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DrivingStyles: A mobile platform for driving
styles and fuel consumption characterization

Javier E. Meseguer, C. K. Toh, Carlos T. Calafate, Juan Carlos Cano, Pietro Manzoni

Abstract—Intelligent Transportation Systems (ITS) rely
on connected vehicle applications to address real-world
problems. Research is currently being conducted to support
safety, mobility and environmental applications. This paper
presents the DrivingStyles architecture, which adopts data
mining techniques and neural networks to analyze and
generate a classification of driving styles and fuel consump-
tion based on driver characterization. In particular, we
have implemented an algorithm that is able to characterize
the degree of aggressiveness of each driver. We have also
developed a methodology to calculate, in real-time, the
consumption and environmental impact of spark ignition
and diesel vehicles from a set of variables obtained from
the vehicle’s Electronic Control Unit (ECU). In this paper,
we demonstrate the impact of the driving style on fuel
consumption, as well as its correlation with the greenhouse
gas emissions generated by each vehicle. Overall, our
platform is able to assist drivers in correcting their bad
driving habits, while offering helpful tips to improve fuel
economy and driving safety.

Index Terms—Driving styles; Android smartphone;
OBD-II; neural networks; fuel consumption; greenhouse
gas emissions; eco-driving; driving habits.

I. INTRODUCTION

Intelligent transportation systems (ITS) introduce ad-
vanced applications aimed at providing innovative ser-
vices, offering traffic management and enabling users
to be better informed, including support for safety,
mobility, and environmental applications. In parallel
to ITS, mobile devices have experienced technological
breakthroughs in recent years, evolving towards high
performance terminals with multi-core microprocessors.
The smartphone is a clear representative outcome of this
trend.

In addition, the On Board Diagnostics (OBD-II) [1]
standard, available since 1994, has recently become an
enabling technology for in-vehicle applications due to
the availability of Bluetooth OBD-II connectors. These
connectors enable a transparent connectivity between the
mobile device and the vehicle’s Electronic Control Unit
(ECU).

When combining high performance smartphones with
OBD-II connectivity, new and exciting research chal-

lenges emerge, promoting the symbiosis between vehi-
cles and mobile devices, and thereby achieving novel
intelligent systems. DrivingStyles implements a solution
based on neural networks, which is capable of character-
izing the driving style of each user [2], as well as the fuel
consumption [3]. In order to achieve this functionality,
the data is obtained from the ECU via the OBD-II
Bluetooth interface, including the speed, acceleration,
revolutions per minute of the engine, mass flow sensor
(MAF), manifold absolute pressure (MAP), and intake
air temperature (AIT). Currently, this information can be
collected and used in applications aimed at improving
road safety and promoting eco-driving, thus reducing fuel
consumption and greenhouse gas emissions. Specifically
we find that, by shifting towards a more efficient driving
style, users can save up to 20% of fuel while improving
driving safety, thereby reducing greenhouse gases as we
detail later on.

This paper is organized as follows: in the next section
we present some related works. Section III introduces
the DrivingStyles architecture (both the Android and the
server interface). Models for fuel consumption and CO2

emissions, are described in more detail in section IV. The
tuning of the neural network, along with the obtained
results, are presented in sections V and VI, respectively.
Finally, section VII presents the conclusion of our work.

II. RELATED WORK

Technological advancements in the field of mobile
telephony are making smartphones very powerful. This
high computing power opens new and attractive op-
portunities for research. When coupled with the eco-
driving concept, it has gained great significance in recent
years [4]. An example is the prototype of an onboard
unit developed by Hernandez et al. [5]. These driving
techniques save fuel consumption, regardless of the tech-
nology used inside the vehicle. One of the main problems
of eco-driving systems is identifying the factors that
affect energy consumption. Ericsson [6] suggests that,
in order to save fuel, sudden changes in acceleration
and high speed driving should be avoided. Johansson et
al. [7] suggest maintaining low levels of deceleration,
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minimizing the use of the first and second gears, and
putting every effort into using the 5th and 6th gears,
while avoiding continuous gear changes.

There are several proposals that analyze which vari-
ables affect fuel consumption. Kuhler [8] introduced a
set of ten variables that are used in laboratories for
fuel consumption and vehicle emissions analysis. Other
authors such as André [9] improve these results by
increasing and replacing some of the parameters. In
previous works such as Leung [10] and COPERT III
[11], different tools were developed to enable real-time
collection of engine and vehicle parameters from the
OBD connector.

Several commercial OBD-II scanner tools are available
that can read and record these sensor values. Apart
from such scanners, remote diagnostic systems such as
GM’s OnStar, BMW’s Connected Drive, and Lexus Link
are capable of monitoring engine parameters from a
remote location. Car manufacturers used eco-monitoring
to reflect the instant, historical, and time-elapsed fuel
economy, and is used in the car through on-board trip
computers [12]. Our solution differs from all the previous
ones by providing a real-time analysis of the driving style
of each user in the scope of eco-driving behavior, and
based on neural network techniques. By calculating the
consumption and greenhouse gas emissions generated by
both types of engines (spark ignition, and diesel vehi-

cles), we are able to closely relate both results, detailing
the fuel savings achieved by soft driving patterns when
compared to aggressive ones.

III. DRIVINGSTYLES ARCHITECTURE

Our proposed architecture applies data mining tech-
niques to generate a classification of the driving styles
of users based on the analysis of their mobility traces.
Such classification is generated taking into consideration
the characteristics of each route, such as whether it is
urban, suburban, or a highway, and it is then correlated
with the fuel consumption and emissions of each driver.

To achieve the overall objective, our system comprises
four elements:

1) An application for Android, based smartphones.
Using an OBD-II Bluetooth interface, the applica-
tion collects control information (by default every
second, but it is configurable by the user) such as
speed, acceleration, engine revolutions per minute,
throttle position, and the vehicle’s geographic po-
sition. In addition, we also obtain via OBD-II the
mass flow sensor (MAF), the manifold absolute
pressure (MAP), and the intake air temperature
(AIT) that are used in the calculation of fuel
consumption. After gathering the information, the
user can upload the collected data to the remote
data center for analysis.
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2) A data center offering a web interface to collect
large data sets sent by different users concur-
rently, and to graphically display a summary of the
most relevant results, like driving styles and route
characterization of each route sent. Our solution
is based on open source software tools such as
Apache, PHP and Joomla.

3) A neural network, which has been trained using
the most representative route traces in order to
correctly identify, for each path segment, the driv-
ing style of the driver, as well as the segment
profile: urban, suburban or highway. We use the
backpropagation algorithm [13], which has proven
to provide good results in classification problems
such as the one associated to this project.

4) Integration of the tuned neural networks both
within the mobile device itself, and in the data-
center platform. The goal is to use neural net-
works to dynamically and automatically analyze
user data, reporting to the drivers in real time and
allowing them to find out their driver profile, thus
promoting a less aggressive and more ecological
driving.

The block diagram of the DrivingStyles architecture is
shown in figure 1b. This consists of three blocks: the
mobile application on a Android device, the data center
platform, and an On Board Diagnostics (OBD-II) device.

The basic layer in the Android device is the Linux
kernel, which contains all the essential hardware drivers
to interact with the OBD-II device via Bluetooth. The
top layer includes both Android´s native libraries and
our own libraries. Specifically, we developed the OBD-
II communications module, along with the libraries for
graphical data representation, at this layer. The next level
up is the Application Framework; this layer manages the
basic functions of the mobile device, and the communi-
cations with the developed libraries.

Finally, at the application layer, we developed the
different modules of the DrivingStyles architecture, such
as the fuel consumption and CO2 emissions estimators,
the neural networks behavior, GPS routes, and graphics.
Also, the application provides real-time feedback from
the device to the user such that, when it detects high
levels of aggressiveness (above a certain threshold), the
device automatically generates an acoustic signal to alert
the driver.

A. DrivingStyles Android Interface

The first step for a user is to register at http://www.
drivingstyles.info, and to download the free Android
application. After installing the Android application in

Figure 2. Snapshots of the fuel consumption, speed, acceleration
parameters, and map module for the Android application.

the mobile device, and after connecting to the Blue-
tooth ELM327 interface inside the car (this connector
is mandatory on all vehicles since 2001), the data acqui-
sition process will start (see figure 1a).

The Android application is a key element of our sys-
tem, proving connectivity to the vehicle and to the Driv-
ingStyles web platform. Currently, it can be downloaded
for free from the DrivingStyles website http://www.
drivingstyles.info, or from Google Play https://play.
google.com/store/apps/details?id=com.driving.styles.

Once the mobile application is installed and config-
ured, the user must pair the mobile device with the
ELM327 (OBD-II Bluetooth device) to start getting data.
The data obtained from the different variables such as ac-
celeration, engine revolutions per minute (RPM), speed,
mass flow sensor (MAF), manifold absolute pressure
(MAP), and intake air temperature (IAT) are analyzed by
the application, showing users the characteristics related
to their driving, fuel consumption, and CO2 emissions.

In order to adjust the application functionality, it offers
several configuration options, i.e., User creation, Con-
nection options, GPS Activation, Sensor sampling, and
type of fuel definition. Once configured, our application
captures data sent by the OBD-II and the GPS interfaces,
as well as the phone’s accelerometer showing the moni-
tored sensors, and performing several monitoring actions
in real time without affecting the data captured. Figure 2,
shows some snapshots of our DrivingStyles application.

In addition, routes traces can also be sent to the
website data center for further analysis. This module
can be accessed either from the historic stored routes,
or immediately after stopping the data capture. The
information screen displays the header information of the
selected route, such as: (i) date of the captured data, (ii)
start time, (iii) finish time, (iv) maximum speed, and (v)
fuel consumption. The URL of the DrivingStyles web
interface is http://www.drivingstyles.info.
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Figure 3. Snapshots of driver behavior and route type corresponding to the data center web.

B. DrivingStyles Server Interface

The second main component of our architecture corre-
sponds to the data center and its web interface. To imple-
ment this component, we have selected open source soft-
ware such as Apache HTTP, and Joomla as the content
management system (CMS). We have used a CMS, com-
bined with the use of a resource wrapper, which detachs
our system from the presentation layer, thus focusing on
the driving styles characterization problem. This module
can be found in http://www.drivingstyles.info.

Basically the server receives data sent from the An-
droid application of each user, and it provides function-
ality to work with User, Routes, and Statistics.

Once the user is logged in, he is asked to record a num-
ber of important data, especially for future data mining
studies. The most relevant items are sex, age, and other
details concerning the vehicle used: car manufacturer,
model, fuel type, and the theoretical 0-100 acceleration
level (important to normalize the user behavior in our

study).
In the Routes’ section, users can access all the routes

they have uploaded. When selecting car/body sensors,
the system displays nine graphs for the different sensors
obtained from the OBD-II (direct and indirect variables),
as well as the route and driver behavior (see figure
3). Next, we present our fuel consumption estimation
approach relating it with the driver style as captured by
the DrivingStyles platform.

IV. FUEL CONSUMPTION AND GREENHOUSE GAS
EMISSIONS CALCULATION

A. Fuel consumption

Fuel consumption is usually represented as the ratio
of fuel consumed per distance travelled, being measured
in terms of litres per 100 kilometres (or alternatively as
MPG - miles per gallon).
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In this work, we focus on gasoline and diesel engines.
Although the basic designs of gasoline and diesel engines
are similar, the mechanics are different.

A gasoline engine compresses its fuel and air charge
and then initiates combustion by the use of a spark plug.
A diesel engine just compresses air until the combustion
chamber reaches a temperature for self-ignition to occur.
So, at a given speed in kilometres per hour, instantaneous
fuel consumption can be calculated as follows:

Inst. Fuel Consump. [l/km] =
Fuel F low [l]

Speed [km]
(1)

Notice that it can only be calculated when the vehicle
is moving and the engine is operating.

In addition, the Fuel Flow PID must be available,
which often does not occur since most vehicles fail to
support all the standard OBD PIDs. In fact, although
there are many manufacturer-defined custom PIDs (not
part of the OBD-II standard), the OBD standard itself
does not provide a fuel consumption parameter. Instead,
it provides other values that enable its calculation. De-
pending on the variables that the ECU can supply, the
mathematical procedure to derive fuel consumption is
different, as described below (see figure 4) :

1) By combining the Engine Fuel Rate (PID 015E),
also known as Fuel Flow (litres/hour), and Speed
(PID 010D), it is easy to calculate instantaneous
fuel consumption. However, while speed is manda-
torily available, fuel rate is not. In fact, it was
unavailable in all vehicles we used to carry out
our tests. This can be due to two reasons: (i) the
manufacturer chooses not to make it available, or
(ii) there is no sensor inserted in the fuel line
between the fuel tank and the engine carburetor
to measure litres per hour.

2) If the MAF PID is available, but the Engine Fuel
Rate is not, we can calculate fuel rate as Fuel Flow
(litres/hour) by dividing the Mass Air Flow (PID
0110) · 3600 sec. by the product of air-to-fuel ratio
and Fuel Density (using a fuel density equal to 820
g/dm3 for gasoline and 720 g/dm3 for diesel):

Fuel F low [l/h] = (MAF · 3600)/AFRA · FD
(2)

where MAF refers to Mass Air Flow (g/s), AFRA

to the actual Air-to-Fuel Ratio (being 14.7 and 14.5
grams of air to 1 gram of fuel for gasoline and
diesel respectively), and FD to the Fuel Density.
The ratio between Fuel Flow and Speed, allows us
to directly calculate fuel consumption.

Figure 4. Scheme of the different MAF calculation possibilities
regarding fuel consumption calculation.

3) Finally, If MAF is not available , there are two
additional ways to calculate it (See [14] for more
details):

• As a function of the absolute load (PID 0143),
the RPM (PID 010C) and the Engine Displacement
(EngDisp, volume of an engine’s cylinders in cm3),
intake stroke is the fluid admission phase of a
reciprocating cylinder.

• As a function of the intake manifold pressure (PID
010B), RPM (PID 010C), intake air temperature
(PID 010F), and engine displacement.

B. Greenhouse gas emissions calculation

The most significant greenhouse gases are generated
from direct combustion of carbon dioxide CO2, Methane
(CH4), and Nitrous oxide (N2O), among others. CO2 is
always generated when burning fuel that contains carbon.
Since the carbon in the fuel is combined with the oxygen
in the air: C +O2 → CO2, the amount of CO2 can be
calculated by the atomic masses of carbon and oxygen,
and the carbon content of the fuel. The atomic mass of
carbon is 12U and oxygen is 16U , meaning that CO2 =
12U + 2 · 16U = 44U . Burning 1kg of carbon produces
44/12 ≈ 3.67kg of CO2 in complete combustion, and so
the CO2 emission of combustion is 3.67·Cc·mfuel where
Cc = fuel carbon content (mass basis). Considering
that the carbon content of diesel fuel is 85.7% the CO2

emission when burning 1kg (mfuel = 1kg) of diesel fuel
is:

mCO2 = 3.67 · Cc · mfuel

mCO2 = 3.67 · 0.857 · 1 [kg] = 3.15 [kg/1kg fuel]
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Density of diesel fuel is 0.84 [kg/l]

mCO2
= 3.15 [kg] · 0.84 = 2.64 [kg/1l fuel] (3)

Driving in a fuel-efficient manner can save fuel,
money, and reduce greenhouse gas emissions. Among
the factors that can affect fuel consumption, such as:
vehicle age and condition, outside temperature, weather,
and traffic conditions, we consider that driver behavior
can be one of the most relevant parameter. Next, we
provide detailed information about the neural network
we proposed for characterizing driver styles.

V. NEURAL NETWORKS-BASED DATA ANALYSIS

Neural networks [15] use artificial intelligence and
automatic processing techniques to learn how to find
patterns in data, thereby improving their success rate at
making decisions of predictions. A learning algorithm is
used to generate the neural network. For example, the
driving style of each user and the type of route can be
characterized from a well-defined set of rules and the
ECU input variables.

There are many different learning algorithms such
as backprop_momentum, Hebbian, or delta-rule, each
one having its own advantages and disadvantages de-
pending on the type of problems. In our project, we
face a classification problem: starting from some input
data, which in our case are the speed, acceleration, and
revolutions per minute (rpm) of the engine, we intend
to obtain as outputs the type of road and the driving
style. The problem of classifying the driver behavior
and the route type with a supervised learning is to
find a function that best maps a set of inputs to its

correct output. We tried several types of algorithms
in this direction, including backpropagation, backprop-
momentum, and batch backpropagation, and the results
evidenced that backpropagation [13], [17] was the best
algorithm for our study since it achieved the lowest sum
of squared errors (SSE) in terms of prediction.

A data preprocessing stage is selected from all the
possible input variables of the neural network. From all
the possible data, we keep a subset of these variables.
In practice, this subset is not the minimum; instead, it is
a compromise between a manageable number (not too
large) of variables and an acceptable network perfor-
mance. In this work, after considering the many variables
that can be obtained from the Electronic Control Unit
(ECU), we have chosen to train the neural network using:
the mean and standard deviation of speed, the vehicle
acceleration, and the rpm value.

In all the vehicles used for testing, these variables are
easily obtained. Other variables, such as the position of
the throttle, which would provide important information
for the neural network training, have to be rejected
because not all manufacturers provide such information.
The data input of each parameter is normalized between
0 and 1; this normalization should take into consideration
the range of possible values. The schematic representa-
tion of our three-layer neural network can be seen in
figures 5a, and 5b.

The application used for the creation and training of
the neural networks required by this project is JavaNNS
[16], a java version of the SNNS program from the
University of Tübingen.

First, an empty neural network was created, defining
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the number of entries mentioned previously, and the
number of hidden nodes. A larger number of hidden
nodes can improve the success rate, but has the negative
effect of increasing the response time. On the contrary,
with a large number of nodes, the network becomes a
memory bank that can recall the training set to perfection,
but does not perform well on samples that were not
part of the training set. There are three output nodes
for each neural network, one that characterizes the type
of road (urban, suburban, or highway), and another one
that characterizes the user’s driving style (quiet, normal,
or aggressive), see figures 1a and 1b respectively.

Subsequently, we train the network with a total of
16038 samples, each representing a 3-second drive period
(13.3 hours in total belonging to 7 drivers of different
ages and sex). We adjust the learning rate to learning
intervals of 0.2, which is modified to observe how the
error affects the neural network (JavaNNS application
[16] computes the mean square error in each learn-
ing iteration). The higher the learning rate, the greater
the weight updating following each iteration; therefore,
learning becomes faster, but it is prone to cause unwanted
oscillations in the network. As the network training
progresses, the number of learning cycles that take place
in the tests is adjusted until the final trained network is
obtained.

Once the neural network was successfully trained, the
knowledge obtained was converted into C code, and
this code was then integrated into our DrivingStyles
platform. With the neural network already implemented,
every time a route or route segment is selected, the
system automatically returns the type of road, as well as
the associated driving style. Figure 3 shows the results
obtained by our neural network including the driving
styles and route characterization of a particular route of
one of our users.

Overall, with different traces analyzed, along with the
drivers using our application, we have shown a correct
classification of the different routes registered, both in
terms of route types and driving styles, thus validating
our proposed solution.

VI. EXPERIMENTAL RESULTS AND EVALUATION

In our project, we focus on characterizing the driving
style of different drivers, and then measuring the associ-
ated fuel consumption variations. In order to achieve this
objective, we rely on the collaboration of 534 drivers
from around the world using our platform, including
countries like India, Brazil, Central America, and Europe.
In this particular study, we analyzed the behavior of 75
representative routes (each divided into 10 second peri-
ods) using the neural network described earlier. For each

Figure 6. Chart of consumption and CO2 in relation to the driving
behavior.

section, the neural network returns the corresponding
driver behavior, and we combine this data with the fuel
consumption data corresponding to that route.

Figure 7. Box and whisker plot of Fuel Consumption/Driving Behavior.

We carried out several types of tests to validate our
proposals. Figure 6 shows the fuel consumption and
CO2 emissions reported by different drivers classified
according to their driving style. The results of this test
show that a more aggressive driving behavior causes
fuel consumption to increase significantly, while also
increasing the generation of CO2. To gain further insight
into these correlations, Figure 7 displays the differences
between quiet, normal, and aggressive driving behavior
in terms of fuel consumption; aggressive drivers pro-
voke fast starts and quick accelerations, driving at high
engine revolutions, and causing sudden speed changes.
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Conversely, a quiet driving behavior would be smooth,
without sudden speed changes or continuous gear shifts.
It is clear that fuel consumption increases when the
driver behavior becomes more aggressive, with average
differences of up to 1.5 liters per 100km. In our exper-
iments, an aggressive driver uses an average of 8 liters
per 100km, and a quiet driver only 6.6 liters per 100km,
meaning that the difference in terms of fuel consumption
is not negligible, as the former may consume up to 20%
more fuel depending on the driving style. Regarding CO2

emissions, they may increase by 50%, going from 10 to
15Kg/100km, depending on whether drivers are quiet or
aggressive.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents our DrivingStyles platform, which
integrates mobile devices with data obtained from the
vehicle’s engine Electronic Control Unit (ECU) to char-
acterize driver habits, as well as the associated fuel con-
sumption and emissions. Our platform helps to promote
a more ecological driving style by emphasizing on the
relationship between driving style and fuel consumption,
which has a clear and direct impact on the environment.
It also helps at enhancing safety by making drivers more
conscious about their behavior on the road. We have
implemented our platform using real devices, and the
results show that the classification of both routes and
driving styles using neural networks presents a high
correlation with the actual routes and driver behaviors.
It has been also demonstrated that the driving style
is directly related to fuel consumption. Specifically,
adopting an efficient driving style allows achieving fuel
savings ranging from 15 to 20%. An aggressive driving
style always results in a greater energy consumption and
more CO2 emissions, whereas smooth driving ends up
providing a greater energy efficiency and reduced gas
emissions. The application, which is available for free
download in the DrivingStyle’s website and Google Play
Store, achieved more than 5800 downloads from different
countries in just a few months. This emphasizes the great
interest about research on this topic. As future work,
we intend to extend this platform by providing route
recommendations based on real-time feedback about the
congestion state of different alternative routes, as well as
providing estimated greenhouse emissions for different
routes.
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