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Entrainment to Subharmonic Trajectories in

Oscillatory Discrete-Time Systems

Rami Katz, Michael Margaliot and Emilia Fridman

Abstract

A matrix A is called totally positive (TP) if all its minors are positive, and totally nonnegative (TN) if all its

minors are nonnegative. A square matrix A is called oscillatory if it is TN and some power of A is TP. A linear

time-varying system is called an oscillatory discrete-time system (ODTS) if the matrix defining its evolution at

each time k is oscillatory. We analyze the properties of n-dimensional time-varying nonlinear discrete-time systems

whose variational system is an ODTS, and show that they have a well-ordered behavior. More precisely, if the

nonlinear system is time-varying and T -periodic then any trajectory either leaves any compact set or converges

to an (n− 1)T -periodic trajectory, that is, a subharmonic trajectory. These results hold for any dimension n. The

analysis of such systems requires establishing that a line integral of the Jacobian of the nonlinear system is an

oscillatory matrix. This is non-trivial, as the sum of two oscillatory matrices is not necessarily oscillatory, and this

carries over to integrals. We derive several new sufficient conditions guaranteeing that the line integral of a matrix

is oscillatory, and demonstrate how this yields interesting classes of discrete-time nonlinear systems that admit a

well-ordered behavior.

Index Terms

Nonlinear systems, totally positive matrices, totally nonnegative matrices, cooperative systems, entrainment,

asymptotic stability, systems biology.

I. INTRODUCTION

Positive dynamical systems arise naturally when the state-variables represent physical quantities that

can only take nonnegative values [8], [20]. For example, in compartmental systems the state-variables
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represent the “density” at each compartment [24], in models of traffic flow or communication networks

the state-variables represent the state of queues in the system [26], and in Markov chains the state-variables

are probabilities [13].

Here, we introduce and analyze a new class of positive systems called oscillatory discrete-time systems.

Recall that a matrix A ∈ R
n×m is called totally positive (TP) if every minor of A is positive, and totally

nonnegative (TN) if every minor of A is non-negative.1 TN and TP matrices have a remarkable variety

of interesting mathematical properties [7], [18]. One important property is that multiplying a vector by

a TP matrix cannot increase the number of sign variations in the vector.

Oscillatory matrices are in the “middle ground” between TN and TP matrices. A matrix A ∈ R
n×n is

called oscillatory if A is TN and there exists an integer k > 0 such that Ak is TP. For example, it is easy

to verify that all the minors of

A :=











0.2 0.1 0

9 11 1

0 1 3











(1)

are nonnegative so A is (TN) (but not TP as it has zero entries), and also that all the minors of A2 =










0.94 1.12 0.1

100.8 122.9 14

9 14 10











are positive, so A is oscillatory.

The product of two TP/TN/oscillatory matrices is a TP/TN/oscillatory matrix, but the sum of two

TP/TN/oscillatory matrices is not necessarily a TP/TN/oscillatory matrix. For example, the matrix A =




1 0.1

9 1



 and its transpose A′ are TP (and thus in particular TN and oscillatory), yet A+A′ =





2 9.1

9.1 2





is not TN (and thus not TP nor oscillatory), as det(A+ A′) < 0.

TP matrices have important applications in the asymptotic analysis of both continuous-time and discrete-

time dynamical systems. Schwarz [25] introduced the notion of a totally positive differential system (TPDS).

This is the linear time-varying (LTV) system

ẋ(t) = A(t)x(t), (2)

satisfying that the associated transition matrix Φ(t1, t0) is TP for any pair (t1, t0) with t1 > t0. The

transition matrix is the matrix satisfying x(t1) = Φ(t1, t0)x(t0) for all x(t0) ∈ R
n. In the particular

1Unfortunately, the terminology in this field is not uniform. We follow the terminology used in [7].
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case where A(t) ≡ A the transition matrix is Φ(t, t0) = exp((t − t0)A), and then (2) is TPDS iff A is

tridiagonal with positive entries on the super- and sub-diagonals. Schwarz used the VDP to show that

the number of sign variations in x(t) is a (integer-valued) Lyapunov function for the TPDS (2). It was

recently shown [16] that TPDSs have important applications in the stability analysis of continuous-time

nonlinear cooperative dynamical systems with a tridiagonal Jacobian.

An extension to discrete-time systems, called a totally positive discrete-time system (TPDTS), has been

suggested recently [1]. The LTV

x(k + 1) = A(k)x(k), (3)

with A : N → R
n×n, is called a TPDTS if A(k) is TP for all k ∈ N. It was shown that time-varying

nonlinear systems, whose variational equation is a TPDTS, satisfy strong asymptotic properties including

entrainment to a periodic excitation. The variational equation is an LTV with a matrix described by a line

integral of the Jacobian of the nonlinear system. Since the sum of two TP matrices is not necessarily TP,

it is not trivial to verify that this line integral is indeed TP.

The main contributions of this paper are two-fold. First, we introduce the new notion of an oscillatory

discrete-time system (ODTS). The LTV (3) is called an ODTS if A(k) is oscillatory for all time k. This is

an important generalization of a TPDTS, as oscillatory matrices are much more common than TP matrices.

We analyze the properties of discrete-time time-varying nonlinear systems, whose variational equation is

an ODTS, and show that they satisfy useful asymptotic properties. In particular, if the n-dimensional time-

varying nonlinear system is T -periodic then every solution either leaves every compact set or converges

to an (n− 1)T -periodic solution, i.e. a subharmonic solution.

The variational equation associated with the nonlinear system is an LTV with a matrix described by

a line integral of the Jacobian of the nonlinear system. Since the sum of two oscillatory matrices is not

necessarily oscillatory, it is not trivial to verify that this line integral is indeed oscillatory.

The second contribution of this paper is deriving several new sufficient conditions guaranteeing that

the line integral of a matrix is oscillatory. Our first condition considers the special case of a system with

scalar nonlinearities. In this case we show that the integration can be performed in closed-form. The other

conditions are based on sufficient conditions for a matrix to be oscillatory or TP. We demonstrate how

these conditions yield new classes of discrete-time nonlinear systems with a well-ordered behavior.

The remainder of this paper is organized as follows: Section II reviews known definitions and results

that will be used later on including the VDPs of TN and TP matrices, and TPDTSs. The next two sections
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describe our main results. Section III defines and analyzes ODTSs. Section IV provides several sufficient

conditions verifying that the line integral of the Jacobian of a time-varying nonlinear system is oscillatory.

This section also details several applications of the theoretical results. The final section concludes and

describes several topics for further research.

We use standard notation. The set of nonnegative integers is N := {0, 1, 2, . . . }. Matrices [vectors] are

denoted by capital [small] letters. The transpose of a matrix A is denoted A′. We use diag(v1, . . . , vn) to

denote the n× n diagonal matrix with entries v1, . . . , vn on the diagonal.

II. PRELIMINARIES

We begin by reviewing the VDP of TN and TP matrices. More details and proofs can be found in

the excellent monographs [7], [18], [9]. For a vector z ∈ R
n with no zero entries the number of sign

variations in z is

σ(z) := |{i ∈ {1, . . . , n− 1} : zizi+1 < 0}| . (4)

For example, for n = 3 consider the vector z(ε) :=
[

2 ε −3
]′

. Then for any ε ∈ R \ {0}, σ(z(ε))

is well-defined and equal to one. More generally, the domain of definition of σ can be extended, via

continuity, to the set:

V :={z ∈ R
n : z1 6= 0, zn 6= 0, and if zi = 0

for some i ∈ {2, . . . , n− 1} then zi−1zi+1 < 0}.

We recall two more definitions for the number of sign variations in a vector [7] that are well-defined

for any y ∈ R
n. Let

s−(y) := σ(ȳ),

where ȳ is the vector obtained from y by deleting all zero entries, and let

s+(y) := max
x∈P (y)

σ(x),

where P (y) is the set of all vectors obtained by replacing every zero entry of y by either −1 or +1. For

example, for y =
[

−1 0 0 4
]′

, s−(y) = 1 and s+(y) = 3. These definitions imply that

0 ≤ s−(y) ≤ s+(y) ≤ n− 1 for all y ∈ R
n. (5)
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An important observation is that s−(y) = s+(y) iff y ∈ V .

A classical result [7] states that if A ∈ R
n×m is TP then

s+(Ax) ≤ s−(x) for all x ∈ R
m \ {0},

whereas if A is TN (and in particular if it is TP) then

s−(Ax) ≤ s−(x) for all x ∈ R
m. (6)

These are the VDPs of TP and TN matrices. For example, the matrix A =





1 2

1 4



 is TP and for x =

[

1 −1
]′

, we have

s+(Ax) = s+(
[

−1 −3
]′

) < s−(x).

For square matrices (which is the relevant case when considering the transition matrices of dynamical

systems) more precise results are known. Recall that a matrix is called strictly sign-regular of order k

(denoted SSRk) if its minors of order k are either all positive or all negative. For example, A =





1 2

3 4





is SSR1 because all its entries are positive, and SSR2 because it single minor of order 2 is negative. It

was recently shown [3] that if A ∈ R
n×n is non-singular then for any k ∈ {1, . . . , n− 1} we have that A

is SSRk iff

x ∈ R
n \ {0} and s−(x) ≤ k − 1 =⇒ s+(Ax) ≤ k − 1.

For example, for k = 1 this implies that for a non-singular matrix A ∈ R
n×n the following two

conditions are equivalent: (1) all the entries of A are either all positive or all negative; and (2) for

every x 6= 0 with all entries non-negative or all non-positive the vector Ax has all entries positive or all

negative.

We now review applications of total positivity to discrete-time dynamical systems.

A. Totally Positive Discrete-Time Systems

Consider the discrete-time LTV (3) with A : N → R
n×n. The system is called a TPDTS [1] if A(k)

is TP for all k ∈ N. Intuitively speaking, this is the discrete-time analogue of a TPDS. The VDP and (5)
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imply that for any x(0) ∈ R
n \ {0} we have

· · · ≤ s−(x(1)) ≤ s+(x(1)) ≤ s−(x(0)) ≤ s+(x(0)). (7)

In other words, both s−(x(k)) and s+(x(k)) can be viewed as integer-valued Lyapunov functions for the

trajectories of a TPDTS. Furthermore, there can be no more then n − 1 strict inequalities in (7), as s−

and s+ take values in {0, 1, . . . , n−1}. This implies that there exists m ∈ N such that s−(x(k)) = s+(x(k))

for all k ≥ m, i.e. x(k) ∈ V for all k ≥ m. In particular, x1(k) 6= 0 (and xn(k) 6= 0) for all k ≥ m.

Moreover, it was shown in [1] that there exists p ∈ N such that the following eventual monotonicity

property holds: either x1(k) > 0 for all k ≥ p or x1(k) < 0 for all k ≥ p (and similarly for xn(k)).

This property can be applied to study the asymptotic properties of time-varying nonlinear discrete-time

systems. Consider the system

x(k + 1) = f(k, x(k)). (8)

We assume that f : N × R
n → R

n is C1 with respect to its second variable, and denote its Jacobian

by J(k, x) := ∂
∂x
f(k, x). We also assume that the trajectories of (8) evolve on a compact and convex

state-space Ω ⊂ R
n. For a ∈ Ω and j ∈ N, let x(j, a) denote the solution of (8) at time j with x(0) = a.

Fix a, b ∈ Ω and let z(k) := x(k, b)− x(k, a). Then (see, e.g. [1])

z(k + 1) = M(k)z(k), (9)

where

M(k) = M(k, a, b) :=

∫ 1

0

J(k, rx(k, b) + (1− r)x(k, a)) dr. (10)

The LTV system (9) is called the variational equation associated with (8), as it describes how the variation

between the two solutions x(k, b) and x(k, a) evolves in time.

We pose two assumptions.

Assumption 1: The matrix

F (k, a, b) :=

∫ 1

0

J(k, ra+ (1− r)b) dr (11)

is TP for all k ∈ N and all a, b ∈ Ω.

Note that this implies that (9) is a TPDTS.
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Assumption 2: There exists T ∈ {1, 2, . . . } such that the map in (8) is T -periodic, that is,

f(k, a) = f(k + T, a) for all k ∈ N and all a ∈ Ω.

Note that in the particular case where f is time-invariant this holds (vacuously) for every T ∈ N.

Theorem 1: [1] If Assumptions 1 and 2 hold then every solution of (8) emanating from Ω converges

to a T -periodic solution of (8).

If the time-dependence in f is due to an input (or excitation) u, that is, f(k, x(k)) = g(u(k), x(k)) for

some map g then Assumption 2 holds if u is T -periodic. Thm. 1 then implies that the system entrains

to the periodic excitation, as every solution converges to a periodic solution with the same period T .

Entrainment is an important property in many natural and artificial systems [14], [15], [23]. For example,

many biological processes in our bodies, like the sleep-wake cycle, entrain to the 24h-periodic solar day.

In the special case where f is time-invariant Thm. 1 yields the following result.

Corollary 1: [1] Consider the time-invariant nonlinear system

x(k + 1) = f(x(k)) (12)

whose trajectories evolve on a compact and convex state-space Ω ⊂ R
n. Suppose that

F (a, b) :=

∫ 1

0

J(ra+ (1− r)b) dr (13)

is TP for all a, b ∈ Ω. Then every solution of (12) emanating from Ω converges to an equilibrium point.

Note that the equilibrium point is not necessarily unique.

The condition on F (a, b) implies that every minor of J(x) is positive for all x ∈ Ω. In particular, the

first-order minors, i.e. the entries of J(x) are positive, so the nonlinear system is strongly cooperative [31],

[29]. The conditions here require more than strong cooperativity and as a consequence yield more powerful

results on the asymptotic behavior of the system (see, e.g. [30], [11]).

In the particular case of planar systems, the conditions here require that the entries of J(x) are positive,

and that det J(x) is positive. The latter condition is known to be an orientation-preserving condition that

has been used in the analysis of planar cooperative systems [30].

The next result, which seems to be new, shows that total positivity (in fact, a slightly weaker condition)

implies an orientation-preserving property (with respect to a specific order) for any dimension n. For two

vectors x, y ∈ R
n, we write x ≪ y if xi < yi for all i ∈ {1, . . . , n}. Let D± ∈ R

n×n be the diagonal matrix
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with dii = (−1)i+1 for all i ∈ {1, . . . , n}. Note that (D±)
−1 = D±. We say that z ∈ R

n is alternating

if zizi+1 < 0 for all i ∈ {1, . . . , n− 1}. This implies of course that s−(z) = s+(z) = n− 1.

Lemma 1: Let P ∈ R
n×n be TN and nonsingular. If x, y ∈ R

n are such that

D±PD±x ≪ D±PD±y (14)

then

x ≪ y.

The proof is placed in the Appendix.

Example 1: Consider the TP matrix P =





1 2

3 8



. Then (14) becomes





1 −2

−3 8



 (x−y) ≪ 0 and this

holds iff x1 − y1 < 0 and 3
8
< x2−y2

x1−y1
< 1

2
, so in particular x ≪ y.

In the context of the LTV z(k+1) = Pz(k), z(0) = z0 ∈ R
n, Lemma 1 implies the following. Suppose

that P is TN and non-singular and let y(k) := D±z(k). Then it is not possible that for some i ≥ 1 we

have

y(0) ≪ y(1) ≪ · · · ≪ y(i− 1) ≪ y(i) and y(i) ≫ y(i+ 1). (15)

Indeed, the last inequity here yields

D±PD±y(i− 1) ≫ D±PD±y(i),

so Lemma 1 gives

y(i− 1) ≫ y(i),

and this contradicts (15).

Smillie [27] and Smith [28] proved convergence to an equilibrium and entrainment in a certain class

of continuous-time nonlinear dynamical systems. Their results are based on using the number of sign

variations in the solution of the associated (continuous-time) variational system as an integer-valued

Lyapunov function. It was recently shown that these results are closely related to the theory of TPDSs [16].

Thm. 1 and Corollary 1 may be regraded as discrete-time analogues of these results.

It is well-known that asymptotically stable linear systems entrain to periodic excitations. However,

nonlinear systems do not necessarily entrain. This is true even for strongly monotone systems. Ref. [32]

provides interesting examples of continuous-time, strongly cooperative dynamical systems whose vector



9

field is T periodic and admit a solution that is periodic with minimal period nT , for any integer n ≥ 2.

Furthermore, this subharmonic solution may be asymptotically stable.

In order to apply Thm. 1 and Corollary 1 one needs to verify that the line integral of the Jacobian

is TP. This is not trivial because the sum of two TP matrices is not necessarily a TP matrix, and this is

naturally carried over to integrals.

Example 2: It is straightforward to verify that A(t) =





1.01 t + 1

1
t+1

1



 is TP for all t ∈ [0, 1], yet

∫ 1

0
A(t) dt =





1.01 3/2

ln(2) 1



 is not TP (and not even TN), as it has a negative determinant.

A matrix A ∈ R
n×n is called oscillatory if it is TN and there exists k ∈ N such that Ak is TP. The

smallest such k is called the exponent of the oscillatory matrix A. Oscillatory matrices are in the “middle

ground” between TN and TP matrices, and are much more common than TP matrices in applications.

Indeed, it is well-known that a TN matrix A ∈ R
n×n is oscillatory if and only if it is non-singular and

irreducible [7, Ch. 2], and that in this case An−1 is TP. The next example demonstrates this.

Example 3: Consider the tridiagonal matrix

A =

























a1 b1 0 . . . 0

c1 a2
. . . . . .

...

0
. . .

. . . . . .
...

...
. . .

. . . . . . bn−1

0 . . . . . . cn−1 an

























(16)

with bi, ci ≥ 0 for all i. In this case, the dominance condition

ai ≥ bi + ci−1 for all i ∈ {1, . . . , n}, (17)

with c0 := 0 and bn := 0, guarantees that A is TN (see e.g. [7, Ch. 0]). If, furthermore, bi, ci > 0 for all i

then A is irreducible. Thus, if A is also non-singular then it is oscillatory.

The next two sections describe our main results.

III. OSCILLATORY DISCRETE-TIME SYSTEMS

We begin by introducing the new notion of an ODTS.
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Definition 1: The discrete-time LTV

y(k + 1) = A(k)y(k), (18)

with A : N → R
n×n, is called an ODTS of order p if A(k) is oscillatory for all k ∈ N, and every product

of p matrices in the form:

A(kp) . . . A(k2)A(k1), 0 ≤ k1 < · · · < kp,

is TP.

For example, if A(k) is TP for all k then (18) is an ODTS of order 1. Also, since the product of

any n− 1 oscillatory matrices is TP [18], (18) is always an ODTS of order n− 1.

We now describe the applications of ODTS to the time-varying nonlinear system:

x(k + 1) = f(k, x(k)), (19)

where f(k, x) satisfies Assumption 2. We assume that the trajectories of (19) evolve in a compact and

convex state-space Ω ∈ R
n. For k ∈ N and a, b ∈ Ω, let

F (k, a, b) :=

∫ 1

0

J(k, ra+ (1− r)b) dr.

We pose the following assumption.

Assumption 3: The system

z(k + 1) = F (k, ·, ·)z(k) (20)

is an ODTS of order h.

We can now state the main result in this section.

Theorem 2: Suppose that Assumptions 2 and 3 hold. Let u := hT . Then every solution of (19) emanating

from Ω converges to a u-periodic solution of (19).

Remark 1: If F (k, a, b) is TP for all k ∈ N and all a, b ∈ Ω then Assumption 3 holds with h = 1 so

Thm. 2 implies that every solution of (19) emanating from Ω converges to a T -periodic solution of (19).

This recovers the TPDS case. If F (k, a, b) is oscillatory for all k ∈ N and all a, b ∈ Ω then in particular

every product of n− 1 matrices is TP, so Thm. 2 implies that every solution of (19) emanating from Ω

converges to an (n− 1)T -periodic solution of (19).
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Remark 2: The LTV (18) is of course a special case of (19) with Jacobian J(k, x(k)) = A(k), and

thus F (k, a, b) = A(k) for all a, b ∈ Ω and all k ∈ N. We conclude that if A(k) = A(k+T ) for all k ∈ N

then every solution of an ODTS of order h converges to periodic solution of (18) with period u := hT .

Proof of Thm. 2: Pick α, β ∈ Ω with α 6= β. Let

z(k) := x(k, β)− x(k, α)

and recall that z satisfies the variational equation (9), with

M(k, α, β) :=

∫ 1

0

J(k, rx(k, β) + (1− r)x(k, α)) dr.

Assumption 3 implies that M(k, α, β) is oscillatory. Let v(k) := z(ku). Then

v(k + 1) = M((k + 1)u− 1, α, β) . . .M(ku, α, β)v(k). (21)

The product on the right-hand side includes u = hT matrices, and is TP, as the product of any h matrices

is TP, and the product of any two TP matrices is TP. Thus, (21) is a TPDS. Thm. 6 in [1] implies the

following eventual monotonicity property: there exists m ∈ N such that either v1(k) > 0 for all k ≥ m

or v1(k) < 0 for all k ≥ m.

Pick a ∈ Ω and let x(k, a) denote the trajectory of (19) emanating from a. Let b := x(u, a). If x(k, a)

is u-periodic then there is nothing to prove. Therefore, we can assume that the trajectories x(k, a)

and x(k, b) are not identical. Note that Assumption 2 implies that both trajectories are solutions of (19).

By the eventual monotonicity property, there exists m ∈ N such that, without loss of generality,

x1((k + 1)u, a)− x1(ku, a) > 0 for all k ≥ m. (22)

Let

ωu(a) := {p : there exist mi ∈ N with m1 < m2 < . . .

such that lim
i→∞

x(miu, a) = p},

that is, the u-omega limit set corresponding to a. By compactness of Ω it follows that ωu(a) 6= ∅.

We now show that ωu(a) is a singleton. Assume that there exist p, q ∈ ωu(a), with p 6= q. We claim

that p1 = q1. Indeed, there exist sequences {mk}∞k=1 and {sk}∞k=1 such that p = limmk→∞ x(mku, a)
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and q = limsk→∞ x(sku, a). Passing to sub-sequences, if needed, we may assume that mk < sk < mk+1

for all k ∈ N. Now (22) implies that p1 = q1. We conclude that any two points in ωu(a) have the same

first coordinate.

Consider the trajectories emanating from p and q, that is, x(k, p) and x(k, q). Since p, q ∈ ωu(a) and

ωu(a) is an invariant set,

x(ku, p), x(ku, q) ∈ ωu(a) for all k ∈ N.

This implies that

x1(ku, p) = x1(ku, q) for all k ∈ N.

However, this contradicts the eventual monotonicity of (21). We conclude that ωu(a) is a singleton, and

this completes the proof.

Remark 3: Note that the proof of Thm. 2 relies on the fact that any product of u = hT matrices in (21)

is TP. In practice, it may be the case that a product of a smaller number of matrices in the variational

equation is TP. In this case, every solution x(k, a) will converge to a periodic solution of (19) with period

less than hT . Nevertheless, the minimal period of the limit solution must divide hT .

The next subsection provides several sufficient conditions guaranteeing that Assumption 3 indeed holds,

and applications to several dynamical systems.

IV. CONDITIONS GUARANTEEING THAT A MATRIX LINE INTEGRAL IS OSCILLATORY

Our first sufficient condition is based on the sufficient condition for a matrix to be oscillatory described

in Example 3.

A. Discretizing nonlinear tridiagonal strongly cooperative systems

Consider the nonlinear time-varying dynamical system ẋ = f(t, x). Let

x(k + 1) = x(k) + εf(k, x(k)) (23)

denote its Euler discretization, with ε > 0.

Lemma 2: Suppose that the trajectories of (23) evolve on a compact and convex set Ω ⊂ R
n, and that

J(k, a) := I + ε
∂

∂x
f(k, a) (24)



13

is tridiagonal, with positive entries on the super- and sub-diagonals for all k ∈ N and all a ∈ Ω. Then for

any ε > 0 sufficiently small Assumption 3 holds with h = n− 1.

Note that since J(k, a) is tridiagonal, it is not TP, so the TPDTS framework cannot be used to analyze

this case.

Proof: Pick k ∈ N and a ∈ Ω. The assumptions on the Jacobian imply that J(k, a) is irreducible

for all ε > 0, and nonsingular for every ε > 0 sufficiently small. Also, J(k, a) satisfies the dominance

condition described in Example 3 for any ε > 0 sufficiently small, and is thus TN. Furthermore, all these

properties carry over to the matrix F defined in (20).

The next example demonstrates Lemma 2 in a simple case.

Example 4: Consider the continuous-time system:

ẋ =











0 1 0

1 0 1

0 1 0











x.

Its Euler discretization is x(k + 1) = Ax(k) with

A :=











1 ε 0

ε 1 ε

0 ε 1











,

with ε > 0. The matrix A is irreducible, and it is nonsingular for any ε 6= 1/
√
2. Combining this with

Example 3 implies that A is oscillatory for any ε ∈ (0, 1/2]. The eigenvalues of A are

λ1 := 1 + ε
√
2,

λ2 := 1,

λ3 := 1− ε
√
2,

with corresponding eigenvectors

v1 :=
[

1,
√
2, 1

]′

,

v2 :=
[

−1, 0, 1
]′

,

v3 :=
[

1,−
√
2, 1

]′

.
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Pick x(0) ∈ R
3. Let ci ∈ R be such that x(0) =

∑3
i=1 civ

i. Then

x(k) =

3
∑

i=1

ciλ
k
i v

i,

and this implies that for any ε ∈ (0, 1/2] any solution x(k) that remains in a compact set converges to

either c1v
1 or to the origin.

The next example describes an application of Lemma 2 to a nonlinear model from systems biology.

Example 5: Cells often sense and respond to various stimuli by modification of protein production.

One mechanism for this is phosphorelay (also called phosphotransfer), in which a phosphate group is

transferred through a serial 1D chain of proteins from an initial histidine kinase (HK) down to a final

response regulator (RR). The nonlinear compartmental system:

ẋ1 = (p1 − x1)c− η1x1(p2 − x2)− ξ1x1,

ẋ2 = η1x1(p2 − x2)− η2x2(p3 − x3)− ξ2x2,

...

ẋn−1 = ηn−2xn−2(pn−1 − xn−1)− ηn−1xn−1(pn − xn)

− ξn−1xn−1,

ẋn = ηn−1xn−1(pn − xn)− ηnxn, (25)

has been suggested as a model for phosphorelay [6]. Here c : [t1,∞) → R+ is the strength at time t of the

stimulus activating the HK, xi(t) is the concentration of the phosphorylated form of the protein at the i’th

layer at time t, the parameter pi > 0 denotes the total protein concentration at that layer, and ηi, ξi > 0

are parameters that describe reaction rates. Note that ηnxn(t) is the flow at time t of the phosphate group

to an external receptor molecule.

In the particular case where pi = 1 and ξi = 0 for all i Eq. (25) becomes the ribosome flow

model (RFM) [22]. This is the dynamic mean-field approximation of a fundamental model from non-

equilibrium statistical physics called the totally asymmetric simple exclusion process (TASEP) [4]. The

RFM describes the unidirectional flow along a chain of n sites. The state-variable xi ∈ [0, 1] describes the

normalized occupancy at site i, where xi = 0 [xi = 1] means that site i is completely free [full], and ηi

is the capacity of the link that connects site i to site i + 1. This has been used to model and analyze

mRNA translation (see, e.g., [19], [21], [17], [34]), where every site corresponds to a group of codons on
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Fig. 1. The trajectory x1(k) (marked by o), x2(k) (*), x3(k) (x), and x4 (+) in Example 5.

the mRNA strand, xi(t) is the normalized occupancy of ribosomes at site i at time t, c(t) is the initiation

rate at time t, and ηi is the elongation rate from site i to site i+ 1.

Write (25) as ẋ = f(x). Then ∂
∂x
f(x) is tridiagonal, with entries ηixi on the super-diagonal, and ηi(pi+1−

xi+1), i = 1, . . . , n− 1, on the sub-diagonal.

Consider the corresponding discretized system (23). It is not difficult to show that Ω := [0, p1]× · · · ×
[0, pn] is an invariant set of (23) for any ε > 0 sufficiently small. Furthermore, for any a ∈ Ω we have

that x(k, a) ∈ int(Ω) for all k ≥ 1 and then the conditions in Lemma 2 on J(k, a) defined in (24) hold.

Fig. 1 depicts the trajectories of the discretized system with n = 4, ε = 0.1, ξi = 3, ηi = 1, p1 = 0.8,

p2 = p3 = p4 = 2, initial condition x(0) =
[

0.5 0.1 0.6 0.3
]′

, and the periodic stimulus c(k) =

3+ sin(kπ/4). Note that this means that the map is T -periodic with (minimal) period T = 8. Combining

Thm. 2 and Lemma 2, we conclude that any solution of the discretized system converges to a periodic

solution with period (n−1)T = 24. It may be seen that the specific solution depicted in Fig. 1 converges

to a periodic solution with period 8.

In general, our approach is to find sufficient conditions guaranteeing that the line integral of a matrix

is oscillatory without actually calculating the integral. However, there is an important special case where

the integral can be computed explicitly.
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B. The case of strictly monotone scalar nonlinearities

Let fi : R → R, i = 1, . . . , n, be C1 functions such that

f ′
i(y) :=

d

dy
fi(y) > 0 for all i and all y ∈ R. (26)

Consider the time-varying nonlinear system:

x(k + 1) = C(k)



















f1(x1(k))

f2(x2(k))

...

fn(xn(k))



















, (27)

with C : N → R
n×n.

Theorem 3: Suppose that the trajectories of (27) evolve on a compact and convex state-space Ω, and

that C(k) is T -periodic. If z(k + 1) = C(k)z(k) is an ODTS of order h then every solution of (27)

emanating from Ω converges to an hT -periodic solution of (27).

Proof: The Jacobian of (27) is J(k, x) = C(k) diag(f ′
1(x1)), . . . , f

′
n(xn)). Substituting this in (11)

and integrating yields

F (k, a, b) = C(k) diag(g1(a1, b1), . . . , gn(an, bn)), (28)

with

gi(ai, bi) :=











fi(ai)−fi(bi)
ai−bi

if ai 6= bi,

f ′
i(bi) if ai = bi.

Note that (26) and the fact that Ω is compact imply that there exists δ > 0 such that gi(ai, bi) ≥ δ for

all a, b ∈ Ω and all i.

Pick 1 ≤ r ≤ n, and indexes 1 ≤ i1 < · · · < ir ≤ n and 1 ≤ j1 < · · · < jr ≤ n. Let F (α|β)
denote the minor of F = F (k, a, b) indexed by rows i1, . . . , ir and columns j1, . . . , jr. Then applying the

Cauchy-Binet formula (see, e.g [7]) to (28) yields

F (α|β) = C(α|β)gj1gj2 . . . gjr . (29)

Since all the gi’s are positive, this means that the total positivity properties of C are copied to F . Applying
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Thm. 2 completes the proof.

The next example demonstrates Thm. 3.

Example 6: Consider the system:





x1(k + 1)

x2(k + 1)



 = C(k)





tanh(x1(k))

tanh(x2(k))



 , (30)

where

c11(k) = 2 + cos(kπ + 0.5),

c12(k) = 2− sin(
kπ

2
+ 1.5),

c21(k) ≡ 1/2,

c22(k) = 3 + cos(
kπ

3
+ 2).

Note that C(k) is TP for all k ∈ N, and that

1 ≤ |cij(k)| ≤ 4 for all i, j, k, (31)

and that the map in (30) is periodic with (minimal) period T = 12.

We claim that (for example) the square

Ω := [1, 8]× [1, 8]

is an invariant set for the dynamics. To show this, suppose that x(k) ∈ Ω. Then x1(k), x2(k) ≥ 1,

so x(k + 1) ≥





1 1

1/2 2









tanh(1)

tanh(1)



 ≥





1

1



. Also, since tanh(z) ≤ 1 for all z, and cij(k) ≤ 4, we

have x1(k + 1), x2(k + 1) ≤ 8, so x(k + 1) ∈ Ω.

It is clear that this system satisfies the conditions in Thm. 3, with h = 1, and thus the system

entrains. The trajectory of the system for x1(0) = 2 and x2(0) = 3 is depicted in Fig. 2. It may be

seen that x1(k), x2(k) indeed converges to a T -periodic solution with T = 12.

From here on we consider the following general problem.

Problem 1: Consider a measurable and essentially bounded matrix function A : [0, 1] → R
n×m. When

is

Ā :=

∫ 1

0

A(t) dt
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Fig. 2. The trajectory x1(k) (marked by *), x2(k) (o) for the initial condition x1(0) = 2, x2(0) = 3 in Example 6.

an oscillatory matrix?

Since our motivation is the analysis of line integrals of Jacobians of dynamical systems, we assume

throughout that m = n. Some of the conditions given below actually guarantee that Ā is TP (and thus,

in particular, oscillatory with exponent one).

C. Sufficient condition based on the checkerboard partial order

For A,B ∈ R
n×n we write A ≤ B [A ≪ B] if aij ≤ bij [aij < bij] for all i, j.

Definition 2: The checkerboard partial order on R
n×n is defined by

A ≤† B ⇐⇒ D±AD± ≤ D±BD±.

In other words, A ≤† B iff

(−1)i+jaij ≤ (−1)i+jbij for all i, j ∈ {1, . . . , n}. (32)

Note that (32) implies that the matrix interval
{

C ∈ R
n×n : A ≤† C ≤† B

}

is compact. For more on such

matrix intervals, see [10] and the references therein.

It is well-known [7] that if A,B are TP and A ≤† C ≤† B then C is TP.

Theorem 4: Let A : [0, 1] → R
n×n be a Riemann integrable matrix function. If there exist δ > 0 and TN

matrices G and H such that

δ + (−1)i+jgij ≤ (−1)i+jaij(t) ≤ −δ + (−1)i+jhij (33)
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for all i, j and all t ∈ [0, 1] then Ā is TP.

Proof: Recall that the set of n × n TP matrices is dense in the set of n × n TN matrices [33].

Combining this with (33) implies that there exist TP matrices P and Q such that

P ≤† A(t) ≤† Q for all t ∈ [0, 1]. (34)

We claim that this implies that every minor of Ā is positive. We will show that det Ā > 0. The proof for

any other minor is very similar. Fix k ∈ {1, 2 . . . , } and consider the partition of [0, 1] defined by

t0 := 0, t1 := 1/k, t2 := 2/k, . . . , tk := 1.

Consider the Riemann sum B :=
∑k−1

ℓ=0 (tℓ+1 − tℓ)A(tℓ). Then for any i, j ∈ {1, . . . , n} we have

(−1)i+jbij =
k−1
∑

ℓ=0

(−1)i+j(tℓ+1 − tℓ)aij(tℓ),

and combining this with (34) gives

k−1
∑

ℓ=0

(−1)i+j(tℓ+1 − tℓ)pij ≤ (−1)i+jbij

≤
k−1
∑

ℓ=0

(−1)i+j(tℓ+1 − tℓ)qij .

Since
∑k−1

ℓ=0 (tℓ+1 − tℓ) = tk − t0 = 1, we conclude that

P ≤† B ≤† Q.

By compactness of the set {C ∈ R
n×n : P ≤† C ≤† Q} and the fact that any C in this set is TP,

there exists α > 0 such that detB ≥ α. Taking k → ∞ and using the continuity of the determinant, we

conclude that det Ā ≥ α > 0.

Suppose that every entry aij(t) of A(t) attains a maximum value āij and a minimum aij over [0, 1].

Define P,Q by

pij :=











aij , if i+ j is even,

āij , if i+ j is odd,
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and

qij :=











āij , if i+ j is even,

aij, if i+ j is odd,

Then (34) holds, so the required condition is that P and Q are TP.

The next result describes an application of Thm. 4 to a dynamical system.

Corollary 2: Consider the nonlinear system:

x(k + 1) = Ax(k) + εg(x(k)), (35)

where g is C1 and ε > 0 is small. Suppose that A is TP, and that the trajectories of (35) evolve on a

compact and convex set Ω ⊂ R
n. Define B ∈ R

n×n by

bij := max
x∈Ω

∣

∣

∣

∣

∂gi(x)

∂xj

∣

∣

∣

∣

,

and define matrix functions P,Q : R → R
n×n by

P (v) := A− vD±BD±, Q(v) := A+ vD±BD±. (36)

Then there exists w > 0 such that for all v ∈ [0, w) and all x ∈ Ω

P (v) ≤† J(x) ≤† Q(v),

and P (v), Q(v) are TP, and for any ε ∈ [0, w) every solution of (35) emanating from Ω converges to an

equilibrium point.

Proof: It follows from (36) that P (0) = Q(0) = A, and P (v) ≤† A ≤† Q(v) for all v ≥ 0. By

continuity of the minors, there exists w > 0 such that

P (v), Q(v) are TP for all v ∈ [0, w).

The Jacobian of (35) is J(x) = A+ ε ∂
∂x
g(x), so for any s, r ∈ {1, . . . , n} and any x ∈ Ω we have

|Jsr(x)| = |asr + ε
∂

∂xr

gs(x)|

≤ asr + εbsr.
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It is straightforward to verify that this implies that for any v ≥ 0 and any ε ∈ [0, v] we have

(−1)s+rpsr(v) ≤ (−1)s+rJsr(x) ≤ (−1)s+rqsr(v),

that is,

P (v) ≤† J(x) ≤† Q(v).

Now fix ε ∈ [0, w). Pick v ∈ [ε, w). Then for these values all the conditions in Thm. 4 hold, so the

matrix F (a, b) in (13) is TP for all a, b ∈ Ω, and this completes the proof.

Example 7: Consider (35) with n = 3,

A = 0.65











1 exp(−1) exp(−4)

exp(−1) 1 exp(−1)

exp(−4) exp(−1) 1











, (37)

and g(k, x(k)) =
[

tanh((50 + 50 sin(kπ/5))x3(k)) 0 0
]′

. This model may represent a cooperative linear

chain where the effect of xi(k) on xj(k+1) decays exponentially with the “distance” (i− j)2 between xi

and xj . It is well-known that A in (37) is TP (see [9, Ch. II]). The nonlinear term represents a time-varying

and T -periodic, with T = 10, positive feedback from x3 to x1.

It is clear that we can take the “bounding matrix” B ∈ R
3×3 as the matrix with b13 = 1, and zero in all

other entries. It is not difficult to verify that for this B we have that P (v), Q(v) defined in (36) are TP

for all v ∈ [0, w), with w := 0.65 exp(−4). Fig. 3 depicts the solution of the system with ε = 0.0118 < w

and initial condition x(0) = (2/50)
[

1 1 1
]′

. It may be seen that every xi(k) converges to a periodic

solution with period T = 10.

D. Integrating TP Hankel Matrices

Recall that A ∈ R
n×n is called a Hankel matrix if for any i, j, p, q with i+ j = p+q we have aij = apq.

For example, for n = 3 a Hankel matrix has the form

A =











a11 a12 a13

a12 a13 a23

a13 a23 a33











.
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Fig. 3. State-variables x1(k) (marked with ’*’), x2(k) (’o’), and x3(k) (’x’) as a function of k for the system in Example 7.

Note that a Hankel matrix is in particular symmetric. Our main result in this subsection is that the integral

of a time-varying TP Hankel matrix is TP.

Theorem 5: Let A : [0, 1] → R
n×n be a measurable matrix function such that A(t) ∈ L∞([0, 1]).

Suppose that A(t) is a TP Hankel matrix for almost every t ∈ [0, 1]. Then Ā is TP.

Remark 4: Note that for n = 2 this implies that if A : [0, 1] → R
2×2 is a continuous matrix function

with A(t) symmetric and TP for all t ∈ [0, 1] then Ā is TP (compare with Example 2).

To prove Thm. 5 we recall several definitions and results. A set of indices I ⊆ {1, · · · , n} is called

an interval if it has the form I = {p, p + 1, p + 2, . . . , q}. A square sub-matrix of a matrix B ∈ R
n×n

with row indices I ⊆ {1, · · · , n} and column indices J ⊆ {1, · · · , n} is called a contiguous sub-matrix

if both I and J are intervals.

It is well-known and straightforward to show that the following three conditions are equivalent: (1) B ∈
R

n×n is a Hankel matrix; (2) every contiguous sub-matrix of B is a Hankel matrix; (3) every contiguous

sub-matrix of B is symmetric.

We can now prove Thm. 5.

Proof: We start by showing that det Ā > 0. First, note that the function t 7→ det(A(t)) is measurable

(as it is a polynomial in the entries ai,j(t), i, j ∈ {1, . . . , n}) and essentially bounded. Therefore, it is

Lebesgue integrable. For N ∈ {1, 2, . . . , }, let

BN :=
{

t ∈ [0, 1] : det(A(t)) ≥ N−1
}

.
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Since A(t) is TP for almost every t ∈ [0, 1] and

B1 ⊆ B2 ⊆ . . . ,

the monotone convergence theorem (see e.g. [5]) yields

lim
N→∞

µ(BN) = 1,

where µ is the Lebesgue measure on [0, 1]. Therefore, there exists N0 ∈ N such that µ(BN0
) > 1

2
. Markov’s

inequality (see e.g. [5]) yields

∫ 1

0

(detA(t))
1

n dµ(t) ≥ N
− 1

n

0 µ(BN0
)

> N
− 1

n

0 /2. (38)

Since A(t) is Hankel and TP for almost all t ∈ [0, 1], it is symmetric with positive principal minors,

so A(t) is positive-definite for almost all t ∈ [0, 1]. Minkowki’s determinant inequality (see e.g. [12, p.

115]) states that B 7→ (detB)
1

n is a concave function over the space of semi-positive definite matrices of

order n. Thus, by using (38) and Jensen’s inequality (see e.g. [5]) we obtain

(det Ā)
1

n =

(

det

∫ 1

0

A(t) dµ(t)

)

1

n

≥
∫ 1

0

(detA(t))
1

n dµ(t)

≥ N
− 1

n

0 /2,

so det Ā > 0.

Recall that every contiguous sub-matrix of A(t) is also a TP and Hankel matrix for almost all t ∈ [0, 1],

so the same argument shows that every contiguous minor of Ā is positive. It is well-known [7, Chapter 3]

that if all the contiguous minors of a matrix are positive then the matrix is TP, so we conclude that Ā

is TP.

The next example demonstrates an application of Remark 4 to a dynamical system.
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Example 8: Consider the nonlinear system:

x1(k + 1) = h1(x1(k)) + g(x1(k), x2(k)),

x2(k + 1) = h2(x2(k)) + g(x1(k), x2(k)), (39)

with h1, h2, g ∈ C1, whose trajectories evolve on a compact and convex state-space Ω ⊂ R
2. Suppose

that ∂
∂x1

g(x1, x2) =
∂

∂x2
g(x1, x2) for all x1, x2 ∈ Ω (e.g. g(x1, x2) = tanh(x1+x2)). Note that this implies

that the Jacobian

J(x) =





h′
1(x1) +

∂
∂x1

g(x1, x2)
∂

∂x2

g(x1, x2)

∂
∂x1

g(x1, x2) h′
2(x2) +

∂
∂x2

g(x1, x2)





is symmetric. If J(x1, x2) is TP for all (x1, x2) ∈ Ω then combining Corollary 1 and Remark 4 implies

that any solution of (39) emanating from Ω converges to an equilibrium point.

V. CONCLUSION

We introduced a new class of positive discrete-time LTV systems called ODTSs of order p. Discrete-

time nonlinear systems, whose variational system is an ODTS of order p, have a well-ordered behavior.

More precisely, if the map defining the dynamical system is T -periodic then every solution either leaves

any compact set or converges to a pT -periodic solution, i.e. a subharmonic solution. This is important

because, as noted by Smith [30], “. . . in the class of all discrete dynamical systems, we do not know so

many special classes which have relatively simple dynamics.”

The ODTS framework requires establishing that certain line integrals of the Jacobian of the time-varying

nonlinear system are oscillatory matrices. This is non-trivial, as the sum of two oscillatory matrices is

not necessarily oscillatory, and this naturally extends to integrals. We derived several sufficient conditions

guaranteeing that the line integral of a matrix is oscillatory (or TP).

Topics for further research include the following. First, extending the oscillatory framework to other

dynamical models e.g. systems with time-delays or discretized PDEs. Second, cooperative discrete-time

systems arise frequently as the Poincaré maps of continuous-time systems. It may be of interest to

explore the implications of oscillatory Poincaré maps. Third, it may be of interest to generalize the ODTS

framework to discrete-time systems with control inputs, as was done for continuous-time monotone systems

in [2].
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APPENDIX

Proof of Lemma 1: Let z := D±(x − y). Then (14) implies that v := D±Pz ≪ 0. Thus, the

vector Pz = D±v is alternating, with

(Pz)1 = v1 < 0.

Applying the VDP (6) yields

n− 1 = s−(Pz) ≤ s−(z).

Thus, s−(z) = n−1, i.e. z is alternating. Recall that if a matrix H is TN, and non-singular and s−(Hq) =

s−(q) for some q ∈ R
n \ {0} then the first non-zero entry in Hq and the first non-zero entry in q have

the same sign [9, p. 254]. Since s−(Pz) = s−(z) = n− 1, and (Pz)1 < 0, the first non-zero entry of z

is negative. Since z is alternating this implies that D±z ≪ 0, and this completes the proof.
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[13] M. Margaliot, L. Grüne, and T. Kriecherbauer, “Entrainment in the master equation,” Royal Society Open Science, vol. 5, no. 4, p.

171582, 2018.
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