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Pick and Place Planning is Better than Pick
Planning then Place Planning

Mohanraj Devendran Shanthi1 and Tucker Hermans1,2

Grasp Configurations Place Configurations Reachable

Unreachable

Fig. 1: Examples illustrating effects of grasp and placement configurations for placing into clutter. Left & Middle: Multiple grasp and place configurations
for the same pick and place task. Left: Different successful grasp solutions for the same object (top grasp: green, side grasp: red). Middle: Corresponding
place configurations: place for side grasp configuration (red) is infeasible due to the robot in collision, place configuration for top grasp (green) is feasible.
Right: Reachability effects of grasp choice: Right-Top: Unable to reach target behind red can due to limited reachability with top grasp. Right-Bottom Target
reached with side grasp.

Abstract—Robotic pick and place stands at the heart of au-
tonomous manipulation. When conducted in cluttered or complex
environments robots must jointly reason about the selected grasp
and desired placement locations to ensure success. While several
works have examined this joint pick-and-place problem, none
have fully leveraged recent learning-based approaches for multi-
fingered grasp planning. We present a modular algorithm for
joint pick and place planning that can make use of state of
the art grasp classifiers for planning multi-fingered grasps for
novel objects from partial view point clouds. We demonstrate
our joint pick and place formulation with several costs associated
with different placement tasks. Experiments on pick and place
tasks with cluttered scenes using a physical robot show that
our joint inference method is more successful than a sequential
pick then place approach, while also achieving better placement
configurations.

Index Terms—Manipulation Planning, Grasping, Probabilistic
Inference
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I. INTRODUCTION

P ICK and place operations, where a robot grasps, lifts, and
then safely deposits an object at a desired location, define

the quintessential problem in robotic manipulation. The re-
search literature reflects this key importance with considerable
work examining grasping objects [1,2], with contemporary
methods capable of grasping novel objects with high suc-
cess [3–5]. Research focused on object placement, though not
as extensive as grasping, investigates various aspects including
stability of placements [6,7], semantic placement [8,9], and
multi-object rearrangement [10,11]. Though pick and place
naturally go hand-in-hand, most research investigates the two
highly related sub-tasks individually.

Treating the problems independently ignores a number of
important issues. In particular, while grasp success is necessary
for successful placement, it is not sufficient to guarantee it.
In fact, a grasp configuration might succeed in lifting an
object, but could end up contributing to placement failure
if the robot collides with other objects in the scene during
placement as shown in Fig. (1)(Left & Middle). Likewise,
if one ensures that a previously planned grasp does not
collide with objects during placement, it might do so at the
expense of object instability or reachability by the robot at
the placement location Fig. (1)(Right). Thus causing either
placement planning or execution failure.

Works that have tackled pick and place jointly restrict
themselves in some way, making simplifying assumptions not
needed by modern grasp planners. These simplifications in-
clude requiring full geometry of the object and environment as
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meshes [12], a restricted class of known object categories [13],
restricting the planner to use a fixed subset of grasps (e.g.
overhead) [14], or simplified grippers [15].

In contrast, we examine the problem of joint pick and
place planning given only partial view point clouds of the
object and environment. This includes the case of grasping
and placing previously unseen objects. Further, we plan over
arbitrary grasps from the full continuous space of feasible
robot configurations, as done in recent grasping work [3].

We formalize the joint pick and place task as a constrained
optimization problem (Sec. III). Our framework enables us
to jointly solve for both the optimal placement location of the
given object in clutter and a corresponding grasp configuration
suitable with the placement. We do so using only sensor
information of the scene, enabling our approach to work with
novel objects. Jointly solving for the grasp and placement
configurations ensures compatibility between pick and place
by means of propagating gradients. We use a state of the
art, grasp learning approach to encode the grasp success
likelihood [3]. Like other works using neural networks for
learning [2,16–19], the ability to compute gradients through
the model enables efficient gradient-based planning. We detail
our proposed solution in Sec. IV.

We evaluate our planner in various placement tasks includ-
ing, placing items in a line, tight packing of objects, and object
stacking. We define associated costs for each of these tasks,
highlighting the modularity of our approach. We validate our
approach on a physical robot with a multi-fingered hand. Our
results in Sec. V show our approach has higher placement
success rate than the baselines that treat the individual pick
and place planning as sequential, non-interacting problems.
Along with improved pick and place success rate, our method
is able to handle harder placement configurations with clutter
in both pick and place scenes.

A primary limitation to our work as implemented is the
assumption that the object maintains the same rigid offset to
the hand as that decided in the initial plan. This could easily
be incorrect as the object might move during the pick or transit
phase. Our work also does not examine any visual or tactile
feedback during placement to ensure gentle contact [20,21]
with the environment or correct for inaccuracies in planning.
Other areas for improvement include placing on sloped or non-
planar surfaces. We discuss further ideas for improving our
work in Sec. VI.

We make the following contributions.
1) Present a framework for reasoning about pick and place
planning jointly. The components of which could be easily
swapped to achieve different tasks.
2) Provide a concrete implementation using a learned multi-
fingered grasp classifier to encode grasp cost in the objective.
3) Empirically validate the ability of our framework to also
pick from clutter.
4) A fast, GPU-accelerated 3D signed distance generator
based on partial view point clouds, that can be easily reused
and updated as the placement scene changes during sequential
pick and place executions.
5) We replicate the grasp learning method of [3] on a different
hand, providing further support for its effectiveness.

II. RELATED WORK

We now describe related work in placement and joint pick
and place planning. We note that the joint grasp and placement
planning problem can be seen as a special case of the more
general task-oriented grasping problem [22]. We only examine
those task-oriented papers that specifically examine placement.
The robotic object placement problem typically focuses on
finding a placement pose for an object, such that it will
be stable when released and potentially meet some semantic
requirements [6,7,9,23].

Jiang et al. were the first to examine learning for stable
object placement of novel objects from partial-view point
clouds [9]. Their proposed method employs hand-modeled
features to learn stable and semantic placement locations for
multiple objects in complex scenes and solves the associated
inference problem for planning as an integer linear program.
Though they have real robot demonstrations, they assume
given and feasible grasps. [7] discusses a GPU based method
to generate orientation and contact points for object and
environment models constructed from sensors, using local
optimization to validate stability. Only placement poses of the
object are generated, ignoring any robot constraints.

A few works have examined arbitrary reorientation of
objects. Furrer et al. [6] show impressive results of stable
placement configurations for stacking stones by optimizing
over costs generated using a physics simulation. Newbury et
al. [23] learn stable, human-preferred orientations for placing
objects observed as point clouds onto flat surfaces.

The pick and place method described in [24] learns to
pick novel objects in clutter using grasping primitives and
drops the objects into bins according to the measured ap-
pearance. Zeng et al. then proposed Transporter Networks
in [25] using spatially consistent visual representation to
learn pick-conditioned placing. Gualtieri et al. [13] propose a
reinforcement learning approach to learn joint pick and place
policies trained separately for different object classes.

Haustein et al. propose an anytime algorithm in [12] to solve
for optimal and stable placement locations given the object and
the environment meshes on user provided heuristic. Though
this method is not scalable to novel objects, due to the need
for meshes, they propose a similar constrained optimization
approach to the one we present.

Zhao et al. propose a task-oriented grasping approach in
[26] solving for highly precise task-oriented grasps in SE(2),
by filtering sampled grasps through separate networks for
predicting grasp quality, post-grasp displacement and task
quality, trained using a curriculum learning approach.

Paxton et al. [8] propose a method to generate stable place-
ment configurations satisfying semantic relationships specified
as logical predicates for novel objects. They learn discrimina-
tors to predict stability as well as logical predicates and plan
for placement locations through a gradient-free optimization.
While this approach uses a learned grasp planner [27], grasps
are selected after the placement location via rejection sam-
pling, making it inefficient in clutter.

Berscheid et al. [14] learn embeddings from top views of
2 fingered grasps and placement images such that feasible
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grasp and place pairs are close to each other in the latent
space. They use this learned space to jointly select grasps and
placements; experiments show joint inference of grasp and
placement outperforms separate inference in clutter.

Mitash et al. [28] propose a pick and place pipeline with
pick, place, handoff (regrasp), and sense actions. They estimate
the object geometry in order to generate plans for constrained
placement of novel objects. Using a combination of suction
and two fingered grasps with simple placement scenes their
results show that task oriented grasping and perception per-
form better than the pick then place methods.

He et al. [15] extend the object reconstruction and grasp
planning approach for parallel-jaw grippers from [29], to
placement-aware grasping by learning to generate affordance
maps using a NeRF representation of the scene with a recon-
structed object SDF. They use a sampling based approach for
determining an optimal grasp and placement pair.

Our work builds on the findings that joint pick and place
outperforms pick then place planning. In contrast to existing
work, we propose a modular pick and place framework for
use with multi-fingered grasps on novel objects, that plans
over continuous grasps and placement configurations.

III. PICK AND PLACE AS CONSTRAINED OPTIMIZATION

Let O be an object to be placed in a cluttered environment
E, with partial-view depth images ZO and ZE respectively.
The grasp configuration θg = [xg, q

h
g ] is a vector including

the robot palm pose xg ∈ SE(3) and preshape joint angles of
the gripper’s fingers qh

g ∈ Qh. The placement configuration
xp ∈ SE(3) defines the 6-DOF pose of where the centroid
of object point cloud ZO should be once placed. We can then
define the probability of successfully grasping the object as:

P (rg=1|θg, ZO) = F (θg;ZO) (1)
and the probability of the place configuration xp being suc-
cessful for object O in environment E as:

P (rp=1|xp,θg, ZO, ZE) = G (xp;θg, ZO, ZE) (2)
The joint probability for pick and place success is then:

P (rg=1, rp=1|θg,xp, ZO, ZE)

= F (θg;ZO)G (xp;θg, ZO, ZE) (3)

Which we visualize as a factor graph in Fig. (2). We see that
while the success probabilities are conditionally independent
given the planning parameters, they do not fully decouple,
requiring joint inference over pick and place parameters.

rg

rp

𝞱gZOZE xp

Fig. 2: Factor graph of the pick and place probability distribution. We
see that while the success probabilities are conditionally independent
given the planning parameters, they can not fully decouple, requiring
joint inference over pick and place parameters.

We define the pick and place inference problem as finding a
tuple of grasp configuration and place configurations (θg,xp),

(a) (b) (c)

Fig. 3: Robot-object geometry for pick-and-place collision checking:
(a) object; (b) robot; (c) union of object and robot.

that maximizes the joint probability defined in Eq. (3). Taking
the negative log on Eq. (3), we formalize this as a constrained
optimization in Eq. (4)

argmin
xp,θg,qa

g ,q
a
p ,τ

−ln
(
G
(
xp;θg, Z

+
O , ZE

))
−ln(F (θg;ZO))

(4a)
subject to xp ∈ P (4b)

xg = ϕh(q
a
g ); xp = ϕO(q

a
p) (4c)

q−
i ≤ qi ≤ q+

i ∀ i ∈ {g, p} (4d)

Z+
O = ZO ∪RG(θg) (4e)

ϵ ≤ SDF
(
xp, Z

+
O (θg) , ZE

)
(4f)

τ(xp,xg) ∈ Ω (4g)

Equation (4a) defines the objective of the optimization as a
log-linear combination of the placement success probability
G (xp;θg, ZO, ZE) and grasp success probability F (θg;ZO).
The remaining constraints ensure physical validity for success-
ful execution, i.e., the grasp and placement must be reachable
by the robot and the objects and robot should not interpene-
trate. Eq. (4b) constrains the placement configurations xp to
be within the footprint of the placement surface and above it.
Depending on the task, the placement configuration xp is in
SE(3) or SE(2). Eq. (4c) encodes the arm forward kinematics
for the grasp and placement, while Eq. (4d) defines the joint
limits, where the superscript, i, denotes the joints associated
with the robot arm and hand.

Eq. (4e) augments the object cloud with the geometry of the
hand and spheres approximating the geometry of the wrist (last
2 arm links) defined by RG(θg), at the current grasp pose. We
note this is a similar procedure to that in [30]. We visualize
the gripper geometry augmentation in Fig. (3). Using this we
define the placement collision constraint in Eq. (4f). Finally,
Eq. (4g) defines that there must be a feasible, collision-free
trajectory from grasp to placement.

IV. SOLVING THE JOINT PICK AND PLACE PROBLEM

In this section, we discuss our approach to instantiating
and solving the problem defined by Eq. (4). We first discuss
the details of different placement probabilities, G(·), which
we examine in our experiments. We then briefly review the
learning-based grasp method from [3] and its use as our
grasp probability F (·). Following that we present an efficient
algorithm for SDF-based collision checking built specifically
for repeated placement into clutter. We conclude this section
by discussing the choice of solver used and the generation of
grasp and place priors to perform MAP inference.

A. Placement Probabilities
Given any placement cost H(xp) that accepts an object

placement configuration xp ∈ SE(3) as input and outputs
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a scalar value that quantifies the suitability of xp for the task
considered, with lower values being more desirable for the
task and higher values being less desirable.

We can convert this H(xp) to a probability likelihood as:
G(xp) ∝ exp (−αH(xp)) (5)

Higher values of the α parameter make the solver prefer
placements more desirable to the task at the expense of grasp
success, lower values of α prefer more confident grasps.

We now define the four placement likelihoods used in
this paper. We use the notation G(xp) to denote placement
likelihood and H(xp) to denote placement cost. Any cost we
define can be converted to a likelihood using Eq. (5).

1) Target Pose: The simplest cost that encodes placing the
object to a target pose. We can define this as simply minimiz-
ing the squared-Euclidean distance between the selected and
target pose, giving the likelihood:

Gtarget(xp;xt) ∝ exp

(
−1

2
(xt − xp)

T
(xt − xp)

)
(6)

2) Tight Packing: The cost defined in Eq. (7) aims to place
objects as close to each other as possible. This is relevant for
organizing objects into shelves or boxes. We encode this cost
as the area of the bounding box enclosing all objects in the
scene plus the area of the bounding box enclosing the newly
placed object and a reference point.

Hpack(xp;ZO, ZE) = LE(xp, ZO, Ze) ·WE(xp, ZO, Ze)

+ (1, 1, 0) · T2(xp) · (LO,WO, 1)
T (7)

where (LE ,WE) define the length and width of the bounding
box enclosing all objects in ZE , including the newly placed
object, (LO,WO) define the length and width of the object
point cloud ZO, and T2(xp) defines the homogeneous SE(2)
transformation matrix associated with pose xp, the place
probability for this cost is obtained using Eq. (5). Fig. (10)
shows results of planning with the tight packing cost.

3) Stacking: Allows objects to be placed on top of each
other. Given the centroid xc of the point cloud of an existing
object or stack ZE , the cost defined in Eq. (8) penalizes the
height HO and width LO of the object at place configuration
xp, to lower the height of the stack and improve object
alignment for stability. The position of the object is constrained
to be close to xc while the orientations are not constrained.
This task allows for placement configurations xp to be in
SE(3). Fig. (14) shows the robot stacking five blocks using
this cost.

Hstack(xp;ZO, ZE) = (1, 0, 1) · R̂(xp)·(LO,WO, HO)
T (8)

where R̂(xp) = R̂x(θ)R̂y(ψ)R̂z(ϕ) and R̂k defines the
absolute values of the rotation matrix about object-axes k.

4) Place Inline: Places a sequence of objects in a straight
line given a point on the line xt and its angle of slope θl.
We model this as a Gaussian about the x component of the
placement configuration in Eq. (9).

Ginline(xp;xt, θl) = − exp
(
−(xp − xt)

TKθl(xp − xt)
)

(9)

where Kθl = Rz(θl)
TKxRz(θl) with Rz(θl) ∈ SO(2) and

Kx =

[
1 0
0 0

]
, aligns the x-coordinates. Fig. (13) shows

the real robot rearranging a set of cups in a straight line.

Object 
Voxel Grid

Object Size 
[w,h,d]

Voxel 
Encoder

Mixture 
Density 
Network

Grasp 
Configuration 

𝛉g

Grasp
Success 
Classifier

[0..1]

Grasp 
Success 

Likelihood

Fig. 4: Overview of our grasp prediction pipeline based on [3]. A
grasp classifier predicts grasp success given an object voxel grid and
grasp configuration. A mixture density network models a distribution
over grasp configurations given an input voxel grid.

B. Grasp Prediction

Following the success of recent learning-based grasp plan-
ning approaches [3,31] we define our grasp cost as the negative
log probability of grasp success − log (F (θg;ZO)). However,
we note that our framework could handle any differentiable
grasp cost encoding.

Fig. (4) shows an overview of the grasp prediction pipeline
used here. A neural network classifier defines the core of the
grasp prediction model F (θg;ZO). This outputs a scalar value
between 0 and 1 that represents the grasp success probability
for the given grasp θg on the observed object ZO. We learn this
model as a 3D convolutional neural network classifier using
the approach proposed in [3]. This takes a voxel representation
of the object, converted from the point cloud, as input and
passes it through several 3D convolutional layers to predict
grasp success. The only modification we make to the neural
network structure is changing the grasp input model to accept
the one-dimensional preshape configuration (the finger spread)
instead of the higher-dimensional vector used for the dexterous
hand in [3].

A mixture density network (MDN) comprises an additional
part of the model. It takes the same voxel grid as input and
generates a distribution over grasp configurations as output
(c.f. Fig. (6)). We use this to initialize the solver described
later in this section. For further details see [3].

C. SDF Collision Constraint Computation

To account for the collision constraints in Eq (4f), we
require signed distances from the partial view points of the
objects in the environment. For efficient computation we
compute a discrete approximation of the SDF that we can
quickly update as more objects are placed into the scene.
Fig. (5) shows the steps in generating the SDF queries for
the collision constraint.

Given a point cloud of the environment we convert it to a
3D voxel grid encoding the point cloud occupancy. We then
interpret this occupancy grid as a discretization of the zero
level set of the environment’s SDF. To compute the positive
signed distances associated with the surface we use a brushfire
algorithm to iteratively march outward till a truncation distance
from the zero level set to obtain discrete positive distances at
uniform increments. Similarly the negative signed distances
are obtained by marching inward, resulting in a truncated
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(a) Dilate inward and 
outward for discrete SDF

(b) List of SDFs for all 
objects in environment (c) SDF of placement scene

(e) 2D - place scene occupancy(d) 2D - object robot 
grasp occupancy

(f) Collision free place 
inits in white

Interpolate &
 add to SDF list

Min for each query 
point

Thresholding

Convolution

Fig. 5: Steps to generate signed-distance function for place scene and
computing collision-free place initializations.

(a) (b) (c) (d)
Fig. 6: Mean configurations of the MDN top and side grasp modes,
visualized with the partial view point clouds of the objects (a) lego
blocks, (b) cracker box, (c) mustard bottle and (d) pitcher.

discretized signed distance field (DSDF). By treating the DSDF
as a 3D image we apply 1D finite differentiation filters along
the x, y and z-axes to compute the gradients.

Given the discrete SDF, we can query it with any continuous
point with trilinear interpolation of neighboring points. To
handle the collision constraints in the optimization problem
Eq. (4), we obtain a uniform discretized set of points as-
sociated with the object being placed, ZO, and the known
robot geometry, R(θg) denoted as Zo and ZR(θg) respectively,
where we keep the dependence on the grasp configuration
explicit. For use in the optimization we transform these points
Z = Zo ∪ ZR(θg) according to the placement pose, xp, this
transformation and querying is done efficiently in parallel as
defined below:

SDF (xp,Z, ZE) = min
x∈Z,Z∈{ZO,ZR}

DSDFE (T (xp)Z) (10)

where the min over both object and robot geometry accounts
for the union operation Eq. (4e). In practice we can treat
the collision constraints for the object O and the robot R
separately for the same grasp and place configurations to have
more informative gradients.

D. Optimization and Motion Planning

We perform MAP inference by solving the optimization
problem from Eq. (4) without constraint Eq. (4g). We re-
lax the forward kinematics Eq. (4c) and the collision SDF
constraints Eq. (4f) into the objective using an Augmented
Lagrangian method. We convert the constraint, x ∈ P , to
bound constrain the placement configuration, xp, within the
table edges. We solve the resulting bound constrained problem
using BFGS [32] with projections to handle the bounds on the
joint angles and placement pose. We ensure Eq. (4g) when
motion planning for the arm after solving for the pick and
place configurations.

The solver is initialized with grasp configurations θg
0

sampled from the MDN prior described in IV-B and shown

in Fig. (6). The place prior is then obtained by convolving the
2D binary occupancy of the augmented object-robot geometry
(Fig. ( 5d)) over the coarse 2D binary occupancy of the
place scene (Fig. ( 5e)), which outputs collision-free place
configurations (Fig. ( 5f)), these are then ranked by predicted
place probabilities and filtered by kinematic feasibility, to
obtain the initial place configuration xp

0.
Given the solutions of the grasp and place configurations

in joint space, the full mesh models of the robot, the grasp
and placement surfaces, and meshes of all objects in the
scene generated from the computed SDFs , we use MoveIt!’s
constrained RRT planner [33] for planning trajectories to pre-
grasp pose, transfer from pick to place configurations, and pre-
place pose. We constrain the task space orientation of the hand
to restrict rotation of the object being during transfer to the
place pose. The pre-grasp and pre-place poses are obtained
by offsetting the end-effector by a small distance along the
negative direction of the end-effector’s x-axis. We use a task
space velocity controller during grasp approach, lift, place
approach, and post-placement retraction to soften interaction
with the environment.

V. EXPERIMENTS

We now validate the benefits of our proposed pick and
place framework (i.) by benchmarking against sequential pick
and place and a sampling based baseline, and (ii.) qualitative
experiments demonstrating the applicability of the approach
to a variety of scenarios. We experiment using a KUKA iiwa
7-DOF arm with a Reflex Takktile 2 gripper and a Realsense
D455 camera for sensing, with an 8-core Ryzen 5800X CPU
and a 12GB Nvidia RTX 3060 for computation.

A. Benchmarks

We benchmark the success rate of pick and place executions
and the optimality of our joint optimization approach against
the baselines in 2 different tasks, the following baselines are
considered:
1) The pick then place approach: Where we solve for
the best grasp configuration subject to all the constraints in
Eq. (4) that apply during grasping. Then keeping this grasp
configuration fixed, the placement configuration that suits the
grasp is solved for. This is essentially done by solving the
optimization problem described in III and IV twice with the
grasp and place costs individually. This is similar to the pick-
conditioned placing in [25] with grasps in SE(3).
2) Sampling: Similar to the approach in [8,15], We develop
a baseline that generates compatible grasp and placement
configurations using Monte Carlo sampling. First we sample
a set of grasp configurations with high success rate from
the trained grasp MDN network, and a set of placement
configurations not in collision with the environment for both
object and robot using the generated SDF, then the generated
grasp and placement configurations are refined locally for
feasibility with other constraints.

1) Place to an unreachable target: The robot is tasked with
picking an object in isolation and placing it on a corner of a
table (placement surface) that is not reachable by the robot. We
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recorded 30 executions for this task with 10 different objects
in varied levels of clutter ranging from 4 – 7 objects in the
placement scene. We use the target pose cost defined in Eq. (6).
Since, the target pose is unreachable and may be infeasible
due to other objects being in the way, the solver must find a
feasible placement solution as close to the target as possible
while accounting for the grasp.

We report the success rate, and predicted placement prob-
abilities for each method. Fig. (7) shows the grasp and place
success rates. We call a grasp successful if the robot lifts the
object without dropping it. We call a placement successful if
the robot places it on the placement surface and all objects
remain upright. Cases where the solver fails to find a feasible
solution are failures. For this task the joint method has an
average run time of 58.21s with a standard deviation of 26.83s
for varied levels of clutter, the sequential method takes on
average 71.48s (37.27s std dev); sampling takes on average
39.93s (5.63s std dev) for 450 samples.

We see that the joint method significantly outperforms the
baselines in terms of place success with 80% of the executions
being successful, While unsurprisingly the joint and sequential
methods achieve comparable grasp success rates. The sam-
pling based baseline is not able to reliably generate safe and
stable placement configurations. It was often in violation of
constraints, due to the initial discretization of the placement
configuration samples and lack of gradient information for
refinement. The sequential baseline primarily fails due to the
lack of feasible placement initializations for the fixed grasp
generated. Another interesting cause of failure was the object
slipping and falling during the placement trajectory more than
the joint optimization method, we hypothesize this could be
due to the joint method preferring more tighter grasps to avoid
collisions with other objects.

Fig. (8) shows the placement likelihoods from Eq. (6) for
each of the 30 executions for all 3 methods. The likelihood
encodes the closeness of the solved placement configuration
to the target configuration with a likelihood of 1 when the
placement configuration aligns with the target and the value
approaching 0 as the distance increases. We set the placement
likelihoods of unsuccessful executions to 0. We see from the
plot that the joint method generally produces solutions closer
to the target than the baselines. Most failures of the joint
method also fail for the baselines. We observe the leading
cause of failure being the object shifting during grasp and
transfer. Fig. (9) shows example placement executions for each
method considered in each place scene.

2) Pick from clutter: If ZE in Eq. (4) includes the point
cloud of nearby objects in the grasp scene, our framework can
enable grasping in clutter. We experimentally validate this by
having the robot pick up an object from clutter and place it
as close as possible to another cluster of objects in the place
scene as shown in Fig. (10). We use the packing cost from
Eq. (7) for placement. We drop the sampling-based inference
for this benchmark, as the grasp sampler failed to reliably find
grasps not in contact with the grasp scene clutter.

Similar to the previous task, we report the grasp and place
success rates in Fig. (11), 16 executions each for the joint and
sequential methods. In addition to the previous requirements
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sequential inference and sampling methods across 30 executions, for
placing into clutter benchmark.
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Fig. 8: Closeness of solved placement configuration to target pose
as likelihood [0, 1]. (1 being the closest and 0 being farthest away).
Likelihood of failed executions are set to zero.

for grasp success, a successful grasp must not knock over any
objects in the scene during grasp and lift. Fig. (11) shows
that though the grasp and place success rates drop relative
to the previous experiments, joint inference still significantly
outperforms the sequential baseline, with 69% of placements
being successful. The drop in success rate compared to the
previous benchmark can be explained by the added difficulty
of grasping from clutter for both methods.

We also report the packing likelihood from Eq. (7) in
Fig. (12). Here the likelihood encodes the growth in area
of the bounding box enclosing all objects after placement.
A likelihood of 1 denotes no growth and a likelihood of 0
denotes the bounding box has grown infinitely. We report the
likelihood as 0 in cases of failed placement. Fig. (12) shows
that sequential inference performs close to joint in cases with
low levels of clutter in the placement scene, but outright fails
with denser clutter. Hence the joint method is more capable
of handling clutter in both grasp and place scenes.

For this task the joint method had an average runtime of
82.01s (28.94 std dev). The sequential method took on average
73.59s (39.74s. std dev). We attribute the lower average to the
placement optimization failing in many cases.
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(a) (b) (c)
Fig. 9: Example executions for each scene in the unreachable target
task: (a) joint inference, (b) sequential, (c) sampling. The robot is
shown at the placement configuration before opening its fingers.
Successful executions are outlined in green and failures in red.

Fig. 10: Example of picking from clutter (left) and packing (right).
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Fig. 11: Grasp and place success rates for pick from clutter and
packing task for both joint and sequential inference methods.
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Fig. 12: Placement likelihood for the picking from clutter and packing
task, for joint and sequential inference methods.

B. Qualitative Demonstrations

We demonstrate our joint pick and place inference in two
sequential object placement tasks using costs from IV-A:
1) Place objects in line: Using the cost from Eq. (9), we
execute the solutions from our framework for the robot to
rearrange a set of cups in a straight line shown in Fig. (13).
2) Stacking in 6 DOF: Fig. (14) shows the robot stacking a
sequence of blocks on top of each other, by allowing rotation
in all 3-axes, each block is placed on top of another to have
the minimum height possible. Thus showing our framework is
capable of solving for placement configurations in SE(3)

VI. CONCLUSION

We presented an approach for planning a grasp for picking
an unknown object jointly with a downstream placement task.
By formalizing this problem as a joint inference, we were able
to leverage both model-based geometric and learning-based
costs and constraints into a single framework.

Many opportunities exist for future work. One could learn
a post-grasp classifier, akin to the grasp classifier, in order to
handle placement on non-planar surfaces or other downstream
tasks (e.g. handover). Using visual or tactile feedback during
placement could account for shifts of object pose relative to
the gripper during transport.

In conclusion, our work is the first to show unified planning
of a multi-fingered grasp for pick and place operations. Our
results show the benefit of taking the placement location into
account when planning grasps. In particular, we enable higher
success for placement in cluttered scenes relative to planning
placements sequentially after a successful grasp. We also
show that our method applies to grasping in clutter scenarios
without much loss in performance.

REFERENCES

[1] R. Grupen, “Planning grasp strategies for multifingered robot hands,” in
IEEE Intl. Conf. on Robotics and Automation, 1991.

[2] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in IEEE Intl. Conf. on Robotics and Automation, 2015.

[3] Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans, “Mul-
tifingered grasp planning via inference in deep neural networks: Out-
performing sampling by learning differentiable models,” IEEE Robotics
Automation Magazine, vol. 27, no. 2, 2020.

[4] D. Morrison, J. Leitner, and P. Corke, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach,” in Robotics:
Science and Systems, 2018.

[5] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with
synthetic point clouds and analytic grasp metrics,” in Robotics: Science
and Systems, 2017.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2024

Fig. 13: Sequential pick (top row) and place (bottom row) of objects inline, using the cost defined in Eq. (9).

Fig. 14: Stacking blocks in SE(3) by optimizing with the placement cost in Eq. (8) which generates both top and side grasps.

[6] F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio, M. Kohler,
R. Siegwart, and M. Hutter, “Autonomous robotic stone stacking with
online next best object target pose planning,” in IEEE Intl. Conf. on
Robotics and Automation, 2017.

[7] J. Baumgartl, T. Werner, P. Kaminsky, and D. Henrich, “A fast, gpu-
based geometrical placement planner for unknown sensor-modelled
objects and placement areas,” in IEEE Intl. Conf. on Robotics and
Automation, 2014.

[8] C. Paxton, C. Xie, T. Hermans, and D. Fox, “Predicting Stable Config-
urations for Semantic Placement of Novel Objects,” in Conference on
Robot Learning, 2021.

[9] Y. Jiang, M. Lim, C. Zheng, and A. Saxena, “Learning to place new
objects in a scene,” The International Journal of Robotics Research,
vol. 31, no. 9, May 2012.

[10] S. Han, N. Stiffler, A. Krontiris, K. Bekris, and J. Yu, “High-quality
tabletop rearrangement with overhand grasps: Hardness results and fast
methods,” in Robotics: Science and Systems, 2017.

[11] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman, “Push Planning for
Object Placement on Cluttered Table Surfaces,” in IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, 2011.

[12] J. A. Haustein, K. Hang, J. Stork, and D. Kragic, “Object placement
planning and optimization for robot manipulators,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, 2019.

[13] M. Gualtieri and R. W. Platt, “Learning 6-dof grasping and pick-place
using attention focus,” in Conference on Robot Learning, 2018.

[14] L. Berscheid, P. Meibner, and T. Kroeger, “Self-supervised learning
for precise pick-and-place without object model,” IEEE Robotics and
Automation Letters, 2020.

[15] Z. He, N. Chavan-Dafle, J. Huh, S. Song, and V. Isler, “Pick2place: Task-
aware 6dof grasp estimation via object-centric perspective affordance,”
in IEEE Intl. Conf. on Robotics and Automation, 05 2023.

[16] B. Wu, I. Akinola, and P. K. Allen, “Pixel-attentive policy gradient for
multi-fingered grasping in cluttered scenes,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, 2019.

[17] M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha, “Generating grasp
poses for a high-dof gripper using neural networks,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, 2019.

[18] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered
robotic grasps via deep learning,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, 2015.

[19] M. Veres, M. Moussa, and G. W. Taylor, “Modeling grasp motor
imagery through deep conditional generative models,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, 2017.

[20] J. M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchen-

becker, “Human-inspired robotic grasp control with tactile sensing,”
IEEE Transactions on Robotics, vol. 27, no. 6, 2011.

[21] B. Sundaralingam, A. Lambert, A. Handa, B. Boots, T. Hermans,
S. Birchfield, N. Ratliff, and D. Fox, “Robust Learning of Tactile Force
Estimation through Robot Interaction,” in IEEE Intl. Conf. on Robotics
and Automation, 2019.

[22] Z. Li and S. Sastry, “Task-oriented optimal grasping by multifingered
robot hands,” IEEE Journal on Robotics and Automation, vol. 4, no. 1,
1988.

[23] R. Newbury, K. He, A. Cosgun, and T. Drummond, “Learning to place
objects onto flat surfaces in upright orientations,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, 2021.

[24] A. Zeng, S. Song, K. Yu, E. Donlon, F. R. Hogan, M. Bauzá, D. Ma,
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