Received August 24, 2022;

Revised August 24, 2022;

Accepted August 24, 2022

DOI: xxx/xxxx

RESEARCH ARTICLE

vDANE: Using Virtualization for Improving Video Quality with
Server and Network Assisted DASH

Reza Shokri Kalan' | Stuart Clayman? | Miige Sayit?

!nternational Computer Institute, Ege
University, Izmir, Turkey
Digiturk beIN Media Group, Digiturk,
Istanbul, Turkey

2Dept of Electronic Engineering, University
College London, London, UK

3International Computer Institute, Ege
University, Izmir, Turkey

Correspondence

Summary

Network Function Virtualization (NFV) offers flexibility in traffic engineering and
network resource management, by taking advantage of Software Defined Networking
(SDN). By using these network technologies it is possible to enhance the perfor-
mance of video streaming applications by placing network functions in suitable
locations and rerouting flows. Our study addresses the "virtual cache placement"

problem in dynamic networks, where traffic patterns and attachment points of the

Reza Shokri Kalan, Digiturk beIN Media
Group, Digiturk, Istanbul, Turkey. Email:

clients are changing rapidly. The cache placement is done by determining how many
s shokti @hommail.com, virtual caches are necessary to be able to provide acceptable service to the clients, as
well as where to place those caches to meet demand. To this end, we provide a heuris-
tic solution by taking advantage of NFV-SDN and having the assistance of Server
and Network Assisted DASH (SAND). Experimental results show that the proposed
algorithms can improve the video client re-buffering by 150% - 270% and also can
provide an 8% - 12% increase in average bitrate received by the client, compared to a
number of benchmark algorithms. The obtained results indicate that the co-operation
between the client and the operator of an SDN enabled network, by exchanging client
and network information, allows network resources to be efficiently used, and as a

consequence the Quality of Experience (QoE) on the client’s side is improved.

KEYWORDS:
Adaptive streaming, Virtual Cache, NFV-SDN, DASH, SAND

1 | INTRODUCTION

Streaming high-quality video is a priority yet a challenge for network providers, where the main volume of the current Internet IP
traffic is video packets. HTTP Adaptive Streaming (HAS) has become a de facto streaming technology, which achieves the best
possible quality for the user, by improving resource utilization and better adaptation to network conditions. Dynamic Adaptive
Streaming over HTTP (DASH)! is a standard developed by the MPEG research group, to provide interoperability between
the elements of various HAS systems, which were developed by different corporations. Server and Network Assisted DASH
(SAND)? is another on-going standardization process related to DASH, which is being developed by the MPEG group. In the
SAND architecture, some network elements are extended to have information about the DASH specification, and are defined in
the standard as DASH Aware Network Elements (DANEs). The SAND architecture assists clients to achieve better Quality of
Experience (QoE) by taking advantage of network-related information provided by DANESs.

Providing and sustaining the quality of the video is considered a challenge, since network dynamics can cause an interruption
of the provided services. Caching content in a Point of Presence (POP), which is near to the clients, reduces both the latency and

2| SHOKRI KALAN ET AL

the total amount of network traffic flows over the network, but implementing a new POP is more costly and takes time. The recent
standardisation efforts and proposals indicate that there is a tendency to provide “network support” to video streaming systems.
As such, the emerging networking technologies of Software Defined Networking (SDN) and Network Function Virtualization
(NFV) are good options that can provide such support. Content distributors may leverage the virtualization features provided
by NFV platforms in order to deploy a virtualized cache (vCache), as Virtual Network Functions (VNFs), instead of using
physical appliances. SDN is a complementary technology, that has changed the architecture of legacy networks and makes NFV
implementations more flexible and easier to manage>,*. Encapuslating both of these into a solution leads to a system that has a
dynamic behaviour as well as reduces the cost.

This paper addresses the problem of the placement of vCaches on forwarding devices in a highly dynamic network where the
available bandwidth of links changes while clients join or leave the network. We have developed two algorithms for providing
optimal cache placement and reliability. We consider the nodes in which to place instances of a vCache by taking into account:
(1) the number of links connected to the nodes; (ii) the available bandwidth of these links; and (iii) the density of the connected
clients. When determining and installing the first (or initial) vCache in the network, the PressurelnitialCache algorithm is used.
However, when we need additional on-demand vCache installations, we use the PressureCache algorithm for this purpose.
Furthermore, vCache migration is essential to the efficient use of network resources, while coping with changes in network
traffic patterns?, as highly dynamic network conditions require the migration of resources when it is needed.

In order to manage the network and the vCaches, we use SDN technology and MPEG SAND features. To the best of our
knowledge, this is the first study that utilizes network virtualization by using vCaches which have SAND characteristics, for
improving the QoE of DASH clients. We have devised the term vDANE to represent this kind of SAND aware vCache that has
knowledge about DASH. Using these technologies, it is possible to utilize common virtualization techniques to migrate vCache
resources on-demand, to be nearer to the end-users. Considering the large amount of traffic to be delivered to video streaming
clients, creating an efficient algorithm for migrating vCaches to an appropriate location requires knowledge of both network
conditions and client status in a real-time manner.

In this study we utilize vDANE vCache migration by considering the changes of both the client and network conditions. The
effects of vCache migration on QoE is investigated and an approach for minimizing those effects is presented. We propose an
architecture which selects an almost optimal location for installing the initial VDANE vCache as a network function, migration
of a vDANE, and/ or installing additional VDANE on demand. For this purpose, an adaptive approach which considers resource
availability and performance requirements in terms of the end user’s QoE is developed. A key problem is how to conduct
effective vCache placement, while meeting the bandwidth requirement for multimedia services, yet saving as many network
resources as possible. While our previous studies have only considered installing one cache on the network, the aim of this study
is to find the optimal number of caches, locate more than one cache and determine their migration times to satisfy end-users
QoE. Furthermore, this study has dynamic nature and is adaptable to network infrastructure changes such as traffic and client
distribution updates.

The paper is organized as follows: the background and information about the tools and technologies used in this study are
given next. A virtual cache placement approach, for the first vCache deployment, based on pressure score estimations and the
PressurelnitialCache algorithm are discussed in Section 3. The test bed and experimental environment used for measuring
the performance of the PressurelnitialCache algorithm is presented in Section 4, followed by the performance evaluation and
experimental results given in Section 5. In Section 6, we present the PressureCache algorithm which is executed when additional
vCache capacity is required in order to prevent a decrease in the video quality received by the clients, followed by cache migration
and its effects on the received video quality. Finally, we conclude the paper and give the directions of future work in Section 7.

2 | BACKGROUND

2.1 | Adaptive Video Streaming Technologies, DASH and SAND Standards

HTTP Adaptive Streaming (HAS) is a technology that aims to provide optimal quality to the clients given the constraints of
changeable network conditions and client status. In HAS, multiple copies of the same video input are encoded with different
qualities (or representations), and saved as different outputs. Each of these representation is split and kept on the server in a
large number of same-sized small partitions, which are known as segments or chunks. The player on the client-side observes
the network conditions, and adaptively makes changes to the presented quality during streaming, by requesting chunks with
different qualities. The quality is determined, over time, on the basis of a rate adaptation algorithm and the available bandwidth.

SHOKRI KALAN ET AL | 3

Having a high-level overview of network resources and traffic patterns as feedback to clients, helps them achieve better QoE.
Using the flexibility of SDN, combined with SAND features, allows for enhancing the quality of video streaming®.
In the specification of the SAND architecture, four classes of network elements are defined in the standard?:

e DASH client: DASH clients with SAND features download segments from the server and sends DASH metrics related to
their status to DANEs or a DASH metric server.

e DANE: DANESs have knowledge about the DASH format and the characteristics to provide improvement in the perceived
quality. A DASH client may contact a DANE before requesting each segment to get information.

o DASH metric server: The server is responsible for gathering metrics from DASH clients.

o Regular network elements: Network elements which do not have information about DASH characteristics.

Messages passing between the DASH clients and the DANEs might inform DASH-aware elements about buffer level, requested
quality, and required bandwidth for the delivery of the packets. As a consequence, this information triggers content caching
and provides DANESs with the necessary information for estimating further requests by the clients, and making more useful
caching decisions, by using these estimations. On the flip side, DANEs can inform DASH clients to trigger better adaption,
by sending information such as alternative segment availability and network throughput by using Parameters for Enhancing
Reception (PER) messages. DANEs might predict and request further segments from the origin server and pre-fetch them by
sending Parameters for Enhancing Delivery (PED) messages to the server.

2.2 | Related Works

Edge caching in media delivery technology has a key role in terms of performance. Edge caches which are located distant from
clients or in less dense popularity places increase latency and reduce the client’s perceived quality, due to the high volume of
requests directed to the origin servers. However, in practice, it is hard to bring content as close as possible to all clients, especially
when the distribution of the locations of the clients changes rapidly. Virtualized cache (vCache) can be an intelligent and efficient
solution comes to solve this challenge. The virtualization of caches can be performed by implementing cache functions as VNFs
that run on top of the physical network forwarding elements within Internet Service Provides (ISPs).

The performance of certain Internet applications can be improved if the placement of these virtualized caches is determined
by considering the requirements of those applications. There are some research efforts in the literature, that provide effec-
tive solutions which focus on the placement of the virtualized caches and by adopting NFV-SDN principles’,8,, 19,11 and 2.
However, improving the performance of video applications, namely QoE, requires the consideration of more application spe-
cific parameters, such as the available bandwidth and the delay between the caches and the clients. Therefore, considering the
video streaming applications requirements, when placing the virtual caches, is important as it directly affects QoE. Differently
from some studies listed here, which have proposed approaches for optimal VNF placement by considering cost minimization,
resource allocation, or content placement, in order to provide improved service to the DASH video clients, we focus on utilizing
virtualization approaches for supporting video streaming and finding suitable locations for the virtual functions, in particular
the placement of vCaches.

On the basis of the co-operation between ISPs and Over-the-Top (OTT) services, vCache instances can be deployed in several
points in the network which creates a streaming service infrastructure that can deliver video packets to the clients efficiently 3.
There are several works which focus on the placement of virtualized caches for increasing QoE. In 13 and !4, virtual Content
Distribution Network (vCDN) placement is selected by considering Virtual Machines (VMs) storage, RAM and vCPU capacities
to increase QoS/QoE. These studies also aim to minimize the migration cost. In our previous work, we devised the term vDANE to
represent the vCaches that have the knowledge about DASH characteristics !. Recently, vCache usage and placement problems
in HAS systems has gained attention, and the number of the proposals in this area have been increasing. In'%, an approach
was proposed for defining the placement of video streaming VNFs such as cache, transcoder, compressor, and streamer by
considering the capacities of VNFs containers. The studies were proposed to use a virtualized proxy servers or caches, that
selects which content from which virtualized server for HAS systems in 17 18

Although there are several studies utilizing vCaches for increasing QoE, they mainly focus on VMs capacities for VNF and/or
content placement. Our study mainly differs from these works in the literature, due to its parameters used for the placement
of vCaches. These parameters are the available bandwidth between the client and the vCaches, and the density of the clients.

4 | SHOKRI KALAN ET AL

In our previous work !> and?°, we focused on vCache migration and its effects on different QoE parameters such as average
video bitrate and buffer fullness. More specifically, we determined the location of the initial vCache as well as the migration
time of vCache in'?, and we addressed the main issues related to vCache migration in2°. In this current study, we focus on the
problem of vCache placement and migration in a more general form by enhancing our previous studies, which only considered
installing one cache on the network. The aim of this study is to find the optimal number of caches, locate more than one cache
and determine their migration times to satisfy end-users QoE. This study has a dynamic nature and is adaptable to network
infrastructure changes, such as traffic and client distribution updates.

3 | VIRTUAL CACHE PLACEMENT AND CACHE MIGRATION APPROACH

As mentioned in the previous sections, DASH clients adapt to network conditions and request different qualities of video based
on the changes in the observed network throughput. In order to minimize the total network traffic and efficiently utilize network
bandwidth, the hop count between the video source and clients should be minimized. Reducing the distance between clients and
the content sources also reduces the total amount of flows that travel across network paths, hence reducing the total network
load. If the cache is placed behind a bottleneck link, the performance may deteriorate. To overcome this obstacle, as well as
the distance factor, in this current study we take into account the total amount of bandwidth and a connectivity factor, which is
the number of egress links attached to the nodes. Thus a node with more resources (e.g, bandwidth and connectivity) and the
highest density is an ideal point to locate a vCache.

3.1 | Initial Virtual Cache Placement based on Pressure Score Estimations

This section presents our first algorithm which finds the optimal location for the initial cache placement to reduce the network
traffic and provides high QoE for DASH clients where there are no cache instance available on the network. The algorithm, which
is called as PressurelnitialCache (PIC), calculates the pressure score of the candidate nodes and determines one of the nodes
for hosting the vDANE instance, considering these pressure scores of the candidate nodes. PressurelnitialCache was developed
by following and modifying the preliminary version of the algorithm which had been proposed in our previous work . In
the PressurelnitialCache algorithm, the pressure score calculation is done by considering distance in terms of hop counts and
pressure in terms of client density for each node in the network. The PressurelnitialCache algorithm, whose details are given in
the next section, uses the calculated pressure scores for all candidate nodes. The node with the minimum score is selected as a
location for the initial cache in the network as the output of the algorithm.

Assume that, in any network, H represents the number of online clients, d;; is the distance between nodes i and j in terms
of hop count of the path between these nodes. In the proposed framework, node refers to the network elements that can run
virtualized network functions. Consider a virtual cache instance is running on node j. Suppose that the client connected to node
i requests video content from the cache. By considering that, the cache sends packets to the clients which are connected to node
i, and hence, the video traffic is transmitted from node j to node i over d, ; hops.

In order to reduce total network traffic, as well as the response time, the candidate cache node should have minimum distance
with clients (d;;) and maximum available bandwidth and connectivity. Generally speaking, the cache location which gives the
maximum value of bandwidth / distance is optimal when considering the requirements. Suppose L, b, and L; represents the
number of the links in the network, the bandwidth of the link / and the total number of connected links to the candidate node j,
respectively. Here, the connected links are the links which will carry the traffic if the candidate node j is selected as a vCache
location. Accordingly, formula (1) is the total network bandwidth and formula (2) is the total bandwidth of the links that directly
connected to node j. While B represents the total capacity of the whole network, B’ represents the maximum traffic amount that
can be transferred by the node j.

B=Ys M

=1

Lj
B()=)b @
I=1

SHOKRI KALAN ET AL | s

Suppose the online clients are ordered regarding to their distance to the node j in ascending order. By following this, formula
(3) refers to the sum of distances between the node j and clients which are more than 1 hop away, where A represents the number
of clients connected to j* node through one-hop distance we can conduct to (4).

H
D)= D d 3)
i=h+1
h
D'(jy=) d;=h @)
i=1

Locality is an important criterion which has an impact on the performance. A long-distance connection has a negative effect
on the QoE due to the RTT delay and causes an increase in traffic volume in the network due to the increased number of the
links used for video transmission. By considering these facts, we evaluate the suitability of all candidate locations to deploy the
initial vCache by using formula (5). This formula is used for determining the pressure score, which is indicated by P(j), for all
possible candidate node locations j.

B L H L H
BG) _ 2isi bk X di _ 2l b Xy 4y
Dy vh L - L
Z,‘:] dij * 21:]1 bl h Z[:jl bl

Since the value B = Z[L: , b, represents the total network bandwidth and it is the same for all clients, it affects the pressure
score for each candidate at the same level. Therefore, we can remove it from the formula. Hence, formula (5) can be rewritten
in the form as given in (6).

P@) = &)

J

S
<l
=

H
Zicher i)

L.
EDY 121 b
Finally, the number of links connected to the candidate nodes and which carry traffic also are taken into account, in order
to increase the reliability. Considering that more connection links provide more reliability, we modified the formula in (6) and

obtained the formula in (7).

P@) = 6)

H
Zi=h+1 dij

P(j)=——F—
L;x* h21=1 b,

@)

3.2 | System Architecture Overview

SDN enables applications such as traffic engineering and load balancing to define forwarding policies that are eventually trans-
lated to southbound-specific instructions. In our system architecture, the SDN controller gathers network information from the
network nodes (e.g., switches, servers, clients) by using its southbound interface. The controller utilizes some basic network ser-
vice functions which tracks online clients by collecting information about their location and the time of getting online, determines
the forwarding rules, and calculates available bandwidth of the paths in the network.

In addition to these basic network functions, there are three quality modules inside the SDN controller:

o Cache Placement: By analyzing the real-time conditions of the network and the performance of the DASH system, it is
possible to determine if the current resources (e.g., origin server, or network bandwidth) have enough capacity to keep
the video quality at a reasonable level. When the network size or the number of clients increases, additional caches should
be installed to meet demand. If it is decided that a new cache instance is going to be initiated, it should be placed in a
suitable location such that the decision will cause an increase in QoE and maintain good network utilization, due to there
being less traffic in the core network links and better use of network available bandwidth.

o Cache Migration: Where there is a lack of resources or a cache is deployed in an inappropriate location, clients will often
switch to lower video qualities and more interruptions during display could be experienced. In such a case, the cache
should be moved to a suitable location.

e SAND Messages: Connecting a client to the appropriate cache improves both network resource utilization and client QoE.
When there is more than one cache in the network, this module directs clients to connect to the appropriate caches, with
the assistance of the PER messages. As a consequence, the clients will then experience better video quality.

6 | SHOKRI KALAN ET AL

The types and explanations of the messages used in this study, that are sent between SAND elements, are given in Table 1. The
Status messages are sent by the clients to the DANE. These Status messages carry QoE information such as average received
bitrate and buffer level information. DANE collect the Status message information and combines these to create a PED message.
The DANE then sends these PED messages to the controller after it has collected the relevant Status messages. DANE also adds
its own metrics, such as the number of links and clients connected to it into these PED messages. This combined information
helps the controller decide whether to run a cache migration algorithm or install an additional cache. PED messages are also
exchanged between DANEs and the media server in order to prefetch content. The controller sends PER messages to the clients
to direct them to connect another DANE.

TABLE 1 SAND message types used in this study

Message Types Description

Status messages Dispatched from DASH clients to DANEs. Update DANE with client’s last situation
PED message Exchanged between DANESs and controller / DANESs in order to enhance delivery

PER message Dispatched from DANEs to DASH clients. Directs clients to connect to another vDANE.

Our system architecture is illustrated in Figure. 1. In the figure, the SDN modules that were developed for this study, vDANEs
and SAND messages are shown. There are two forwarding elements that run vDANE instances. Two clients in the system receive
segments from two different qualities.

Application Layer
REST API
Quality Functions =3
SDN Controller
[SAND Messages][Cache Migration][Cache Placement]
» —
Network Layer /

/

OpenFlow _~

Media Server

Client

- () Quality 1
S © Quality 2

PER Message

Client = p <t -=---
. / PED Message a Router

» S‘._ —— - -
tatus Message e vDANE

Infrastructure Layer < - — . — -

FIGURE 1 Illustration of the SDN enabled video streaming architecture

SHOKRI KALAN ET AL 7

3.3 | Deploying Initial vDANE Instances

The controller triggers the Cache Placement module on-demand for installing the Initial VDANE. The Cache Placement module
runs the PressurelnitialCache algorithm given in the Algorithm 1. This algorithm is also used for migrating the Initial vCache.
Media servers, as well as vDANESs, periodically send network information to the controller, including the average quality of
the received video representations requested by the clients. The network controller retrieves this information and determines if
a new cache is necessary. This decision is based on a predefined quality threshold, which is set by either the video streaming
company or the network operator. When the average quality received by the clients, in the form of bitrate or representation,
falls under the qguality threshold the controller can decide to migrate the Initial vCache. An additional cache will be installed if
the clients continue experiencing poor QoE. The installation of additional caches will be discussed in Section 6. As previously
mentioned, the PressurelnitialCache algorithm selects the node which has the minimum pressure score, and install vCache if it
is the first instance or migrates the vCache if there is a vCache in the network. This score is calculated for all potential switches
that can be selected as hosting a vDANE instance. P(j) with the minimum score is considered to be the best location for the Initial
vDANE deployment. The main objective of the algorithm is to find an optimal location for vDANE placement, by considering
the number of hops and the available bandwidth between the potential location and the clients, as well as the density of the
clients. The location with more connected links and more available bandwidth, but a lower hop count from the clients, has a
higher chance to be selected.

In this current study, the PressurelnitialCache algorithm only selects one switch for the Initial VDANE placement. After
determining an appropriate node as a location for deploying a vDANE instance (e.g, a switch or router), the controller creates
a new VDANE instance connected to the specific node. Then it forwards the client’s requests to the deployed vDANE, via the
shortest path. The PressurelnitialCache is also used for deciding the migration of the Initial vCache.

3.4 | Cache Migration

The network controller continuously monitors network conditions and gathers statistical parameters related to the DASH client’s
traffic and to the cross-traffic pattern from underlying infrastructure elements. It was shown that network monitoring can be
achieved more efficiently by using OpenFlow statistics?' , compared to legacy networks. For example, instead of probing the
end-to-end path, the SDN controller can keep track of the available bandwidth on each link and can estimate the end-to-end
available bandwidth??. Any changes in the environment that affects the current configuration should be reported to the controller,
and the controller consequently triggers appropriate functions.

In the case of any changes to the network conditions, such as changes in traffic pattern or even exceeding the quality threshold,
the controller again runs the PressurelnitialCache algorithm, given in Algorithm 1, for estimating a new cache location, based
on the updated data. If the output of the algorithm determines a new location for a vDANE, the controller virtually migrates the
vDANE to the new place and then installs it. The controller then leverages SAND technology and sends PER messages in order

Algorithm 1: PressurelnitialCache Algorithm

Input: Set of switches
Distance (hop count) of each connected client to each switch
1 begin
2 foreach switch j do
3 ‘ Compute Pressure Score (j)
4 end
5 Select switch with minimum score
6 if there is no any vCache in network then
7 ‘ Install a vCache in selected switch
8 else
9 ‘ Migrate vCache to selected switch
10 end

s | SHOKRI KALAN ET AL

to force the clients to connect to the new VDANE. After migration, the controller continues to track clients’ condition. If the
clients still experience low quality, which is under the quality threshold, the controller decides to install an additional cache.

4 | TESTING ENVIRONMENT

To measure the performance of the proposed approach and to compare it with different approaches, we implemented some
simulations using the Mininet emulator. The agility of Mininet provides an easy way to prototype and evaluate SDN protocols
and applications. In the context of a controller, the FloodLight®* controller with the assistance of OpenFlow as a southbound
interface is used during the simulations. The combination of Mininet and an OpenFlow switch in a virtualized container provides
exactly the same semantics of software-based OpenFlow switches >*.

Three different network topologies were applied to evaluate the performance of the PressurelnitialCache algorithm, as shown
in Table. 2. These include two topologies from the Internet Topology Zoo?®, namely Compuserve and BellCanada, and one
Custom topology, which is shown in Figure.2. A Poisson distribution with different mean values (4=20 Mbps, 25 Mbps, 30
Mbps) are used for generating the network links bandwidths. Also, the number of the DASH clients are set to 30, 40, and 50 for
Custom, Compuserve, and BellCanada topologies, respectively.

We compared the proposed algorithm with two different algorithms. The first comparison study is against the Best effort
algorithm, in which a vDANE is placed in the location where forwarding devices carry more network traffic. This approach is
discussed in?® where caches are installed in high traffic switches. For the second comparison, the algorithm used is HotSpot,
which aims to find the optimum location by taking advantage of the locality, and places the cache in the highest density location.
HotSpot introduces the function: F(N,) = a® + b* + ¢ to find optimal places, where a, b and ¢ refer to the number of clients
with hop count one, two, and three distance from each node N; 19 For transferring packets between each client and vDANEs,
the shortest path algorithm is used in all approaches. Note that, it is also possible to use different routing algorithms thanks to
SDN, but we prefer to use the same routing algorithm for all approaches in order to be able to provide performance results.

The video Big Buck Bunny?’, whose information is given in Table 3, is used for streaming during the simulation. There are six
representations of this video, while the first representation (R1) has the lowest quality, the last representation (R6) has the highest
quality. Each representation contains 299 video segments with equal length of 2 seconds video, producing 598 seconds of video
in total. To achieve better video quality, clients should request and receive as many segments from higher bitrate representations
as possible, while reducing the number of video stalls.

The attachment points of the clients to the network are randomly distributed, with the same distribution being used in all
algorithms. The mean of the client’s interval time is set to 1 second. During simulation, some clients leave the network and
new clients join the network. Hence, the simulation scenario has a dynamic nature. DASH clients join the network based on a
Poisson distribution, and they start requesting suitable representations after downloading the Media Presentation Description

TABLE 2 Network topologies

Network Network # # # Average available
topologies size Nodes Links Clients bandwidth (Mbps)
Custom Small 7 9 30 A=20, A=25, A=30
Compuserve Medium 11 14 40 A=20, A=25, A=30
BellCanada Large 43 58 50 A=20, A=25, A=30

TABLE 3 Big Buck Bunny representations and bitrates

Representation 1 2 3 4 5 6
Synonym #R1 #R2 #R3 #R4 #R5 #R6

Bitrate (Kbps) 2133 2484 3078 3526 3840 4219

SHOKRI KALAN ET AL 9

[Custom Topology]

DASH Client Media Server

FIGURE 2 Custom network topology

(MPD) file. In this study, we used a throughput based rate adaptation algorithm on the client side, where the clients adapt the
bitrate by considering only the measured available bandwidth. Each simulation is repeated 10 times and the average values are
presented in the graphs and tables.

S | INITIAL VCACHE PLACEMENT EVALUATION

For the Initial vCache placement evaluation, we implemented and evaluated the proposed approach in the simulation scenarios
by using three different network topologies, each with three different configurations as explained in the previous section. Tables
4, 5 and 6 list averaged video quality parameters observed on the clients’ side obtained from the simulations in the Custom,
Compuserve and BellCanada topologies. In the tables, the received video quality is a measure of the bitrate of the video received
on the client’s side, the startup delay indicates the latency of starting to display video after the client triggers a request to play,
and re-buffering duration defines the video re-buffering or freezing time during display, which has a negative impact in end-user
QoE.

TABLE 4 Simulation results, Custom

Algorithm A=20 A=25 A=30

Best Effort 2513 2774 3078 (a) Average received
HotSpot 2761 3057 3220 video quality (Kbps)
PressurelnitialCache 2906 3160 3165

Algorithm =20 1=25 =30

Best Effort 10 10 12 (b) Average startup
HotSpot 11 9 8 delay (sec)
PressurelnitialCache 12 13 13

Algorithm =20 1=25 =30

Best Effort 121 84 12 (¢) Average re-buffering
HotSpot 205 43 14 duration (sec)

PressurelnitialCache 109 41 14

10 SHOKRI KALAN ET AL

TABLE 5 Simulation results, Compuserve

Algorithm A=20 A=25 A=30

Best Effort 2446 2852 3196 (a) Average received
HotSpot 2563 2877 3083 video quality (Kbps)
PressurelnitialCache 2471 2888 3232

Algorithm A=20 A=25 A=30

Best Effort 17 16 12 (b) Average startup
HotSpot 16 14 13 delay (sec)
PressurelnitialCache 24 17 16

Algorithm A=20 A=25 A=30

Best Effort 140 55 26 (¢) Average re-buffering
HotSpot 256 78 68 duration (sec)
PressurelnitialCache 168 112 23

TABLE 6 Simulation results, BellCanada

Algorithm A=20 A=25 A=30

Best Effort 2321 2373 2397 (a) Average received
HotSpot 2568 2701 2955 video quality (Kbps)
PressurelnitialCache 2859 3056 3185

Algorithm A=20 A=25 A=30

Best Effort 24 20 18 (b) Average startup
HotSpot 17 14 13 delay (sec)
PressurelnitialCache 24 22 20

Algorithm A=20 A=25 A=30

Best Effort 733 683 585 (¢) Average re-buffering
HotSpot 356 235 100 duration (sec)
PressurelnitialCache 197 144 97

It is seen from the tables that Best effort has the lowest received bitrate, while HotSpot and PressurelnitialCache achieve
better results. The reason for that is that in the Best effort algorithm, cache positions are in the center of network based on
the assumption of the minimum distance between clients and caches. Deploying caches in the center of the network without
considering client distribution may lead to inefficient performance, especially when caches are placed behind bottleneck links.
On the contrary, the HotSpot algorithm benefits from the locality and hence it has higher received bitrate comparing with Bes?
effort, but it is still lower than the PressurelnitialCache algorithm.

During simulation, both network traffic and client distribution changes. Since HotSpot and Best effort algorithms have a static
nature, they do not change the cache location. However, the PressurelnitialCache algorithm has a dynamic nature that migrates
caches into the appropriate location when either network traffic or user distribution are changed. Since the process of migration
is related to the changes in traffic patterns or client distribution, it is expected to observe re-buffering in some case (e.g., the
scenarios where /ambda equals 20 and 25 in Compuserve and BellCanada topology) takes a little more time during migration.

SHOKRI KALAN ET AL | 11

It is worth emphasizing that the bandwidths of the links were very tight in these simulations, thus we expect startup delay is
higher than usual in all scenarios. The startup delay also increases when the network size becomes larger. In all cases, increasing
network bandwidth provides higher performance. As we expected, our proposed algorithm outperforms other algorithms in all
network topologies and bandwidth settings.

In our simulation, the clients start to display video when they have 8 seconds (or 4 segments) of buffered video. Buffering on
the client-side helps to avoid re-buffering periods. The increasing startup delay may reduce re-buffering duration, but it causes
the users to wait more for starting the video. As shown in the tables, the initial startup time increases with increasing network
size and the number of the clients. In the Custom and CompuServe topologies, HotSpot shows the worse performance in terms
of the re-buffering durations. The reason is that even though HotSpot considers the client location distribution, if the cache
is behind a bottlenecked link, this causes lengthened segment download times and hence higher re-buffering duration values.
Startup values in the PressurelnitialCache algorithm are slightly higher than the other algorithms. This is due to the newly
joined clients during the cache migration process. In that case, the clients starts to receive video segments after migration is
completed and this process causes the starting delay to be elongated. For the clients that are already online, the client cannot
make more requests and download video during the hand-off period, and so this speeds up buffer drain and may result in the
buffer becoming empty, as discussed previously. We addressed this problem in Section 6.

Another important QoE parameter is the distribution of the received representations. Receiving more video segments from
higher bitrate representations means that clients play the video with higher quality. Figure. 3, Figure. 4, and Figure. 5 show the
percentage of the received video segments from each representation in our experiment. The first representation (R1) indicates
the lowest quality, the last one (R6) represents the highest video quality. The observed values indicate that clients using the
PressurelnitialCache algorithm received more segments from the highest representation, which means video is displayed with a
higher quality. When considering different network topology and bandwidth values (A= 20, 25, and 30 Mbps), we can conclude
that the proposed algorithm shows better performance especially in large networks and under limited bandwidth values in smaller
sized networks as it can be seen in Table 4 for the values when A is 20 Mbps. If the bandwidth is plentiful and network size is
small (e.g.,Custom network) where the clients and content are close to each other, the performance of the proposed algorithm
is similar to the other approaches.

WRrRe MRS M R4 R3 MR BR MW RrRe MRS M R4 R3 W R2 BRI MWRrRe MRS M R4 R3 @R BR
100% - 100% - 100% -
=) =) =)
] 5] ©
€ 50% £ 50% £ 50%
@ @ @
o e o
& 25% dl_) 25% & 25%
0% 0% 0%
Best Effort HotSpot PressurelnitialCache Best Effort HotSpot PressurelnitialCache Best Effort HotSpot PressurelnitialCache
Algorithms Algorithms Algorithms
(a) A=20 Mbps (b) A=25 Mbps (¢) A=30 Mbps
FIGURE 3 Initial Cache. Distribution of the received Quality level — Custom
WRe WRS M R4 R3 MR MR WRrRe MRS MR4 R3 M R2 MR WRe MRS M R4 R MR MR
A N B b .
o 5% o 7% - - . PR AL . .
o o =
] o] @
£ 50% £ 50% £ 50%
@ @ @
o o o
O 25% O 25% D 25%
[a [a 8 o
0% 0% 0%
Best Effort HotSpot PressurelnitialCache Best Effort HotSpot PressurelnitialCache Best Effort HotSpot PressurelnitialCache
Algorithms Algorithms Algorithms
(a) A=20 Mbps (b) A=25 Mbps (c) 4=30 Mbps

FIGURE 4 Initial Cache. Distribution of the received Quality level — Compuserve

12 SHOKRI KALAN ET AL

W Re MRS M R4 RZ W R2 MR W Re MRS W R4 R3 W R BR W Re MRS M R4 R3 @R BRI

100% 100% 100%
= e . -]
75% 75% 75%

() () (2]
o o o
© © @
£ 50% £ 50% £ 50% .
@ @ @
< 1< o
& 25% &) 25% & 25%
0% 0% 0%
Best Effort HotSpot PressurelnitialCache Best Effort HotSpot PressurelnitialCache Best Effort HotSpot PressurelnitialCache
Algorithms Algorithms Algorithms
(a) 1=20 Mbps (b) A=25 Mbps (¢) 4=30 Mbps

FIGURE 5 Initial Cache. Distribution of the received Quality level — BellCanada

A further valuable factor to illustrate the effectiveness of our proposed algorithm is long-term received video quality. Figure.
6 illustrates the received representation bitrate values during the whole video streaming session in which 299 segments are trans-
ferred to the clients. These results show the received video quality as a fraction of segment numbers. Without a doubt, receiving
high quality video with more re-buffering and interrupt during display time never provides better QoE. Therefore, receiving more
segments from high quality representations without considering re-buffering duration does not make sense. By considering this
fact, the observed re-buffering results given in Table 4c, Table Sc, and Table 6¢ we see that the proposed algorithm achieves bet-
ter performance. This means that clients display video with better quality when leveraging the PressurelnitialCache algorithm.
It is clear that by increasing the Lambd a value, clients have more resources to receive high bitrate video segments, and therefore
when Lambda = 30 all algorithms have good performance, but again PressurelnitialCache has better performance when con-
sidering the number of high quality video representations as well as re-buffering duration values. Similar results were obtained
with the other topologies and bandwidths values but are not reported here due to space limitation. In the Compuserve topology,
when the Lambd a value is set to 20 Mbps, the HotSpot algorithm outperforms the other approaches. This shows that the concept
of locality, with a consideration of clients’ density and deploying cache as close as possible to clients, has a positive effect on the
received video quality. Although the PressurelnitialCache algorithm considers locality, the hand-off has a negative impact on
it’s performance as during the hand-off process, clients request video segments from lower bitrate in order to avoid re-buffering.

In addition to measuring the various QoE parameters, we also measured the overall QoE values. Received video quality and
re-buffering have more impact than startup delay among QoE parameters. If a client waits a bit longer to start the video, instead
of fast starting, then high re-buffering can be prevented. There are two other QoE metrics including: the number of re-buffering
events and the number of quality oscillations. Quality oscillation refers to the switching between different representations during
video display time, which has a negative impact on QoE. We calculate the normalized QoE, while taking into account these
factors.

We used formula (8) to calculate the overall QoE given in 8, 2°. The formula calculates the QoE value at the client, where
there are K segments downloaded. The first term in the formula is the bitrate of the segments and the second term is the number of
quality oscillations in the QoE formula. The second term shows how much the quality was changed from segment; to segment,
and the sum of them for K segments. D,, N,, and T refer to the total re-buffering duration, the total number of re-buffering
events, and startup delay time, respectively. The QoE values are calculated for all network topologies, for each of the three
different bandwidths. The calculated QoE values are normalized and illustrated in Figure. 7. The best normalized QoE value
for any network conditions is 1. The results show how close our proposed solution is to the best value. Overall, in the small and
medium-size network topologies (e.g., Custom, and Compuserve topologies), the central switches have more connectivity links
which provide more bandwidth. Therefore caching content at the center of networks results in better performance. However, in a
large network (e.g., BellCanada topology) caching content at the edge points leads to better results, because clients are generally
distributed at these edge points. Simulation results prove the efficiency of our algorithm for the initial cache placement. In the
next section, we will discuss installing extra caches based on requirements.

K-1

K
QoE = Y q(R) =6) 1q(R;y)) = q(R)| — p % D, — % N, = p % T,. ®)
i=1 i=1

SHOKRI KALAN ET AL 13

5000 = Best Effort = HotSpot PressurelnitialCache

7214
6429
5643
4857 (a) A=20 Mbps
4071
3286

2500
Mo B ah 5 e @) R @@ © b b P b P 0 1T e P a0 b b B o 6 10 g8l of

Received Representation Bitrate (kbps)

Segments

= Best Effort = HotSpot PressurelnitialCache
8000

(b) 4=25 Mbps

2500
Yol P ah D @ A @ ® g P B P 6 AT a8 @ O b g3 B g g 116 g8l o

Received Representation Bitrate (kbps)

Segments

5000 = Best Effort = HotSpot PressurelnitialCache

7214
6429 /

5643

(¢) /=30 Mbps
4071 M//W
3286
2500
R e B IR BRI S SV ORI RN I IUC IR BN S A R s, LI e

Received Representation Bitrate (kbps)

Segments

FIGURE 6 Initial Cache. Received bitrate per segment — BellCanada

6 | EXTENDED CACHE ENHANCEMENT STRATEGY

6.1 | Installing Additional Caches

In large networks, one vCache may not provide a good service level for clients to get the best possible video quality experience.
This can be observed in the performance results given in the previous section, where the results shows the performance with one
vCache. If the network size is large, or the number of clients is high, one or more additional caches should be installed to meet
QOE requirements '>. During a lack of enough resources, clients experience lower video quality and more interruption during
display.

14 SHOKRI KALAN ET AL

M Best Effort m HotSpot PressurelnitialCache M Best Effort M HotSpot PressurelnitialCache M Best Effort ® HotSpot PressurelnitialCache

1.00 1.00 1.00
0.90 0.90 0.90
0.80 0.80 0.80

0.70 0.70 0.70
0.60 0.60
0.50 0.50
0.40 0.40
0.30 0.30
0.20 0.20
0.10 0.10
0.00 0.00

0.60
A=20 A=25 A=30 A=20 A=25 A=30 A=20 A=25 A=30

0.50
0.40
Bandwidth mean value (Mbps) Bandwidth mean value (Mbps) Bandwidth mean value (Mbps)

0.30
0.20
0.10
0.00

Normalized Average QoE
Normalized Average QoE
Normalized Average QoE

(a) Custom (b) Compuserve (¢) BellCanada

FIGURE 7 Initial Cache. Normalized average QoE values were calculated for all topologies and bandwidths.

When new clients join the network, network traffic patterns change, and the SDN controller triggers the PressurelnitialCache
algorithm in order to calculate the initial vCache location as explained in previous sections. After determining the location and
installing the Initial vCache, the controller monitors the clients’ received video parameters and can decide to install a new vCache
if clients experience poor video quality or received video quality is under a predefined threshold. If the controller installs a new
additional vCache in a new location, some flows will be removed from the first vCache and forwarded to the new one. Typically,
the flows of the clients are rerouted towards to the closest vCache. In addition, to prevent congestion, the SDN controller can
signal the clients to connect another appropriate vCache with the assistance of the SAND components.

To find a suitable location for installing further vCaches, we introduce the PressureCache algorithm. In order to find an optimal
point for the trade-off between distance and bandwidth, we introduce a formula (9) which measures the distance between (i)
each client and the first one, and (ii) each client and the new candidate one. The formula also considers the available bandwidth
of the links connected to the candidate node. The candidate vCache should provide more bandwidth and should be closer to the
connected clients. In this formula, Pj/ refers to the pressure score of the second vCache position, and the Pj/ with the maximum
score is preferred. Distance, in terms of hop count, between client i with the first and candidate vCaches are represented by d;;
and d,; respectively. Let L indicate the total number of connected links to the candidate node j’, which will carry the video
traffic, which will likely be known in advance since SDN controller manages the flow routes. Suppose b, is the bandwidth of
each connected link. The PressureCache algorithm uses the formula given in (9), and in the formula, H and A refer to the (i)
total number of clients and (ii) the number of clients that are connected to the candidate node with one hop respectively. If the
number of clients increases and another additional vCache installation is required, the nearest vCache is considered as the Initial
vCache and the same formula is used to install the next vCache, based on this assumption.

H L//
P(Y=) (d;—dy) =)b ©)
=1

i=h+1

Algorithm 2 shows the PressureCache algorithm utilizing formula (9). The SDN controller monitors network conditions as
well as analyses incoming status messages from the clients and messages from the DANEs periodically. Based on this informa-
tion, the SDN controller decides whether or not to install a new vCache if the network traffic changes or, for instance, if clients
still experience lower bitrate video even if the vCache is migrated considering current network conditions. If a new cache instal-
lation is required, the controller runs the PressureCache algorithm. In the algorithm, the PressureCache scores for each switch
(line 2-5) are computed, for other than the switch which currently has a vCache installed. The switch with the highest score is
selected for hosting the new cache.

If the controller decides to install a new cache, based on the output of PressureCache algorithm, after installing the new
cache, it directs the clients to connect to the nearest vCache. This process starts by sending PER message to the client and this
forces the client to connect to another vCache in order to enhance the client’s received quality as well as to manage network
traffic. During this period, (disconnection from one vCache and connection to another vCache), which is called hand-off time,
the client does not receive any video segments from the vCache and if due to a lack of video segments in the buffer, it may
experience re-buffering and interruption of video displaying.

SHOKRI KALAN ET AL 15

Algorithm 2: PressureCache Algorithm

Input: N is the total number of switches with no vCache installed on them
Distance (hop count) of each connected client to each switch
begin
foreach N switch do
Compute PressureCache Score (j/)

Select switch with maximum score

1
2

3

4 end
5

6 Install a new vCache in selected switch
7

Another important issue is how fast the cache placement or cache migration process in done. In large scale networks it is
difficult to take a full network snapshot showing the conditions perfectly while network traffic patterns frequently change. How-
ever, in the SDN domain, network monitoring can be achieved by using OpenFlow statistics. In addition, the clients periodically
send their buffer fullness factor and average received bitrate values to the SDN controller. Suppose T denotes video segment
duration, which is equal to 2 seconds in the Big Buck Bunny video, and the clients’ buffer size is equal to 24 seconds of video,
and that video is displayed when a client has at least 8 seconds of buffered video. Typically, in order to provide fast startup,
the clients request the first 4 segments from the lower representations (R1) which have the lowest bitrate. The clients send aver-
age received bitrate values every 10 seconds -just higher than 4 « T seconds to the controller during simulation. The network
controller checks all the online clients’ average bitrate values and runs the PressureCache algorithm if the total average bitrate
values is under the threshold level. This threshold value would be defined by the content provider. In our study, we consider that
each client should be able to display video with a minimum quality without unacceptable re-buffering. If the network pattern or
the client received quality is stable, the controller waits for the next 10 seconds to evaluate the clients’ status messages.

In order to show the effects of the increasing number of online clients which causes the installation of an additional cache,
we also implemented simulations with a varying set of online clients as shown in the Table 7. Compared with Table 2, although
the number of nodes and links are the same, the number of online clients has been increased to 35, 50, and 100 for Custom,
Compuserve, and BellCanada topologies respectively. This causes the controller to install additional cache by running the
PressureCache algorithm instead of PressurelnitialCache, which is used only for installing Initial or first cache.

To obtain fairly comparable results, we also deploy the additional caches for HotSpot and Best effort approaches. For the
HotSpot approach, an additional cache is installed in the second highest dense location and in the Best effort approach, an
additional cache is installed at the place where more network traffic passes through that point, which is generally near to the center
of the network. In order to present a fair comparison, the additional caches are installed at the same time for all approaches. Again,
each topology has been tested with three different bandwidth settings produced by a Poisson distribution having different average
values (1=20 Mbps, 4=25 Mbps, and 1=30 Mbps). While the number of online clients increased in each topology, additional
vCaches need to be installed in a new location. A requirement for additional vCaches is more evident in the BellCanada
topology where the number of clients has increased 100%.

In practice, it is expected that the proposed algorithm significantly outperforms the two other algorithms in terms of QoE
parameters. Results of the received video quality, the startup delay, and the re-buffering duration are shown in Tables 8§, 9,
and 10. In all cases, the received video quality, the startup delay, and the re-buffering duration tend to improve as the value

TABLE 7 Network topologies

Network Network # # # Average available
topologies size Nodes Links Clients bandwidth (Mbps)
Custom Small 7 9 35 A=20, A=25, A=30
Compuserve Medium 11 14 50 A=20, A=25, A=30

BellCanada Large 43 58 100 A=20, A=25, A=30

16| SHOKRI KALAN ET AL

of A increases. In other words, when the link bandwidths are increased, DASH clients experience better video quality. The re-
buffering values are the lowest in HotSpot approach when A equals to 25 Mbps in CompuServe topology. The reason for that is
because Hotspot takes into account clients which have a maximum of three hops distance, and in the Compuserve topology the
clients generally connect to the caches with maximum of 3 hops. If the bandwidth of the links used for transmission is high, the
caches can allow clients to obtain a higher QoE as can be seen from these results. However, the performance gain in HotSpot
is not observed for each case. The re-buffering values are similar for HotSpot and Best effort approaches and higher than the
proposed approach where 4=30 Mbps as it can be seen in Table 9.

In the context of startup delay, it is seen that the proposed algorithm has higher values compared to the other two approaches
in the small size networks (e.g., Custom topology). The higher values in startup delays are caused by the clients connecting to the
network during hand-off. Since the Custom topology is a relatively small topology, the distance between clients and vCaches are
limited and similar for all approaches, which does not provide any advantages to the proposed approach obtaining less startup

TABLE 8 Simulation results, Custom

Algorithm 1=20 1=25 1=30
Best Effort 2791 2908 3333 (a) Average received
HotSpot 3241 3393 3512 video quality (Kbps)
PressureCache 3385 3409 3547
Algorithm 1=20 1=25 1=30
Best Effort 10.4 12 8.6 (b) Average startup
HotSpot 10.3 9 8.1 delay (sec)
PressureCache 13 10.3 11.9
Algorithm A=20 A=25 A=30
Best Effort 64 45 10 (¢) Average re-buffering
HotSpot 30 45 4 duration (sec)
PressureCache 27 23 9

TABLE 9 Simulation results, Compuserve
Algorithm 1=20 1=25 1=30
Best Effort 2603 2935 3067 (a) Average received
HotSpot 3093 3157 3291 video quality (Kbps)
PressureCache 2967 3326 3639
Algorithm 1=20 A=25 1=30
Best Effort 16.7 14.6 13.4 (b) Average startup
HotSpot 14.1 14 13 delay (sec)
PressureCache 17.4 17 15
Algorithm A=20 A=25 A=30
Best Effort 194 109 52 (¢) Average re-buffering
HotSpot 110 37 55 duration (sec)

PressureCache 97 48 17

SHOKRI KALAN ET AL 17

TABLE 10 Simulation results, BellCanada

Algorithm A=20 A=25 A=30

Best Effort 2694 2837 2810 (a) Average received
HotSpot 3084 3416 3487 video quality (Kbps)
PressureCache 3152 3408 3572

Algorithm A=20 A=25 A=30

Best Effort 14.7 18.5 14.7 (b) Average startup
HotSpot 14.6 15 145 delay (sec)
PressureCache 14.5 15 14.5

Algorithm =20 =25 =30

Best Effort 498 404 312 (¢) Average re-buffering
HotSpot 55 30 27 duration (sec)
PressureCache 82 27 23

delay compared to other approaches. However, in the BellCanada topology, which is the biggest one in terms of size and number
of online clients, startup delay values in the proposed algorithm are same as HotSpot and better than Best effort approach. This
is because with the proposed algorithm is deploying vCaches by considering distance causing the clients to connect in a small
time, which eliminates the negative effect of hand-off process on startup delays.

Similar to the first test results given in section 5, the proposed approach obtains better performance in the second test set
as well, where we install additional vCaches. Figure. 8, Figure. 9, and Figure. 10 represent the number of received segments
from each representation. We found that installing vCaches in a random location, or even in the center of network topology,
never leads to better results. As observed, the performance of the Best effort approach is low in all topologies. On the contrary,
relying on locality is the main reason that HotSpot and PressureCache tend to better results. Also, the dynamic nature of the
PressureCache algorithm gives advantages to clients to download more segments from higher representations.

The emergence of deploying vCache in the network is more evident when the size of the network increases. It is because,
in large-scale networks, either packet propagation or intermediate forwarding device delay has a negative impact on packet
delivery. Network delay causes re-buffering on the client-side as well as having a negative impact on the network throughput.
Therefore, in both buffer base or throughput base adaptation techniques, the client adapts to lower representation in order to
avoid re-buffering. Hence, the clients receive video segments from lower representations.

The bitrate of the downloaded video segments by the clients over time, for the Custom topology is in Figure. 11. In all
algorithms, at the beginning of the streaming, the clients request video from the lowest representation in order to fill the buffer
and to experience a fast startup. Then they adaptively download video from the highest representation possible. As a result,

W R MRS M R4 R3 MR MR MR MRS M R4 R3 MR BRI WRrRe MRS M R4 R3 MR BR

100% 100% 100%
75% - . 75% . 75%
50% 50% 50%
————
N N N J_-_l
0% 0% 0%

Percentage
Percentage
Percentage

Best Effort HotSpot PressureCache Best Effort HotSpot PressureCache Best Effort HotSpot PressureCache
Algorithms Algorithms Algorithms
(a) 4=20 Mbps (b) A=25 Mbps (c) A=30 Mbps

FIGURE 8 Additional Cache. Distribution of the received Quality level — Custom Topology

18 | SHOKRI KALAN ET AL

WRrRe MRS M R4 R3 MR MR WRe MRS M R4 R3 M R2 MR WRrRe MRS M R4 R3 MR MR
100% - 100% 100%
g . . - . . g ” .
o =) o
8 8 8
c 50% c 50% c 50%
)) @
o e o
P 2% P o2 P 2%
0% 0% 0%
Best Effort HotSpot PressureCache Best Effort HotSpot PressureCache Best Effort HotSpot PressureCache
Algorithms Algorithms Algorithms
(a) A=20 Mbps (b) A=25 Mbps (c) A=30 Mbps
FIGURE 9 Additional Cache. Distribution of the received Quality level — Compuserve Topology
MR MR MR4 R3 MR MR WRe MR M R4 R3 MR BRI MR MRS MR4 R3 MR MR
100% 100% 100%
o 7% - . . @ 7% . g 75% -
o =) o
£ i) it
c 50% c 50% c 50%
<] @
< < <
P 2% e 2s% P 2%
0% 0% 0%
Best Effort HotSpot PressureCache Best Effort HotSpot PressureCache Best Effort HotSpot PressureCache
Algorithms Algorithms Algorithms
(a) A=20 Mbps (b) 4=25 Mbps (¢) 4=30 Mbps

FIGURE 10 Additional Cache. Distribution of the received Quality level — BellCanada Topology

the PressureCache algorithm obtains better performance in the long time. In the middle of the simulation, new clients join the
network and hence change the traffic patterns. An increasing number of online clients causes the installation of new vCaches in
suitable locations. As a result, in all topologies and different setup configurations with different bandwidth values, the quality
of the received representation increases because more vCaches provide more resources in terms of bandwidth and reduce the
distance in terms of hop counts in the proposed approach. Thus, generally in all algorithms and specifically in the proposed
algorithm, clients adapt to higher representations. The reason for better adaption in the PressureCache algorithm mainly depends
on (i) vCache placement and migration, and (ii) the mechanism of forwarding clients to the vCaches which are more appropriate
to connect due to their available bandwidth.

When more than one vCache is available in the network, a client will connect to the closest cache, but sometimes, pressure
on one vCache increases or cross-traffic causes paths to blocks. In such a condition, clients in both Best effort and HotSpot
algorithms still continue to request video from the nearest vCaches. However, in the PressureCache algorithm, the controller
leverages SAND technology in order to improve both client and network performance. By utilizing the SAND architecture, the
controller sends PER messages to a set of the clients and forces them to request a video from specific vCache even it is located
in the far distance. When clients receive Enforcement PER messages, they start the hand-off process and connect to the new
vCache.

Figure. 12 illustrates a single sample of the requested video segments during the first 240 seconds (which is 120 segments
of 2-second samples) of the streaming session obtained from a client with the proposed algorithm in the BellCanada topology.
Recall from Table. 3, that the first representation (R1 — 2.1 Mbps) has the lowest bitrate. At the start of streaming, clients
request the video from the first representation in order to fill the buffer immediately. After that, the client adapts to a suitable
representation based on throughput estimation. When the client requests the 30" segment (in the 60" second), an increasing
number of online clients or cross-traffic affects client adaptation. Hence, received video bitrate on clients’ side decreases. Moving
a vCache into a new location or installing additional vCaches in the appropriate location improves clients’ resource availability
in terms of bandwidth and distance and clients starting to request and receives video from high bitrate representations. After
the 60" segment, we see that the client is requesting video from the highest possible representation. By increasing the number
of clients, the controller runs additional vCache algorithm and deploys new vCaches in the appropriate location. Finally, the

SHOKRI KALAN ET AL 19

5000 = Best Effort = HotSpot PressureCache

7214
6429
5643 o W /\/J\\f/
mN_Wf'V

4857 (a) =20 MbpS

2500
Mo B ah 5 e @) R @@ © b b P b P 0 1T e P a0 b b B o 6 10 g8l of

Received Representation Bitrate (kbps)

Segments

= Best Effort = HotSpot PressureCache
8000

J{’,M el

5643

o APV

4071

(b) 4=25 Mbps

3286

2500
Yol P ah D @ A @ ® g P B P 6 AT a8 @ O b g3 B g g 116 g8l o

Received Representation Bitrate (kbps)

Segments

= Best Effort = HotSpot PressureCache

8000
6429
(¢) A=30 Mbps

4071

3286

2500
Mo B ek 5 o @l R @@ © b b P b 0 Tl g P 2O b b B oh 8 10 o8l 0P

Received Representation Bitrate (kbps)

Segments

FIGURE 11 Additional Cache. Received bitrate per segment — Custom

controller updates the forwarding device’s routing tables and forwards the client requests to the suitable vCache. The effect of
installing additional vCaches is clearly visible after passing segments 80 (or 160 seconds).

For the normalized QoE metrics, we followed the same overall QoE formula, given in (8), to observe the overall result of the
proposed algorithm compared with two other algorithms. As seen in Figure. 13, PressureCache achieved better results in all
network topologies and bandwidths. With the increasing number of connected users to the network, installing caches at a suitable
location while considering the distribution of end-users has an effective impact on traffic flows, and consequently provides better
services to clients. The results show that the Best effort algorithm, by installing cache at the center of the network, results in
poor video quality, however, HotSpot and PressureCache achieved the best QoE by installing cache at the edge points where
clients connected to the network.

20 SHOKRI KALAN ET AL

=

Requeste Representations

o||||||||||||||||||||||||l|‘| ST IIMIIIIIIIII

A N 2 S A S AN O R G AR SR S O ARSI RS BRI

Video Segments

FIGURE 12 Requested representations per segments — BellCanada topology

W Best Effort mHotSpot PressureCache M Best Effort W HotSpot PressureCache M Best Effort W HotSpot PressureCache
w 100 w 1.00 w 1.00
g os0 § o090 § o020
@ 0.80 o 080 @ 0.80
20 070 20 p.70 W 070
E 0.60 Q 0.60 o 0.60
Z 050 Z 050 Z 050
T 040 o 040 o 0.40
& o= & oos0 & 030
@ 0.20 T 0.20 @ 020
E p1o E 010 E 010
2 oo 2 ooo 2 o0
A=20 A=35 A=30 h=20 A=25 A=30 A=20 A=25 A=30
Bandwidth mean value (Mbps) Bandwidth mean value (Mbps) Bandwidth mean value {Mbps)
(a) Custom (b) Compuserve (c) BellCanada

FIGURE 13 Additional Cache. Normalized average QoE values were calculated for all topologies and bandwidths.

6.2 | Cache Migration and TCP Hand-off

TCP hand-off is a set of actions that happen when a client connection is removed from one interface and connected to another.
TCP hand-off occurs when a client disconnects from a cache instance and connects to another one. During this short period of
time the clients stop sending and receiving data. The main reasons for this are traffic redirection, load balancing, and roaming.
A hand-off also appears in CDN networks, where CDN architectures leverage a redirect mechanism to initiate a connection
between a client and the most appropriate server’.

In order to minimize the negative effects on re-buffering duration, we improve the migration process by introducing a new
migration algorithm. When the controller decides to migrate a vCache, the controller also considers the buffer fullness values of
the clients. According to these values, the first group of clients that are directed to the new vCache are those clients having the
most buffer fullness values. A consequence of disconnecting some of the clients from that cache is that the clients still connected
to the cache can increase their buffer fullness values due to the enhanced volume of resources. As the last step, the controller
directs the last group of clients to the new vCache and hence, the hand-off operation is completed without causing those clients
to drain their buffer. Details of this cache migration algorithm can be found in%’.

The quality metric values obtained from these simulations indicate that the developed migration algorithm improves the
received video bitrate by 2% and decreases the re-buffering duration by 7% when compared with PressurelnitialCache. This
shows that it is possible to obtain an improvement in QoE when the clients’ buffer fullness values are also being considered
during hand-off.

SHOKRI KALAN ET AL 21

7 | CONCLUSIONS

This study addresses the problem of finding ideal locations for the installation of virtualized caches — the vDANE:s, in order
to provide better video services for end users. To do this we introduced two different algorithms: PressurelnitialCache for
finding the location of the first cache deployment, and PressureCache, for finding additional cache locations. We evaluated
those algorithms with three different network topologies, each with three different bandwidths and different clients distributions.
We implemented the experiments using the Mininet test-bed and benefited from the advantages of using Floodlight as an SDN
controller and MPEG-SAND technology and presented their comparative performance.

It has been shown that having information and a global view of the network can allow clients to make better adaptations, and
such a network-assisted approach has been presented in this study. The nominated algorithms, which leverage SAND technology
and the NFV-SDN architecture, have provided improvements in the QoE metrics observed on the clients’ side. Experimental
results have shown that this improvement can be provided by installing a virtual cache near to an optimal location, and by
handling the migration of caches based on both client distribution and network traffic patterns. By using an algorithm to adapt
the network resources according to the changing network and clients’ conditions, the presented approach provides the clients
with the ability to obtain higher QoE. Evaluating a location for installing a new vDANE vCache requires network monitoring
and real-time statistic data exchange between the vDANESs and the SDN controllers, by utilizing the PED messages defined in
SAND. By installing a vVDANE in an appropriate location, and then redirecting some clients to a suitable vDANE, we observe a
decrease in network and origin server traffic. Results show that the PressurelnitialCache algorithm achieves a 270% and 150%
reduction in re-buffering, compared to the Best effort and HotSpot schemes, and a 12% and 8% increase in the average received
bitrate, compared to the Best effort and HotSpot schemes. Based on these results, we can conclude that our network-assisted
adaptation approach achieves better performance in large networks where, in general, clients are apart from caches.

Conversely, this study also shows that the ability to migrate network functions can have some drawbacks for applications such
as DASH. We observed that the migration of the vCaches not only affected the re-buffering duration, it also had effects on the
received video quality. Utilizing SAND architecture components and managing the migrations based on the gathered statistics
about clients’ status was essential to reduce the negative effect of vCache migration. By taking these facts into account, the
PressurelnitialCache migration algorithm considers the buffer values of the clients and helped to reduce the re-buffering duration
during hand-off. Compared with PressurelnitialCache, the use of the PressurelnitialCache migration algorithm improves the
received video bitrate by 2% and decreases the re-buffering duration by 7%. This leads us to another observation: in order to
provide the required performance levels for applications which are sensitive to changing conditions, the management framework
should also be supported by some application specific tools, technologies, or standards.

In summary, we observe from our results that:

e network assisted adaptation achieves better results in terms of both client experienced quality and network resources
utilization. We conclude that utilizing MPEG-SAND technology and having communication between vVDANE elements
in our algorithm gives more flexibility to clients for better adaptation.

e when considering both the received bitrate and the re-buffering time, we can conclude that the PressurelnitialCache
algorithm outperforms the other algorithms when the network has less bandwidth. The performance of the Pressurelni-
tialCache algorithm is more evidence in bigger networks (e,g., BellCanada) where more clients are widely distributed in
the edge points of the network, and have more distance with caches and each other.

o installing additional caches, which is decided by using the PressureCache algorithm, allows clients to experience high
video quality with acceptable re-buffering time.

e during hand-off, when clients disconnect from one cache and connect to another, we alleviated some re-buffering time
during the migration period by using a cache migration algorithm.

This study paid considerable attention to network traffic dynamics, and for future work, we aim to improve cache efficiency with
cache cooperation by implementing message exchange mechanism between caches.

22

| SHOKRI KALAN ET AL

ACKNOWLEDGMENTS

This work is supported by TUBITAK EEEAG under grant 115E449 and Digiturk beIN Media Group
(https://www.digiturk.com.tr/), and partially supported by the EU-Brazil project: NECOS - Novel Enablers for Cloud Slicing
(777067)

References

10.

11.

12.

13.

14.

. MPEG-DASH; . Dynamic Adaptive Streaming over HTTP; https://mpeg.chiariglione.org/standards/mpeg-dash[Online;

Accessed 28-04-2022]; .

DASH Industry Paper, “DASH-IF Position Paper: Server and Network Assisted DASH (SAND). In: DASH Industry
Paper,version 1.0 published October 7. 2016; 2016.

Kalan Reza Shokri, Sayit Miige. SDN Assisted Codec, Path and Quality Selection for HTTP Adaptive Streaming. /[EEE
Access. 2021;9:129917-129932.

Mijumbi Rashid, Serrat Joan, Gorricho Juan-Luis, Latre Steven, Charalambides Marinos, Lopez Diego. Management and
orchestration challenges in network functions virtualization. IEEE Communications Magazine. 2016;54(1):98-105.

. Ibn-Khedher Hatem, Hadji Makhlouf, Abd-Elrahman Emad, Afifi Hossam, Kamal Ahmed E. Scalable and cost efficient

algorithms for virtual CDN migration. In: 2016 IEEE 41st Conference on Local Computer Networks (LCN):112—-1201EEE;
2016.

Kalan Reza Shokri. Improving Quality of HTTP Adaptive Streaming with Server and Network-Assisted DASH. In: 2021
17th International Conference on Network and Service Management (CNSM):244-2481EEE; 2021.

Han Shujun, Li Jun, Dong Qian, Ma Yuxiang, Song Liujing. Service-aware Based Virtual Network Functions Deploy-
ment Scheme in Edge Computing. In: 2020 22nd International Conference on Advanced Communication Technology
(ICACT):562-565; 2020.

Hmaity Ali, Savi Marco, Musumeci Francesco, Tornatore Massimo, Pattavina Achille. Virtual network function placement
for resilient service chain provisioning. In: 2016 8th International Workshop on Resilient Networks Design and Modeling
(RNDM):245-252IEEE; 2016.

Katsaros Konstantinos V., Glykantzis Vasilis, Petropoulos George. Cache peering in multi-tenant 5G networks. In: 2017
IFIP/IEEE Symposium on Integrated Network and Service Management (IM):1131-1134; 2017.

Song Youmei, Wo Tianyu, Yang Renyu, Shen Qi, Xu Jie. Joint optimization of cache placement and request routing in
unreliable networks. Journal of Parallel and Distributed Computing. 2021;157:168-178.

Luizelli Marcelo Caggiani, Bays Leonardo Richter, Buriol Luciana Salete, Barcellos Marinho Pilla, Gaspary
Luciano Paschoal. Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network
functions. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM):98—1061EEE; 2015.

Kiran Nahida, Liu Xuanlin, Wang Sihua, Yin Changchuan. VNF placement and resource allocation in SDN/NFV-enabled
MEC networks. In: 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW):1-61EEE,;
2020.

Ibn-Khedher Hatem, Abd-Elrahman Emad, Kamal Ahmed E., Afifi Hossam. OPAC: An optimal placement algorithm for
virtual CDN. Computer Networks. 2017;120:12 - 27.

Benkacem Ilias, Taleb Tarik, Bagaa Miloud, Flinck Hannu. Optimal VNFs Placement in CDN Slicing Over Multi-Cloud
Environment. IEEE Journal on Selected Areas in Communications. 2018;36(3):616-627.

 https://mpeg.chiariglione.org/standards/mpeg-dash

SHOKRI KALAN ET AL | 23

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Clayman Stuart, Kalan Reza Shokri, Sayit Miige. Virtualized Cache Placement in an SDN/NFV Assisted SAND Archi-
tecture. In: 2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom):1-5;
2018.

Cevallos Moreno Jesus Fernando, Sattler Rebecca, Caulier Cisterna Raul P., Ricciardi Celsi Lorenzo, Sdnchez Rodriguez
Aminael, Mecella Massimo. Online Service Function Chain Deployment for Live-Streaming in Virtualized Content
Delivery Networks: A Deep Reinforcement Learning Approach. Future Internet. 2021;13(11).

Farahani Reza, Tashtarian Farzad, Amirpour Hadi, Timmerer Christian, Ghanbari Mohammad, Hellwagner Hermann.
CSDN: CDN-Aware QoE Optimization in SDN-Assisted HTTP Adaptive Video Streaming. In: 2021 IEEE 46th Conference
on Local Computer Networks (LCN):525-532; 2021.

Farahani Reza, Tashtarian Farzad, Erfanian Alireza, Timmerer Christian, Ghanbari Mohammad, Hellwagner Hermann. ES-
HAS: An Edge- and SDN-Assisted Framework for HTTP Adaptive Video Streaming. In: Proceedings of the 31st ACM
Workshop on Network and Operating Systems Support for Digital Audio and VideoNOSSDAYV °21:50-57; 2021.

Kalan Reza Shokri, Sayit Miige, Clayman Stuart. Optimal cache placement and migration for improving the performance
of virtualized SAND. In: 2019 IEEE Conference on Network Softwarization (NetSoft):78—-83IEEE; 2019.

Kalan Reza Shokri, Sayit Miige, Clayman Stuart. Multimedia Service Management with Virtualized Cache Migration. In:
2020 23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN):171-177; 2020.

Singh Manmeet, Varyani Nitin, Singh Jobanpreet, Haribabu K.. Estimation of End-to-End Available Bandwidth and
Link Capacity in SDN. In: Kumar Navin, Thakre Arpita, eds. Ubiquitous Communications and Network Computing:130—
141Springer International Publishing; 2018; Cham.

Megyesi Péter, Botta Alessio, Aceto Giuseppe, Pescape Antonio, Molndr Sindor. Available Bandwidth Measurement in
Software Defined Networks. In: Proceedings of the 31st Annual ACM Symposium on Applied ComputingSAC *16:651—
657ACM; 2016; New York, NY, USA.

Project FloodLight, FloodLight; http://www.projectfloodlight.org/floodlight;[Online; Accessed 28-04-2022]; .

Kreutz Diego, Ramos Fernando MV, Verissimo Paulo Esteves, Rothenberg Christian Esteve, Azodolmolky Siamak, Uhlig
Steve. Software-defined networking: A comprehensive survey. Proceedings of the IEEE. 2014;103(1):14-76.

Topology-Zoo; http://www.topology-zoo.org/;[Online; Accessed 28-04-2022]; .

Badshah Jan, Mohaia Alhaisoni Majed, Shah Nadir, Kamran Muhammad. Cache Servers Placement Based on Important
Switches for SDN-Based ICN. Electronics. 2020;9(1):39.

Big Buck Bunny; http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny/2sec[Online; Accessed 28-
04-2022]; .

Miller Konstantin, Bethanabhotla Dilip, Caire Giuseppe, Wolisz Adam. A Control-Theoretic Approach to Adaptive Video
Streaming in Dense Wireless Networks. IEEE Transactions on Multimedia. 2015;17(8):1309-1322.

Mao Hongzi, Netravali Ravi, Alizadeh Mohammad. Neural adaptive video streaming with pensieve. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication:197-210; 2017.

Binder Andrej, Boros Tomas, Kotuliak Ivan. A SDN Based Method of TCP Connection Handover. In: Khalil Ismail,
Neuhold Erich, Tjoa A Min, Xu Li Da, You Ilsun, eds. Information and Communication Technology:13—19Springer
International Publishing; 2015; Cham.

AUTHOR BIOGRAPHY

http://www.projectfloodlight.org/floodlight;
http://www.topology-zoo.org/;
 http://www-itec.uni-klu.ac.at/ftp/datasets/ DASHDataset2014/BigBuckBunny/2sec

SHOKRI KALAN ET AL

Reza Shokri Kalan. is a CDN specialist in Digiturk beIN Media Group. He received his B.Sc degree in
Computer Engineering from [AU-Shabestar-IRAN in 2003. For a decade he worked in commercial arena.
He received M.Sc degree in Computer Engineering from Eastern Mediterranean University (EMU), Cyprus
in 2013. and Ph.D. degree in Information Technology from Ege University- International Computer Insti-
tute in 2020. His research interests include computer networks, Software Defined Networking, wireless
communication and multimedia system.

Stuart Clayman received his PhD in Computer Science from University College London in 1994. He is cur-
rently a Principal Research Fellow at UCL EEE department, and worked as a Research Lecturer at Kingston
University and at UCL. He co-authored over 70 conference and journal papers. His research interests and
expertise lie in the areas of software engineering and programming paradigms; distributed systems; virtu-
alised computer and network systems, network and systems management; sensor systems and smart city
platforms, and artificial intelligence systems.

Miige Sayit is an Associate Professor at International Computer Institute in Ege University in Turkey. She
received a M.Sc. degree in 2005 and PhD degree in 2011 in Information Technologies from the same institute
and a degree in Mathematics from Ege University in 1999. Her research interests include Software Defined
Networking, P2P networks,video streaming and video codecs. She is a member of the [EEE P1916.1 Standard
for Software Defined Networking and Network Function Virtualization Performance.

	vDANE: Using Virtualization for Improving Video Quality with Server and Network Assisted DASH
	Abstract
	Introduction
	Background
	Adaptive Video Streaming Technologies, DASH and SAND Standards
	Related Works

	Virtual Cache Placement and Cache Migration Approach
	Initial Virtual Cache Placement based on Pressure Score Estimations
	System Architecture Overview
	Deploying Initial vDANE Instances
	Cache Migration

	Testing Environment
	Initial vCache Placement Evaluation
	Extended Cache Enhancement Strategy
	Installing Additional Caches
	Cache Migration and TCP Hand-off

	Conclusions
	Acknowledgments
	References
	Author Biography

