl System Table UEFI Specification

Parameters

Hdr The table header for the EFI Runtime Services Table. This
header contains the
EFI_RUNTIME_SERVICES_SIGNATURE and
EFI_RUNTIME_SERVICES_REVISION values along with
the size of the EFI_RUNTIME_SERVICES structure and a
32-bit CRC to verify that the contents of the EFI Runtime
Services Table are valid.

GetTime Returns the current time and date, and the time-keeping
capabilities of the platform.

SetTime Sets the current local time and date information.

GetWakeupTime Returns the current wakeup alarm clock setting.

SetWakeupTime Sets the system wakeup alarm clock time.

SetVirtualAddressMap
Used by a UEFI OS loader to convert from physical
addressing to virtual addressing.

ConvertPointer Used by EFI components to convert internal pointers
when switching to virtual addressing.

GetVariable Returns the value of a variable.

GetNextVariableName Enumerates the current variable names.

SetVariable Sets the value of a variable.

GetNextHighMonotonicCount
Returns the next high 32 bits of the platform’s monotonic

counter.
ResetSystem Resets the entire platform.
UpdateCapsule Passes capsules to the firmware with both virtual and

physical mapping.

QueryCapsuleCapabilities
Returns if the capsule can be supported via
UpdateCapsule().

QueryVariablelnfo Returns information about the EFI variable store.

4.6 EFI Configuration Table & Properties Table

114

The EFI Configuration Table is the ConfigurationTable field in the EFI System Table. This
table contains a set of GUID/pointer pairs. Each element of this table is described by the
EFI_CONFIGURATION_TABLE structure below. The number of types of configuration
tables is expected to grow over time. This is why a GUID is used to identify the
configuration table type. The EFI Configuration Table may contain at most once instance
of each table type.

May 2017 Version 2.7

UEFI Specification EFI System Table

EFI_CONFIGURATION_TABLE

Summary

Contains a set of GUID/pointer pairs comprised of the ConfigurationTable field in the EFI
System Table.

Related Definitions

typedef struct{
EFI_GUID VendorGuid;
VOID *VendorTable;

} EFI_CONFIGURATION_TABLE;

Parameters

The following list shows the GUIDs for tables defined in some of the industry standards.
These industry standards define tables accessed as UEFI Configuration Tables on UEFI-
based systems. This list is not exhaustive and does not show GUIDS for all possible UEFI
Configuration tables.

VendorGuid The 128-bit GUID value that uniquely identifies the system
configuration table.
VendorTable A pointer to the table associated with

VendorGuid.Whether this pointer is a physical address or a
virtual address during runtime is determined by the
VendorGuid. The VendorGuid associated with a given
VendorTable pointer defines whether or not a particular
address reported in the table gets fixed up when a call to

SetVirtualAddressMap() is made. It is the responsibility of
the specification defining the VendorTable to specify

whether to convert the addresses reported in the table.

The following list shows the GUIDs for tables defined in some of the industry standards.
These industry standards define tables accessed as UEFI Configuration Tables on UEFI-
based systems. All the addresses reported in these table entries will be referenced as
physical and will not be fixed up when transition from preboot to runtime phase. This list
is not exhaustive and does not show GUIDs for all possible UEFI Configuration tables.

Version 2.7 May 2017 115

EFIl System Table UEFI Specification

#define EFI_ACPI_20 TABLE _GUID\
{0x8868e871,0xe4f1,0x11d3\
{Oxbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define ACPI_TABLE_GUID \
{Oxeb9d2d30,0x2d88,0x11d3\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SAL_SYSTEM_TABLE_GUID \
{Oxeb9d2d32,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS_TABLE_GUID \
{0xeb9d2d31,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define SMBIOS3 TABLE _GUID \
{0xf2fd1544, 0x9794, Ox4a2c,\
{0x99,0x2e,0xe5,0xbb,0xcf,0x20,0xe3,0x94})

#define MPS_TABLE_GUID \

{Oxeb9d2d2f,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

//

// ACPI 2.0 or newer tables should use EFI_ACPI_TABLE_GUID

//

#define EFI_ACPI_TABLE_GUID \

{0x8868e871,0xe4f1,0x11d3,\

{Oxbc,0x22,0x00,0x80,0xc7,0x3c,0x88,0x81}}

#define EFI_ACPI_20_TABLE_GUID EFI_ACPI_TABLE_GUID
#define ACPI_TABLE_GUID \
{0Oxeb9d2d30,0x2d88,0x11d3,\
{0x9a,0x16,0x00,0x90,0x27,0x3f,0xc1,0x4d}}

#define ACPI_10_TABLE_GUID ACPI_TABLE_GUID

EFI_PROPERTIES_TABLE

This table is published if the platform meets some of the construction requirements
listed in the MemoryProtectionAttributes.

116 May 2017 Version 2.7

UEFI Specification EFI System Table

typedef struct {

UINT32 Version;

UINT32 Length;

UINT64 MemoryProtectionAttribute;
} EFI_PROPERTIES_TABLE;

Version This is revision of the table. Successive version may
populate additional bits and growth the table length. In
the case of the latter, the Length field will be adjusted
appropriately

#define EFI_PROPERTIES_TABLE_VERSION 0x00010000

Length This is the size of the entire EFI_PROPERTIES TABLE
structure, including the version. The initial version will be
of length 16.

MemoryProtectionAttribute

This field is a bit mask. Any bits not defined shall be
considered reserved. A set bit means that the underlying
firmware has been constructed responsive to the given

property.
//
// Memory attribute (Not defined bits are reserved)
//
#define
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE DAT
A Ox1\

// BIT 0 — description — implies the runtime data is separated from the code

This bit implies that the UEFI runtime code and data sections of the executable image are
separate and must be aligned as specified in Section 2.3. This bit also implies that the
data pages do not have any executable code.

Itis recommended not to use this attribute, especially for implementations that broke the
runtime code memory map descriptors into the underlying code and data sections within
UEFI modules. This splitting causes interoperability issues with operating systems that
invoke SetVirtualAddress() without realizing that there is a relationship between these
runtime descriptors.

EFI_MEMORY_ATTRIBUTES_TABLE

Summary

When published by the system firmware, the EFI_MEMORY_ATTRIBUTES _TABLE
provides additional information about regions within the run-time memory blocks
defined in the EFI_MEMORY_DESCRIPTOR entries returned from

EFI_BOOT_SERVICES.GetMemoryMap() function. The Memory Attributes Table is

Version 2.7 May 2017 117

EFIl System Table UEFI Specification

currently used to describe memory protections that may be applied to the EFI Runtime
code and data by an operating system or hypervisor. Consumers of this table must
currently ignore entries containing any values for Type except for EfiRuntimeServicesData
and EfiRuntimeServicesCode to ensure compatibility with future uses of this table. The
Memory Attributes Table may define multiple entries to describe sub-regions that
comprise a single entry returned by GetMemoryMap() however the sub-regions must
total to completely describe the larger region and may not cross boundaries between
entries reported by GetMemoryMap(). If a run-time region returned in GetMemoryMap()
entry is not described within the Memory Attributes Table, this region is assumed to not
be compatible with any memory protections.

Only entire EFI._ MEMORY_DESCRIPTOR entries as returned by GetMemoryMap() may be
passed to SetVirtualAddressMap().

Prototype
#define EFI_MEMORY_ATTRIBUTES_TABLE_GUID \
{ Oxdcfa911d, 0x26eb, 0x469f, \
{Oxa2, 0x20, 0x38, Oxb7, Oxdc, 0x46, 0x12, 0x20}}

With the following data structure

/**

/* EFI_MEMORY_ATTRIBUTES_TABLE
/**
typedef struct {

UINT32 Version ;

UINT32 NumberOfEntries ;

UINT32 DescriptorSize ;

UINT32 Reserved;

// EFI_MEMORY_DESCRIPTOR Entry [1];
} EFI_MEMORY_ATTRIBUTES TABLE;

Version The version of this table. Present version is 0x00000001

NumberOfEntries Count of EFI_MEMORY_DESCRIPTOR entries provided.
This is typically the total number of PE/COFF sections
within all UEFI modules that comprise the UEFI Runtime
and all UEFI Runtime Data regions (e.g. runtime heap).

Entry Array of Entries of type EFI_MEMORY_DESCRIPTOR.
DescriptorSize Size of the memory descriptor.
Reserved Reserved bytes.

Description

For each array entry, the EFI_ MEMORY_DESCRIPTOR Attribute field can inform
a runtime agency, such as operating system or hypervisor, as to what class of
protection settings can be made in the memory management unit for the

118 May 2017 Version 2.7

UEFI Specification EFI System Table

memory defined by this entry. The only valid bits for Attribute field currently are
EFI_MEMORY_RO, EFI_MEMORY_XP, plus EFl_MEMORY_RUNTIME.
Irrespective of the memory protections implied by Attribute, the
EFI_MEMORY_DESCRIPTOR.Type field should match the type of the memory in
enclosing SetMemoryMap() entry. PhysicalStart must be aligned as specified in
Section 2.3. The list must be sorted by physical start address in ascending order.
VirtualStart field must be zero and ignored by the OS since it has no purpose for
this table. NumPages must cover the entire memory region for the protection
mapping. Each Descriptor in the EFI_MEMORY_ATTRIBUTES_TABLE with
attribute EFI_MEMORY_RUNTIME must not overlap any other Descriptor in the
EFI_MEMORY_ATTRIBUTES_TABLE with attribute EFI_MEMORY_RUNTIME.
Additionally, every memory region described by a Descriptor in
EFI_MEMORY_ATTRIBUTES_TABLE must be a sub-region of, or equal to, a
descriptor in the table produced by GetMemoryMap().

Table 12. Usage of Memory Attribute Definitions

EFI_MEMORY_RO EFI_MEMORY_XP EFI_MEMORY_RUNTIME
No memory access 0 0 1
protection is possible
for Entry

Write-protected Code | 1
Read/Write Data
Read-only Data

4.7 Image Entry Point Examples

The examples in the following sections show how the various table examples are
presented in the UEFI environment.

4.7.1 Image Entry Point Examples

The following example shows the image entry point for a UEFI Application. This
application makes use of the EFI System Table, the EFI Boot Services Table, and the EFI
Runtime Services Table.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiApplicationEntryPoint(

IN EFI_HANDLE ImageHandle,

IN EFI_SYSTEM_TABLE *SystemTable
)

{

Version 2.7 May 2017 119

EFIl System Table

120

EFI_STATUS Status;
EFI_TIME *Time;

gST = SystemTable;
gBS = gST->BootServices;
gRT = gST->RuntimeServices;

1l

// Use EFI System Table to print “Hello World” to the active console output
// device.

1l

Status = gST->ConOut->OutputString (gST->ConOut, L"Hello World\n\r”);
if (EFI_ERROR (Status)) {

return Status;

}

//
// Use EFI Boot Services Table to allocate a buffer to store the current time
// and date.
//
Status = gBS->AllocatePool (
EfiBootServicesData,
sizeof (EFI_TIME),
(VOID **)&Time

)
if (EFI_ERROR (Status)) {
return Status;

}

/1l

// Use the EFI Runtime Services Table to get the current time and date.
1/l

Status = gRT->GetTime (Time, NULL)

if (EFI_ERROR (Status)) {

return Status;

}

return Status;

}

EFI_SYSTEM_TABLE *gST;
EFI_BOOT SERVICES *gBS:
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)

{

gST = SystemTable;

gBS = gST->BootServices;
gRT = gST->RuntimeServices;

/!
// Implement driver initialization here.

May 2017

UEFI Specification

The following example shows the UEFI image entry point for a driver that does not follow
the UEFI Driver Model. Since this driver returns EFI_SUCCESS, it will stay resident in
memory after it exits.

Version 2.7

UEFI Specification EFI System Table

/1

return EFl_SUCCESS;
}

The following example shows the UEFI image entry point for a driver that also does not

follow the UEFI Driver Model. Since this driver returns EFI_DEVICE_ERROR, it will not stay
resident in memory after it exits.

EFI_SYSTEM_TABLE *gST;
EFI_BOOT_SERVICES *gBS;
EFI_RUNTIME_SERVICES *gRT;

EfiDriverEntryPoint(

IN EFI_HANDLE ImageHandle,

IN EFI_SYSTEM_TABLE *SystemTable
)

{

gST = SystemTable;

gBS = gST->BootServices;
gRT = gST->RuntimeServices;

1/

// Implement driver initialization here.
1l

return EFI_DEVICE_ERROR;
}

4.7.2 UEFI Driver Model Example

The following is an UEFI Driver Model example that shows the driver initialization routine
for the ABC device controller that is on the XYZ bus. The

EFI_DRIVER BINDING_PROTOCOL and the function prototypes for AbcSupported(),
AbcStart(), and AbcStop() are defined in Section 11.1 This function saves the driver’s
image handle and a pointer to the EFI boot services table in global variables, so the other
functions in the same driver can have access to these values. It then creates an instance of
the EFI_DRIVER_BINDING_PROTOCOL and installs it onto the driver's image handle.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding ={
AbcSupported,

AbcStart,

AbcStop,

1,

NULL,

NULL

h

AbcEntryPoint(

IN EFI_HANDLE ImageHandle,

IN EFI_SYSTEM_TABLE *SystemTable
)

{

Version 2.7 May 2017 121

EFIl System Table

4.7.3 UEFI Driver Model Example (Unloadable)

The following is the same UEFI Driver Model example as above, except it also includes the
code required to allow the driver to be unloaded through the boot service Unload(). Any

protocols installed or memory allocated in AbcEntryPoint() must be uninstalled or freed
in the AbcUnload().

122

EFI_STATUS Status;

gBS = SystemTable->BootServices;

mAbcDriverBinding->lmageHandle = ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolinterfaces(
&mAbcDriverBinding->DriverBindingHandle,

&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,

NULL
)
return Status;

}

extern EFI_GUID gEfiLoadedImageProtocolGuid;
extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBinding = {

AbcSupported,
AbcStart,
AbcStop,

1,

NULL,

NULL
I

EFI_STATUS
AbcUnload (
IN EFI_HANDLE ImageHandle
)i

AbcEntryPoint(

IN EFI_HANDLE ImageHandle,

IN EFI_SYSTEM_TABLE *SystemTable
)

EFI_STATUS Status;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;

gBS = SystemTable->BootServices;

Status = gBS->OpenProtocol (
ImageHandle,
&gEfiLoadedlmageProtocolGuid,
&LoadedImage,
ImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL

if (EFI_ERROR (Status)) {
return Status;

May 2017

UEFI Specification

Version 2.7

UEFI Specification EFI System Table

Loadedlmage->Unload = AbcUnload;

mAbcDriverBinding->lmageHandle =ImageHandle;
mAbcDriverBinding->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocolinterfaces(
&mAbcDriverBinding->DriverBindingHandle,

&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL

)

return Status;

}

EFI_STATUS

AbcUnload (

IN EFI_HANDLE ImageHandle
)

EFI_STATUS Status;

Status = gBS->UninstallMultipleProtocolinterfaces (
ImageHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBinding,
NULL
);

return Status;

}

4.7.4 EFI Driver Model Example (Multiple Instances)

The following is the same as the first UEFI Driver Model example, except it produces three
EFI_DRIVER _BINDING_PROTOCOL instances. The first one is installed onto the driver’s
image handle. The other two are installed onto newly created handles.

extern EFI_GUID gEfiDriverBindingProtocolGuid;
EFI_BOOT_SERVICES *gBS;

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingA = {
AbcSupportedA,

AbcStartA,

AbcStopA,

1,

NULL,

NULL

h

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingB = {
AbcSupportedB,

AbcStartB,

AbcStopB,

1,

NULL,

NULL

h

static EFI_DRIVER_BINDING_PROTOCOL mAbcDriverBindingC = {

Version 2.7 May 2017 123

EFIl System Table

124

AbcSupportedC,
AbcStartC,
AbcStopC,

1,

NULL,

NULL
h

AbcEntryPoint(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable

)

{
EFI_STATUS Status;
gBS = SystemTable->BootServices;

1l

// Install mAbcDriverBindingA onto ImageHandle

/1l

mAbcDriverBindingA->ImageHandle = ImageHandle;
mAbcDriverBindingA->DriverBindingHandle = ImageHandle;

Status = gBS->InstallMultipleProtocollnterfaces(
&mAbcDriverBindingA->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingA,
NULL

);
if (EFI_ERROR (Status)) {
return Status;

}

1l

// Install mAbcDriverBindingB onto a newly created handle
/1l

mAbcDriverBindingB->ImageHandle = ImageHandle;
mAbcDriverBindingB->DriverBindingHandle = NULL;

Status = gBS->InstallMultipleProtocolinterfaces(
&mAbcDriverBindingB->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingB,
NULL

);
if (EFI_ERROR (Status)) {
return Status;

}

1l

// Install mAbcDriverBindingC onto a newly created handle
/!

mAbcDriverBindingC->ImageHandle =ImageHandle;
mAbcDriverBindingC->DriverBindingHandle = NULL,;

Status = gBS->InstallMultipleProtocolinterfaces(
&mAbcDriverBindingC->DriverBindingHandle,
&gEfiDriverBindingProtocolGuid, &mAbcDriverBindingC,
NULL

)

return Status;

May 2017

UEFI Specification

Version 2.7

UEFI Specification GUID Partition Table (GPT) Disk Layout

5 GUID Partition Table (GPT) Disk Layout

5.1 GPT and MBR disk layout comparison

This specification defines the GUID Partition table (GPT) disk layout (i.e., partitioning
scheme). The following list outlines the advantages of using the GPT disk layout over the
legacy Master Boot Record (MBR) disk layout:

» Logical Block Addresses (LBAS) are 64 bits (rather than 32 bits).

e Supports many partitions (rather than just four primary partitions).
* Provides both a primary and backup partition table for redundancy.
» Uses version number and size fields for future expansion.

» Uses CRC32 fields for improved data integrity.

» Defines a GUID for uniquely identifying each partition.

» Uses a GUID and attributes to define partition content type.

» Each partition contains a 36 character human readable name.

5.2 LBA O Format

LBA O (i.e., the first logical block) of the hard disk contains either
» alegacy Master Boot Record (MBR) (see Section 5.2.1)
e oraprotective MBR (see Section 5.2.3).

5.2.1 Legacy Master Boot Record (MBR)

A legacy MBR may be located at LBA O (i.e., the first logical block) of the disk if it is not
using the GPT disk layout (i.e., if it is using the MBR disk layout). The boot code on the
MBR is not executed by UEFI firmware.

Version 2.7 May 2017 125

GUID Partition Table (GPT) Disk Layout

126

Table 13. Legacy MBR

UEFI Specification

Byte
Mnemonic Offset
BootCode 0
UniqueMBRDiskSignatur | 440
e
Unknown 444
PartitionRecord 446
Signature 510
Reserved 512

Byte
Length

424

16*4

Logical
BlockSize -
512

Description

x86 code used on a non-UEFI system to select
an MBR partition record and load the first
logical block of that partition . This code shall
not be executed on UEFI systems.

Unique Disk Signature This may be used by
the OS to identify the disk from other disks in
the system. This value is always written by the
OS and is never written by EFI firmware.

Unknown. This field shall not be used by UEFI
firmware.

Array of four legacy MBR partition records (see
Table 14).

Set to OXAAS55 (i.e., byte 510 contains 0x55
and byte 5 11 contains OxAA).

The rest of the logical block, if any, is reserved.

The MBR contains four partition records (see Table 11) that each define the beginning
and ending LBAs that a partition consumes on a disk.

Table 14. Legacy MBR Partition Record

Byte Byte
Mnemonic Offset Length
BootIndicator 0 1
StartingCHS 1 3
OSType 4 1
EndingCHS 5 3
StartingLBA 8 4
SizelnLBA 12 4

Description

0x80 indicates that this is the bootable legacy partition.
Other values indicate that this is not a bootable legacy
partition. This field shall not be used by UEFI firmware.

Start of partition in CHS address format. This field shall not
be used by UEFI firmware.

Type of partition. See Section 5.2.2.

End of partition in CHS address format. This field shall not
be used by UEFI firmware.

Starting LBA of the partition on the disk. This field is used by
UEFI firmware to determine the start of the partition.

Size of the partition in LBA units of logical blocks. This field
is used by UEFI firmware to determine the size of the

partition.

If an MBR partition has an OSType field of OxEF (i.e., UEFI System Partition), then the
firmware must add the UEFI System Partition GUID to the handle for the MBR partition
using InstallProtocolinterface(). This allows drivers and applications, including OS

May 2017

Version 2.7

UEFI Specification

GUID Partition Table (GPT) Disk Layout

loaders, to easily search for handles that represent UEFI System Partitions.The following
test must be performed to determine if a legacy MBR is valid:

Figure 16 shows an example of an MBR disk layout with four partitions.

The Signature must be Oxaa55.
A Partition Record that contains an OSType value of zero or a SizeIlnLBA value of zero

may be ignored.
Otherwise:

(i.e., not exceed the capacity of the disk).
Each partition must not overlap with other partitions.

The partition defined by each MBR Partition Record must physically reside on the disk

NLdeley
MBR

Partition Pa}i tion

Paﬁition

1’ artition

LBAO

Figure 16. MBRDisk Layout with legacy MBR example

Related Definitions:
#pragma pack(l)

/77

/// MBR Partition Entry

/77

typedef struct {

UINT8
UINT8
UINT8
UINT8
UINT8
UINT8
UINT8
UINT8
UINT8
UINT8

BootIndicator;
StartHead;
StartSector;
StartTrack;
OSIndicator;
EndHead;
EndSector;
EndTrack;
StartinglLBA[4];
SizelnLBA[4];

} MBR_PARTITION_RECORD;

/77

Version 2.7

May 2017

LBA z

127

GUID Partition Table (GPT) Disk Layout UEFI Specification

/// MBR Partition Table

//7/

typedef struct {
UINT8 BootStrapCode[440];
UINTS8 UniqueMbrSignature[4];
UINT8 Unknown[2];
MBR_PARTITION_RECORD Partition[4];
UINT16 Signature;

} MASTER_BOOT_RECORD;

#pragma pack()

5.2.2 OS Types

Note:

Unique types defined by this specification (other values are not defined by this
specification):
» OXxEF (i.e., UEFI System Partition) defines a UEFI system patrtition.

» OxEE (i.e., GPT Protective) is used by a protective MBR (see 5.2.2) to define a fake
partition covering the entire disk.

Other values are used by legacy operating systems, and are allocated independently of
the UEFI specification.

“Partition types” by Andries Brouwer: See “Links to UEFI-Related Documents” (http://uefi.org/
uefi) under the heading “OS Type values used in the MBR disk layout”.

5.2.3 Protective MBR

128

A Protective MBR may be located at LBA O (i.e., the first logical block) of the disk if it is
using the GPT disk layout. The Protective MBR precedes the GUID Partition Table Header
to maintain compatibility with existing tools that do not understand GPT partition
structures.

May 2017 Version 2.7

UEFI Specification

Table 15. Protective MBR

GUID Partition Table (GPT) Disk Layout

Mnemonic Byte Byte Contents
Offset | Length
Boot Code 0 440 Unused by UEFI systems.
Unique MBR 440 4 Unused. Set to zero.
Disk Signature
Unknown 444 2 Unused. Set to zero.
Partition 446 16*4 Array of four MBR partition records. Contains:
Record » one partition record as defined Table 16; and
» three partition records each set to zero.
Signature 510 2 Set to OXAASS (i.e., byte 510 contains Ox55 and byte 511
contains OxAA).
Reserved 512 Logical The rest of the logical block, if any, is reserved. Set to zero.
Block Size
-512

One of the Partition Records shall be as defined in table 12, reserving the entire space on
the disk after the Protective MBR itself for the GPT disk layout.

Table 16. Protective MBR Partition Record protecting the entire disk

Mnemonic
BootIndicator

StartingCHS
OSType

EndingCHS

StartingLBA

SizelnLBA

Byte Byte
Offset

0 1

1 3

4 1

5 3

8 4

12 4

Length Description

Set to 0x00 to indicate a non-bootable partition. If set
to any value other than 0x00 the behavior of this flag
on non-UEFI systems is undefined. Must be ignored by
UEFI implementations.

Set to 0x000200, corresponding to the Starting LBA
field.

Set to OXEE (i.e., GPT Protective)

Set to the CHS address of the last logical block on the
disk. Set to OXFFFFFF if it is not possible to represent
the value in this field.

Set to 0x00000001 (i.e., the LBA of the GPT Partition
Header).

Set to the size of the disk minus one. Set to OxFFFFFFFF
if the size of the disk is too large to be represented in
this field.

The remaining Partition Records shall each be set to zeros.

Figure 17 shows an example of a GPT disk layout with four partitions with a protective

MBR.

Version 2.7

May 2017

129

GUID Partition Table (GPT) Disk Layout

UEFI Specification

Protective Erﬁné U]?FI Pa&tion P%ition ParTition Backup GPT
MBR GPT system
partition
GPT Protective partition
\ A
LBAD _—— LBA z

Figure 17. GPT disk layout with protective MBR example

Figure 18 shows an example of a GPT disk layout with four partitions with a protective
MBR, where the disk capacity exceeds LBA OxFFFFFFFF.

Protective érﬁna/ UQFI Par[%ion Pa}tion P%tion Backup
MBR GPT system GPT
partition
GPT Protective partition
\ A
LBAD~—0 —— LBA OxFFFFFFFF LBA z

Figure 18. GPT disk layout with protective MBR on a disk with capacity exceeding LBA
OXFFFFFFFF example.

5.2.4 Partition Information

Install an EFI_PARTITION_INFO protocol on each of the device handles that logical
EFlI_BLOCK I0_PROTOTOLSs are installed.

130 May 2017 Version 2.7

UEFI Specification GUID Partition Table (GPT) Disk Layout

5.3 GUID Partition Table (GPT) Disk Layout

5.3.1 GPT overview

The GPT partitioning scheme is depicted in Figure 19. The GPT Header (see Section 5.3.2)
includes a signature and a revision number that specifies the format of the data bytes in
the partition header. The GUID Partition Table Header contains a header size field that is
used in calculating the CRC32 that confirms the integrity of the GPT Header. While the
GPT Header's size may increase in the future it cannot span more than one logical block
on the device.

LBA O (i.e., the first logical block) contains a protective MBR (see Section 5.2.3).

Two GPT Header structures are stored on the device: the primary and the backup. The
primary GPT Header must be located in LBA 1 (i.e., the second logical block), and the
backup GPT Header must be located in the last LBA of the device. Within the GPT Header
the My LBA field contains the LBA of the GPT Header itself, and the Alternate LBA field
contains the LBA of the other GPT Header. For example, the primary GPT Header's My LBA
value would be 1 and its Alternate LBA would be the value for the last LBA of the device.
The backup GPT Header's fields would be reversed.

The GPT Header defines the range of LBAs that are usable by GPT Partition Entries. This
range is defined to be inclusive of First Usable LBA through Last Usable LBA on the logical
device. All data stored on the volume must be stored between the First Usable LBA
through Last Usable LBA, and only the data structures defined by UEFI to manage
partitions may reside outside of the usable space. The value of Disk GUID is a GUID that
uniquely identifies the entire GPT Header and all its associated storage. This value can be
used to uniquely identify the disk. The start of the GPT Partition Entry Array is located at
the LBA indicated by the Partition Entry LBA field. The size of a GUID Partition Entry
element is defined in the Size Of Partition Entry field. There is a 32-bit CRC of the GPT
Partition Entry Array that is stored in the GPT Header in Partition Entry Array CRC32 field.
The size of the GPT Partition Entry Array is Size Of Partition Entry multiplied by Number
Of Partition Entries. If the size of the GUID Partition Entry Array is not an even multiple of
the logical block size, then any space left over in the last logical block is Reserved and not
covered by the Partition Entry Array CRC32 field. When a GUID Partition Entry is updated,
the Partition Entry Array CRC32 must be updated. When the Partition Entry Array CRC32
is updated, the GPT Header CRC must also be updated, since the Partition Entry Array
CRC32 is stored in the GPT Header.

Version 2.7 May 2017 131

GUID Partition Table (GPT) Disk Layout UEFI Specification

First useable block Start partition
End partition
LBAO LBA1 LBAN
v
; - 0|1 n ; 5
TS So
= = Partition 1 =
®||T5 I3
|05 05
Py Py
O 1]-[n
A
Start partition End partition [
ast useable block
—_— —_—
Primary Partition Backup Partition
Table Table

OM13160

132

Figure 19. GUID Partition Table (GPT) example

The primary GPT Partition Entry Array must be located after the primary GPT Header and
end before the First Usable LBA. The backup GPT Partition Entry Array must be located
after the Last Usable LBA and end before the backup GPT Header.

Therefore the primary and backup GPT Partition EntryArrays are stored in separate
locations on the disk. Each GPT Partition Entry defines a partition that is contained in a
range that is within the usable space declared by the GPT Header. Zero or more GPT
Partition Entries may be in use in the GPT Partition Entry Array. Each defined partition
must not overlap with any other defined partition. If all the fields of a GUID Partition Entry
are zero, the entry is not in use. A minimum of 16,384 bytes of space must be reserved for
the GPT Partition Entry Array.

If the block size is 512, the First Usable LBA must be greater than or equal to 34 (allowing
1 block for the Protective MBR, 1 block for the Partition Table Header, and 32 blocks for

the GPT Partition Entry Array); if the logical block size is 4096, the First Useable LBA must
be greater than or equal to 6 (allowing 1 block for the Protective MBR, 1 block for the GPT
Header, and 4 blocks for the GPT Partition Entry Array).

The device may present a logical block size that is not 512 bytes long. In ATA, this is
called the Long Logical Sector feature set; an ATA device reports support for this feature
set in IDENTIFY DEVICE data word 106 bit 12 and reports the number of words (i.e., 2
bytes) per logical sector in IDENTIFY DEVICE data words 117-118 (see ATA8-ACS). A SCSI
device reports its logical block size in the READ CAPACITY parameter data Block Length
In Bytes field (see SBC-3).

The device may present a logical block size that is smaller than the physical block size
(e.g., present a logical block size of 512 bytes but implement a physical block size of
4,096 bytes). In ATA, this is called the Long Physical Sector feature set; an ATA device
reports support for this feature set in IDENTIFY DEVICE data word 106 bit 13 and reports
the Physical Sector Size/Logical Sector Size exponential ratio in IDENTIFY DEVICE data
word 106 bits 3-0 (See ATA8-ACS). A SCSI device reports its logical block size/physical

May 2017 Version 2.7

UEFI Specification GUID Partition Table (GPT) Disk Layout

block exponential ratio in the READ CAPACITY (16) parameter data Logical Blocks Per
Physical Block Exponent field (see SBC-3).These fields return 2* logical sectors per
physical sector (e.g., 3 means 23=8 logical sectors per physical sector).

A device implementing long physical blocks may present logical blocks that are not
aligned to the underlying physical block boundaries. An ATA device reports the alignment
of logical blocks within a physical block in IDENTIFY DEVICE data word 209 (see ATA8-
ACS). A SCSI device reports its alignment in the READ CAPACITY (16) parameter data
Lowest Aligned Logical Block Address field (see SBC-3). Note that the ATA and SCSi fields
are defined differently (e.g., to make LBA 63 aligned, ATA returns a value of 1 while SCSI
returns a value of 7).

In SCSI devices, the Block Limits VPD page Optimal Transfer Length Granularity field (see
SBC-3) may also report a granularity that is important for alignment purposes (e.g., RAID
controllers may return their RAID stripe depth in that field)

GPT partitions should be aligned to the larger of:

a the physical block boundary, if any

b the optimal transfer length granularity, if any.
For example

a Ifthe logical block size is 512 bytes, the physical block size is 4,096 bytes (i.e., 512
bytes x 8 logical blocks), there is no optimal transfer length granularity, and logical
block 0 is aligned to a physical block boundary, then each GPT partition should
start at an LBA that is a multiple of 8.

b If the logical block size is 512 bytes, the physical block size is 8,192 bytes (i.e., 512
bytes x 16 logical blocks), the optimal transfer length granularity is 65,536 bytes
(i.e., 512 bytes x 128 logical blocks), and logical block O is aligned to a physical
block boundary, then each GPT partition should start at an LBA that is a multiple
of 128.

To avoid the need to determine the physical block size and the optimal transfer length
granularity, software may align GPT partitions at significantly larger boundaries. For
example, assuming logical block 0 is aligned, it may use LBAs that are multiples of 2,048
to align to 1,048,576 byte (1 MiB) boundaries, which supports most common physical
block sizes and RAID stripe sizes.

References are as follows:

ISO/IEC 24739-200 [ANSI INCITS 452-2008] AT Attachment 8 - ATA/ATAPI Command
Set (ATA8-ACS). By the INCITS T13 technical committee. (See “Links to UEFI-Related
Documents” (http://uefi.org/uefi under the headings “InterNational Committee on
Information Technology Standards (INCITS)” and “INCITs T13 technical committee”).

ISO/IEC 14776-323 [T10/1799-D] SCSI Block Commands - 3 (SBC-3). Available from
www.incits.org. By the INCITS T10 technical committee (See “Links to UEFI-Related
Documents” (http://uefi.org/uefi under the headings “InterNational Committee on
Information Technology Standards (INCITS)” and “SCSI Block Commands”).

Version 2.7 May 2017 133

GUID Partition Table (GPT) Disk Layout UEFI Specification

5.3.2 GPT Header
Table 17 defines the GPT Header.

134 May 2017 Version 2.7

UEFI Specification

Table 17. GPT Header

GUID Partition Table (GPT) Disk Layout

Mnemonic

Signature

Revision

HeaderSize

HeaderCRC32

Reserved
MyLBA
AlternateLBA
FirstUsableLBA

LastUsableLBA

DiskGUID
PartitionEntryLBA
NumberOfPartitionEntries

SizeOfPartitionEntry

Byte
Offset

12

16

20
24
32
40

48

56

72

80

84

Byte
Length

8

0 0 0 bH

16

Description

Identifies EFI-compatible partition table
header. This value must contain the ASCII
string “EFI PART”, encoded as the 64-bit
constant 0x5452415020494645.

The revision number for this header. This
revision value is not related to the UEFI
Specification version. This header is version
1.0, so the correct value is 0x00010000.
Size in bytes of the GPT Header. The
HeaderSize must be greater than or equal
to 92 and must be less than or equal to the
logical block size.

CRC32 checksum for the GPT Header
structure. This value is computed by

setting this field to 0, and computing the 32-
bit CRC for HeaderSize bytes.

Must be zero.
The LBA that contains this data structure.
LBA address of the alternate GPT Header.

The first usable logical block that may be
used by a partition described by a GUID
Partition Entry.

The last usable logical block that may be
used by a partition described by a GUID
Partition Entry.

GUID that can be used to uniquely identify
the disk.

The starting LBA of the GUID Partition Entry
array.

The number of Partition Entries in the GUID
Partition Entry array.

The size, in bytes, of each the GUID Partition
Entry structures in the GUID Partition Entry
array. This field shall be set to a value of 128
x 2" where n is an integer greater than or
equal to zero (e.g., 128, 256, 512, etc.).
NOTE: Previous versions of this specification
allowed any multiple of 8..

Version 2.7

May 2017

135

GUID Partition Table (GPT) Disk Layout UEFI Specification

136

Byte Byte

Mnemonic Offset | Length = Description

PartitionEntryArrayCRC32 88 4 The CRC32 of the GUID Partition Entry array.
Starts at PartitionEntryLBA and is
computed over a byte length of
NumberOfPartitionEntries *
SizeOfPartitionEntry.

Reserved 92 BlockSi | The rest of the block is reserved by UEFI and

ze—92 | must be zero.

The following test must be performed to determine if a GPT is valid:

* Check the Signature

* Check the Header CRC

» Check that the MyLBA entry points to the LBA that contains the GUID Partition Table
» Check the CRC of the GUID Partition Entry Array

If the GPT is the primary table, stored at LBA 1.

* Check the AlternateLBA to see if it is a valid GPT

If the primary GPT is corrupt, software must check the last LBA of the device to see if it
has a valid GPT Header and point to a valid GPT Partition Entry Array. If it points to a valid
GPT Partition Entry Array, then software should restore the primary GPT if allowed by
platform policy settings (e.g. a platform may require a user to provide confirmation
before restoring the table, or may allow the table to be restored automatically). Software
must report whenever it restores a GPT.

Software should ask a user for confirmation before restoring the primary GPT and must
report whenever it does modify the media to restore a GPT. If a GPT formatted disk is
reformatted to the legacy MBR format by legacy software, the last logical block might not
be overwritten and might still contain a stale GPT. If GPT-cognizant software then
accesses the disk and honors the stale GPT, it will misinterpret the contents of the disk.
Software may detect this scenario if the legacy MBR contains valid partitions rather than a
protective MBR (see Section 5.2.1).

Any software that updates the primary GPT must also update the backup GPT. Software
may update the GPT Header and GPT Partition Entry Array in any order, since all the CRCs
are stored in the GPT Header. Software must update the backup GPT before the primary
GPT, so if the size of device has changed (e.g. volume expansion) and the update is
interrupted, the backup GPT is in the proper location on the disk

If the primary GPT is invalid, the backup GPT is used instead and it is located on the last
logical block on the disk. If the backup GPT is valid it must be used to restore the primary
GPT. If the primary GPT is valid and the backup GPT is invalid software must restore the
backup GPT. If both the primary and backup GPTs are corrupted this block device is
defined as not having a valid GUID Partition Header.

Both the primary and backup GPTs must be valid before an attempt is made to grow the
size of a physical volume. This is due to the GPT recovery scheme depending on locating
the backup GPT at the end of the device. A volume may grow in size when disks are added

May 2017 Version 2.7

UEFI Specification GUID Partition Table (GPT) Disk Layout

to a RAID device. As soon as the volume size is increased the backup GPT must be moved
to the end of the volume and the primary and backup GPT Headers must be updated to
reflect the new volume size.

5.3.3 GPT Partition Entry Array

The GPT Partition Entry Array contains an array of GPT Partition Entries. Table 18 defines
the GPT Partition Entry.

Table 18. GPT Partition Entry

Byte Byte
Mnemonic Offset Length Description
PartitionTypeGUID 0 16 Unique ID that defines the purpose

and type of this Partition. A value of
zero defines that this partition
entry is not being used.

UniquePartitionGUID 16 16 GUID that is unique for every
partition entry. Every partition ever
created will have a unique GUID.
This GUID must be assigned when
the GPT Partition Entry is created.
The GPT Partition Entry is created
whenever the
NumberOfPartitionEntries in
the GPT Header is increased to
include a larger range of addresses.

StartingLBA 32 8 Starting LBA of the partition
defined by this entry.

EndingLBA 40 8 Ending LBA of the partition defined
by this entry.

Attributes 48 8 Attribute bits, all bits reserved by
UEFI (see Table 19).

PartitionName 56 72 Null-terminated string containing a
human-readable name of the
partition.

Reserved 128 SizeOfPartitionEn | The rest of the GPT Partition Entry,

try - 128 if any, is reserved by UEFI and must

be zero.

The SizeOfPartitionEntry variable in the GPT Header defines the size of each GUID
Partition Entry. Each partition entry contains a Unique Partition GUID value that uniquely
identifies every partition that will ever be created. Any time a new partition entry is
created a new GUID must be generated for that partition, and every partition is
guaranteed to have a unique GUID. The partition is defined as all the logical blocks
inclusive of the StartingLBA and EndingLBA.

Version 2.7 May 2017 137

GUID Partition Table (GPT) Disk Layout UEFI Specification

The PartitionTypeGUID field identifies the contents of the partition. This GUID is similar to
the OS Type field in the MBR. Each filesystem must publish its unique GUID. The
Attributes field can be used by utilities to make broad inferences about the usage of a
partition and is defined in Table 19.

The firmware must add the PartitionTypeGuid to the handle of every active GPT partition
using EFI_BOOT_SERVICES.InstallProtocolinterface(). This will allow drivers and
applications, including OS loaders, to easily search for handles that represent EFl System
Partitions or vendor specific partition types.

Software that makes copies of GPT-formatted disks and partitions must generate new
Disk GUID values in the GPT Headers and new Unique Partition GUID values in each GPT
Partition Entry. If GPT-cognizant software encounters two disks or partitions with
identical GUIDs, results will be indeterminate.

Table 19. Defined GPT Partition Entry - Partition Type GUIDs

Description GUID Value

Unused Entry 00000000-0000-0000-0000-000000000000
EFI System Partition C12A7328-F81F-11D2-BA4B-00A0C93EC93B
Partition containing a legacy MBR 024DEE41-33E7-11D3-9D69-0008C781F39F

OS vendors need to generate their own Partition Type GUIDs to identify their partition
types.

138 May 2017 Version 2.7

UEFI Specification GUID Partition Table (GPT) Disk Layout

Table 20. Defined GPT Partition Entry - Attributes

Bits Name Description
Bit O Required If this bit is set, the partition is required for the platform to function. The
Partition owner/creator of the partition indicates that deletion or modification of the

contents can result in loss of platform features or failure for the platform to
boot or operate. The system cannot function normally if this partition is
removed, and it should be considered part of the hardware of the system.
Actions such as running diagnostics, system recovery, or even OS install or
boot could potentially stop working if this partition is removed. Unless OS
software or firmware recognizes this partition, it should never be removed or
modified as the UEFI firmware or platform hardware may become non-
functional.

Bit 1 No Block IO | If this bit is set, then firmware must not produce an
Protocol EFI_BLOCK_10_PROTOCOL device for this partition. See
Section 13.3.2 for more details. By not producing an
EFI_ BLOCK 10_PROTOCOL partition, file system mappings will not be
created for this partition in UEFI.
Bit 2 LegacyBIOS | This bit is set aside by this specification to let systems with traditional PC-AT
Bootable BIOS firmware implementations inform certain limited, special-purpose
software running on these systems that a GPT partition may be bootable. For
systems with firmware implementations conforming to this specification, the
UEFI boot manager (see chapter 3) must ignore this bit when selecting a
UEFI-compliant application, e.g., an OS loader (see 2.1.3). Therefore there is
no need for this specification to define the exact meaning of this bit.
Bits 3-47 Undefined and must be zero. Reserved for expansion by future versions of
the UEFI specification.
Bits 48-63 Reserved for GUID specific use. The use of these bits will vary depending on
the PartitionTypeGUID. Only the owner of the PartitionTypeGUID is
allowed to modify these bits. They must be preserved if Bits 0-47 are

modified.
Related Definitions:
#pragma pack(l)
//7/
/// GPT Partition Entry.
//7/

typedef struct {
EF1_GUID PartitionTypeGUID;
EFI_GUID UniquePartitionGUID;
EF1_LBA StartinglLBA;
EFI_LBA EndingLBA;
UINT64 Attributes;
CHAR16 PartitionName[36];
} EF1_PARTITION_ENTRY;
#pragma pack(Q)

Version 2.7 May 2017 139

GUID Partition Table (GPT) Disk Layout UEFI Specification

140 May 2017 Version 2.7

UEFI Specification Block Translation Table (BTT) Layout

6 Block Translation Table (BTT) Layout

This specification defines the Block Translation Table (BTT) metadata layout. The
following sub-sections outline the BTT format that is utilized on the media, the data
structures involved, and a detailed description of how SW is to interpret the BTT layout.

6.1 Block Translation Table (BTT) Background

A namespace defines a contiguously-addressed range of Non-Volatile Memory
conceptually similar to a SCSI Logical Unit (LUN) or a NVM Express namespace.

Any namespace being utilized for block storage may contain a Block Translation Table
(BTT), which is a layout and set of rules for doing block 1/0 that provide powerfail write
atomicity of a single block. Traditional block storage, including hard disks and SSDs,
usually protect against torn sectors, which are sectors partially written when interrupted
by power failure. Existing software, mostly file systems, depend on this behavior, often
without the authors realizing it. To enable such software to work correctly on namespaces
supporting block storage access, the BTT layout defined by this document sub-divides a
namespace into one or more BTT Arenas, which are large sections of the namespace that
contain the metadata required to provide the desired write atomicity. Each of these BTT
Arenas contains a metadata layout as shown in Eigure 20 and Eigure 21.

Label
Label Storage Area

backup Info Block

Higher Address Flog
BTT Arena - Map
Data Area

Lower Address

primary Info Block

MEDIA

Figure 20. The BTT Layoutin aBTT Arena

Each arena contains the layout shown in Figure: The BTT Layout in a BTT Arena, the
primary info block, data area, map, flog, and a backup info block. Each of these areas is
described in the following sections. When the namespace is larger than 512 GiB, multiple
arenas are required by the BTT layout, as shown in Figure 21. Each namespace using a
BTT is divided into as many 512 GiB arenas as shall fit, followed by a smaller arena to

Version 2.7 May 2017 141

Block Translation Table (BTT) Layout UEFI Specification

Namespace + |

contain any remaining space as appropriate. The smallest arena size is 16MiB so the last
arena size shall be between 16MiB and 512GiBs. Any remaining space less than 16MiB is
unused. Because of these rules for arena placement, software can locate every primary
Info block and every backup Info block without reading any metadata, based solely on
the namespace size.

I —

Higher Address

Info Block

Flog
Map

BTT Arenas

[_msp _|I

Info Block

Lower Address

MEDIA

Figure 21. ABTT With Multiple Arenas in a Large Namespace

6.2 Block Translation Table (BTT) Data Structures

The following sub-sections outline the data structures associated with the BTT Layout.

6.2.1 BTT Info Block

142

// Alignment of all BTT structures
#define EFI_BTT_ALIGNMENT 4096
#define EFI_BTT_INFO_UNUSED_LEN 3968

#define EFI_BTT_INFO_BLOCK_SIG_LEN 16

// Constants for Flags field
#define EFI_BTT_INFO_BLOCK_FLAGS ERROR 0x00000001

// Constants for Major and Minor version fields
#define EFI_BTT_INFO_BLOCK_MAJOR_VERSION 2
#define EFI_BTT_INFO_BLOCK_MINOR_VERSION 0O

typdef struct _EFI_BTT_INFO BLOCK {
CHAR8 Sig[EFI_BTT_INFO_BLOCK SIG_LEN];
EFI_GUID Uuid;
EFI_GUID ParentUuid;

May 2017 Version 2.7

UEFI Specification Block Translation Table (BTT) Layout

UINT32 Flags;
UINT16 Major;
UINT16 Minor;
UINT32 ExternallLbaSize;
UINT32 ExternalNLba;
UINT32 InternallLbaSize;
UINT32 InternalNLba;
UINT32 NFree;
UINT32 InfoSize;
UINT64 NextOff;
UINT64 DataOfT;
UINT64 MapOff;
UINT64 FlogOff;
UINT64 InfoOff;
CHAR8 Unused[EFI_BTT_INFO_UNUSED_LEN];
UINT64 Checksum;

} EFI_BTT_INFO_BLOCK

Sig
Signature of the BTT Index Block data structure. Shall be “BTT_ARENA_INFO\O\O”.

Uuid
UUID identifying this BTT instance. A new UUID is created each time the initial BTT Arenas
are written. This value shall be identical across all BTT Info Blocks within all arenas within
a namespace.

ParentUuid

UUID of containing namespace, used when validating the BTT Info Block to ensure this
instance of the BTT layout is intended for the current surrounding namespace, and not
left over from a previous namespace that used the same area of the media. This value
shall be identical across all BTT Info Blocks within all arenas within a namespace.

Flags

Boolean attributes of this BTT Info Block. See the additional description below on the use
of the flags. The following values are defined:

EFI_BTT_INFO_BLOCK_FLAGS_ERROR -The BTT Arenais in the error state. When a BTT
implementation discovers issues such as inconsistent metadata or lost metadata due to
unrecoverable media errors, the error bit for the associated arena shall be set. See the
BTT Theory of Operation section regarding handling of
EFI_BTT_INFO_BLOCK_FLAGS_ERROR.

Major
Major version number. Currently at version 2. This value shall be identical across all BTT
Info Blocks within all arenas within a namespace.

Version 2.7 May 2017 143

Block Translation Table (BTT) Layout UEFI Specification

Minor

Minor version number. Currently at version 0. This value shall be identical across all BTT
Info Blocks within all arenas within a namespace.

ExternalLbaSize

Advertised LBA size in bytes. I/0 requests shall be in this size chunk. This value shall be
identical across all BTT Info Blocks within all arenas within a namespace.

ExternalNLba

Advertised number of LBASs in this arena. The sum of this field, across all BTT Arenas, is
the total number of available LBAs in the namespace.

InternalLbaSize

Internal LBA size shall be greater than or equal to ExternalLbaSize and shall not be
smaller than 512 bytes. Each block in the arena data area is this size in bytes and contains
exactly one block of data. Optionally, this may be larger than the ExternalLbaSize due to
alignment padding between LBAs. This value shall be identical across all BTT Info Blocks
within all arenas within a namespace.

InternalNLba

Number of internal blocks in the arena data area. This shall be equal to ExternalNLba +
NFree because each internal Iba is either mapped to an external Iba or shown as free in
the flog.

NFree

Number of free blocks maintained for writes to this arena. NFree shall be equal to
InternalNLba — ExternalNLba. This value shall be identical across all BTT Info Blocks
within all arenas within a namespace.

InfoSize

The size of this info block in bytes. This value shall be identical across all BTT Info Blocks
within all arenas within a namespace.

NextOff

Offset of next arena, relative to the beginning of this arena. An offset of O indicates that
no arenas follow the current arena. This field is provided for convience as the start of
each arena can be calculated from the size of the namespace as described in the Theory
of Operation — Validating BTT Arenas at start-up description. This value shall be
identical in the primary and backup BTT Info Blocks within an arena.

DataOff

Offset of the data area for this arena, relative to the beginning of this arena. The internal-
LBA number zero lives at this offset. This value shall be identical in the primary and
backup BTT Info Blocks within an arena.

144 May 2017 Version 2.7

UEFI Specification Block Translation Table (BTT) Layout

MapOff

Offset of the map for this arena, relative to the beginning of this arena. This value shall be
identical in the primary and backup BTT Info Blocks within an arena.

FlogOff

Offset of the flog for this arena, relative to the beginning of this arena. This value shall be
identical in the primary and backup BTT Info Blocks within an arena.

InfoOff

Offset of the backup copy of this arena’s info block, relative to the beginning of this arena.
This value shall be identical in the primary and backup BTT Info Blocks within an arena.

Reserved
Shall be zero.

Checksum

64-bit Fletcher64 checksum of all fields. This field is considered as containing zero when
the checksum is computed.

BTT Info Block Description

The existence of a valid BTT Info Block is used to determine whether a namespace is used
as a BTT block device.

Each BTT Arena contains two BTT Info Blocks, a primary copy at the beginning of the BTT
Arena, at address offset O, and ends with an identical backup BTT Info Block, in the
highest block available in the arena aligned on a EFI_BTT_ALIGNMENT boundary. When
writing the BTT layout, implementations shall write out the info blocks from the highest
arena to the lowest, writing the backup info block and other BTT data structures before
writing the primary info block. Writing the layout in this manner shall ensure that a valid
BTT layout is only detected after the entire layout has been written.

6.2.2 BTT Map Entry
typedef struct _EFI_BTT_MAP_ENTRY {
UINT32 PostMapLba : 30;
UINT32 Error : 1;
UINT32 Zero : 1;
} EF1_BTT_MAP_ENTRY:;

PostMapLba
Post-map LBA number (block number in this arena’s data area)

Error

When set and Zero is not set, reads on this block return an error. Writes to this block clear
this flag.

Version 2.7 May 2017 145

Block Translation Table (BTT) Layout UEFI Specification

Zero

When set and Error is not set, reads on this block return a full block of zeros. Writes to
this block clear this flag.

BTT Map Description

The BTT Map area maps an LBA that indexes into the arena, to its actual location. The BTT
Map is located as high as possible in the arena, after room for the backup info block and
flog (and any required alignment) has been taken into account.The terminology pre-map
LBA and post-map LBA is used to describe the input and output values of this mapping.

The BTT Map area is indexed by the pre-map LBA and each entry in the map contains the
30 bit post-map LBA and bits to indicate if there is an error or if LBA contains zeroes (see
EFI_BTT_MAP_ENTRY).

The Error and Zero bits indicate conditions that cannot both be true at the same time, so
that combination is used to indicate a normal map entry, where no error or zeroed block
is indicated. The error condition is indicated only when the Error bit is set and the Zero bit
is clear, with similar logic for the zero block condition. When neither condition is
indicated, both Error and Zero are set to indicate a map entry in its normal, non-error
state. This leaves the case where both Error and Zero are bits are zero, which is the initial
state of all map entries when the BTT layout is first written. Both bits zero means that the
map entry contains the initial identity mapping where the pre-map LBA is mapped to the
same post-map LBA. Defining the map this way allows an implementation to leverage the
case where the initial contents of the namespace is known to be zero, requiring no writes
to the map when writing the layout. This can greatly improve the layout time since the
map is the largest BTT data structure written during layout.

6.2.3BTT Flog

146

// Alignment of each flog structure
#define EFI_BTT_FLOG_ENTRY_ALIGNMENT 64

typedef struct _EFI_ BTT_FLOG {

UINT32 Lbao;

UINT32 OldMap0;

UINT32 NewMapO;

UINT32 SeqO;

UINT32 Lbal;

UINT32 OldMap1;

UINT32 NewMap1;

UINT32 Seq1;
}EFI_BTT_FLOG

Lba0

Last pre-map LBA written using this flog entry. This value is used as an index into the BTT
Map when updating it to complete the transaction.

May 2017 Version 2.7

UEFI Specification Block Translation Table (BTT) Layout

OldMapO0

Old post-map LBA. This is the old entry in the map when the last write using this flog
entry occurred. If the transaction is complete, this LBA is now the free block associated
with this flog entry.

NewMapO

New post-map LBA. This is the block allocated when the last write using this flog entry
occurred. By definition, a write transaction is complete if the BTT Map entry contains this
value.

SeqO0
The SeqO field in each flog entry is used to determine which set of fields is newer
between the two sets (Lba0, OldMap0, NewMpaO, SeqO vs Lbal, Oldmapl, NewMapl,
Seql). Updates to a flog entry shall always be made to the older set of fields and shall be
implemented carefully so that the SeqO bits are only written after the other fields are
known to be committed to persistence. The figure below shows the progression of the
SeqO bits over time, where the newer entry is indicated by a value that is clockwise of the

older value.
11 01
10 ;
-
Figure 22. Cyclic Sequence Numbers for Flog Entries
Lbal

Alternate Iba entry

OldMap1l
Alternate old entry

NewMap1l
Alternate new entry

Seql
Alternate Seq entry

Version 2.7 May 2017 147

Block Translation Table (BTT) Layout UEFI Specification

BTT Flog Description

The BTT Flog is so named to illustrate that it is both a free list and a log, rolled into one
data structure. The Flog size is determined by the NFree field in the BTT Info Block which
determines how many of these flog entries there are. The flog location is the highest
address in the arena after space for the backup info block and alignment requirements
have been taken in account.

6.2.4 BTT Data Area

Starting from the low address to high, the BTT Data Area starts immediately after the BTT
Info Block and extends to the beginning of the BTT Map data structure. The number of
internal data blocks that can be stored in an arena is calculated by first calculating the
necessary space required for the BTT Info Blocks, map, and flog (plus any alignment
required), subtracting that amount from the total arena size, and then calculating how
many blocks fit into the resulting space.

6.2.5 NVDIMM Label Protocol Address Abstraction Guid

This version of the BTT layout and behavior is collectively described by the
AddressAbstractionGuid in the UEFI NVDIMM Label protocol section utilizing this GUID:

#define EFI_BTT_ABSTRACTION_GUID \
{0x18633bfc,0x1735,0x4217,
{0x8a,0xc9,0x17,0x23,0x92,0x82,0xd3,0xf8}

6.3 BTT Theory of Operation

This section outlines the theory of operation for the BTT and describes the
responsibilities that any software implementation shall follow.

A specific instance of the BTT layout depends on the size of the namespace and three
administrative choices made at the time the initial layout is created:

* ExternallLbaSize: the desired block size
* InternalLbaSize: the block size with any internal padding
* NFree: the number of concurrent writes supported by the layout

The BTT data structures do not support an InternalLbaSize smaller than 512 bytes, so if
ExternalLbaSize is smaller than 512 bytes, the InternalLbaSize shall be rounded up to
512. For performance, the InternalLbaSize may also include some padding bytes. For
example, a BTT layout supporting 520-byte blocks may use 576-byte blocks internally in
order to round up the size to a multiple of a 64-byte cache line size. In this example, the
ExternalLbaSize, visible to software above the BTT software, would be 520 bytes, but the
InternalLbaSize would be 576 bytes.

Once these administrative choices above are determined, the namespace is divided up
into arenas, as described in the BTT Arenas section, where each arena uses the same
values for ExternalLbaSize, InternalLbaSize, and Nfree.

148 May 2017 Version 2.7

UEFI Specification Block Translation Table (BTT) Layout

6.3.1 BTT Arenas

In order to reduce the size of BTT metadata and increase the possibility of concurrent
updates, the BTT layout in a namespace is divided into arenas. An arena cannot be larger
than 512GiB or smaller than 16MiB. A namespace is divided into as many 512GiB arenas
that shall fit, starting from offset zero and packed together without padding, followed by
one arena smaller than 512GiB if the remaining space is at least 16MiB. The smaller area
size is rounded down to be a multiple of EFI_BTT_ALIGNMENT if necessary. Because of
these rules, the location and size of every BTT Arena in a namespace can be determined
from the namespace size.

Within an arena, the amount of space used for the Flog is NFree times the amount of
space required for each Flog entry. Flog entries shall be aligned on 64-byte boundaries. In
addition, the full BTT Flog table shall be aligned on a EFI_BTT_ALIGNMENT boundary and
have a size that is padded to be multiple of EFI_BTT_ALIGNMENT. In summary, the space
in an arena taken by the Flog is:
FlogSize = roundup(NFree * roundup(sizeof(EFI_BTT_FLOG),
EFI_BTT_FLOG_ENTRY_ALIGNMENT), EFI_BTT_ALIGNMENT)

Within an arena, the amount of space available for data blocks and the associated Map is
the arena size minus the space used for the BTT Info Blocks and the Flog:
DataAndMapSize = ArenaSize - 2 * sizeof(EFI_BTT _INFO_BLOCK) - FlogSize

Within an arena, the number of data blocks is calculated by dividing the available space,
DataAndMapSize, by the InternalLbaSize plus the map overhead required for each block,
and rounding down the result to ensure the data area is aligned on a
EFI_BTT_ALIGNMENT boundary:
InternalNLba = (DataAndMapSize — EFI_BTT_ALIGNMENT) / (InternalLbaSize +
sizeof(EFI_BTT_MAP_ENTRY)

With the InternalNLba value known, the calculation for the number of external LBAs
subtracts off NFree for the pool of unadvertised free blocks:
ExternalNLba = InternalNLba — Nfree

Within an arena, the number of bytes required for the BTT Map is one entry for each
external LBA, plus any alignment required to maintain an alignment of
EFI_BTT_ALIGNMENT for the entire map:
MapSize = roundup(ExternalNLba * sizeof(EFI_BTT_MAP_ENTRY),
EFI_BTT_ALIGNMENT)

The number of concurrent writes allowed for an arena is based on the NFree value
chosen at BTT layout time. For example, choosing NFree of 256 means the BTT Arena
shall have 256 free blocks to use for in-flight write operations. Since BTT Arenas each
have NFree free blocks, the number of concurrent writes allowed in a namespace may be
larger when there are multiple arenas and the writes are spread out between multiple
arenas.

6.3.2 Atomicity of Data Blocks in an Arena

The primary reason for the BTT is to provide failure atomicity when writing data blocks,
so that any write of a single block cannot be torn by interruptions such as power loss. The
BTT provides this by maintaining a pool of free blocks which are not part of the capacity

Version 2.7 May 2017 149

Block Translation Table (BTT) Layout UEFI Specification

advertised to software layers above the BTT software. The BTT Data Area is large enough
to hold the advertised capacity as well as the pool of free blocks. The BTT software
manages the blocks in the BTT Data Area as a list of internal LBAs, which are block
numbers only visible internally to the BTT software. The block numbers that make up the
advertised capacity are known as external LBAs, and at any given point in time, each one
of those external LBAs is mapped by the BTT Map to one of the blocks in the BTT Data
Area. Each block write done by the BTT software starts by allocating one of the free
blocks, writing the data to it, and only when that block is fully persistent (including any
flushes required), are steps taken to make that block active, as outlined in the BTT Theory
of Operations — Write Path section.

The BTT Flog (a combination of a free list and a log) is at the heart of the atomic updates
when writing blocks. The “quiet” state of a BTT Flog, when no in-flight writes are
happening and no recovery steps are outstanding, is that the NFree free blocks currently
available for writes are contained in the OldMap fields in the Flog entries. A write shall use
one of those Flog entries to find a free block to write to, and then the Lba and NewMap
fields in the Flog are used as a write-ahead-log for the BTT Map update when the data
portion of the write is complete, as described in the Validating the Flog at start-up
section.

Itis up to run-time logic in the BTT software to ensure that only one Flog entry is in use at
a time, and that any reads still executing on the block indicated by the OldMap entry have
finished before starting a write using that block.

6.3.3 Atomicity of BTT Data Structures

150

Byte-addressable persistent media may not support atomic updates larger than 8-bytes,
so any data structure larger than 8-bytes in the BTT uses software-implemented
atomicity for updates. Note that 8-byte write atomicity, meaning an 8-byte store to the
persistent media cannot be torn by interruptions such as power failures, is a minimal
requirement for using the BTT described in this document.

There are four types of data structures in the BTT:
* The BTT Info Blocks

e TheBTT Map

e TheBTT Flog

* The BTT Data Area

The BTT Map entries are 4-bytes in size, and so can be updated atomically with a single
store instruction. All other data structures are updated by following the rules described in
this document, which update an inactive version of the data structure first, followed by
steps to make it active atomically.

For the BTT Info Blocks, atomicity is provided by always writing the backup Info block
first, and only after that update is fully persistent (the block checksums correctly), is the
primary BTT Info Block updated as described in the Writing the initial BTT layout
section. Recovery from an interrupted update is provided by checking the primary Info
block’s checksum on start-up, and if it is bad, copying the backup Info block to the

May 2017 Version 2.7

UEFI Specification Block Translation Table (BTT) Layout

primary to complete the interrupted update as described in the Validating BTT Arenas at
start-up section.

For the BTT Flog, each entry is double-sized, with two complete copies of every field (Lba,
OldMap, NewMap, Seq). The active entry has the higher Seq number, so updates always
write to the inactive fields, and once those fields are fully persistent, the Seq field for the
inactive entry is updated to make it become the active entry atomically. This is described
in the Validating the Flog at start-up section.

For the BTT Data Area, all block writes can be thought of as allocating writes, where an
inactive block is chosen from the free list maintained by the Flog, and only after the new
data written to that block is fully persistent, that block is made active atomically by
updating the Flog and Map entries as described in the Write Path section.

6.3.4 Writing the Initial BTT layout

The overall layout of the BTT relies on the fact that all arenas shall be 512GiB in size,
except the last arena which is a minimum of 16MiB. Initializing the BTT on-media
structures only happens once in the lifetime of a BTT, when it is created. This sequence
assumes that software has determined that new BTT layout needs to be created and the
total raw size of the namespace is known.

Immediately before creating a new BTT layout, the UUID of the surrounding namespace
may be updated to a newly-generated UUID. This optional step, depending on the needs
of a BTT software implementation, has the effect of invalidating any previous BTT Info
Blocks in the namespace and ensuring the detection of an invalid layout if the BTT layout
creation process is interrupted. This detection works because the parent UUID field

The on-media structures in the BTT layout may be written out in any order except for the
BTT Info Blocks, which shall be written out as the last step of the layout, starting from the
last arena (highest offset in the namespace) to the first arena (lowest offset in the
namespace), writing the backup BTT Info Block in each arena first, then writing the
primary BTT Info block for that arena second. This allows the detection of an incomplete
BTT layout when the algorithm in the Validating BTT Arenas at start-up section is
executed.

Since the number of internal LBAs for an arena exceeds the number of external LBAs by
NFree, there are enough internal LBA numbers to fully initialize the BTT Map as well as
the BTT Flog, where the BTT Flog is initialized with the NFree highest internal LBA
numbers, and the rest are used in the BTT Map.

The BTT Map in each arena is initialized to zeros. Zero entries in the map indicate the
identity mapping of all pre-map LBAs to the corresponding post-map LBAs. This uses all
but NFree of the internal LBAS, leaving Nfree of them for the BTT Flog.

The BTT Flog in each arena is initialized by starting with all zeros for the entire flog area,
setting the Lbao field in each flog entry to unique pre-map LBAs, zero through NFree — 1,
and both OldMap0 and NewMapO fields in each flog entry are set to one of the remaining
internal LBAs. For example, flog entry zero would have LbaO set to 0, and OldMap0 and
NewMapO both set to the first internal LBA not represented in the map (since there are
ExternalNLba entries in the map, the next available internal LBA is equal to
ExternalNLba).

Version 2.7 May 2017 151

Block Translation Table (BTT) Layout UEFI Specification

6.3.5 Validating BTT Arenas at start-up

When software prepares to access the BTT layout in a namespace, the first step is to
check the BTT Arenas for consistency. Reading and validating BTT Arenas relies on the

fact that all arenas shall be 512GiB in size, except the last arena which is a minimum of
16MiB.

The following tests shall pass before software considers the BTT layout to be valid:
* Foreach BTT Arena:

*ReadAndVerifyPrimaryBttinfoBlock

«If the read of the primary BTT Info Block fails, goto
ReadAndVerifyBackupBttinfoBlock

«If the primary BTT Info Block contains an incorrect Sig field it is invalid, goto
ReadAndVerifyBackupBttinfoBlock

«If the primary BTT Info Block ParentUuid field does not match the UUID of the
surrounding namespace, goto ReadAndVerifyBackupBttinfoBlock

«If the primary BTT Info Block contains an incorrect Checksum it is invalid, goto
ReadAndVerifyBackupBttinfoBlock

*The primary BTT Info Block is valid. Use the NextOff field to find the start of the
next arena and continue BTT Info Block validation, goto
ReadAndVerifyPrimaryBttinfoBlock

*ReadAndVerifyBackupBttinfoBlock
*Determine the location of the backup BTT Info Block:

1.All of the arenas shall be the full 512GiB data area size except the last
arena which is at least 16MiB.

2.The backup BTT Info Block is the last EFI_BTT_ALIGNMENT aligned block
in the arena.
oIf the read of the backup BTT Info Block at the high address of the BTT Arena

fails, neither copy could be read, and software shall assume that there is no
valid BTT metadata layout for the namespace

oIf the backup BTT Info Block contains an incorrect Sig field it is invalid, and

software shall assume that there is no valid BTT metadata layout for the
namespace

oIf the backup BTT Info Block ParentUuid field does not match the UUID of the
surrounding namespace it is invalid, and software shall assume that there is
no valid BTT metadata layout for the namespace

«If the backup BTT Info Block contains an incorrect Checksum it is invalid, and

software shall assume that there is no valid BTT metadata layout for the
namespace

*The backup BTT Info Block is valid. Since the primary copy is bad, software shall
copy the contents of the valid backup BTT Info Block down to the primary
BTT Info Block before validation of all of the BTT Info Blocks in all of the
arenas can complete successfully.

152 May 2017 Version 2.7

UEFI Specification Block Translation Table (BTT) Layout

6.3.6 Validating the Flog entries at start-up

After validating the BTT Info Blocks as described in the Validating BTT Arenas at start-up
section, the next step software shall take is to validate the BTT Flog entries. When blocks
of data are being written, as described in the Write Path section below, the persistent
Flog and Map states are not updated until the free block is written with new data. This
ensures a power failure at any point during the data transfer is harmless, leaving the
partially written data in a free block that remains free. Once the Flog is updated (made
atomic by the Seq bits in the Flog entry), the write algorithm is committed to the update
and a power failure from this point in the write flow onwards shall be handled by
completing the update to the BTT Map on recovery. The Flog contains all the information
required to complete the Map entry update.

Note that the Flog entry recovery outlined here is intended to happen single-threaded, on
an inactive BTT (before the BTT block hamespace is allowed to accept I/0 requests). The
maximum amount of time required for recovery is determined by NFree, but is only a few
loads and a single store (and the corresponding cache flushes) for each incomplete write
discovered.

The following steps are executed for each flog entry in each arena, to recover any
interrupted writes and to verify the flog entries are consistent at start up. Any consistency
issues found during these steps results in setting the error state
(EFI_BTT_INFO_BLOCK_FLAGS_ERROR) for the arena and terminates the flog validation
process for this arena.

1. The SeqO and Seq1 fields are examined for the flog entry. If both fields are zero, or
both fields are equal to each other, the flog entry is inconsistent. Otherwise, the
higher Seq field indicates which set of flog fields to use for the next steps (Lba0,
OldMapO0, NewMapO, versus Lbal, OldMapl1, NewMap1l). From this point on in this
section, the chosen fields are referenced as Lba, OldMap, and NewMap.

2. If OldMap and NewMap are equal, this is a flog entry that was never used since the
initial layout of the BTT was created.

3. The Lba field is checked to ensure it is a valid pre-map LBA (in the range zero to
ExternalNLba - 1). If the check fails, the flog entry is inconsistent.

4. The BTT Map entry corresponding to the Flog entry Lba field is fetched. Since the Map
can contain special zero entries to indicate identity mappings, the fetched entry is
adjusted to the corresponding internal LBA when a zero is encountered (by
interpreting the entry as the same LBA as the Flog entry Lba field).

5. If the adjusted map entry from the previous step does not match the NewMap field in
the Flog entry, and it matches the OldMap field, then an interrupted BTT Map update
has been detected. The recovery step is to write the NewMap field to the BTT Map
entry indexed by the Flog entry Lba field.

6.3.7 Read Path

The following high level sequence describes the steps to read a single block of data while
utilizing the BTT as is illustrated in the Figure: BTT Read Path Overview below:

Version 2.7 May 2017 153

Block Translation Table (BTT) Layout UEFI Specification

1. IfEFI_BTT_INFO_BLOCK FLAGS _ERROR is setin the arena’s BTT Info Block, the BTT
software may return an error for the read, or an implementation may choose to
continue to provide read-only access and continue these steps.

2. Use the external LBA provided with the read operation to determine which BTT Arena
to access. Starting from the first arena (lowest offset in the namespace), and looping
through the arena in order, the ExternalNLba field in the BTT Info Block describes
how many exernal LBAs are in that area. Once the correct arena is identified, the
external LBAs contained in the lower, skipped, arenas are subtracted from the
provided LBA to obtain the pre-map LBA for the selected arena.

3. Use the pre-map LBA to index into the arena’s BTT Map and fetch the map entry.

4. If both the Zero and Error bits are set in the map entry, this indicates a normal entry.
The PostMapLba field in the Map entry is used to index into the arena Data Area by
multiplying it by the InternalLbaSize and adding the result to the DataOff field from
the arena’s BTT Info Block. This provides the location of the data in the arena and
software then copies ExternalLbaSize bytes into the provided buffer to satisfy the
read request.

5. Otherwise, if only the Error bit is set in the map entry, a read error is returned.

6. Otherwise, if only the Zero bit is set in the map entry, a block of ExternalLbaSize
bytes of zeros is copied into the provided buffer to satisfy the read request.

7. Finally, if both Zero and Error bits are clear, this indicates the initial identity mapping
and the pre-map LBA is used to index into the arena Data Area by multiplying it by the
InternalLbaSize and adding the result to the DataOff field from the arena’s BTT Info
Block. This provides the location of the data in the arena and software then copies
ExternalLbaSize bytes into the provided buffer to satisfy the read request.

namespace /0 BTT /O
Locate arena (_ External LBA
containling LBA READ

BTT arena]
\ 4

Fetch map entry

data area

-

-
-

L"..."_ e Fetch data at -> block marked

pos‘t.—map LBA 45 Zero or error

BTT arena

=, LBA data
or error

Check for errors

Figure 23. BTT Read Path Overview

154 May 2017 Version 2.7

UEFI Speci

fication Block Translation Table (BTT) Layout

6.3.8 Write Path

The following high level sequence describes the steps to write a single block of data while
utilizing the BTT as is illustrated in the Figure: BTT Write Path Overview below:

1.

2.

Version 2.7

If EFI_BTT_INFO_BLOCK_FLAGS ERROR is setin the arena’s BTT Info Block, the BTT
software shall return an error for the write.

Use the external LBA provided with the write operation to determine which BTT Arena
to access. Starting from the first arena (lowest offset in the namespace), and looping
through the arena in order, the ExternalNLba field in the BTT Info Block describes
how many exernal LBAs are in that area. Once the correct arena is identified, the
external LBAs contained in the lower, skipped, arenas are subtracted from the
provided LBA to obtain the pre-map LBA for the selected arena.

The BTT software allocates one of the Flog entries in the arena to be used for this
write. The Flog entry shall not be shared by multiple concurrent writes. The exact
method for managing the exclusive use of the Flog entries is BTT software
implementation-dependent. There’s no on-media indication of whether a Flog entry
is currently allocated to a write request or not. Note that the free block tracked by the
Flog entry in the OldMap field, may still have reads from relatively slow threads
operating on it. The BTT software implementation shall ensure any such reads have
completed before moving to the next step.

Lock out access to the BTT Map area associated with the pre-map LBA for the next
three steps. The granularity of the locking is implementation-dependent; an
implementation may choose to lock individual Map entries, lock the entire BTT Map,
or something in-between.

Use the pre-map LBA to index into the arena’s BTT Map and fetch the old map entry.

Update the Flog entry by writing the inactive set of Flog fields (the lower Seq number).
First, update the Lba, OldMap, and NewMap fields with the pre-map LBA, old Map
entry, and the free block chosen above, respectively. Once those fields are fully
persistent (with any required flushes completed), the Seq field is updated to make the
new fields active. This update of the Seq field commits the write — before this update,
the write shall not take place if the operation is interrupted. After the Seq field is
updated, the write shall take place even if the operation is interrupted because the
Map update in the next step shall take place during the BTT recovery that happens on
start-up.

Update the Map entry with the free block chosen above.
Drop the map lock acquired in step 4 above. The write request is now satisfied.

May 2017 155

Block Translation Table (BTT) Layout

BTT arena =

BTT arena =

156

namespace 1/O

info

BTTI/O

flog

Locate arena (_ External LBA

map

containing LBA
|

v

Identify free
flog entry

Store data in
free block

‘-'
-
"

Read old map entry

Write new flog entry

Write new map entry

WRITE

-) success

Figure 24. BTT Write Path Overview

May 2017

UEFI Specification

Version 2.7

UEFI Specification Services — Boot Services

7 Services — Boot Services

This section discusses the fundamental boot services that are present in a compliant
system. The services are defined by interface functions that may be used by code running
in the UEFI environment. Such code may include protocols that manage device access or
extend platform capability, as well as applications running in the preboot environment,
and OS loaders.

Two types of services apply in an compliant system:
Boot Services Functions that are available before a successful call to

EFI_BOOT_ SERVICES.ExitBootServices(). These

functions are described in this section.

Runtime Services Functions that are available before and after any call to
ExitBootServices(). These functions are described in
Section 8.

During boot, system resources are owned by the firmware and are controlled through
boot services interface functions. These functions can be characterized as “global” or
“handle-based.” The term “global” simply means that a function accesses system services
and is available on all platforms (since all platforms support all system services). The term
“handle-based” means that the function accesses a specific device or device functionality
and may not be available on some platforms (since some devices are not available on
some platforms). Protocols are created dynamically. This section discusses the “global”
functions and runtime functions; subsequent sections discuss the “handle-based.”

UEFI applications (including UEFI OS loaders) must use boot services functions to access
devices and allocate memory. On entry, an Image is provided a pointer to a system table
which contains the Boot Services dispatch table and the default handles for accessing the
console. All boot services functionality is available until a UEFI OS loader loads enough of
its own environment to take control of the system’s continued operation and then
terminates boot services with a call to ExitBootServices().

In principle, the ExitBootServices() call is intended for use by the operating system to
indicate that its loader is ready to assume control of the platform and all platform
resource management. Thus boot services are available up to this point to assist the UEFI
OS loader in preparing to boot the operating system. Once the UEFI OS loader takes
control of the system and completes the operating system boot process, only runtime
services may be called. Code other than the UEFI OS loader, however, may or may not
choose to call ExitBootServices(). This choice may in part depend upon whether or not
such code is designed to make continued use of boot services or the boot services
environment.

The rest of this section discusses individual functions. Global boot services functions fall
into these categories:

» Event, Timer, and Task Priority Services (Section 7.1)
* Memory Allocation Services (Section 7.2)
* Protocol Handler Services (Section 7.3)

Version 2.7 May 2017 157

Services — Boot Services UEFI Specification

* Image Services (Section 7.4)
» Miscellaneous Services (Section 7.5)

7.1 Event, Timer, and Task Priority Services

158

The functions that make up the Event, Timer, and Task Priority Services are used during
preboot to create, close, signal, and wait for events; to set timers; and to raise and restore
task priority levels. See Table 21.

Table 21. Event, Timer, and Task Priority Functions

Name Type Description

CreateEvent Boot Creates a general-purpose event structure
CreateEventEx Boot Creates an event structure as part of an event group
CloseEvent Boot Closes and frees an event structure

SignalEvent Boot Signals an event

WaitForEvent Boot Stops execution until an event is signaled
CheckEvent Boot Checks whether an event is in the signaled state
SetTimer Boot Sets an event to be signaled at a particular time
RaiseTPL Boot Raises the task priority level

RestoreTPL Boot Restores/lowers the task priority level

Execution in the boot services environment occurs at different task priority levels, or
TPLs. The boot services environment exposes only three of these levels to UEFI
applications and drivers:

» TPL_APPLICATION, the lowest priority level
o« TPL CALLBACK, an intermediate priority level
 TPL_NOTIFY, the highest priority level

Tasks that execute at a higher priority level may interrupt tasks that execute at a lower
priority level. For example, tasks that run at the TPL_NOTIFY level may interrupt tasks
that run at the TPL_APPLICATION or TPL_CALLBACK level. While TPL_NOTIFY is the
highest level exposed to the boot services applications, the firmware may have higher
task priority items it deals with. For example, the firmware may have to deal with tasks of
higher priority like timer ticks and internal devices. Consequently, there is a fourth TPL,
TPL _HIGH LEVEL, designed for use exclusively by the firmware.

The intended usage of the priority levels is shown in Table 22 from the lowest level
(TPL_APPLICATION) to the highest level (TPL_HIGH_LEVEL). As the level increases, the
duration of the code and the amount of blocking allowed decrease. Execution generally
occurs at the TPL_APPLICATION level. Execution occurs at other levels as a direct result
of the triggering of an event notification function(this is typically caused by the signaling
of an event). During timer interrupts, firmware signals timer events when an event’s
“trigger time” has expired. This allows event notification functions to interrupt lower
priority code to check devices (for example). The notification function can signal other

May 2017 Version 2.7

UEFI Specification Services — Boot Services

events as required. After all pending event notification functions execute, execution
continues at the TPL_APPLICATION level.

Table 22. TPL Usage

Task Priority Level Usage

TPL_APPLICATION This is the lowest priority level. It is the level of execution which occurs when
no event notifications are pending and which interacts with the user. User I/0
(and blocking on User I/O) can be performed at this level. The boot manager
executes at this level and passes control to other UEFI applications at this

level.

TPL_CALLBACK Interrupts code executing below TPL_CALLBACK level
Long term operations (such as file system operations and disk 1/0) can occur
at this level.

TPL_NOTIFY Interrupts code executing below TPL_NOTIFY level

Blocking is not allowed at this level. Code executes to completion and returns.
If code requires more processing, it needs to signal an event to wait to obtain
control again at whatever level it requires. This level is typically used to
process low level IO to or from a device.

(Firmware Interrupts) This level is internal to the firmware
It is the level at which internal interrupts occur. Code running at this level
interrupts code running at the TPL_NOTIFY level (or lower levels). If the
interrupt requires extended time to complete, firmware signals another event
(or events) to perform the longer term operations so that other interrupts can
occur.

TPL_HIGH_LEVEL Interrupts code executing below TPL_HIGH_LEVEL
This is the highest priority level. It is not interruptible (interrupts are disabled)
and is used sparingly by firmware to synchronize operations that need to be
accessible from any priority level. For example, it must be possible to signal
events while executing at any priority level. Therefore, firmware manipulates
the internal event structure while at this priority level.

Executing code can temporarily raise its priority level by calling the
EFI_BOOT_SERVICES.RaiseTPL() function. Doing this masks event notifications from
code running at equal or lower priority levels until the

EFI_BOOT_SERVICES.RestoreTPL() function is called to reduce the priority to a level
below that of the pending event notifications. There are restrictions on the TPL levels at

which many UEFI service functions and protocol interface functions can execute. Table 23
summarizes the restrictions.

Table 23. TPL Restrictions

Name Restrictions Task Priority Level
ACPI Table Protocol < TPL_NOTIFY
ARP <= TPL_CALLBACK
ARP Service Binding <= TPL_CALLBACK
Authentication Info <= TPL_NOTIFY

Version 2.7 May 2017 159

Services — Boot Services

160

UEFI Specification

Name

Block 1/0 Protocol

Block 1/0 2 Protocol
Bluetooth Host Controller
Bluetooth 10 Service Binding
Bluetooth 10

Bluetooth Attribute
Bluetooth Configuration
BluetoorhLE Configuration
CheckEvent()
CloseEvent()
CreateEvent()

Deferred Image Load Protocol
Device Path Utilities
Device Path From Text
DHCP4 Service Binding
DHCP4

DHCP6

DHCP6 Service Binding
Disk 1/0 Protocol

Disk I/0 2 Protocol

DNS4 Service Binding
DNS4

DNS6 Service Binding
DNS6

Driver Health

EAP

EAP Configuration

EAP Management

EAP Management2

EDID Active

EDID Discovered

EFI_SIMPLE_TEXT_INPUT_PROTOCO

L

EFI_SIMPLE_TEXT_INPUT_PROTOCO

L.ReadKeyStroke

EFI_SIMPLE_TEXT_INPUT_PROTOCO

L.Reset

Restrictions

Task Priority Level

TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK

TPL_HIGH_LEVEL
TPL_HIGH_LEVEL
TPL_HIGH_LEVEL

TPL_NOTIFY

TPL_NOTIFY

TPL_NOTIFY

TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY

TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY

TPL_NOTIFY

TPL_CALLBACK

TPL_APPLICATION

TPL_APPLICATION

May 2017

Version 2.7

UEFI Specification

Services — Boot Services

Name

EFI_SIMPLE_TEXT_INPUT_EX_PROTO
coL

EFI_SIMPLE_TEXT_INPUT_EX_PROTO
COL.ReadKeyStrokeEx

EFI_SIMPLE_TEXT_INPUT_EX_PROTO
COL.Reset

Event Notification Levels

Exit()

ExitBootServices()

Form Browser2 Protocol/SendForm
FTP

Graphics Output EDID Override
HIl Protocols

HTTP Service Binding

HTTP

HTTP Utilities

IP4 Service Binding

IP4

IP4 Config

IP4 Config2

IP6

IP6 Config

IPSec Configuration

iSCSI Initiator Name
Loadlmage()

Managed Network Service Binding
Memory Allocation Services
MTFTP4 Service Binding
MTFTP4

MTFTP6

MTFTP6 Service Binding

PXE Base Code Protocol
Protocol Handler Services
REST

Serial 1/0 Protocol

SetTimer()

SignalEvent()

Restrictions

<=

<=

<=

Task Priority Level
TPL_CALLBACK

TPL_APPLICATION

TPL_APPLICATION

TPL_APPLICATION

TPL_HIGH_LEVEL

TPL_CALLBACK

TPL_APPLICATION
TPL_APPLICATION

TPL_CALLBACK
TPL_NOTIFY

TPL_NOTIFY

TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY

TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY

TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY

TPL_CALLBACK
TPL_CALLBACK

TPL_HIGH_LEVEL
TPL_HIGH_LEVEL

Version 2.7

May 2017

161

Services — Boot Services

UEFI Specification

Name

Simple File System Protocol
Simple Network Protocol
Simple Text Output Protocol
Stall()

Startimage()

Supplicant

Tape IO

TCP4 Service Binding

TCP4

TCP6

TCP6 Service Binding

Time Services

TLS Service Binding

TLS

TLS Configuration

UDP4 Service Binding
UDP4

UDP6

UDP6 Service Binding
Unloadimage()

User Manager Protocol
User Manager Protocol/Identify()
User Credential Protocol
User Info Protocol

Variable Services

VLAN Configuration
WaitForEvent()

Wireless MAC Connection

Other protocols and services, if not
listed above

Restrictions

Task Priority Level
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_HIGH_LEVEL
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_CALLBACK
TPL_NOTIFY
TPL_APPLICATION
TPL_NOTIFY
TPL_NOTIFY
TPL_CALLBACK
TPL_CALLBACK
TPL_APPLICATION
TPL_CALLBACK
TPL_NOTIFY

162

May 2017

Version 2.7

UEFI Specification Services — Boot Services

EFI_BOOT_SERVICES.CreateEvent()

Summary
Creates an event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREATE_EVENT) (
INUINT32 Type,
INEFI_TPL NotifyTpl,
IN EFI_EVENT_NOTIFY NotifyFunction, OPTIONAL
INVOID *NotifyContext, OPTIONAL
OUT EFI_EVENT *Event
);

Parameters

Type The type of event to create and its mode and attributes.
The #define statements in “Related Definitions” can be
used to specify an event’'s mode and attributes.

NotifyTpl The task priority level of event notifications, if needed. See
EFlI_ BOOT_SERVICES.RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any. See
“Related Definitions.”

NotifyContext Pointer to the notification function’s context; corresponds
to parameter Context in the notification function.

Event Pointer to the newly created event if the call succeeds;

undefined otherwise.

Related Definitions
[R RAK HRHHTHATFRIIHATTHITIATFRAIIHIIRAIIHAKR
// EFI_EVENT

//* ke kkkkdkkokdkk ko kok e dkokokdkkokkdkk ko kokkdokkokdokkokok

typedef VOID *EFI_EVENT

[[FFFRRR Rk Hkkkkk Rk ke ko ok
// Event Types

[FRERR IR AR KRR KA RFIHEIAFRKERFIIEIAFHKAAFIKARFIK AR

// These types can be “ORed” together as needed - for example,
// EVT_TIMER might be “Ored” with EVT_NOTIFY_WAIT or
// EVT_NOTIFY_SIGNAL.

#define EVT_TIMER 0x80000000
#define EVT_RUNTIME 0x40000000
#define EVT_NOTIFY_WAIT 0x00000100

Version 2.7 May 2017 163

Services — Boot Services

164

#define EVT_NOTIFY_SIGNAL

UEFI Specification

0x00000200

#define EVT_SIGNAL_EXIT_BOOT_SERVICES 0x00000201
#define EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE 0x60000202

EVT_TIMER

EVT_RUNTIME

EVT_NOTIFY_WAIT

EVT_NOTIFY_SIGNAL

The event is a timer event and may be passed to

EFI_BOOT_SERVICES.SetTimer(). Note that timers only

function during boot services time.

The event is allocated from runtime memory. If an event is
to be signaled after the call to
EFI_BOOT_SERVICES.ExitBootServices(), the event's data
structure and notification function need to be allocated
from runtime memory. For more information, see

SetVirtualAddressMap().

If an event of this type is not already in the signaled state,
then the event’s NotificationFunction will be queued at the
event’s NotifyTpl whenever the event is being waited on

via EEl_BOOT_ SERVICES.WaitForEvent() or
EFlI_BOOT_SERVICES.CheckEvent().

The event’s NotifyFunction is queued whenever the event
is signaled.

EVT_SIGNAL_EXIT_BOOT_SERVICES

This event is to be notified by the system when
ExitBootServices() is invoked. This event is of type
EVT_NOTIFY_SIGNAL and should not be combined with
any other event types. The notification function for this
event is not allowed to use the Memory Allocation
Services, or call any functions that use the Memory
Allocation Services and must only call functions that are
known not to use Memory Allocation Services, because
these services modify the current memory map.The
notification function must not depend on timer events
since timer services will be deactivated before any
notification functions are called.

EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE

The event is to be notified by the system when
SetVirtualAddressMap() is performed. This event type is a
composite of EVT_NOTIFY_SIGNAL, EVT_RUNTIME, and
EVT_RUNTIME_CONTEXT and should not be combined
with any other event types.

//***

// EFI_EVENT_NOTIFY

Y

typedef
VOID

(EFIAPI *EFI_EVENT_NOTIFY) (

IN EFI_EVENT Event,

nnnnnnnnnnn

May 2017 Version 2.7

UEFI Specification Services — Boot Services

INVOID *Context
);

Event Event whose notification function is being invoked.

Context Pointer to the notification function’s context, which is
implementation-dependent. Context corresponds to

NotifyContext in EFI_BOOT_SERVICES.CreateEventEx().

Description

The CreateEvent() function creates a new event of type Type and returns it in the location
referenced by Event. The event’s notification function, context, and task priority level are
specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively.

Events exist in one of two states, “waiting” or “signaled.” When an event is created,
firmware puts it in the “waiting” state. When the event is signaled, firmware changes its
state to “signaled” and, if EVT_NOTIFY_SIGNAL is specified, places a call to its
notification function in a FIFO queue. There is a queue for each of the “basic” task priority
levels defined in Section 7.1 (TPL_CALLBACK, and TPL_NOTIFY). The functions in these
queues are invoked in FIFO order, starting with the highest priority level queue and
proceeding to the lowest priority queue that is unmasked by the current TPL. If the
current TPL is equal to or greater than the queued notification, it will wait until the TPL is

lowered via EFI_BOOT_SERVICES.RestoreTPL().

In a general sense, there are two “types” of events, synchronous and asynchronous.
Asynchronous events are closely related to timers and are used to support periodic or
timed interruption of program execution. This capability is typically used with device
drivers. For example, a network device driver that needs to poll for the presence of new
packets could create an event whose type includes EVT_TIMER and then call the
EFI_BOOT_SERVICES.SetTimer() function. When the timer expires, the firmware signals
the event.

Synchronous events have no particular relationship to timers. Instead, they are used to
ensure that certain activities occur following a call to a specific interface function. One
example of this is the cleanup that needs to be performed in response to a call to the
EFI_BOOT_ SERVICES.ExitBootServices() function. ExitBootServices() can clean up the
firmware since it understands firmware internals, but it cannot clean up on behalf of
drivers that have been loaded into the system. The drivers have to do that themselves by
creating an event whose type is EVT_SIGNAL_EXIT_BOOT_SERVICES and whose
notification function is a function within the driver itself. Then, when ExitBootServices()
has finished its cleanup, it signals each event of type
EVT_SIGNAL_EXIT_BOOT_SERVICES.

Another example of the use of synchronous events occurs when an event of type
EVT_SIGNAL_VIRTUAL ADDRESS_CHANGE is used in conjunction with the
SetVirtualAddressMap().

The EVT_NOTIFY_WAIT and EVT_NOTIFY_SIGNAL flags are exclusive. If neither flag is
specified, the caller does not require any notification concerning the event and the
NotifyTpl, NotifyFunction, and NotifyContext parameters are ignored. If
EVT_NOTIFY_WAIT is specified and the event is not in the signaled state, then the

Version 2.7 May 2017 165

Services — Boot Services

Note: Because its internal structure is unknown to the caller, Event cannot be modified by the caller.

166

UEFI Specification

EVT_NOTIFY_WAIT notify function is queued whenever a consumer of the event is

waiting for the event (via EEl_BOOT_SERVICES.WaitForEvent() or

EFI_BOOT_SERVICES.CheckEvent()). If the EVT_NOTIFY_SIGNAL flag is specified then

the event’s notify function is queued whenever the event is signaled.

The only way to manipulate it is to use the published event interfaces.

Status Codes Returned

EFI_SUCCESS

The event structure was created.

EFI_INVALID_PARAMETER

One of the parameters has an invalid value.

EFI_INVALID_PARAMETER

Eventis NULL.

EFI_INVALID_PARAMETER

Type has an unsupported bit set.

EFI_INVALID_PARAMETER

Type has both EVT_NOTIFY_SIGNAL and
EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER

Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyFunctionis NULL.

EFI_INVALID_PARAMETER

Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyTpl is not a supported
TPL level.

EFI_OUT_OF RESOURCES

The event could not be allocated.

May 2017 Version 2.7

UEFI Specification Services — Boot Services

EFI_BOOT_SERVICES.CreateEventEx()

Summary
Creates an event in a group.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CREATE_EVENT_EX) (

INUINT32 Type,

INEFI_TPL NotifyTpl,

IN EFI_EVENT_NOTIFY NotifyFunction OPTIONAL,
IN CONST VOID *NotifyContext OPTIONAL,

IN CONST EFI_GUID *EventGroup OPTIONAL,
OUT EFI_EVENT *Event

);

Parameters

Type The type of event to create and its mode and attributes.

NotifyTpl The task priority level of event notifications, if needed. See
EFI_BOOT_SERVICES.RaiseTPL().

NotifyFunction Pointer to the event’s notification function, if any.

NotifyContext Pointer to the notification function’s context; corresponds
to parameter Context in the notification function.

EventGroup Pointer to the unique identifier of the group to which this

event belongs. If this is NULL, then the function behaves
as if the parameters were passed to CreateEvent.

Event Pointer to the newly created event if the call succeeds;
undefined otherwise.

Description

The CreateEventEx function creates a new event of type Type and returns it in the
specified location indicated by Event. The event’s notification function, context and task
priority are specified by NotifyFunction, NotifyContext, and NotifyTpl, respectively. The
event will be added to the group of events identified by EventGroup.

If no group is specified by EventGroup, then this function behaves as if the same
parameters had been passed to CreateEvent.

Event groups are collections of events identified by a shared EFI_GUID where, when one
member event is signaled, all other events are signaled and their individual notification
actions are taken (as described in CreateEvent). All events are guaranteed to be signaled
before the first notification action is taken. All notification functions will be executed in
the order specified by their NotifyTpl.

Version 2.7 May 2017 167

Services — Boot Services UEFI Specification

168

A single event can only be part of a single event group. An event may be removed from an
event group by using CloseEvent.

The Type of an event uses the same values as defined in CreateEvent except that
EVT_SIGNAL_EXIT_BOOT_SERVICES and EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
are not valid.

If Type has EVT_NOTIFY_SIGNAL or EVT_NOTIFY_WAIT, then NotifyFunction must be
non- NULL and NotifyTpl must be a valid task priority level. Otherwise these parameters
are ignored.

More than one event of type EVT_TIMER may be part of a single event group. However,
there is no mechanism for determining which of the timers was signaled.

Configuration Table Groups

The GUID for a configuration table also defines a corresponding event group GUID with
the same value . If the data represented by a configuration table is changed,
InstallConfigurationTable() should be called. When InstallConfigurationTable() is
called, the corresponding event is signaled. When this event is signaled, any components
that cache information from the configuration table can optionally update their cached
state.

For example, EFI_ACPI_TABLE_GUID defines a configuration table for ACPI data. When
ACPI data is changed, InstallConfigurationTable() is called. During the execution of
InstallConfigurationTable(), a corresponding event group with EFI_ACPI_TABLE_GUID is
signaled, allowing an application to invalidate any cached ACPI data.

Pre-Defined Event Groups

This section describes the pre-defined event groups used by the UEFI specification.
EFI_EVENT _GROUP_EXIT _BOOT_SERVICES

This event group is notified by the system when ExitBootServices() is
invoked. The notification function for this event is not allowed to use the
Memory Allocation Services, or call any functions that use the Memory
Allocation Services, because these services modify the current memory map.
The notification function must not depend on timer events since timer
services will be deactivated before any notification functions are called. This
is functionally equivalent to the EVT_SIGNAL_EXIT_BOOT_SERVICES flag
for the Type argument of CreateEvent.

EFI_EVENT_GROUP_VIRTUAL_ADDRESS_CHANGE

This event group is notified by the system when SetVirtualAddressMap() is
invoked. This is functionally equivalent to the
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE flag for the Type argument of
CreateEvent.

EFI_EVENT_GROUP_MEMORY_MAP_CHANGE

This event group is notified by the system when the memory map has
changed. The notification function for this event should not use Memory
Allocation Services to avoid reentrancy complications.

May 2017 Version 2.7

UEFI Specification

Services — Boot Services

EFI_EVENT_GROUP_READY_TO_BOOT

This event group is notified by the system when the Boot Manager is about
to load and execute a boot option.

EFI_EVENT _GROUP_RESET SYSTEM

This event group is notified by the system when ResetSystem() is invoked
and the system is about to be reset. The event group is only notified prior to
ExitBootServices() invocation.

Related Definitions

EFI_EVENT is defined in CreateEvent.
EVT_SIGNAL_EXIT BOOT_SERVICES and EVT_SIGNAL_VIRTUAL _ADDRESS CHANGE

are defined in CreateEvent.

#define EFI_EVENT_GROUP_EXIT_BOOT_SERVICES \
{0x27abf055, 0xb1b8, 0x4c26, 0x80, 0x48, 0x74, Ox8f, 0x37,\

Oxba, Oxa2, Oxdf}}

#define EFI_EVENT_GROUP_VIRTUAL _ADDRESS CHANGE \
{0x13fa7698, 0xc831, 0x49c7, 0x87, Oxea, Ox8f, 0x43, Oxfc,\

Oxc2, 0x51, 0x96}

#define EFI_EVENT_GROUP_MEMORY_MAP_CHANGE \
{Ox78bee926, 0x692f, 0x48fd, Ox9e, Oxdb, Ox1, 0x42, Ox2e, \

0xf0, 0xd7, Oxab}

#define EFI_EVENT_GROUP_READY_TO_BOOT \
{Ox7ce88fb3, 0x4bd7, 0x4679, 0x87, Oxa8, Oxa8, 0xd8, Oxde,\

Oxeb5,0xd, Ox2b}

#define EFI_EVENT_GROUP_RESET_SYSTEM\
{ 0x62da6a56, 0x13fb, 0x485a, { Oxa8, Oxda, Oxa3, Oxdd, 0x79, 0x12, Oxcb, Ox6b } }

Status Codes Returned

EFI_SUCCESS

The event structure was created.

EFI_INVALID_PARAMETER

One of the parameters has an invalid value.

EFI_INVALID_PARAMETER

Eventis NULL.

EFI_INVALID_PARAMETER

Type has an unsupported bit set.

EFI_INVALID_PARAMETER

Type has both EVT_NOTIFY_SIGNAL and
EVT_NOTIFY_WAIT set.

EFI_INVALID_PARAMETER

Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT set and NotifyFunctionis NULL.

EFI_INVALID_PARAMETER

Type has either EVT_NOTIFY_SIGNAL or
EVT_NOTIFY_WAIT setand NotifyTpl is not a supported
TPL level.

Version 2.7

May 2017 169

Services — Boot Services UEFI Specification

EFI_OUT_OF_RESOURCES The event could not be allocated.

170 May 2017 Version 2.7

UEFI Specification Services — Boot Services

EFI_BOOT_SERVICES.CloseEvent()

Summary
Closes an event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CLOSE_EVENT) (
IN EFI_EVENT Event

);

Parameters
Event The event to close. Type EFI_EVENT is defined in the
CreateEvent() function description.
Description

The CloseEvent() function removes the caller’s reference to the event, removes it from
any event group to which it belongs, and closes it. Once the event is closed, the event is
no longer valid and may not be used on any subsequent function calls. If Event was
registered with RegisterProtocolNotify() then CloseEvent() will remove the
corresponding registration. It is safe to call CloseEvent() within the corresponding notify
function.

Status Codes Returned

| EFlI_SUCCESS | The event has been closed.

Version 2.7 May 2017 171

Services — Boot Services

EFI_BOOT_SERVICES.SignalEvent()

Summary
Signals an event.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SIGNAL_EVENT) (
IN EFI_EVENT Event

);

UEFI Specification

Parameters
Event The event to signal. Type EFI_EVENT is defined in the
EFI_BOOT_SERVICES.CheckEvent() function description.
Description

The supplied Event is placed in the signaled state. If Event is already in the signaled state,
then EFI_SUCCESS is returned. If Event is of type EVT_NOTIFY_SIGNAL, then the event’s
notification function is scheduled to be invoked at the event’s notification task priority

level. SignalEvent() may be invoked from any task priority level.

If the supplied Event is a part of an event group, then all of the events in the event group

are also signaled and their notification functions are scheduled.

When signaling an event group, it is possible to create an event in the group, signal it and

then close the event to remove it from the group. For example:

EFI_EVENT Event;

EFI_GUID gMyEventGroupGuid = EFI_MY_EVENT_GROUP_GUID;

gBS->CreateEventEx (
0,
0,
NULL,
NULL,
&gMyEventGroupGuid,
&Event

);

gBS->SignalEvent (Event);
gBS->CloseEvent (Event);

Status Codes Returned

| EFI_SUCCESS | The event was signaled.

172 May 2017

Version 2.7

UEFI Specification Services — Boot Services

EFI_BOOT_SERVICES.WaitForEvent()

Summary
Stops execution until an event is signaled.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_WAIT_FOR_EVENT) (
INUINTN NumberOfEvents,
IN EFI_EVENT *Event,

OUT UINTN *Index

);

Parameters
NumberOfEvents The number of events in the Event array.
Event An array of EFI_EVENT. Type EFI_EVENT is defined in the
CreateEvent() function description.
Index Pointer to the index of the event which satisfied the wait
condition.
Description

This function must be called at priority level TPL_APPLICATION. If an attempt is made to

call it at any other priority level, EFI_UNSUPPORTED is returned.

The list of events in the Event array are evaluated in order from first to last, and this

evaluation is repeated until an event is signaled or an error is detected. The following

checks are performed on each event in the Event array.

* Ifaneventis of type EVT_NOTIFY_SIGNAL, then EFI_INVALID_PARAMETER is
returned and Index indicates the event that caused the failure.

» Ifaneventisin the signaled state, the signaled state is cleared and EFI_SUCCESS is
returned, and Index indicates the event that was signaled.

« Ifan eventis notin the signaled state but does have a notification function, the
notification function is queued at the event’s notification task priority level. If the
execution of the event’s notification function causes the event to be signaled, then the
signaled state is cleared, EFI_SUCCESS is returned, and Index indicates the event that
was signaled.

To wait for a specified time, a timer event must be included in the Event array.

To check if an event is signaled without waiting, an already signaled event can be used as
the last event in the list being checked, or the CheckEvent() interface may be used.

Status Codes Returned

| EFI_SUCCESS ‘ The event indicated by Index was signaled.

Version 2.7 May 2017 173

Services — Boot Services

174

UEFI Specification

EFI_INVALID_PARAMETER

NumberOfEventsis 0.

EFI_INVALID_PARAMETER

The event indicated by IndexX is of type
EVT_NOTIFY_SIGNAL.

EFI_UNSUPPORTED

The current TPLis not TPL_APPLICATION.

May 2017

Version 2.7

UEFI Specification Services — Boot Services

EFI_BOOT_SERVICES.CheckEvent()

Summary
Checks whether an event is in the signaled state.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_CHECK_EVENT) (
IN EFI_EVENT Event

);

Parameters
Event The event to check. Type EFI_EVENT is defined in the
CreateEvent() function description.
Description

The CheckEvent() function checks to see whether Event is in the signaled state. If Event is
of type EVT_NOTIFY_SIGNAL, then EFI_INVALID _PARAMETER is returned. Otherwise,
there are three possibilities:

» IfEventisin the signaled state, it is cleared and EFI_SUCCESS is returned.

» If Eventis notin the signaled state and has no notification function, EFI_NOT_READY
is returned.

* If Eventis not in the signaled state but does have a notification function, the
notification function is queued at the event’s notification task priority level. If the
execution of the notification function causes Event to be signaled, then the signaled
state is cleared and EFI_SUCCESS is returned; if the Event is not signaled, then
EFI_NOT_READY is returned.

Status Codes Returned

EFI_SUCCESS The event is in the signaled state.
EFI_NOT_READY The event is not in the signaled state.
EFI_INVALID_PARAMETER | Event is of type EVT_NOTIFY_SIGNAL.

Version 2.7 May 2017 175

Services — Boot Services

UEFI Specification

EFI_BOOT_SERVICES.SetTimer()

Summary

Sets the type of timer and the trigger time for a timer event.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_SET_TIMER) (
IN EFI_EVENT Event,
IN EFI_TIMER_DELAY Type,
INUINT64 TriggerTime
);

Parameters
Event

Type

TriggerTime

Related Definitions

The timer event that is to be signaled at the specified time.
Type EFI_EVENT is defined in the CreateEvent() function
description.

The type of time that is specified in TriggerTime. See the
timer delay types in “Related Definitions.”

The number of 100ns units until the timer expires. A
TriggerTime of O is legal. If Type is TimerRelative and
TriggerTime is O, then the timer event will be signaled on
the next timer tick. If Type is TimerPeriodic and
TriggerTime is O, then the timer event will be signaled on
every timer tick.

[FEERR AR R AR IIAAFIIAK

//EFI_TIMER_DELAY

Y *

typedef enum {
TimerCancel,
TimerPeriodic,
TimerRelative

} EFI_TIMER_DELAY;

TimerCancel

TimerPeriodic

176

The event'’s timer setting is to be cancelled and no timer
trigger is to be set. TriggerTime is ignored when canceling
atimer.

The event is to be signaled periodically at TriggerTime
intervals from the current time. This is the only timer
trigger Type for which the event timer does not need to be
reset for each notification. All other timer trigger types are
“one shot.”

May 2017 Version 2.7

UEFI Specification Services — Boot Services

TimerRelative The event is to be signaled in TriggerTime 100ns units.

Description

The SetTimer() function cancels any previous time trigger setting for the event, and sets
the new trigger time for the event. This function can only be used on events of type
EVT_TIMER.

Status Codes Returned

EFI_SUCCESS The event has been set to be signaled at the requested time.
EFI_INVALID_PARAMETER Event or Type is not valid.

Version 2.7 May 2017 177

Services — Boot Services UEFI Specification

EFI_BOOT_SERVICES.RaiseTPL()

178

Summary

Raises a task’s priority level and returns its previous level.

Prototype

typedef

EFI_TPL

(EFIAPI *EFI_RAISE_TPL) (
IN EFI_TPL NewTpl

);

Parameters
NewTpl The new task priority level. It must be greater than or
equal to the current task priority level. See “Related
Definitions.”

Related Definitions

Vi HARE AR R AR ARRARRRRIAR IR RS
// EFI_TPL

[FRERR IR AR KRR KA RFIHEIAFRKERFIIEIAFHKAAFIKARFIK AR

typedef UINTN EFI_TPL

//***

// Task Priority Levels

#define TPL_APPLICATION 4
#define TPL_CALLBACK 8
#define TPL_NOTIFY 16
#define TPL_HIGH_LEVEL 31

Description

The EFI_BOOT_SERVICES.RaiseTPL() function raises the priority of the currently
executing task and returns its previous priority level.

Only three task priority levels are exposed outside of the firmware during boot services
execution. The first is TPL_APPLICATION where all normal execution occurs. That level
may be interrupted to perform various asynchronous interrupt style notifications, which
occur at the TPL_CALLBACK or TPL_NOTIFY level. By raising the task priority level to
TPL_NOTIFY such notifications are masked until the task priority level is restored,
thereby synchronizing execution with such notifications. Synchronous blocking I1/0
functions execute at TPL_NOTIFY. TPL_CALLBACK is the typically used for application
level notification functions. Device drivers will typically use TPL_CALLBACK or
TPL_NOTIFY for their notification functions. Applications and drivers may also use
TPL_NOTIFY to protect data structures in critical sections of code.

May 2017 Version 2.7

UEFI Specification Services — Boot Services

The caller must restore the task priority level with EFI_BOOT_ SERVICES.RestoreTPL() to
the previous level before returning.

Note: If NewTplis below the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY, and TPL_HIGH_LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at TPL
levels above TPL_APPLICATION for extended periods of time may also result in unpredictable
behavior.

Status Codes Returned

Unlike other UEFI interface functions, EFl_BOOT_SERVICES.RaiseTPL() does not return a
status code. Instead, it returns the previous task priority level, which is to be restored later
with a matching call to RestoreTPL().

Version 2.7 May 2017 179

Services — Boot Services UEFI Specification

EFI_BOOT_SERVICES.RestoreTPL()

Summary
Restores a task’s priority level to its previous value.

Prototype

typedef

VOID

(EFIAPI *EFI_RESTORE_TPL) (
IN EFI_TPL OIdTpl
)

Parameters
OoldTpl The previous task priority level to restore (the value from a
previous, matching call to
EFlI_BOOT_SERVICES.RaiseTPL()). Type EFI_TPL is
defined in the RaiseTPL() function description.
Description

The RestoreTPL() function restores a task’s priority level to its previous value. Calls to
RestoreTPL() are matched with calls to RaiseTPL().

Note: If OldTplis above the current TPL level, then the system behavior is indeterminate. Additionally,
only TPL_APPLICATION, TPL_CALLBACK, TPL_NOTIFY,and TPL_HIGH_LEVEL may be
used. All other values are reserved for use by the firmware; using them will result in unpredictable
behavior. Good coding practice dictates that all code should execute at its lowest possible TPL
level, and the use of TPL levels above TPL_APPLICATION must be minimized. Executing at TPL

levels above TPL_APPLICATION for extended periods of time may also result in unpredictable
behavior.

Status Codes Returned
None.

7.2 Memory Allocation Services

The functions that make up Memory Allocation Services are used during preboot to
allocate and free memory, and to obtain the system’s memory map. See Table 24.

180 May 2017 Version 2.7

UEFI Specification

Services — Boot Services

Table 24. Memory Allocation Functions

Name Type
AllocatePages Boot
FreePages Boot

GetMemoryMap Boot
AllocatePool Boot
FreePool Boot

Description

Allocates pages of a particular type.

Frees allocated pages.

Returns the current boot services memory map and memory map key.
Allocates a pool of a particular type.

Frees allocated pool.

The way in which these functions are used is directly related to an important feature of
UEFI memory design. This feature, which stipulates that EFI firmware owns the system’s
memory map during preboot, has three major consequences:

» During preboot, all components (including executing EFI images) must cooperate with
the firmware by allocating and freeing memory from the system with the functions
EFl_BOOT_SERVICES.AllocatePages(), EFI_BOOT_SERVICES.AllocatePool(),
EFlI_BOOT_SERVICES.FreePages(), and EEI_BOOT_SERVICES.FreePool(). The
firmware dynamically maintains the memory map as these functions are called.

» During preboot, an executing EFl Image must only use the memory it has allocated.

» Before an executing EFl image exits and returns control to the firmware, it must free
all resources it has explicitly allocated. This includes all memory pages, pool
allocations, open file handles, etc. Memory allocated by the firmware to load an image
is freed by the firmware when the image is unloaded.

When memory is allocated, it is “typed” according to the values in EFI_MEMORY_TYPE

(see the description for EEI_BOOT_SERVICES.AllocatePages()). Some of the types have a

different usage before EFI_BOOT_SERVICES.ExitBootServices() is called than they do
afterwards. Table 25 lists each type and its usage before the call; Table 26 lists each type

and its usage after the call. The system firmware must follow the processor-specific rules
outlined in Section 2.3.2 and Section 2.3.4 in the layout of the EFI memory map to enable
the OS to make the required virtual mappings.

Version 2.7

May 2017 181

Services — Boot Services

UEFI Specification

Table 25. Memory Type Usage before ExitBootServices()

Mnemonic
EfiReservedMemoryType
EfiLoaderCode
EfiLoaderData

EfiBootServicesCode
EfiBootServicesData

EfiRuntimeServicesCode
EfiRuntimeServicesData

EfiConventionalMemory
EfiUnusableMemory
EfiACPIReclaimMemory
EfiACPIMemoryNVS
EfiMemoryMappedIO

EfiMemoryMappedIOPortSpace

EfiPalCode

EfiPersistentMemory

Description
Not usable.
The code portions of a loaded UEFI application.

The data portions of a loaded UEFI application and the default data
allocation type used by a UEFI application to allocate pool memory.

The code portions of a loaded UEFI Boot Service Driver.

The data portions of a loaded UEFI Boot Serve Driver, and the default
data allocation type used by a UEFI Boot Service Driver to allocate pool
memory.

The code portions of a loaded UEFI Runtime Driver.

The data portions of a loaded UEFI Runtime Driver and the default data
allocation type used by a UEFI Runtime Driver to allocate pool memory.

Free (unallocated) memory.

Memory in which errors have been detected.
Memory that holds the ACPI tables.

Address space reserved for use by the firmware.

Used by system firmware to request that a memory-mapped 1O region
be mapped by the OS to a virtual address so it can be accessed by EFI
runtime services.

System memory-mapped IO region that is used to translate memory
cycles to 10 cycles by the processor.

Address space reserved by the firmware for code that is part of the
processor.

A memory region that operates as EfiConventionalMemory.
However, it happens to also support byte-addressable non-volatility.

Note: There is only one region of type EfiMemoryMappedloPortSpace defined in the architecture for
Itanium-based platforms. As a result, there should be one and only one region of type
EfiMemoryMappedloPortSpace in the EFI memory map of an Itanium-based platform.

182

Table 26. Memory Type Usage after ExitBootServices()

Mnemonic
EfiReservedMemoryType
EfiLoaderCode

EfiLoaderData

EfiBootServicesCode
EfiBootServicesData

Description
Not usable.

The UEFI OS Loader and/or OS may use this memory as they see fit.
Note: the UEFI OS loader that called

EFlI_BOOT_SERVICES.ExitBootServices() is utilizing one or

more EfiLoaderCode ranges.

The Loader and/or OS may use this memory as they see fit. Note: the
0S loader that called ExitBootServices() is utilizing one or more
EfiLoaderData ranges.

Memory available for general use.

Memory available for general use.

May 2017 Version 2.7

UEFI Specification Services — Boot Services

EfiRuntimeServicesCode The memory in this range is to be preserved by the UEFI OS loader
and OS in the working and ACPI S1-S3 states.

EfiRuntimeServicesData The memory in this range is to be preserved by the UEFI OS | loader
and OS in the working and ACPI S1-S3 states.

EfiConventionalMemory Memory available for general use.

EfiUnusableMemory Memory that contains errors and is not to be used.

EfiACPIReclaimMemory This memory is to be preserved by the UEFI OS loader and OS until

ACPI is enabled. Once ACPI is enabled, the memory in this range is
available for general use.

EfiACPIMemoryNVS This memory is to be preserved by the UEFI OS loader and OS in the
working and ACPI S1-S3 states.
EfiMemoryMappedIO This memory is not used by the OS. All system memory-mapped 10

information should come from ACPI tables.
EfiMemoryMappedIOPortSpace This memory is not used by the OS. All system memory-mapped 10
port space information should come from ACPI tables.

EfiPalCode This memory is to be preserved by the UEFI OS loader and OS in the
working and ACPI S1-S4 states. This memory may also have other
attributes that are defined by the processor implementation.

EfiPersistentMemory A memory region that operates as EfiConventionalMemory.
However, it happens to also support byte-addressable non-volatility.

Note: Animage that calls ExitBootServices() (i.e., a UEFI OS Loader) first calls
EFlI BOOT SERVICES.GetMemoryMap() to obtain the current memory map. Following the
ExitBootServices() call, the image implicitly owns all unused memory in the map. This includes
memory types EfiLoaderCode, EfiLoaderData, EfiBootServicesCode, EfiBootServicesData,
and EfiConventionalMemory. A UEFI OS Loader and OS must preserve the memory marked as
EfiRuntimeServicesCode and EfiRuntimeServicesData.

Version 2.7 May 2017 183

Services — Boot Services UEFI Specification

EFI_BOOT_SERVICES.AllocatePages()

Summary
Allocates memory pages from the system.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_ALLOCATE_PAGES) (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS *Memory

)i

Parameters

Type The type of allocation to perform. See “Related
Definitions.”

MemoryType The type of memory to allocate. The type
EFI_MEMORY_TYPE is defined in “Related Definitions”
below. These memory types are also described in more
detail in Table 25 and Table 26. Normal allocations (that
is, allocations by any UEFI application) are of type
EfiLoaderData. MemoryType values in the range
0x70000000..0x7FFFFFFF are reserved for OEM use.
MemoryType values in the range
0x80000000..0xFFFFFFFF are reserved for use by UEFI OS
loaders that are provided by operating system vendors.

Pages The number of contiguous 4 KiB pages to allocate.

Memory Pointer to a physical address. On input, the way in which
the address is used depends on the value of Type. See
“Description” for more information. On output the address
is set to the base of the page range that was allocated. See
“Related Definitions.”

Note: UEFI Applications, UEFI Drivers, and UEFI OS Loaders must not allocate memory of type
EfiReservedMemoryType.

Related Definitions

184 May 2017 Version 2.7

UEFI Specification Services — Boot Services

//***

//EFI_ALLOCATE_TYPE
//***
// These types are discussed in the “Description” section below.
typedef enum {

AllocateAnyPages,

AllocateMaxAddress,

AllocateAddress,

MaxAllocateType
}EFI_ALLOCATE_TYPE;

//***

//EFI_MEMORY_TYPE

//***

// These type values are discussed in Table 25 and Table 26.

typedef enum {
EfiReservedMemoryType,
EfiLoaderCode,
EfiLoaderData,
EfiBootServicesCode,
EfiBootServicesData,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiConventionalMemory,
EfiUnusableMemory,
EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiMemoryMappedIO,
EfiMemoryMappedIOPortSpace,
EfiPalCode,
EfiPersistentMemory,
EfiMaxMemoryType

} EFI_MEMORY_TYPE;

//***

//EFI_PHYSICAL_ADDRESS

//***

typedef UINT64 EFI_PHYSICAL_ADDRESS;

Description

The AllocatePages() function allocates the requested number of pages and returns a
pointer to the base address of the page range in the location referenced by Memory. The
function scans the memory map to locate free pages. When it finds a physically
contiguous block of pages that is large enough and also satisfies the allocation
requirements of Type, it changes the memory map to indicate that the pages are now of
type MemoryType.

Version 2.7 May 2017 185

Services — Boot Services UEFI Specification

In general, UEFI OS loaders and UEFI applications should allocate memory (and pool) of
type EfiLoaderData. UEFI boot service drivers must allocate memory (and pool) of type
EfiBootServicesData. UREFI runtime drivers should allocate memory (and pool) of type
EfiRuntimeServicesData (although such allocation can only be made during boot
services time).

Allocation requests of Type AllocateAnyPages allocate any available range of pages that
satisfies the request. On input, the address pointed to by Memory is ignored.

Allocation requests of Type AllocateMaxAddress allocate any available range of pages
whose uppermost address is less than or equal to the address pointed to by Memory on
input.

Allocation requests of Type AllocateAddress allocate pages at the address pointed to by
Memory on input.

Note: UEFI drivers and UEFI applications that are not targeted for a specific implementation must
perform memory allocations for the following runtime types using AllocateAnyPages address
mode:

EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiReservedMemoryType.

Status Codes Returned

EFI_SUCCESS The requested pages were allocated.

EFI_OUT_OF_RESOURCES The pages could not be allocated.

EFI_INVALID_PARAMETER Type is not AllocateAnyPages or AllocateMaxAddress
or AllocateAddress.

EFI_INVALID_PARAMETER MemoryType is in the range
EfiMaxMemoryType..0x6FFFFFFF.

EFI_INVALID_PARAMETER MemoryType is EfiPersistentMemory.

EFI_INVALID_PARAMETER Memory is NULL.

EFI_NOT_FOUND The requested pages could not be found.

186 May 2017 Version 2.7

UEFI Specification Services — Boot Services

EFI_BOOT_SERVICES.FreePages()

Summary
Frees memory pages.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_FREE_PAGES) (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN Pages
);
Parameters
Memory The base physical address of the pages to be freed. Type
EFI_PHYSICAL_ADDRESS is defined in the
EFI_BOOT SERVICES.AllocatePages() function
description.
Pages The number of contiguous 4 KiB pages to free.
Description

The FreePages() function returns memory allocated by AllocatePages() to the firmware.

Status Codes Returned

EFI_SUCCESS The requested memory pages were freed.

EFI_NOT_FOUND The requested memory pages were not allocated with
AllocatePages().

EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid.

Version 2.7 May 2017 187

Services — Boot Services

UEFI Specification

EFI_BOOT_SERVICES.GetMemoryMap()

Summary

Returns the current memory map.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_GET_MEMORY_MAP) (

IN OUT UINTN

*MemoryMapSize,

IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,

OUT UINTN
OUT UINTN
OUT UINT32
);

Parameters
MemoryMapSize

MemoryMap

MapKey

DescriptorSize

DescriptorVersion

188

*MapKey,
*DescriptorSize,
*DescriptorVersion

A pointer to the size, in bytes, of the MemoryMap buffer.
On input, this is the size of the buffer allocated by the
caller. On output, it is the size of the buffer returned by the
firmware if the buffer was large enough, or the size of the
buffer needed to contain the map if the buffer was too
small.

A pointer to the buffer in which firmware places the
current memory map. The map is an array of
EFI_MEMORY_DESCRIPTORSs. See “Related Definitions.”

A pointer to the location in which firmware returns the key
for the current memory map.

A pointer to the location in which firmware returns the
size, in bytes, of an individual
EFI_MEMORY_DESCRIPTOR.

A pointer to the location in which firmware returns the
version number associated with the
EFI_MEMORY_DESCRIPTOR. See “Related Definitions.”

May 2017 Version 2.7

UEFI Specification

Related Definitions

//***

//EFI_MEMORY_DESCRIPTOR

//***

Version 2.7

typedef struct {
UINT32 Type;

Services — Boot Services

EFI_PHYSICAL_ADDRESS PhysicalStart;
EFI_VIRTUAL ADDRESS VirtualStart;
UINT64 NumberOfPages;

UINT64 Attribute;

} EFI_MEMORY_DESCRIPTOR;

Type

PhysicalStart

VirtualStart

NumberOfPages

Attribute

Type of the memory region.
Type EFI_MEMORY_TYPE is defined in the

AllocatePages() function description.

region. PhysicalStart must be aligned on a 4 KiB
boundary, and must not be above Oxfffffffffffff000. Type
EFI_PHYSICAL ADDRESS is defined in the
AllocatePages() function description.

Virtual address of the first byte in the memory region.
VirtualStart must be aligned on a 4 KiB boundary, and
must not be above OxfffffffffffO0O0.

Type EFI_VIRTUAL_ADDRESS is defined in “Related
Definitions.”

Number of 4 KiB pages in the memory region.
NumberOfPages must not be 0, and must not be any value
that would represent a memory page with a start address,
either physical or virtual, above Oxfffffffffffff0O00

Attributes of the memory region that describe the bit
mask of capabilities for that memory region, and not
necessarily the current settings for that memory region.
See the following “Memory Attribute Definitions.”

May 2017 189

Services — Boot Services UEFI Specification

Note:

190

//***

// Memory Attribute Definitions
//***

// These types can be “ORed” together as needed.
#define EFI_MEMORY_UC 0x0000000000000001
#define EFI_MEMORY_WC 0x0000000000000002
#define EFI_MEMORY_WT 0x0000000000000004
#define EFI_MEMORY_WB 0x0000000000000008
#define EFI_MEMORY_UCE 0x0000000000000010
#define EFI_MEMORY_WP 0x0000000000001000
#define EFI_MEMORY_RP 0x0000000000002000
#define EFI_MEMORY_XP 0x0000000000004000
#define EFI_MEMORY_NV 0x0000000000008000
#define EFI_MEMORY_MORE_RELIABLE 0x0000000000010000
#define EFI_MEMORY_RO 0x0000000000020000
#define EFI_MEMORY_RUNTIME 0x8000000000000000

EFI_MEMORY_UC Memory cacheability attribute: The memory region
supports being configured as not cacheable.

EFI_MEMORY_WC Memory cacheability attribute: The memory region
supports being configured as write combining.

EFI_MEMORY_WT Memory cacheability attribute: The memory region

supports being configured as cacheable with a “write
through” policy. Writes that hit in the cache will also be
written to main memory.

EFI_MEMORY_WB Memory cacheability attribute: The memory region
supports being configured as cacheable with a “write
back” policy. Reads and writes that hit in the cache do not
propagate to main memory. Dirty data is written back to
main memory when a new cache line is allocated.

EFI_MEMORY_UCE Memory cacheability attribute: The memory region
supports being configured as not cacheable, exported,
and supports the “fetch and add” semaphore mechanism.

EFI_MEMORY_WP Physical memory protection attribute: The memory region
supports being configured as write-protected by system
hardware. This is typically used as a cacheability attribute
today. The memory region supports being configured as
cacheable with a "write protected” policy. Reads come
from cache lines when possible, and read misses cause
cache fills. Writes are propagated to the system bus and
cause corresponding cache lines on all processors on the
bus to be invalidated.

UEFI spec 2.5 and following: use EFI_MEMORY_RO as write-protected physical memory
protection attribute. Also, EFI_MEMORY_WP means cacheability attribute.

EFI_MEMORY_RP Physical memory protection attribute: The memory region
supports being configured as read-protected by system
hardware.

May 2017 Version 2.7

UEFI Specification Services — Boot Services

EFI_MEMORY_XP Physical memory protection attribute: The memory region
supports being configured so it is protected by system
hardware from executing code.

EFI_MEMORY_NV Runtime memory attribute: The memory region refers to
persistent memory

EFI_MEMORY_MORE_RELIABLE

The memory region provides higher reliability relative to
other memory in the system. If all memory has the same
reliability, then this bit is not used.

EFI_MEMORY_RO Physical memory protection attribute: The memory region
supports making this memory range read-only by system
hardware.

EFI_MEMORY_RUNTIME Runtime memory attribute: The memory region needs to
be given a virtual mapping by the operating system when

SetVirtualAddressMap() is called (described in
Section 8.4).

//***

//EFI_VIRTUAL_ADDRESS

//***

typedef UINT64 EFI_VIRTUAL_ADDRESS;

//***

// Memory Descriptor Version Number

//***

#define EFI_MEMORY_DESCRIPTOR_VERSION 1

Description

The GetMemoryMap() function returns a copy of the current memory map. The map is an
array of memory descriptors, each of which describes a contiguous block of memory. The
map describes all of memory, no matter how it is being used. That is, it includes blocks
allocated by EFI_BOOT_SERVICES.AllocatePages() and

EFI_BOOT_ SERVICES.AllocatePool(), as well as blocks that the firmware is using for its
own purposes. The memory map is only used to describe memory that is present in the
system. The firmware does not return a range description for address space regions that
are not backed by physical hardware. Regions that are backed by physical hardware, but
are not supposed to be accessed by the OS, must be returned as
EfiReservedMemoryType. The OS may use addresses of memory ranges that are not
described in the memory map at its own discretion.

Until EFI_BOOT_SERVICES.ExitBootServices() is called, the memory map is owned by
the firmware and the currently executing UEFI Image should only use memory pages it

has explicitly allocated.

If the MemoryMap buffer is too small, the EFI_ BUFFER_TOO_SMALL error code is
returned and the MemoryMapSize value contains the size of the buffer needed to contain

Version 2.7 May 2017 191

Services — Boot Services UEFI Specification

192

the current memory map. The actual size of the buffer allocated for the consequent call
to GetMemoryMap() should be bigger then the value returned in MemoryMapSize, since
allocation of the new buffer may potentially increase memory map size.

On success a MapKey is returned that identifies the current memory map. The firmware’s
key is changed every time something in the memory map changes. In order to

successfully invoke EFI_BOOT_SERVICES.ExitBootServices() the caller must provide the
current memory map key.

The GetMemoryMap() function also returns the size and revision number of the
EFI_MEMORY_DESCRIPTOR. The DescriptorSize represents the size in bytes of an
EFI_MEMORY_DESCRIPTOR array element returned in MemoryMap. The size is returned
to allow for future expansion of the EFI_ MEMORY_DESCRIPTOR in response to hardware
innovation. The structure of the EFI_MEMORY_DESCRIPTOR may be extended in the
future but it will remain backwards compatible with the current definition. Thus OS
software must use the DescriptorSize to find the start of each
EFI_MEMORY_DESCRIPTOR in the MemoryMap array.

Status Codes Returned

EFI_SUCCESS The memory map was returned in the MemoryMap buffer.

EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size
needed to hold the memory map is returned in MemoryMapSi ze.

EFI_INVALID_PARAMETER MemoryMapSize is NULL.

EFI_INVALID_PARAMETER | The MemoryMap buffer is not too small and MemoryMap is

NULL.

May 2017 Version 2.7

UEFI Specification

Services — Boot Services

EFI_BOOT_SERVICES.AllocatePool()

Summary
Allocates pool memory.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_ALLOCATE_POOL) (
IN EFI_MEMORY_TYPE PoolType,

IN UINTN

OUT VOID **Buffer

);

Parameters
PoolType

Size
Buffer

Size,

The type of pool to allocate. Type EFI_MEMORY_TYPE is
defined in the EFI_BOOT_SERVICES.AllocatePages()
function description. PoolType values in the range
0x70000000..0x7FFFFFFF are reserved for OEM use.
PoolType values in the range 0x80000000..0xFFFFFFFF
are reserved for use by UEFI OS loaders that are provided
by operating system vendors.

The number of bytes to allocate from the pool.

A pointer to a pointer to the allocated buffer if the call
succeeds; undefined otherwise.

Note: UEFI applications and UEFI drivers must not allocate memory of type
EfiReservedMemoryType.

Description

The AllocatePool() function allocates a memory region of Size bytes from memory of
type PoolType and returns the address of the allocated memory in the location
referenced by Buffer. This function allocates pages from EfiConventionalMemory as
needed to grow the requested pool type. All allocations are eight-byte aligned.

The allocated pool memory is returned to the available pool with the

EFI_BOOT_SERVICES.FreePool() function.

Status Codes Returned

EFI_SUCCESS

The requested number of bytes was allocated.

EFI_OUT_OF RESOURCES

The pool requested could not be allocated.

EFI_INVALID_PARAMETER

PoolType is in the range EfiMaxMemoryType..Ox6FFFFFFF.

EFI_INVALID_PARAMETER

PoolType is EfiPersistentMemory.

EFI_INVALID_PARAMETER

Buffer is NULL.

Version 2.7

May 2017 193

Services — Boot Services UEFI Specification

EFI_BOOT_SERVICES.FreePool()

Summary
Returns pool memory to the system.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_FREE_POOL) (
IN VOID *Buffer
)i
Parameters

Buffer Pointer to the buffer to free.

Description

The FreePool() function returns the memory specified by Buffer to the system. On return,
the memory’s type is EfiConventionalMemory. The Buffer that is freed must have been
allocated by AllocatePool().

Status Codes Returned

EFI_SUCCESS The memory was returned to the system.
EFI_INVALID_PARAMETER Buffer was invalid.

7.3 Protocol Handler Services

In the abstract, a protocol consists of a 128-bit globally unique identifier (GUID) and a
Protocol Interface structure. The structure contains the functions and instance data that
are used to access a device. The functions that make up Protocol Handler Services allow
applications to install a protocol on a handle, identify the handles that support a given
protocol, determine whether a handle supports a given protocol, and so forth. See
Table 27.

194 May 2017 Version 2.7

UEFI Specification Services — Boot Services

Table 27. Protocol Interface Functions

Name Type Description

InstallProtocolinterface Boot Installs a protocol interface on a device handle.

UninstallProtocolinterface Boot Removes a protocol interface from a device handle.

ReinstallProtocolinterface Boot Reinstalls a protocol interface on a device handle.

RegisterProtocolNotify Boot Registers an event that is to be signaled whenever an
interface is installed for a specified protocol.

LocateHandle Boot Returns an array of handles that support a specified
protocol.

HandleProtocol Boot Queries a handle to determine if it supports a specified
protocol.

LocateDevicePath Boot Locates all devices on a device path that support a

specified protocol and returns the handle to the device
that is closest to the path.

OpenProtocol Boot Adds elements to the list of agents consuming a
protocol interface.

CloseProtocol Boot Removes elements from the list of agents consuming a
protocol interface.

OpenProtocolinformation Boot Retrieve the list of agents that are currently consuming a
protocol interface.

ConnectController Boot Uses a set of precedence rules to find the best set of
drivers to manage a controller.

DisconnectController Boot Informs a set of drivers to stop managing a controller.

ProtocolsPerHandle Boot Retrieves the list of protocols installed on a handle. The

return buffer is automatically allocated.

LocateHandleBuffer Boot Retrieves the list of handles from the handle database
that meet the search criteria. The return buffer is
automatically allocated.

LocateProtocol Boot Finds the first handle in the handle database the
supports the requested protocol.

InstallMultipleProtocolinterfaces Boot Installs one or more protocol interfaces onto a handle.
UninstallMultipleProtocolinterfaces = Boot Uninstalls one or more protocol interfaces from a
handle.

The Protocol Handler boot services have been modified to take advantage of the
information that is now being tracked with the EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_SERVICES.CloseProtocol() boot services. Since the usage of protocol
interfaces is being tracked with these new boot services, it is now possible to safely
uninstall and reinstall protocol interfaces that are being consumed by UEFI drivers.

As depicted in Eigure 25, the firmware is responsible for maintaining a “data base” that
shows which protocols are attached to each device handle. (The figure depicts the “data
base” as a linked list, but the choice of data structure is implementation-dependent.) The
“data base” is built dynamically by calling the

EFlI_ BOOT_SERVICES.InstallProtocollnterface() function. Protocols can only be installed

Version 2.7 May 2017 195

Services — Boot Services UEFI Specification

by UEFI drivers or the firmware itself. In the figure, a device handle (EFI_HANDLE) refers
to a list of one or more registered protocol interfaces for that handle. The first handle in
the system has four attached protocols, and the second handle has two attached
protocols. Each attached protocol is represented as a GUID/Interface pointer pair. The
GUID is the name of the protocol, and Interface points to a protocol instance. This data
structure will typically contain a list of interface functions, and some amount of instance
data.

Access to devices is initiated by calling the EFl BOOT_SERVICES.HandleProtocol()

function, which determines whether a handle supports a given protocol. If it does, a
pointer to the matching Protocol Interface structure is returned.

When a protocol is added to the system, it may either be added to an existing device
handle or it may be added to create a new device handle. Figure 25 shows that protocol
handlers are listed for each device handle and that each protocol handler is logically a
UEFI driver.

First Handle ~

|Device Handle|

4 Y v v
GUID GUID GUID GUID
Interface Interface Interface Interface
Protocol Protocol Protocol Protocol
Interface Interface Interface Interface
Instance Instance Instance Instance
Data Data Data Data

|Device Handle|

GUID GUID
Interface Interface
Protocol Protocol
Interface Interface
Instance Instance
Data Data

OM13155

196

Figure 25. Device Handle to Protocol Handler Mapping

The ability to add new protocol interfaces as new handles or to layer them on existing
interfaces provides great flexibility. Layering makes it possible to add a new protocol that
builds on a device’s basic protocols. An example of this might be to layer on a
EFI_SIMPLE TEXT OUTPUT PROTOCOL support that would build on the handle’s
underlying EFI_SERIAL IO PROTOCOL.

May 2017 Version 2.7

UEFI Specification Services — Boot Services

The ability to add new handles can be used to generate new devices as they are found, or
even to generate abstract devices. An example of this might be to add a multiplexing
device that replaces ConsoleOut with a virtual device that multiplexes the
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL protocol onto multiple underlying device
handles.

Driver Model Boot Services

Following is a detailed description of the new UEFI boot services that are required by the
UEFI Driver Model. These boot services are being added to reduce the size and complexity
of the bus drivers and device drivers. This, in turn, will reduce the amount of ROM space
required by drivers that are programmed into ROMs on adapters or into system FLASH,
and reduce the development and testing time required by driver writers.

These new services fall into two categories. The first group is used to track the usage of
protocol interfaces by different agents in the system. Protocol interfaces are stored in a
handle database. The handle database consists of a list of handles, and on each handle
there is a list of one or more protocol interfaces. The boot services

EFI_BOOT_SERVICES.InstallProtocolinterface(),

EFlI_ BOOT_SERVICES.UninstallProtocollnterface(), and

EFI_BOOT_ SERVICES.ReinstallProtocolinterface() are used to add, remove, and replace
protocol interfaces in the handle database. The boot service
EFI_BOOT_SERVICES.HandleProtocol() is used to look up a protocol interface in the
handle database. However, agents that call HandleProtocol() are not tracked, so it is not
safe to call UninstallProtocolinterface() or ReinstallProtocolinterface() because an
agent may be using the protocol interface that is being removed or replaced.

The solution is to track the usage of protocol interfaces in the handle database itself. To
accomplish this, each protocol interface includes a list of agents that are consuming the
protocol interface. Figure 26 shows an example handle database with these new agent
lists. An agent consists of an image handle, a controller handle, and some attributes. The
image handle identifies the driver or application that is consuming the protocol interface.
The controller handle identifies the controller that is consuming the protocol interface.
Since a driver may manage more than one controller, the combination of a driver's image
handle and a controller's controller handle uniquely identifies the agent that is
consuming the protocol interface. The attributes show how the protocol interface is being
used.

Version 2.7 May 2017 197

Services — Boot Services UEFI Specification

First Handle
\
Device Handle
+ + e o o
GUID GUID
Interface \" Interface \
Image Handle Image Handle
Protocol Controller Handle Controller Handle
Interface Attributes Protocol Attributes
Instance] Interface 7
Data Image Handle Instance oo
Controller Handle Data
] Attributes
) ¥
Device Handle Image Handle
¢ Controller Handle
GUID Attributes
C Interface \
Protocol Image Handle
Interface Controller Handle
Instance Attributes
Data y
Image Handle
Controller Handle
Attributes

OM13156

198

Figure 26. Handle Database

In order to maintain these agent lists in the handle database, some new boot services are

required. These are EFl_BOOT_SERVICES.OpenProtocol(),
EFI_BOOT_SERVICES.CloseProtocol(), and
EFI_BOOT_SERVICES.OpenProtocolinformation(). OpenProtocol() adds elements to

the list of agents consuming a protocol interface. CloseProtocol() removes elements
from the list of agents consuming a protocol interface, and

EFI_BOOT_SERVICES.OpenProtocolinformation() retrieves the entire list of agents that

are currently using a protocol interface.

The second group of boot services is used to deterministically connect and disconnect
drivers to controllers. The boot services in this group are

EFI_BOOT_SERVICES.ConnectController()) and
EFI_BOOT_SERVICES.DisconnectController(). These services take advantage of the new

features of the handle database along with the new protocols described in this document
to manage the drivers and controllers present in the system. ConnectController() uses a
set of strict precedence rules to find the best set of drivers for a controller. This provides
a deterministic matching of drivers to controllers with extensibility mechanisms for OEMs,
IBVs, and IHVs. DisconnectController() allows drivers to be disconnected from
controllers in a controlled manner, and by using the new features of the handle database
it is possible to fail a disconnect request because a protocol interface cannot be released
at the time of the disconnect request.

May 2017 Version 2.7

UEFI Specification Services — Boot Services

The third group of boot services is designed to help simplify the implementation of
drivers, and produce drivers with smaller executable footprints. The
EFI_BOOT_SERVICES.LocateHandleBuffer() is a new version of
EFI_BOOT_SERVICES.LocateHandle() that allocates the required buffer for the caller.
This eliminates two calls to LocateHandle() and a call to
EFI_BOOT_SERVICES.AllocatePool() from the caller's code.
EFI_BOOT_SERVICES.LocateProtocol() searches the handle database for the first
protocol instance that matches the search criteria. The
EFI_BOOT_SERVICES.InstallMultipleProtocolinterfaces() and
EFI_BOOT_SERVICES.UninstallMultipleProtocolinterfaces() are very useful to driver

writers. These boot services allow one or more protocol interfaces to be added or
removed from a handle. In addition, InstallMultipleProtocolinterfaces() guarantees that
a duplicate device path is never added to the handle database. This is very useful to bus
drivers that can create one child handle at a time, because it guarantees that the bus
driver will not inadvertently create two instances of the same child handle.

Version 2.7 May 2017 199

Services — Boot Services UEFI Specification

EFI_BOOT_SERVICES.InstallProtocolinterface()

Summary

Installs a protocol interface on a device handle. If the handle does not exist, it is created
and added to the list of handles in the system. InstallMultipleProtocollnterfaces()
performs more error checking than InstallProtocolinterface(), so it is recommended that
InstallMultipleProtocolinterfaces() be used in place of InstallProtocolinterface()

Prototype

typedef
EFlI_STATUS
(EFIAPI *EFI_INSTALL _PROTOCOL_INTERFACE) (
IN OUT EFI_HANDLE *Handle,
IN EFI_GUID *Protocol,
IN EFI_INTERFACE_TYPE InterfaceType,
IN VOID *Interface

);

Parameters

Handle A pointer to the EFI_HANDLE on which the interface is to
be installed. If *Handle is NULL on input, a new handle is
created and returned on output. If *Handle is not NULL on
input, the protocol is added to the handle, and the handle
is returned unmodified. The type EFI_HANDLE is defined
in “Related Definitions.” If *Handle is not a valid handle,
then EFI_INVALID_PARAMETER is returned.

Protocol The numeric ID of the protocol interface. The type
EFI_GUID is defined in “Related Definitions.” It is the
caller’s responsibility to pass in a valid GUID. See “Wired
For Management Baseline” for a description of valid GUID
values.

InterfaceType Indicates whether Interface is supplied in native form. This
value indicates the original execution environment of the
request. See “Related Definitions.”

Interface A pointer to the protocol interface. The Interface must
adhere to the structure defined by Protocol. NULL can be
used if a structure is not associated with Protocol.

Related Definitions

200 May 2017 Version 2.7

UEFI Specification

//***

//EFI_HANDLE

//***

typedef VOID *EFI_HANDLE;

//***

//EFI_GUID
//***
typedef struct {

UINT32 Datal,;

UINT16 DataZ2;

UINT16 Datas3;

UINT8 Data4[8];

} EFI_GUID;

//***

//EFI_INTERFACE_TYPE
//***
typedef enum {

EFI_NATIVE_INTERFACE

} EFI_INTERFACE_TYPE;

Services — Boot Services

Description

The InstallProtocolinterface() function installs a protocol interface (a GUID/Protocol
Interface structure pair) on a device handle. The same GUID cannot be installed more

than once onto the same handle. If installation of a duplicate GUID on a handle is
attempted, an EFI_INVALID_PARAMETER will result.

Installing a protocol interface allows other components to locate the Handle, and the

interfaces installed onit.

When a protocol interface is installed, the firmware calls all notification functions that
have registered to wait for the installation of Protocol. For more information, see the

EFI_BOOT_SERVICES.RegisterProtocolNotify() function description.

Status Codes Returned

EFI_SUCCESS

The protocol interface was installed.

EFI_OUT_OF RESOURCES

Space for a new handle could not be allocated.

EFI_INVALID_PARAMETER

Handle is NULL

EFI_INVALID_PARAMETER

Protocol is NULL.

EFI_INVALID_PARAMETER

InterfaceType is not
EFI_NATIVE_INTERFACE.

EFI_INVALID_PARAMETER

Protocol is already installed on the handle specified
by Handle.

Version 2.7

May 2017

201

Services — Boot Services UEFI Specification

EFI_BOOT_SERVICES.UninstallProtocolinterface()

Summary

Removes a protocol interface from a device handle. It is recommended that
UninstallMultipleProtocolinterfaces() be used in place of UninstallProtocolinterface().

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_UNINSTALL_PROTOCOL_INTERFACE) (
IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,
IN VOID *Interface

)i

Parameters

Handle The handle on which the interface was installed. If Handle
is not a valid handle, then EFI_INVALID PARAMETER is
returned. Type EEI_HANDLE is defined in the
EFI_BOOT_SERVICES.InstallProtocolinterface() function
description.

Protocol The numeric ID of the interface. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID
values. Type EFI_GUID is defined in the
InstallProtocolinterface() function description.

Interface A pointer to the interface. NULL can be used if a structure
is not associated with Protocol.

Description

The UninstallProtocolinterface() function removes a protocol interface from the handle
on which it was previously installed. The Protocol and Interface values define the protocol
interface to remove from the handle.

The caller is responsible for ensuring that there are no references to a protocol interface
that has been removed. In some cases, outstanding reference information is not available
in the protocol, so the protocol, once added, cannot be removed. Examples include
Console I/0, Block 1/0, Disk 1/0, and (in general) handles to device protocols.

If the last protocol interface is removed from a handle, the handle is freed and is no
longer valid.

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section
above. There may be some drivers that are currently consuming the protocol interface
that needs to be uninstalled, so it may be dangerous to just blindly remove a protocol
interface from the system. Since the usage of protocol interfaces is now being tracked for

202 May 2017 Version 2.7

UEFI Specification Services — Boot Services

components that use the EFI_BOOT_SERVICES.OpenProtocol() and
EFI_BOOT_ SERVICES.CloseProtocol() boot services, a safe version of this function can

be implemented. Before the protocol interface is removed, an attempt is made to force all
the drivers that are consuming the protocol interface to stop consuming that protocol
interface. This is done by calling the boot service_
EFI_BOOT_SERVICES.DisconnectController() for the driver that currently have the
protocol interface open with an attribute of EFI_OPEN_PROTOCOL_BY_DRIVER or
EFI_OPEN_PROTOCOL_BY_DRIVER | EFI_OPEN_PROTOCOL_EXCLUSIVE.

If the disconnect succeeds, then those agents will have called the boot service
EFI_BOOT_ SERVICES.CloseProtocol() to release the protocol interface. Lastly, all of the
agents that have the protocol interface open with an attribute of
EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL, or EFI_OPEN_PROTOCOL_TEST _PROTOCOL
are closed. If there are any agents remaining that still have the protocol interface open,
the protocol interface is not removed from the handle and EFI_ACCESS _DENIED is
returned. In addition, all of the drivers that were disconnected with the boot service
DisconnectController() earlier, are reconnected with the boot service
EFI_BOOT_SERVICES.ConnectController(). If there are no agents remaining that are
consuming the protocol interface, then the protocol interface is removed from the handle
as described above.

Status Codes Returned

EFlI_SUCCESS The interface was removed.

EFI_NOT_FOUND The interface was not found.

EFI_ACCESS_DENIED The interface was not removed because the interface
is still being used by a driver.

EFI_INVALID_PARAMETER Handle is NULL.

EFI_INVALID_PARAMETER Protocolis NULL.

Version 2.7 May 2017 203

Services — Boot Services

UEFI Specification

EFI_BOOT_SERVICES.ReinstallProtocolinterface()

Summary

Reinstalls a protocol interface on a device handle.

Prototype

typedef
EFI_STATUS

(EFIAPI *EFI_REINSTALL_PROTOCOL_INTERFACE) (

IN EFI_HANDLE Handle,
IN EFI_GUID *Protocol,

INVOID *OldInterface,
IN VOID *Newlnterface

)i

Parameters
Handle

Protocol

OldInterface

Newlnterface

Description

Handle on which the interface is to be reinstalled. If
Handle is not a valid handle, then
EFI_INVALID_PARAMETER isreturned. Type EFIl_HANDLE
is defined in the

EFI_BOOT_SERVICES.InstallProtocolinterface() function

description.

The numeric ID of the interface. It is the caller’s
responsibility to pass in a valid GUID. See “Wired For
Management Baseline” for a description of valid GUID
values. Type EFI_GUID is defined in the
InstallProtocolinterface() function description.

A pointer to the old interface. NULL can be used if a
structure is not associated with Protocol.

A pointer to the new interface. NULL can be used if a
structure is not associated with Protocol.

The ReinstallProtocolinterface() function reinstalls a protocol interface on a device
handle. The OldInterface for Protocol is replaced by the NewlInterface. NewInterface may
be the same as OldInterface. If it is, the registered protocol notifies occur for the handle
without replacing the interface on the handle.

As with InstallProtocollnterface(), any process that has registered to wait for the
installation of the interface is notified.

The caller is responsible for ensuring that there are no references to the OldInterface that

is being removed.

EFI 1.10 Extension

The extension to this service directly addresses the limitations described in the section
above. There may be some number of drivers currently consuming the protocol interface

204

May 2017 Version 2.7

UEFI Specification Services — Boot Services

that is being reinstalled. In this case, it may be dangerous to replace a protocol interface
in the system. It could result in an unstable state, because a driver may attempt to use the
old protocol interface after a new one has been reinstalled. Since the usage of protocol
interfaces is now being tracked for components that use the

EFI_BOOT_SERVICES.OpenProtocol() and EFI_ BOOT_SERVICES.CloseProtocol() boot

services, a safe version of this function can be implemented.

When this function is called, a call is first made to the boot service
UninstallProtocolinterface(). This will guarantee that all of the agents are currently
consuming the protocol interface OldIinterface will stop using OldInterface. If
UninstallProtocolinterface() returns EFI_ACCESS_DENIED, then this function returns
EFI_ACCESS_DENIED, Oldinterface remains on Handle, and the protocol notifies are not
processed because Newlinterface was never installed.

If UninstallProtocolinterface() succeeds, then a call is made to the boot service

EFI_BOOT_SERVICES.InstallProtocolinterface() to put the Newlinterface onto Handle.

Finally, the boot service EFI_BOOT_SERVICES.ConnectController() is called so all agents
that were forced to release Oldinterface with UninstallProtocollnterface() can now

consume the protocol interface NewlInterface that was installed with
InstallProtocollnterface(). After Oldinterface has been replaced with NewlInterface, any
process that has registered to wait for the installation of the interface is notified.

Status Codes Returned

EFI_SUCCESS The protocol interface was reinstalled.
EFI_NOT_FOUND The Old Interface on the handle was not found.
EFI_ACCESS_DENIED The protocol interface could not be reinstalled, because

OldInterface s still being used by a driver that will not release
it.

EFI_INVALID_PARAMETER Handle is NULL.

EFl_INVALID_PARAMETER Protocol is NULL.

Version 2.7 May 2017 205

Services — Boot Services UEFI Specification

EFI_BOOT_SERVICES.RegisterProtocolNotify()

Summary

Creates an event that is to be signaled whenever an interface is installed for a specified
protocol.

Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_REGISTER_PROTOCOL_NOTIFY) (
IN EFI_GUID *Protocol,

IN EFI_EVENT Event,

OUT VOID **Registration

)i

Parameters
Protocol The numeric ID of the protocol for which the event is to be
registered. Type EFI_GUID is defined in the
EFI_BOOT_SERVICES.InstallProtocolinterface() function
description.
Event Event that is to be signaled whenever a protocol interface

is registered for Protocol. The type EFI_EVENT is defined
in the CreateEvent() function description. The same
EFI_EVENT may be used for multiple protocol notify
registrations.

Registration A pointer to a memory location to receive the registration
value. This value must be saved and used by the
notification function of Event to retrieve the list of handles
that have added a protocol interface of type Protocol.

Description

The RegisterProtocolNotify() function creates an event that is to be signaled whenever a
protocol interface is installed for Protocol by InstallProtocolinterface() or

EFI_BOOT_SERVICES.ReinstallProtocolinterface().

Once Event has been signaled, the EFI_BOOT_SERVICES.LocateHandle() function can be
called to identify the newly installed, or reinstalled, handles that support Protocol. The
Registration parameter in EEl_BOOT_SERVICES.RegisterProtocolNotify() corresponds
to the SearchKey parameter in LocateHandle(). Note that the same handle may be
returned multiple times if the handle reinstalls the target protocol ID multiple times. This
is typical for removable media devices, because when such a device reappears, it will
reinstall the Block I/O protocol to indicate that the device needs to be checked again. In
response, layered Disk I1/0 and Simple File System protocols may then reinstall their
protocols to indicate that they can be re-checked, and so forth.

206 May 2017 Version 2.7

UEFI Specification

Services — Boot Services

Events that have been registered for protocol interface notification can be unregistered

by calling CloseEvent().

Status Codes Returned

EFI_SUCCESS

The notification event has been registered.

EFI_OUT_OF RESOURCES

Space for the notification event could not be allocated.

EFI_INVALID_PARAMETER

