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Abstract

Graph convolutional networks (GCNs) have been widely used for representation learning on graph data, which can
capture structural patterns on a graph via specifically designed convolution and readout operations. In many graph
classification applications, GCN-based approaches have outperformed traditional methods. However, most of the
existing GCNs are inefficient to preserve local information of graphs — a limitation that is especially problematic
for graph classification. In this work, we propose a locality-preserving dense GCN with graph context-aware
node representations. Specifically, our proposed model incorporates a local node feature reconstruction module to
preserve initial node features into node representations, which is realized via a simple but effective encoder-decoder
mechanism. To capture local structural patterns in neighbourhoods representing different ranges of locality, dense
connectivity is introduced to connect each convolutional layer and its corresponding readout with all previous
convolutional layers. To enhance node representativeness, the output of each convolutional layer is concatenated
with the output of the previous layer’s readout to form a global context-aware node representation. In addition,
a self-attention module is introduced to aggregate layer-wise representations to form the final representation.
Experiments on benchmark datasets demonstrate the superiority of the proposed model over state-of-the-art
methods in terms of classification accuracy.

Keywords: representation learning, graph convolutional network, graph classification, node representation,
locality preserving, dense connection

1. Introduction

Graph data [42] which can capture rich information about individual entities and their relations via nodes and
edges connecting two nodes has become an essential data type in many research fields including biology (protein-
protein interaction networks) [13], chemistry (molecular/compound graphs) [9], cognition intelligence/cognitive
sciences (knowledge graphs) [20], social sciences (friendship networks) [15, 25] and many other research areas
[2, 22, 47]. Graphs are not only useful as structured information repositories but also play a key role in modern
machine learning tasks. Graph classification [37], as one of the important task based on graph data, aims to classify
a given graph into a certain category. For example, in order to distinguish various graph structures of organic
molecules, one would ideally infer and aggregate the whole graph topology (which is organized by individual atoms
and their direct bonds) as well as node features (e.g., atom attributes), and use the inference and aggregation
information to predict the category of the graphs.

Recently, a surge of methods have been proposed in the literature aiming to solve the problem of graph
classification. Traditionally, A popular technique is to design a kernel function to compute the similarity between
pairs of graphs [31], followed by a kernel-based classifier like support vector machines (SVM) to perform graph
classification. Although effective, kernel-based methods suffer from computation bottleneck and their feature
selection is separate from the follow-up classifier [53]. In order to solve the above challenges, Graph Neural Networks
(GNNs), which works in an end-to-end manner, have received increasing research attention [1, 25, 45, 49, 26, 28, 33].
Therein, Graph Convolutional Networks (GCNs) are inarguably the dominant category of GNNs to solve the problem
of graph classification. Modern GCNs broadly follow the message passing framework [14] which consists of a message
passing phase and a readout phase, in which the message passing phase is to update each node’s feature vector by
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aggregating the feature vectors of its immediate neighbors and the readout phase is then to generate graph-level
feature through global pooling modules. GCNs iteratively run k-th graph convolution operations using message
passing functions to let information travel long distances during the propagation phase. After k iterations, useful
features for nodes can be extracted to solve many node-focused analytic tasks (e.g., node classification) [25, 6]. To
tackle graph-focused tasks (e.g., graph classification), the readout module aggregates the information of nodes or
local structures to form a graph-level representation [45, 51]. Figure 1 presents a general framework of GCNs for
graph classification. Under the message passing framework, many GCN variants with various message functions,
vertex update functions, and readout functions have been developed [29, 15, 43, 21, 41].

Figure 1: A generic framework of GCNs with 3 convolutional layers and a readout layer for graph classification. A graph convolutional
layer encapsulates each node’s hidden representation by aggregating feature information from its neighbors. A readout layer collapses
node representations of each graph into a graph-level representation.

However, there exists a main limitation of existing GCNs — their schemes used for graph-level representation
learning lack of effective utilization of local feature information. In other words, they overemphasize the capacity in
distinguishing different graphs and neglects the local representativeness of a node, leading to over-smoothing (the
representation of each node tends to be congruent) when the number of layers becomes large. This is mainly because
the local neighborhood aggregation process indiscriminatingly aggregates both positive and negative contributions
from the neighbors. As we know, graph-level representation is derived through aggregating local features of nodes,
thus locality preserving is the key premise of high graph-level discriminative/representational ability. Existing
methods studying on locality preserving for graph-level representation learning can be broadly grouped into three
categories: designing differing graph convolution and/or readout operations, hierarchical clustering methods and
exploring new model architectures. The first category is to design graph convolution and/or readout operations.
For example, in graph isomorphism network (GIN) [45], Xu et al. discovered that methods under message
passing framework are incapable of distinguishing various graph structures based on their extracted graph-level
representation, and they proposed an injection neighborhood aggregation scheme and a learnable feature-combine
mechanism to preserve local structure and node features of graphs. In [12], Fan et al. proposed a structured self-
attention architecture similar to graph attention networks (GATs) [43] for graph-level representation learning, where
the node-focused attention mechanism aggregates different neighbor node features with learnable weights and the
layer-focused as well as the graph-focused self-attention serve as a readout module to aggregate important features
from differing nodes and layers to the model’s output. In the second category of exploring hierarchical clustering
methods, many works prove that graphs also exhibit rich hierarchical structures apart from a dichotomy between
node or graph-level structures. A recent advanced work [50] proposes DIFFPOOL, a differentiable hierarchical
pooling method jointly trained with graph convolutions, to refine local feature information. In summary, the

2



aforementioned two categories of GCN approaches for graph classification are able to overfit most of the training
datasets, but their generalization ability is rather limited. In the third category of exploring suitable model
architectures, some researchers attempt to remedy the practical difficulty in training GCNs or the over-smoothing
problem. In [46], Xu et al. proposed a Jumping Knowledge Network (JK-Net) architecture to connect the last
layer of the network with all preceding hidden layers. As a result, the last layer of the model can selectively exploit
information from neighborhoods of differing locality, and thus can well capture node-level representation in a fixed
number of graph convolution operations. Besides, [34, 35] introduce residual connections [16] to skip layers for
leveraging local information of different depths, and hence can assist in model training, especially as the depth of
the network increases. Such skip connections have been demonstrated to improve the model performance on node-
focused tasks, but few works investigated their effectiveness on graph-focused tasks. In GIN, the researchers further
proposed a novel architecture similar to JK-Net that concatenates graph-level representations over all layers of the
model. Such ”readout” architecture that considers all depths of global information can improve generalization of
the model.

In this paper, we realize locality preserving in terms of loss function and model architecture. As we know, GCNs
utilize the graph topological structure and node features to learn graph-level representation of an entire graph.
From the loss perspective, in order to make full use of the node feature information, our model constructs an extra
local node-feature reconstruction loss to improve the local representational ability of hidden node representations
and enhance the discriminative ability of the final graph-level representation, i.e., we add an auxiliary constraint
to preserve locality of the graphs. The local feature reconstruction module is realized by designing a simple but
effective encoder-decoder mechanism, in which a stack of multiple graph convolutional layers serves as the encoder
and a Multi-Layer Perception (MLP) serves as the decoder. As thus, the input node feature information of the
graph is embedded into the hidden representations via the encoder, and then these vector representations are fed
into the decoder to reconstruct the initial node features. From the model architecture perspective, we first explore
and design a densely connected architecture [18] to flexibly leverage information from neighborhoods of differing
locality, where we connect each convolutional layer and its readout with all earlier hidden convolutional layers
(Note that each convolution module is followed by a readout module in our architecture). Second, we connect each
convolutional layer with the previous layer’s readout, i.e., the representation outputs of each hidden convolutional
layer combine with additional graph-level global context to form global context-aware node representations, aiming
at enhancing node representativeness. Additionally, through adding such direct connections from earlier readouts to
later convolutions, each readout can receive additional supervision from the local feature reconstruction loss, which is
equivalent to impose regularization on the model to reduce the risk of losing local representational ability and hence
improve the model’s generalization capacity. Lastly, we introduce a self-attention mechanism to aggregate global
feature information across different layers to obtain a final graph-level output. Because of the Locality-Preserving
Dense GCN architecture, we refer to our model as LPD-GCN.

In summary, our main contributions of this work are three-fold:

• We elaborate an auxiliary local node-feature reconstruction loss by constructing an encoder-decoder mechanism
to assist the goal of graph classification. The designed reconstruction module acts as a regularizer, which can
help the model to improve the local representational ability of node representations, and thus enhance the
global discriminative capacity of the graph-level representation.

• We explore a dense connected architecture to flexibly leverage information from neighborhoods of differing
locality. Aiming to enhance node representativeness, we connect each convolutional layer with the previous
layer’s readout. As a result, node representations combine with additional global context to form global
context-aware local representations. Moreover, we introduce a self-attention mechanism to adaptively capture
all depths of global information.

• Extensive experiments on benchmark datasets indicate that the proposed LPD-GCN can achieve significant
improvement of classification accuracies on 4 out of 6 benchmark datasets, which prove its strong representational
power, and especially the generalization ability of our model.

The remainder of this paper is organized as follows. We review the relevant research and previous works in
Section 2. In Section 3, we discuss the preliminaries of the work. In Section 4, we present our model LPD-GCN in
detail. The experimental results and analyses are reported in Section 5. Finally, a conclusion is given in Section 6.
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2. Background and Related Works

2.1. Graph Classification and Its Applications

The goal of graph classification is to distinguish different graph structures based on their learned representations.
Once graph representations are derived, the prediction step is equivalent to standard vectorial machine learning,
and common loss functions are Cross Entropy/Negative Log-likelihood for classification. A variety of research
domains involve the task of graph classification, e.g., biology and chemistry are perhaps the prominent domains
where protein structures and chemical compound datasets are often used to benchmark new models on graph
classification problems like predicting the functional roles of proteins [13], predicting chemical properties such as
toxicity and solubility [14]. In social science scenario, a challenging graph classification problem is social community
classification [48]. The field of computer vision is a promising new application avenue for graph classification.
Practical applications including point clouds classification [8, 27], real-time action recognition [47, 52], etc. Existing
techniques for graph classification or graph-level representation learning are generally grouped into two main
categories: graph kernel-based approaches and graph convolutional network based approaches. In the following, we
will briefly review some relevant research on two kinds of approaches.

2.2. Graph Kernel

Kernel-based approaches are historically dominant techniques to solve graph classification problem. Informally,
a kernel is defined as a generalized form of positive-definite function that measures the similarity scores between
pairs of inputs. Specifically, a graph kernel implicitly decomposes a graph into some discrete substructures, such
as random walk paths or subtrees, and uses hashing methods to preserve data similarity on feature vectors and
measures their similarity score. Graph kernel models following this line of work mainly differ in the way of graph
decomposition. For instance, GRAPHLET kernel [40] decomposes a graph into small sub-structures up to a fixed
size. Weisfeiler-Lehman (WL) kernel [39] decomposes a graph into subtree patterns. SHORTEST-PATH kernel [3]
is based on comparing the paths between graphs. However, the above mentioned graph kernels based on computing
the similarity of graphs suffer from the following drawbacks. As the size of substructures increases, the probability
that two graphs contain similar substructures will sharply decrease [48]. To resolve this dilemma, a number of
methods have been proposed for graph comparison by measuring the differences among the probability distribution
of pairwise distances between nodes. For example, [38] is based on the shortest-path distance, and [44] is based on
the diffusion distance. Besides, graph kernels are usually non-adaptive, i.e., they require humans to design proper
kernel function to extract features they wanted, which causes the main limitation of kernels. Furthermore, graph
kernels suffer from computation bottleneck when the input number in the dataset is too large.

2.3. Graph Convolutional Network

In the field of deep neural networks, Scarselli et al. [36] firstly introduced the concept of GNN, which extends
traditional neural networks to deal with irregular non-Euclidean data represented in graph domains. Original GNNs
learn node representations through recurrent neural architectures constantly until a stable equilibrium is reached.
Lately, graph convolutional networks (GCNs) are inspired by recurrent graph neural networks and inherit the
idea of information propagation, which transform traditional convolutional neural networks from Euclidean domain
to non-Euclidean graph domain. Advances in this direction are often grouped into spectral-based approaches
and spatial-based approaches. Spectral-based approaches define graph convolutions in the Fourier domain by
computing the eigendecomposition of the graph Laplacian [5, 25]. Later, [25] builds a bridge between spectral-
based and spatial-based approaches, because their convolutional propagation rule is nearly equivalent to the spatial
aggregator operation.

Recently, spatial-based graph convolution, which directly defines operations on node’s spatial relations, has been
widely adopted in the field of GCNs. The first prominent research on spatial-based convolution is Neural Network
for Graphs (NN4G) [30], which performs graph convolution by directly aggregating information from a node’s
neighbors. Later, [14] proposes the Message Passing Neural Network (MPNN) that outlines a unified framework
for the graph convolution operation in the spatial domain. It treats graph convolution as a message passing phase
(namely, the neighbor aggregation step) in which information can be passed from one node to another along edges
directly. The message passing phase iteratively runs K-step to let information propagate further. After deriving the
hidden representation of each node, MPNN model further runs a readout phase to compute a feature vector for the
whole graph. A series of neighbor aggregation methods for graph convolutions have been proposed with different
ways to aggregate neighbor information. For instance, GraphSAGE [15] takes a similar idea as MPNN but performs
graph convolution by training an aggregation function that could learn how to aggregate information from a node’s
local neighborhood. Besides, the authors proposed three different aggregating functions: element-wise mean, long
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short-term memory (LSTM) and max-pooling. GATs [43] introduce the self-attention mechanism into GCNs to
learn relative weights of neighboring nodes to the central node, not identical nor pre-defined. Using convolution
operations, useful features for nodes can be extracted to solve node-focused analytic tasks. However in [45], Xu
et al. discovered that methods under the MPNN framework(e.g., [25, 15])) are inefficient to distinguish various
graph structures based on their produced graph representations, and they developed a simple architecture GIN,
which is as powerful as the Weisfeiler-Lehman graph isomorphism test [39]. Specifically, GIN employs an injection
neighborhood aggregation scheme and a learnable feature-combine mechanism to aggregate neighbor information.

Considering graph readout/pooling operations, the most basic operations are simple statistics like taking the
sum, mean or max-pooling. However, such primitive reduction operations are inefficient and neglect the impact of
node ordering. GIN [45] suggests concatenating graph-level feature information from different layers of the model
as a new ”readout” architecture to aggregate all depths of global structural information. Moreover, PATCHY-SAN
[32] adopts the idea of using a graph labeling procedure to impose an order for neighbor nodes and then resorts to
standard 1-D pooling as in CNNs. It can lean from multiple graphs like normal CNNs by preserving node order
invariance. SORTINGPOOL [51] takes a similar idea to rearrange nodes to a meaningful order, but instead of
sorting neighbors for each node, they performs graph pooling by sorting all nodes directly, i.e., a single order for
all neighborhoods. Rather than a dichotomy between node or graph-level structures, some researchers suggested
making use of rich hierarchical structures in graphs and proposed hierarchical clustering algorithms to generate
hierarchical representations of graphs. [50] proposed a differentiable graph clustering module (DIFFPOOL) which
can be jointly trained with graph convolutions. In each step, DIFFPOOL learns a soft cluster assignment for nodes
at each layer of a deep GCN, mapping nodes to several clusters, which then form the coarsened input for the next
convolutional layer. After iteratively running k steps, one can learn the feature representation of the whole graph.

3. Preliminaries

In this section, we first give the definitions of some key concepts related to our work. Then, we formally introduce
the general GCN framework and, along the way, summarize some of the most common GCN variants.

3.1. Problem Definition

Throughout this paper, we use G = {V,E} to denote the structure of an undirected graph where V represents
the set of nodes and E represents the set of edges, E ⊆ (V × V ). Furthermore, we use Xv ∈ Rdi to denote initial
node feature for each v ∈ V assuming each node has di features. In this work, we focus on GCN-based graph
classification. The aim of GCNs is to learn a continuous representation vector for any graph instance that encodes
its node features and its topological structure. Given a set of M labeled graphs G = {G1, G2, · · · , GM} and their
corresponding labels Y = {y1, y2, · · · , yM}, the task of graph classification is to use them as the training data to
build a graph classifier gθ which can assign any new graph input G into a certain class yG.

3.2. Graph Convolutional Network

GCNs are one of the most powerful tools for machine learning on graphs, which take into account both the
structure information of a graph and the feature information of each node in the graph to learn the node-level
and/or graph-level representations that can best assist in the ultimate task to be conducted. Commonly, modern
GCNs first aggregate the neighborhood information and then combine the resulting neighborhood representation
with the central node’s representation from the last iteration. Formally, GCN iteratively updates the representation
of a node according to

h(k)v = COMBINEk

(
h(k−1)v , h

(k)
N(v)

)
, h

(k)
N(v) = AGGREGATEk

(
{h(k−1)u : ∀u ∈ N(v)}

)
, (1)

where h
(k)
v ∈ Rdh denotes the feature representation of node v at the k-th iteration with initial input h

(0)
v = Xv.

AGGREGATEk(·) and COMBINEk(·) are both learnable information-propagation functions for the k-th graph
convolutional layer. N(v) = {u ∈ V |(v, u) ∈ E} denotes the set of adjacent nodes of node v. Generally, after K

iteration steps, the final node representation h
(K)
v can be applied for node label prediction, or pass forward to a

readout phase performing graph classification. The readout phase aggregates node features to compute a feature
vector hG for the entire graph using some readout functions READOUT(·):

hG = READOUT
(
h(k)v |v ∈ G

)
. (2)
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It can be a simple permutation invariant function such as summation or a graph-level pooling function e.g., [50, 51].
The variants of GCNs depend on differing choice of AGGREGATE, COMBINE and/or READOUT functions. For
example, in the max-pooling variant of GraphSAGE [15], Hamilton et al. adopted the above idea to define the
AGGREGATE and COMBINE steps as

h(k)v = σ
(
W (k) · [h(k−1)v ||h(k)N(v)]

)
, h

(k)
N(v) = MAX

(
{σ(W

(k)
pool · h

(k−1)
u + b),∀u ∈ N(v)}

)
, (3)

where W
(k)
pool and W (k) are learnable weight matrices shared by all nodes, σ is a non-linear activation function,

e.g., a ReLU, and MAX denotes an element-wise max-pooling aggregator. || represents the concatenation in the
COMBINE step. In GATs [43], Veličković et al. incorporated the attention mechanism into the graph aggregate
function and computed the representation of each node by applying the multi-head attention mechanism, i.e.,

h(k)v = h
(k)
N(v), h

(k)
N(v) =

M

||
m=1

σ
( ∑
u∈N(v)

αmvuW
mhu

)
, (4)

where αvu denotes the attention coefficient of node u to v and M means the number of independent attention
mechanisms. GATs directly take the aggregated neighborhood features to update the central node’s representation.
In JK-Net[46], Xu et al. treated the COMBINE step as a form of a ”skip connection” between different layers and
proposed to use jumping knowledge connections to perform the COMBINE step. Besides, other well-known variants
of ”skip connections”, such as residual connections [16], dense connections [18] can also be used as the COMBINE
step to help information propagation/flow.

In GIN [45], the element-wise summation is applied as the AGGREGATE step instead, and adjusts the weight of
the central node by a learnable parameter ε(k) in the COMBINE step. Formally, the AGGREGATE and COMBINE
steps are integrated as follows:

h(k)v = MLPk

((
(1 + ε(k)) · h(k−1)v +

∑
u∈N(v)

h(k−1)u

))
, (5)

where MLP indicates multi-layer perceptrons. For graph-level output, GIN defines a READOUT function to
concatenate the graph-level output across all layers in the form of

hG =
K

||
k=0

(∑
v∈G

h(k)v

)
. (6)

4. The Proposed Model

This section elaborates our proposed model in the following four parts: (1) Encoder-decoder based local node-
feature reconstruction. Our model contains a simple encoder-decoder structure to realize local feature reconstruction,
in which the encoder is composed of a stack of multiple graph convolutional layers, and the decoder adopts a
MLP to reconstruct local node feature. Meanwhile, we construct an auxiliary local feature reconstruction loss to
assist the goal of graph classification. As a consequence, the node features can be effectively preserved in the
hidden representations over different layers. (2) Neighborhood aggregation with dense connections. In our model, we
explore a dense connected architecture to flexibly leverage information from neighborhoods of differing locality. That
is, we connect each convolutional layer and its corresponding readout with all earlier hidden convolutional layers.
(3)Global context-aware local representations. We connect each convolutional layer with the previous layer’s readout.
In this way, each node representation combines with additional global context to form a global context-aware
local representation, which can enhance the node representativeness. Besides, each readout can receive additional
supervisions from the local feature reconstruction loss, which reduces the risk of losing local representational ability
and improve the generalization capacity. (4)Attention based layer-wise aggregation. To effectively extract all depths
of global feature information, we further introduce a self-attention mechanism to aggregate layer-wise graph-level
feature information of the model. Figure 2 illustrates the above main ideas schematically.

4.1. Encoder-Decoder Based Local Feature Reconstruction

As we described above, node representations capturing local structure and feature information of graphs are
fed to global readouts getting refined and global for graph-level representation learning. However, the graph-level
representational ability of traditional GCNs is limited to excessive refinement and globalization and neglect of
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Figure 2: Illustration of a 3-layer LPD-GCN for graph classification. Each layer consists of a graph convolutional layer and a follow-up
readout.

locality preserving, which causes the over-smoothing problem. To alleviate this problem, we design an encoder-
decoder mechanism in our model to reconstruct the feature information of each node in the graph, where a stack of
multiple graph convolutional layers is treated as the encoder to encode node feature information into latent vector
space, and the decoder employs a simple two-layer MLP to reconstruct initial node features from the encoded
vector information. The encoder-decoder mechanism allows the reassessment of initial node features. Afterwards,
we impose a local feature reconstruction loss after the decoder, to assist the goal of graph classification. The specific
loss function will be detailed in section 4.5.

From the model illustration shown in Figure 2, The encoder that consists of K graph convolutional layers
aggregates local neighboring information of different structural levels. AfterK iterations of neighborhood aggregation,
the output of the encoder extracts the local structural information within K-hop neighborhood, as well as node
feature information. The encoder encodes node featureXv ∈ Rdi for each node v ∈ V into intermediate representations,

i.e., h
(1)
v , · · · , h(k)v , · · · , h(K)

v = Enc(Xv), where h
(k)
v ∈ Rdh . While a decoder aims to map the feature-encoded node

representation to a reconstructed feature vector X̂ ∈ Rdi . From Figure 2, given the graph-level representation

h
(K)
G ∈ Rdo of the readout from the last layer, X̂ can be computed as

X̂ = Dec
([ K∑

i=1

h(i)v || h
(K)
G

])
. (7)

In our model, we replace the decoder in Equation (7) with a two-layer MLP. It is worth noting that, our encoder-
decoder mechanism is different from the graph autoencoder model [24]. Our decoder tries to reconstruct the initial
node features, while their decoder is a task-specific classifier to recover the graph adjacency structure.
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4.2. Neighborhood Aggregation with Dense Connections

Moreover, to flexibly leverage information from neighborhoods of differing locality, we add direct connections
from every hidden convolutional layer to all later convolutional layers and readout layers. The resulting architecture
is approximately a graph correspondent of DenseNets, which were proposed for Computer Vision problems [18].
Figure 2 illustrates this dense connectivity pattern. This architecture allows for selectively combining different
aggregations at different layers and further improves the information flow between layers. In DenseNets [18], the
layer-wise concatenation aggregation is applied. In our model, we take the layer-wise summation aggregation
mechanism instead. Formally, assuming a non-linear injective funtion φ(·) and an aggregating funtion f(·), the k-th

convolutional layer aggregates and updates node features iteratively with h
(k)
v = φ(

∑k−1
i=1 h

(i)
v , f({

∑k−1
i=1 h

(i)
u : u ∈

N(v)})). In practice, we use a MLP to model φ(·) and a sum-aggregation function to model f(·). Consequently,
our model updates node representations of the k-th layer as

h(k)v = MLPk

(
k−1∑
i=1

∑
u∈N(v)

h(i)u

)
, (8)

with h
(0)
v = Xv, and especially, h

(1)
v = MLP1

(∑
u∈N(v) h

(0)
u

)
. Among that,

∑
u∈N(v)(h

(i)
u ) denotes a neighborhood

sum-aggregation and
∑k−1
i=1 (·) can be viewed as a layer-wise COMBINE step.

4.3. Global Context-Aware Local Representations

After introducing the auxiliary local feature reconstruction loss, each convolutional layer can receive additional
supervision for locality preserving. However, such supervision information cannot backpropagate to train those
global readouts. In our architecture, each convolutional layer is followed by a global readout to collapse node
embeddings of an entire graph into a graph-level representation. How to better utilize the supervision information
from the local node-feature reconstruction? To tackle this problem, our architecture adds direct connections
from each readout to the next convolutional layer and aligns node-level representations with global graph-level
representation using concatenation. That is, we use a vertex-wise concatenation that concatenates each node
representation with the graph-level representation into a single tensor. Moreover, we introduce a learnable parameter
ε(k)(> 0) to adaptively seek a trade-off between the local node-level representation and the global graph-level

representation. More formally, given the node representations {h(1)v , · · · , h(k−1)v } and the graph representation

h
(k−1)
G , our model now updates node representations of the k-th layer as

h(k)v = MLPk

([
a(k−1)v || ε(k) · h(k−1)G

])
, (9)

where || refers to concatenation, a
(k−1)
v =

∑k−1
i=1

∑
u∈N(v) h

(i)
u corresponds to aggregating representations of its

neighbors over all its earlier layers according to Equation (8). Through designing such architecture, besides
gradient information from the loss of the main graph-level task, other gradient information from the local feature
reconstruction loss can backpropagate to update the parameters of readouts, which can reduce the risk of losing
local representational ability and improve the generalization capacity of the model. Meanwhile, node representations
combine with additional global context to form global context-aware node representations, which can also enhance
node representativeness.

4.4. Attention Based Global Layer-wise Aggregation

Traditionally, node embeddings learned by multiple graph convolutional layers are fed to a global readout to
yield the graph-level representation, and the readout function generates the graph-level feature through pooling or
summation. However, as the depths of the network increases, node embeddings may appear over-smoothing which
leads to the poor generalization performance of graph-level output. To effectively extract and utilize all depths of
global information, our architecture further employs a self-attention mechanism to aggregate the layer-wise graph-
level features of the readouts similar to GIN [45]. The intuition behind introducing a layer-focused self-attention
mechanism is that during generating the task-specific graph-level output, the attention weight assigned to each
layer can be adaptive to the specific task. In practice, each readout first takes the sum of node embeddings and
then feed to a MLP to perform scale transformation. It is worth noting that an extra MLP after summation is
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necessary because in our architecture each readout is also connected with all preceding convolutional layers. Firstly,
each readout updates graph-level representation as

h
(k)
G = MLPk

(∑
v∈G

k∑
i=1

h(i)v

)
. (10)

Afterwards, given the layer-wise graph-level representations of readouts, i.e., {h(1)G , · · · , h(k)G , · · · , h(K)
G }, h(k)G ∈

Rdo , the final graph-level output can be computed by using a layer-focused attention mechanism. A self-attention
mechanism first computes an attention score αk for each layer k (

∑K
k=1 αk = 1), which represents the importance of

the global feature learned on the k-th layer. Finally, the final aggregated representation for the graph is a weighted
average of the layer features. The detailed formula is

h
(final)
G = σ(

K∑
k=0

αk(W1 · h(k)G )), αk = softmax
(
W2 · σ

(
W1 · h(k)G

))
, (11)

where W1,W2 ∈ Rdo×do are the learnable weight matrices, and a softmax function is used for normalization.

4.5. Loss Functions

In the training stage, our model receives gradient signals from both the main graph classification task and
auxiliary local feature reconstruction regularization. Formally, we train the proposed LPD-GCN by minimizing the
total loss defined in Equation (12) weighted by the graph classification loss and the local feature reconstruction loss.

L = LGC + λLLFR. (12)

where LGC denotes the graph classification loss, and LLFR denotes the local feature reconstruction loss, the trade-
off parameter λ is introduced to adaptively seek a balance between the two loss terms. In the following description,
we will detail the two objectives, respectively.

Given a batch of graphs {G1, · · · , GB} for training, we first consider the graph classification loss. The output
hG at the attention layer is regarded as the final graph representation, followed by a fully connected layer and
a softmax non-linear layer that predicts the probability distribution over classes. Consequently, we minimize the
cross-entropy of the predicted and true distributions as

LGC = −
B∑
i=1

C∑
j=1

yi,j log ŷi,j , (13)

where yi,j is the ground-truth label; ŷi,j is prediction probability; B denotes the batch size for training and C is
the number of graph classes.

As for the local feature reconstruction loss, if the input and reconstructed features are one-hot encoded vectors
for node labels, we also stack an extra softmax non-linear layer and minimize the cross-entropy loss as

LLFR = −
B∑
i=1

∑
v∈Gi

T∑
t=1

Xv,t log X̂v,t, (14)

where T is the number of node classes. If the input and reconstructed node features are continuous-encoded vectors,
we shall employ the commonly used Root Mean Squared Error (RMSE) metric to evaluate the reconstructed loss
between Xv and X̂v

LLFR =

√√√√ 1

NB

B∑
i=1

∑
v∈Gi

(Xv − X̂v)2, (15)

where NB is the total number of nodes in a batch of graphs. In this work, we mainly focus on reconstructing one-hot
encoded node label information. We leave the question of continuous-encoded feature reconstruction as our future
work.
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5. Experiments

In this section, we empirically evaluate our model, LPD-GCN, against a number of state-of-the-art baselines on
graph classification benchmark datasets, to answer the following questions:

Q1 How does the proposed LPD-GCN compare to other state-of-the-art GCN variants and kernel-based approaches
for graph classification task, with both representational power and generalization capacity?

Q2 Does the auxiliary node-feature reconstruction objective facilitate the graph classification task?

Q3 Does the dense connections and global context-aware architecture help improve the performance of the
proposed model?

Q4 How does the selection of hyper-parameters like trade-off parameter λ and dropout ratio influence the
performance of the proposed model?

Datasets. We use 6 bioinformatics datasets: MUTAG, ENZYMES, PTC, PROTEINS, NCI1, D&D,1 which are
balanced graph datasets chosen from benchmarks commonly tested in graph classification. A concise summary are
listed in Table 1. Most of the social network datasets lacking of node features are unsuitable for our model. We
evaluate the performance via performing 10-fold cross-validation, and report the mean/std-dev of test accuracies.

• MUTAG [10] is a dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds dataset, and the
graphs are labeled according to whether or not the mutagenic effects on bacteria exists. The MUTAG dataset
has 7 discrete node labels.

• ENZYMES and PROTEINS [4] consist of graph representations of proteins. Nodes represent secondary
structure elements (SSE), and edges between two nodes represent that they are neighbors in the amino acid
sequence or one of three nearest neighbors in space. The discrete attributes are SSE types. The continuous
attributes are the 3D length of the SSE. Graph classes indicate which EC top-level class they belong to. The
datasets have 3 discrete labels, representing helix, sheet or turn.

• PTC [17] is a collection of 344 chemical molecules which report the carcinogenicity for male and female rats.
In each graph, nodes represent atoms and edges indicate chemical bonds between nodes. It has 19 discrete
labels.

• NCI1 [39] is also a chemical compound dataset. It contains 4,110 chemical compounds screened for activity
against non-small cell lung cancer and ovarian cancer cell lines with 37 discrete labels.

• D&D [11] consists of graph representations of 1,178 proteins. In each graph, nodes represent amino acids,
and there is an edge if they are less than 6 Angstroms apart. Graph classes indicate whether or not they are
enzymes. The D&D dataset has totally 81 discrete labels.

Dataset Description # Graphs # Classes # Avg nodes # Avg edges # Node Labels

MUTAG Chemical Compounds 188 2 17.93 19.79 7

ENZYMES Protein Structures 600 6 32.63 64.14 3

PTC Chemical Compounds 344 2 14.29 14.69 19

PROTEINS Protein Structures 1,113 2 39.06 72.82 3

NCI1 Chemical Compounds 4,110 2 29.87 32.30 37

D&D Protein Structures 1,178 2 284.32 715.66 81

Table 1: Statistics of the benchmark graph datasets

Models and configurations. For ablation study, under the LPD-GCN model, we consider the following three
variants: (1) LPD-GCN(NoLFR): The LPD-GCN with No Local Feature Reconstruction module, (2) LPD-GCN(NoDC):
The proposed LPD-GCN with No Dense Connections module, and (3) LPD-GCN(NoGCA): The proposed LPD-
GCN with No Graph Context Aware module. The graph classification results of the three variants are also concluded.

1Download from https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.
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For configurations, we apply 5 graph convolutional layers (including the input layer), and all MLPs have 2 layers.
For the first hidden layer, The number of hidden units is set to 64. For the following hidden layers, due to the graph
context-aware module involves feature concatenation, the number of hidden units is extended to 2 ·64. Each hidden
layer employs a batch normalization (BN) layer [19] after MLP. For training, we use the Adam optimizer [23] with
initial learning rate 0.01 and decay the learning rate by 0.5 every 20 epochs. The exact hyper-parameters are fixed
as follows after fine tuning: Minibatch of size ∈ {32, 64}, and 0.5 dropout ratio, the trade-off parameter λ is set
to 0.2 in the comparison experiments. Furthermore, we will study on the effects of different choices of trade-off
parameter λ and dropout ratio for LPD-GCN.
Baselines. For better comparisons, we consider two categories of state-of-the-art baselines, including GCN-based
and kernel-based approaches.

• GCN-based approaches (Semi-GCN[25], GAT[43], GRAPHSAGE[15], PATCHY-SAN[32], SORTPOOL[51],
DIFFPOOL[50], GIN[45]), which are state-of-the-art GCN variants. For Semi-GCN, GRAPHSAGE, GAT,
because they were not applied to graph classification in the original work, we opted for a sum-concat
global aggregation function followed [45] to classify graph instances. For PATCHY-SAN, SORTPOOL and
DIFFPOOL, they apply a GCN architecture and then perform a graph-level pooling function on node vectors
to obtain a representation of an entire graph.

• Kernel-based approach (GRAPHLET [40], SHORTEST-PATH [3], WL subtree [39]), which are employed as
kernel baselines. For GRAPHLET, we set the size of the graphlets to be 7. For WL subtree and SHORTEST-
PATH we set the number of iterations ∈ {1, 2, · · · , 6}. Moreover, we used the C -SVM implementation of
LIBSVM [7] to compute the classification accuracies over 10-fold cross validation.

Moreover, for baseline methods have reported the published accuracies, we report the accuracies following the
original papers.

5.1. Results for Graph Classification

We firstly evaluate the representational power of the proposed LPD-GCN. Then, we provide our theoretical
analysis of the representational power of methods by comparing their training accuracies.

(a) MUTAG (b) ENZYMES (c) PTC

(d) PROTEINS (e) NCI1 (f) D&D

Figure 3: Training set performance of the proposed LPD-GCN and two state-of-the-art baselines. Note that WL subtree curves always
hold at 1.
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Table 2: Test set classification accuracies (%). We report the mean and std/dev of accuracies over a 10-fold stratified cross validation.
The best results are highlighted with boldface. A method that significantly outperforms all methods is highlighted with boldface and
asterisk. Gain denotes the accuracy improvement of our LPD-GCN compared with the baselines.

METHOD
DATASET

MUTAG ENZYMES PTC PROTEINS NCI1 D&D

Kernel

GRAPHLET 81.7±2.1 41.0±1.0 54.7±1.4 71.7±0.6 62.3±0.3 74.9±1.1

SHORTEST-PATH 81.7±2.5 42.3±1.5 58.9±2.4 76.4±0.5 74.5±0.2 78.9±0.8

WL subtree 90.4±5.7 61.25±3.4 59.9±4.3 75.0±3.1 86.0±1.8∗ 78.3±0.6

GCN

Semi-GCN 85.6±5.8 − 64.2±4.3 76.0±3.2 80.2±2.0 −
GraphSAGE 85.1±7.5 54.25±6.0 63.9±7.7 75.9±3.2 77.7±1.5 75.4±3.0

PATCHY-SAN 92.6±4.2 − 60.0±4.8 75.9±2.8 78.6±1.9 76.3±2.4

SORTPOOL 85.8±1.7 57.1±2.0 58.6±2.5 75.5±0.9 74.4±0.5 79.4±0.9

GAT 89.4±6.1 − 66.7±5.1 74.7±2.2 75.2±3.3 −
DIFFPOOL − 62.5±5.6 − 76.3±3.5 − 80.6±3.5

GIN 89.0±6.0 53.3±4.7 63.7±8.2 75.9±3.8 82.7±1.6 80.9±2.7

Ours

LPD-GCN(NoLFR) 95.2±3.9∗ 63.5±4.8 71.5±6.3 78.7±3.2 81.0±1.6 81.3±1.93

LPD-GCN(NoDC) 94.5±5.8 65.3±7.2 73.2±6.2 79.0±3.0 81.8±5.5 82.6±4.0

LPD-GCN(NoGCA) 94.2±4.3 61.7±5.1 71.7±4.5 78.3±2.2 78.7±1.6 82.1±2.5

LPD-GCN 94.8±4.3 66.5±5.4∗ 74.6±4.5∗ 79.5±2.9∗ 82.9±1.5 82.9±2.4

Gain ≥ 2.6 ≥ 4.0 ≥ 7.9 ≥ 3.2 − ≥ 2.0

5.1.1. Training Set Performance

The performance on training set reflects the expressive ability of models. In this section, we compare the
experimental results on training sets to demonstrate the strong expressive power of our proposed LPD-GCN. Figure
3 shows training curves of LPD-GCN, as well as two state-of-the art baselines: WL subtree and GIN. From the
results shown in Figure 3, we have the following observations: In [45], the authors have demonstrated the strong
discriminative power of the graph-kernel methods, which exceed those GCNs. This pattern aligns with our result
that the WL test provides an upper bound for the representational capacity of the aggregation-based GCNs. For
the MUTAG, ENZYMES, PTC and D&D datasets, our proposed LPD-GCN is able to almost perfectly fit all the
training sets, which achieves at most the same training accuracy as the WL subtree kernel. For PROTEINS and
NCI1 datasets, LPD-GCN tends to fit the training sets better than GIN with faster convergence. Furthermore, for
all the datasets, the training accuracy curves of LPD-GCN appear a smoother and steadier rising trend compared
with GIN baseline, which indicates the training stage of LPD-GCN is more stable than GIN. To sum up, the above
observations prove the powerful expressive capacity and stability of the proposed LPD-GCN.

5.1.2. Test Set Performance

More importantly, to demonstrate the generalization ability of LPD-GCN, we further compare the test performance
of LPD-GCN to these state-of-the-art graph classification baselines. The results shown in Table 2 provide positive
answers to our motivating questions Q1, Q2 and Q3. We can observe that our proposed LPD-GCN obtains the
highest average performance and smallest std-dev among all GCN-based baselines, and we perform the wilcoxon
rank sum test on results to show that our approach significantly outperform the other baselines on 4 out of 6
benchmark datasets, including MUTAG, ENZYMES, PTC and PROTEINS datasets. Especially for ENZYMES
and PTC datasets, LPD-GCN relatively improves state-of-the-art baselines by at least 4.0% and 7.9% (accuracy),
respectively. For other benchmark datasets like MUTAG, PROTEINS and D&D, our LPD-GCN respectively yields
at least 2.6%, 3.2% and 2.0% (accuracy) gains over the 10 baselines. Although the WL subtree kernel achieves
state-of-the-art performance in NCI1 dataset, our LPD-GCN outperforms most of the GCN and kernel baselines
except for GIN, but our LPD-GCN can still achieve a comparable performance compared with GIN. The above
observations demonstrate that the proposed LPD-GCN has better generalization ability than these GCN and kernel
baselines. Interestingly, the proposed LPD-GCN achieves better results than it variants, i.e., LPD-GCN(NoLFR),
LPD-GCN(NoDC) and LPD-GCN(NoGCA), which verify the proposed modifications on the model can help improve
the performances. It is also observed that removing the dense connections in the model, LPD-GCN could be unstable
to train, and there is a large variation in accuracy across different runs. Overall, LPD-GCN obtains a remarkable
improvement on classification performance among the baseline models, which demonstrates it effectiveness and
stability.
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5.2. Study on Local Feature Reconstruction

To further support answering Q2, in Figure 4, we present the true decline curves of the training loss of
local feature reconstruction on all tested datasets. From the results shown in Figure 4, we can observe that the
local feature reconstruction loss sharply declines on all the datasets, which means that LPD-GCN can effectively
reconstruct local feature informations and learns high-quality node representations. And then, the useful local
information promotes the expressive ability of global representations. Except for D&D dataset, the network scale of
the other datasets is relatively small. Thus, the feature reconstruction loss achieves a quick convergence. For D&D
dataset, the average network scale reaches to 284, it converges slower than other datasets. The above observation
certifies that the auxiliary supervision from local feature reconstruction loss can truly assist the goal of graph
classification task. In next section, we will examine how to balance the contributions of local feature reconstruction
loss and graph classification loss.

Figure 4: The decline curves of the local feature reconstruction loss during the training stage.

5.3. Study on Hyper-parameter Sensitivity

To address Q4, in this section, we analyze the hyper-parameter sensitivity of our LPD-GCN approach. Specifically,
we evaluate the performance of LPD-GCN on graph classification tasks with respect to the trade-off parameter λ
and the dropout ratio. All hyper-parameters except the examined parameter are fixed for a fair comparison.

Effect of the trade-off parameter λ. We first discuss the influence of the trade-off parameter λ in Equation
(12). With different λ values, the graph classification accuracy results on all the benchmark datasets are given
in Figure 5. First, it can be observed that adding the local feature reconstruction loss (λ > 0) did improve the
performance of graph classification task. Second, there is a trade-off between the local feature reconstruction loss and
the graph classification loss, as too large λ may incur noticeable deterioration in graph classification performance.
Hence, λ needs to be more carefully selected to balance the contributions of the local and global feature information.
We test the experimental results of the trade-off parameter λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 10}. As shown in Figure
5, we found that our model achieves the best performance on nearly all benchmarks when λ is set to 0.2, except
the MUTAG and PROTEINS datasets. Hence, we empirically set λ to 0.2 in our experiments.

Effect of the dropout ratio. Moreover, our LPD-GCN involves another important hyper-parameter: dropout
ratio, which also dramatically affects the results of our model. In Figure 6, we fix the trade-off parameter
λ to 0.2 and repeat the graph classification experiment to show how the different choices of dropout ratio ∈
{0, 0.1, 0.3, 0.5, 0.7, 0.9} would influence the performance of our model. Here we exhibit the results on the NCI1
and PROTEINS datasets as two examples. As shown in Figure 6, it can be seen our LPD-GCN is more sensitive to
different choice of dropout ratio on NCI1 dataset. However, the dropout ratio between 0 and 0.5 makes no obvious
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(a) MUTAG (b) ENZYMES (c) PTC

(d) PROTEINS (e) NCI1 (f) D&D

Figure 5: Effects of the trade-off parameter λ for LPD-GCN in terms of graph classification accuracy. We show the results on all the
six test datasets. The shaded region denotes the half standard deviation on each side of the mean. It is worth noting that if λ = 0
LPD-GCN turns to be the variant: LPD-GCN(NoLFR).

difference to the performance. The dropout ratio greater than 0.5 diminishes the accuracy sharply. On PROTEINS
dataset, the model achieves the optimal performance when the dropout ratio is in the range from 0.3 to 0.5. Based
on these observations, we find that the dropout ratio of 0.5 is a proper choice in terms of the overall performance
on the tested datasets.

Figure 6: Effects of the dropout ratio for LPD-GCN in terms of graph classification accuracy. We show the results on two datasets:
PROTEINS and NCI1. Here the trade-off parameter λ is fixed to 0.2.
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5.4. Study on Scalability

In this section, we evaluate the scalability of our proposed LPD-GCN. In Figure 7, we compare the training
time usages between LPD-GCN and GIN baseline on all the benchmark datasets. Specifically, we run a total of 350
epochs and record the loss decline curves according to their training time. As we can see from Figure 7, compared
with GIN baseline, our LPD-GCN occupies relatively more computational costs for each training epoch, because of
the additional decoder for the local feature reconstruction and the dense connections between convolutional layers.
However, LPD-GCN takes less training time to reach convergences on nearly all the benchmark datasets. This
shows that through adding the local feature-reconstruction regularization, our model can achieve faster convergence
compared with GIN baseline.

(a) MUTAG (b) ENZYMES (c) PTC

(d) PROTEINS (e) NCI1 (f) D&D

Figure 7: Time usages of the proposed LPD-GCN and GIN.

6. Conclusion and Future Work

In this paper, we develop a locality preserving dense graph convolutional network architecture with graph
context-aware node representations for graph classification. Based upon the general graph convolutional network
framework, our model constructs an auxiliary local node-feature reconstruction loss to assist the goal of graph
classification task. Besides, our model explores a dense connectivity pattern to flexibly leverage information from
differing locality and improve model generalization. Moreover, we design a simple architecture to help local-global
information flow across the model and introduce a self-attention mechanism for generating the final graph-level
representation. Experimental results demonstrate that the proposed model achieves significant improvement of
classification accuracies on 4 out of 6 benchmark datasets compared to state-of-the-art baseline models.

In our future research, we will extend our model to handle non-attributed graph classification problem. Additionally,
we are interested in exploring a generic model which not only performs on graph classification but also is applied
to other applications, e.g., recommender system, and one-shot or zero-shot learning and point-cloud classification,
etc. We expect our model to provide new insights for training deeper GCNs.
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