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An excursion onto Schrödinger’s bridges:
Stochastic flows with spatio-temporal marginals

Asmaa Eldesoukey, Olga Movilla Miangolarra, and Tryphon T. Georgiou

Abstract— In a gedanken experiment, in 1931/32, Erwin
Schrödinger sought to understand how unlikely events
can be reconciled with prior laws dictated by the under-
lying physics. In the process, he posed and solved a
celebrated problem that is now named after him – the
Schrödinger’s bridge problem (SBP). In this, one seeks to
find the “most likely” paths, out of all incompatible paths
with the prior, that stochastic particles took while transi-
tioning. The SBP proved to have yet another interpretation,
that of the stochastic optimal control problem to steer
diffusive particles so as to match specified marginals – soft
probabilistic constraints. Interestingly, the SBP is convex
and can be solved by an efficient iterative algorithm known
as the Fortet-Sinkhorn algorithm. The dual interpretation
of the SBP, as an estimation and a control problem, as
well as its computational tractability, are at the heart of an
ever-expanding range of applications. The purpose of the
present work is to expand substantially the type of control
and estimation problems that can be addressed following
Schrödinger’s dictum, by incorporating termination (killing)
of stochastic flows. Specifically, in the context of estima-
tion, we seek the most likely evolution realizing measured
spatio-temporal marginals of killed particles. In the context
of control, we seek a suitable control action directing the
killed process toward spatio-temporal probabilistic con-
straints. To this end, we derive a new Schrödinger system
of coupled, in space and time, partial differential equations
to construct the solution of the proposed problem. Further,
we show that a Fortet-Sinkhorn type of algorithm is, once
again, available to attain the associated bridge. A key fea-
ture of our framework is that the obtained bridge retains the
Markovian structure in the prior process, and thereby, the
corresponding controller takes the form of state feedback.

Index Terms— Stochastic systems, Markov processes,
Maximum likelihood estimation.

I. INTRODUCTION

IN TWO influential treatises [1], [2], E. Schrödinger de-
tailed his thoughts on the time symmetry of the laws of na-

ture (“Über die Umkehrung der Naturgesetze”). Schrödinger’s
ultimate goal was to understand his namesake equation and
the weirdness of the quantum world in classical terms. In
the referred works, he began with a gedanken experiment to
understand how measured atypical events can be reconciled
with a prior probability law. Amid his perusal, Schrödinger
single-handedly posed and solved the currently known as the
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Schrödinger’s bridge problem (SBP). The problem aims to
determine the most likely trajectories of particles, as these
transition between states, that are inconsistent with an under-
lying prior law. Formally, one seeks a posterior distribution
on paths that interpolates, i.e. “bridges”, endpoint marginals
obtained empirically.

In the same work, Schrödinger quantified the likelihood
of rare events with the relative entropy from the given
prior distribution to the empirical, thereby anticipating the
development of the large deviations theory [3]. Furthermore,
he discovered a number of now-familiar control concepts,
including a system of a Fokker-Planck equation and its adjoint,
nonlinearly coupled at the endpoints, that is nowadays referred
to as a Schrödinger system. The optimal solution to the
SBP, Schrödinger concluded, can be obtained by alternatingly
solving the two partial differential equations till convergence.
This approach was rigorously proven a few years later by R.
Fortet [4], and the iterative procedure is now known as the
Fortet-Sinkhorn algorithm [5].

In hindsight, it seems astonishing that the control theoretic
nature of the SBP was not recognized until sixty years
later, when, in a masterful work [6], P. Dai Pra utilized
Flemming’s logarithmic transformation to link the SBP with
the minimal-energy control problem of steering a stochastic
system between two endpoint marginals. Fast forward another
twenty years with the thesis of Y. Chen [7] and several related
works [8]–[13], and the SBP began taking up its rightful place
within the stochastic control literature. Indeed, the relation be-
tween the SBP and the rapidly developing Monge-Kantorovich
transportation theory must not be overlooked. We refer to
[5], [14]–[16] for an overview of current developments. Due
to the aforementioned dual interpretation and computational
tractability, the SBP offers a wide range of applications in
control and neighboring fields, as in estimation [17], physics
[18], and machine learning [19].

The present work aims to shed light on a new type of
control and estimation problems that can be addressed follow-
ing Schrödinger’s rationale. The problem at hand considers
stochastic particles that diffuse over a bounded time window
while some particles can randomly vanish. In this case, the
particles are said to evolve according to a killed process, see
[20]. Within this setting, the marginals of interest are the
particles’ initial probability density in space and the spatio-
temporal density of the vanishing (killed) particles. Our control
problem seeks to determine the optimal, in the sense of
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Schrödinger, control action of the stochastic system (as an
added drift term) and the required killing rate to satisfy both
the initial and spatio-temporal marginal constraints. The dual
estimation problem likewise seeks the most likely evolution to
bridge the same initial and spatio-temporal marginals.

The practical motivation for this work is to provide
a framework to tackle control problems under soft spatio-
temporal conditioning. The spatio-temporal density of killed
particles constitutes our data and can represent the mass
loss in absorbing media, sediment deposition, termination of
stochastic agents upon completion of a task, or ruin in risk
processes. We aim to infer the probabilistic model explaining
the data and, on the flip side, determine the required added drift
(feedback controller) and killing rate to fulfill given spatio-
temporal marginal requirements. In this work, we detail a new
Schrödinger system of coupled partial differential equations
allowing for constructing solutions to such problems. More-
over, we present a Fortet-Sinkhorn type of algorithm to attain
solutions numerically.

The paper is structured as follows: In Section II, we lay out
the newly proposed problem and its mathematical formulation
as a large deviation problem. Section III presents the rationale
for establishing the solution to the large deviation problem by
deriving a new suitable Schrödinger system. Section IV dis-
cusses the numerical computation of the solution, via a Fortet-
Sinkhorn-type iteration that reflects the space-time structure
of the problem. Before concluding, a numerical example is
provided in Section V.

II. PROBLEM DESCRIPTION AND FORMALISM

The starting point of our formulation can be traced to [21]
and [17]. The first paper introduces a variation of the SBP
where losses along trajectories of diffusive particles result in
unbalanced masses of the two endpoint marginals. The second
paper develops a model for random losses on a discrete-time
Markov chain where the marginals are available on stopping
times at specific sites. The present work builds on this idea –
to develop a model for controlled stochastic flow susceptible
to random killing over a bounded time window with the aim to
regulate the spatio-temporal profile of killed particles. In this
case, the probability measure on paths weighs in on trajectories
of possibly different lengths.

For notational and analysis purposes, it is more convenient
to extend trajectories beyond killing by freezing the value of
the killing state till the end of the time window. This can be
done in a way that killed particles experience a discontinuity
in dynamics. To this end, we consider the particles evolve in a
primary state space, and if killed, the particles get absorbed to
a coffin state space where dynamics is of vanishing drift and
stochastic excitation. Accordingly, we define a “fused” state
space X that comprises a primary Euclidean space X = Rn

and a “coffin” replica X̃ where killed particles reside. That is,

X := X ∪ X̃ .

We also consider time, denoted as t, in the interval [0, 1] to
evaluate probabilities of continuation in X or absorption in X̃ .

Fig. 1. Illustration of diffusion with losses: The top sub-figure shows
two sample paths of particles initially in the primary space X (a path for
a surviving particle and another for a killed one) with a drawing of the
initial marginal ρ0 and also of the final marginal of surviving particles.
The bottom sub-figure shows the second segment of the killed path and
the spatio-temporal marginal Qt of killed particles in the coffin space X̃ .

The particles evolve in X according to the Itô diffusion

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (1)

where Wt is the standard Wiener process and b and σ are
uniformly Lipschitz continuous on the time interval [0, 1], see
[22]. This process is subject to a killing rate V > 0, which we
consider a continuous function in both time and space. Hence,
if Xt denotes the extended Itô process in X, then

dXt =

{
dXt, when Xt ∈ X ,

0, when Xt ∈ X̃ ,

where the transition between the dynamics in X to that in X̃
takes place due to the killing rate V , see Fig. 1 for a pictorial
representation. As illustrated in the figure, the killed particles’
trajectories in the fused space appear as stopped trajectories
after the killing instant.

The space of sample paths will be denoted by Ω, namely
Ω := D([0, 1],X) where D is the Skorokhod space over X.
The paths can be metrized by the Skorokhod metric [23], [24],
where curves are compared by how much they need to be
perturbed in both the domain (i.e. the time axis) and range, to
match. We define P(Ω) as the set of probability measures on
Ω and take R ∈ P(Ω) that corresponds to Xt as the prior law.
Let Rt denote the one-time marginals of R, i.e. Rt defines
Law(Xt), and Rt the restriction of Rt to X . Then, from (1),
Rt weakly satisfies

∂tRt = −∇ · (bRt) +
1

2

n∑
i,j=1

∂2(ai,jRt)

∂xi∂xj
− V Rt, (2)

for the typical assumptions: a := σσ′ is uniformly positive
definite1 and a, b, V are bounded and C1,2, see [25]. Equation
(2) is the Kolmogorov forward (Fokker-Planck) equation with

1σ′ denotes the transpose of σ.
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a killing rate V . Equivalently, we say

Rt(·) =
∫

r(0, x, t, ·)R0(x)dx, (3)

where r(0, x, t, y) denotes the Markov transition kernel from
x ∈ X at time 0 to y ∈ X at time t. Here, we also refer to
[26] for an interesting account of the original SBP, diffusion
with losses as in (2), and the Feynman-Kac formula.

In this letter, we consider the control problem to specify
the optimal update for both the drift and the killing rate of Xt,
so as to ensure suitable absorption-related marginal at different
times. In turn, the data for our problem is the spatio-temporal
marginal of the accumulated particles in the coffin space,
denoted by Qt, together with the initial probability density ρ0.
Assuming the prior law R is inconsistent with the data, from
the estimation perspective, we seek to update the prior law
with an optimal posterior law in P(Ω) that reconciles with the
data. Any candidate (i.e. consistent) posterior law is denoted
herein as P with Pt and Pt being its one-time marginals and
their restriction to X , respectively. The optimal posterior, in
the sense of Schrödinger, is the measure in P(Ω) closest to R
apropos to a relative entropy functional and matches the data.
For that, we propose the following problem.

Problem 1: Given a prior Markov probability measure
R ∈ P(Ω) with one-time marginals restricted to X evolving
according to (2), a probability density ρ0 with support in X
and a spatio-temporal marginal Qt with support in X̃ × [0, 1],
determine

P⋆ := arg min
P∈P(Ω),P≪R

D(P ∥ R) :=

∫
Ω

dP log
dP

dR
, (4a)

subject to P0(x) = ρ0(x), for x ∈ X , (4b)

and Pt(z) = Qt(z), for z ∈ X̃ , t ∈ [0, 1]. (4c)

The objective functional in (4a) is the relative entropy diver-
gence from R to P. It is strictly convex and bounded when
P is absolutely continuous2 with respect to R, a relation
denoted by R ≫ P [27], [28]. The specification in (4b)
amounts to the simplifying assumption that no particles are
killed initially since

∫
X ρ0(x)dx = 1; thus, for consistency,

we take Qt=0(·) = 0. Throughout, we let α(t, x)V (t, x) be
the killing rate corresponding to P⋆, with α ≥ 0 the optimal
rescaling over the prior killing rate V . This rescaling must be
such that the density of absorbed particles α(t, x)V (t, x)Pt(x)
coincides with Q(t, z), for z = x.

A practical motivation to Problem 1 is drawn by consider-
ing Xt as modeling the stochastic flow of particles that drift
along with the chance of being deposited at some location
z at time t. A deposited “mass landscape” Qt(z) that does
not match what was expected is observed. Thus, we seek to
infer dynamics together with an updated deposition rate so
as to restore consistency with the recorded data. A control
theoretic significance for Problem 1 stems from applications
involving agents that obey stochastic dynamics with a rate
of termination (e.g. due to the completion of a task); the

2Throughout, as usual, 0 log 0
0
:= 0.

updated drift represents control input whereas the killing rate
αV represents the updated rate of termination.

III. ESTABLISHING THE SOLUTION

In this section, we derive the Schrödinger system corre-
sponding to Problem 1. We start by noting that the space of
sample path Ω decomposes such that

Ω = S ∪ S̃,

where the symbol S denotes the space of sample paths of sur-
viving particles over the interval [0, 1], and S̃ its complement.

We first define

P1,y
0,x(·) := P(.|X0 = x,X1 = y),

P̃t,z
0,x(·) := P(.|X0 = x,XT = z, T = t),

where T denotes the random variable for killing time and
x, y ∈ X , z ∈ X̃ , t ∈ [0, 1]. The conditioning P1,y

0,x (P̃t,z
0,x)

describes the disintegration of P with respect to the initial
position and final position in X (initial position in X , vanish-
ing position in X̃ and the vanishing instant). Then, we say

P(·) =


∫
X 2

P1,y
0,x(·)πxy(x, y)dxdy, on S,∫

X×X̃×[0,1]̃

Pt,z
0,x(·)πxzt(x, z, t)dxdzdt, on S̃,

(5)

where πxy(x, y)dxdy := dP(X0 = x,X1 = y),

and πxzt(x, z, t)dxdzdt := dP(X0 = x,XT = z, T = t).

The symbols πxy and πxzt denote joint densities on X 2 and
X × X̃ × [0, 1], respectively, that are commonly referred to as
couplings; for convenience, we have assumed that these are
absolutely continuous with respect to the Lebesgue measure.
We refer to [29] for more details on the disintegration theorem.

In a similar manner, we let the disintegrated counterparts
for the prior R be R1,y

0,x and R̃t,z
0,x with the couplings ρxy on

X 2 and ρxzt on X ×X̃ × [0, 1]. Then, by applying the additive
property of relative entropy [16] to (5), we get

D(P ∥ R) =

∫
X 2

πxy(x, y) log
πxy(x, y)

ρxy(x, y)
dxdy

+

∫
X 2

πxy(x, y)

[
D(P1,y

0,x ∥ R1,y
0,x)

]
dxdy

+

∫
X×X̃×[0,1]

πxzt(x, z, t) log
πxzt(x, z, t)

ρxzt(x, z, t)
dxdzdt

+

∫
X×X̃×[0,1]

πxzt(x, z, t)

[
D(P̃t,z

0,x ∥ R̃t,z
0,x)

]
dxdzdt.

= D(πxy ∥ ρxy) + Eπxy

[
D(P1,y

0,x ∥ R1,y
0,x)

]
+ D(πxzt ∥ ρxzt) + Eπxzt

[
D(P̃t,z

0,x ∥ R̃t,z
0,x)

]
. (6)

We note that the second and fourth terms on the right-hand
side of equation (6) are minimal and equal to zero if and only
if

P1,y
0,x = R1,y

0,x, P̃t,z
0,x = R̃t,z

0,x.



4

That is when the prior and posterior have identical “pinned”
bridges, Problem 1 can be parameterized in terms of the
couplings only. Therefore,

D(P⋆ ∥ R) = D(π⋆
xy ∥ ρxy) + D(π⋆

xzt ∥ ρxzt),

where the couplings π⋆
xy, π

⋆
xzt can be obtained as the solutions

to the following problem.

Problem 2: Minimize

D(πxy ∥ ρxy) + D(πxzt ∥ ρxzt), subject to∫
X
πxy(x, y)dy +

∫ 1

0

∫
X̃
πxzt(x, z, t)dzdt = ρ0(x), (7a)

and
∫
X
πxzt(x, z, t)dx = Qt(z), (7b)

with πxy ≪ ρxy, πxzt ≪ ρxzt.

The augmented Lagrangian of Problem 2 is

L = D(πxy ∥ ρxy) + D(πxzt ∥ ρxzt)+∫
X
µ(x)

[ ∫
X
πxy(x, y)dy +

∫ 1

0

∫
X̃
πxzt(x, z, t)dzdt−ρ0(x)

]
dx

+

∫ 1

0

∫
X̃
η(t, z)

[ ∫
X
πxzt(x, z, t)dx−Qt(z)

]
dzdt,

where µ, η are Lagrange multipliers enforcing (7a) and (7b),
respectively. From the first-order optimality conditions

0 =1 + log
π⋆
xy(x, y)

ρxy(x, y)
+ µ(x), and

0 =1 + log
π⋆
xzt(x, z, t)

ρxzt(x, z, t)
+ µ(x) + η(t, z),

we deduce that the minimizer of Problem 2 satisfies

π⋆
xy(x, y) = ρxy(x, y)f(x), (8a)

π⋆
xzt(x, z, t) = ρxzt(x, z, t)f(x)Λ(t, z), (8b)

for f(x) = exp(−1 − µ(x)), and Λ(t, z) = exp(−η(t, z)).
Substituting (8) into (7a) we obtain that

φ(0, x)φ̂(0, x) = ρ0(x), (9a)

where we took

φ(0, x) =

∫
X

ρxy(x, y)

R0(x)
dy +

1∫
0

∫
X̃

Λ(t, z)
ρxzt(x, z, t)

R0(x)
dzdt,

and φ̂(0, x) = R0(x)f(x). Inspecting closer we see that

φ(0, x) =

∫
X
r(0, x, 1, y)dy

+

∫ 1

0

∫
X
Λ(t, z)V (t, z)r(0, x, t, z)dzdt, (FS1)

with r the transition kernel of the prior (see (2) and (3)).
Equation (FS1), and subsequent similarly labeled equations,
serve as steps of an iterative numerical algorithm (Fortet-
Sinkhorn) to determine unknowns φ, φ̂,Λ, Λ̂ as explained
below and in the next section or serve in the next proof.

By inserting φ(1, ·) = 1 into the first integral on the right
hand side of (FS1), we see that φ(0, ·) can be obtained by
solving the Kolmogorov backward equation

∂tφ = −b · ∇φ− 1

2

n∑
i,j=1

ai,j
∂2φ

∂xi∂xj
+ V φ− V Λ, (9b)

with terminal condition φ(1, ·) = 1. Similarly, by substituting
(8b) into (7b), we obtain that

Λ(t, z)Λ̂(t, z) = Qt(z),where (9c)

Λ̂(t, z) =

∫
X
ρxzt(x, z, t)f(x)dx

=

∫
X
V (t, z)r(0, x, t, z)φ̂(0, x)dx. (FS2)

This expression motivates defining

φ̂(t, ·) =
∫
X
r(0, x, t, ·)φ̂(0, x)dx, (FS3)

that satisfies the Kolmogorov forward equation

∂tφ̂ = −∇ · (bφ̂) + 1

2

n∑
i,j=1

∂2(ai,jφ̂)

∂xi∂xj
− V φ̂, (9d)

and Λ̂(t, z) = V (t, z)φ̂(t, z). (9e)

Equations (9a-9e) constitute the Schrödinger system as-
sociated with Problems 1 and 2. In contrast to the classical
Schrödinger system [30], the partial differential equations
(9b) and (9d) are coupled at all times via (9c) and (9e).
The construction of numerical solutions to this system will
be discussed in the next section. We now highlight that the
Schrödinger system provides the solution to Problem 1.

Theorem 1: Assume that Problem 1 is feasible. Then:

i) the system (9a-9e) has a unique solution3 (φ, φ̂,Λ, Λ̂),
ii) P⋆ in Problem 1 is the law of the Markov process

dXt = [b(t,Xt) + σ(t,Xt)u(t,Xt)]dt+ σ(t,Xt)dWt,

with the killing rate (Λ/φ)V and the term σu represent-
ing the control input where u = σ′∇ logφ,

iii) the one-time marginals for P⋆ restricted to X are

Pt(·) = φ(t, ·)φ̂(t, ·), (10)

and satisfy

∂tPt =−∇ · ((b+ σu)Pt) +
1

2

n∑
i,j=1

∂2(ai,jPt)

∂xi∂xj
− αV Pt,

(11)

with α = Λ/φ.

Proof: The functional in Problem 1 is strictly convex
and the constraints are linear. Hence, feasibility implies the
existence of (unique) suitable functions f,Λ that satisfy equa-
tions (8). Integrating (9b) gives φ, which in turn gives φ̂(0, ·)
from (9a) and hence φ̂ from (9d) (also, (FS3)), and finally, Λ̂
from (9e). This establishes statement i).

3This solution is unique modulo a scaling factor, in that, for any κ > 0,
(κφ, κ−1φ̂, κΛ, κ−1Λ̂) is also a solution and there are no others.
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In the discussion leading to the theorem we have seen that4

P⋆(·) =
∫
X 2

R1,y
0,x(·)π⋆

xy(x, y)dxdy

+

∫
X×X̃×[0,1]̃

Rt,z
0,x(·)π⋆

xzt(x, z, t)dxdzdt,

where π⋆
xy and π⋆

xzt are as in (8). From (8) we also observe
that P⋆ is Markov since the prior is Markov and the correction
in (8) amounts to multiplicative scaling at fixed points in time.
We will return and complete the proof of ii), displaying the
terms in the equation, after we first establish iii).

Using the form of P⋆ given above, we show that the one-
time marginals restricted to X are as in (11). Indeed,

Pτ (xτ )dxτ =

∫
X 2

dR(Xτ = xτ |X0 = x,X1 = y)π⋆
xy(x, y)dxdy

+

∫
X×X̃×(τ,1]

{
dR(Xτ = xτ |X0 = x,XT = z, T = t)

× π⋆
xzt(x, z, t)

}
dxdzdt,

at any time τ , and for any xτ ∈ X . Thus, the value Pτ (xτ )
results from two contributions, first from the paths that survive
over the window [0, 1] while passing through xτ , and second,
from paths that terminate at any time in (τ, 1]. From the
Markovianity of the prior, we know

dR(Xτ = xτ |X0 = x,X1 = y) =

r(0, x, τ, xτ )r(τ, xτ , 1, y)

r(0, x, 1, y)
dxτ ,

dR(Xτ = xτ |X0 = x,XT = z, T = t) =

r(0, x, τ, xτ )r(τ, xτ , t, z)

r(0, x, t, z)
dxτ .

These expressions, together with (8), that is,

π⋆
xy(x, y) = r(0, x, 1, y)R0(x)f(x) = r(0, x, 1, y)φ̂(0, x),

π⋆
xzt(x, z, t) = V (t, z)r(0, x, t, z)φ̂(0, x)Λ(t, z),

lead to

Pτ (xτ ) =

∫
X 2

r(0, x, τ, xτ )r(τ, xτ , 1, y)φ̂(0, x)dxdy +

∫
X 2×(τ,1]

Λ(t, z)V (t, z)r(0, x, τ, xτ )r(τ, xτ , t, z)φ̂(0, x)dxdzdt.

Factoring out φ̂ (see (FS3)) leads to Pτ (·) = φ(τ, ·)φ̂(τ, ·),
and from (9b), we have φ(τ, xτ ) equals∫

X
r(τ, xτ , 1, y)dy +

∫ 1

τ

∫
X
Λ(t, z)V (t, z)r(τ, xτ , t, z)dzdt.

Having established (10), we can verify (11) by substituting
(9b) and (9d) in ∂tPt = φ∂tφ̂ + φ̂∂tφ. Finally, from the
generator in (11), we can read off the added drift (feedback
controller) and killing rate for the stochastic differential equa-
tion in ii).

4Information about the type of the paths (killed or not) is already encoded
in the pinned bridges since R1,y

0,x(A ⊆ S̃) = 0 and R̃t,z
0,x(A ⊆ S) = 0.

Fig. 2. Top: One-time marginals of P⋆ restricted to the primary space.
Bottom: One-time marginals of Qt (black), the spatio-temporal marginal
of the particles in the coffin space as obtained from the Fortet-Sinkhorn
iteration (12) (shaded surface).

IV. THE FORTET-SINKHORN ALGORITHM

We now present an algorithm that provides a numerical
solution to the Schrödinger system (9). The solution can be
obtained from the limit of a Fortet-Sinkhorn-type iteration:

φ(0, ·) 7→
(9a)

φ̂(0, ·) 7→
(FS2)

Λ̂ 7→
(9c)

Λ 7→
(FS1)

(φ(0, ·))next. (12)

This is stated next.

Theorem 2: Under the assumptions in Problem 1 and
starting from a positive real-valued function φ(0, ·), the it-
eration (12) converges to a unique fixed point, i.e., to a
quadruple (φ(0, ·), φ̂(0, ·),Λ, Λ̂) leading to the solution of the
Schrödinger system (9).

Proof: The claim follows from standard arguments used
to prove convergence of the classical Fortet-Sinkhorn iteration
–the cycling through (12) is strictly contractive, see [21], [30],
[31]. Specifically, the composition of maps in (12) is a strict
contraction on the cone, excluding the apex, of positive real-
valued functions denoted as K+ with respect to the Hilbert-
projective metric. The steps follow exactly those in [21] and
[30], where the map φ(0, ·) → (φ(0, ·))next decomposes into
two isometries on K+ and two strictly linear contractive maps
on K+ by virtue of Birkhoff’s theorem. Thus, the iteration
converges to a unique fixed point (φ(0, ·), φ̂(0, ·),Λ, Λ̂).

V. EXAMPLE

We demonstrate the above algorithm with a numerical
example. We take as prior law the one corresponding to the
diffusion process dXt = 1

4dWt, with killing V (t, x) = 0.3,
and t ∈ [0, 1]. We seek to match the marginal constraints

ρ0(x) = (1− cos(2πx))1{[0,1]}(x),

Qt(z) = sin(πz) (1− cos(3πt− π))1{[0,1]}(z)1{[ 13 ,1]}
(t),
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where 1{A} denotes the indicator function of the set A. This
spatio-temporal marginal accounts for about 42% of the total
initial mass while ensuring delay in the mass absorption till
t = 1/3 and is shown in Fig. 2 (bottom sub-figure, with black
curves delineating the one-time marginals of Qt).

By direct application of the Fortet-Sinkhorn algorithm (12)
we obtain the posterior law P⋆ that indeed satisfies the
constraints; Fig. 2 (top) shows the initial (agreeing with ρ0)
and subsequent one-time marginals of P⋆ in the primary space
with the mass loss taking place over [ 13 , 1] (time), as specified.
The shaded surface in Fig. 2 (bottom) is the spatio-temporal
marginal obtained from iteration (12) in agreement with Qt.

VI. CONCLUSIONS

This letter focuses on the control problem of regulating
stochastic systems so as to match specified spatio-temporal
data of associated killed sample paths. Killing may model
the completion of a task, or mass being absorbed or de-
posited along trajectories. The formulation herein is envisioned
as a first step towards a variety of new stochastic control
problems with data and specifications cast in the form of
soft (probabilistic) conditioning. To this end, Schrödinger’s
paradigm, anchored in the large deviations rationale, proved
versatile and computationally amenable for such purposes. A
future direction of great interest is to study the noiseless limit
due to vanishing stochastic excitation in (1) while meeting
spatio-temporal marginal constraints in line with an analogous
optimal mass transport theory.
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