
HAL Id: inria-00542193
https://inria.hal.science/inria-00542193v1

Submitted on 2 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Symbolic-Numeric Algorithm for Computing the
Alexander Polynomial of a Plane Curve Singularity

Mădălina Hodorog, Bernard Mourrain, Josef Schicho

To cite this version:
Mădălina Hodorog, Bernard Mourrain, Josef Schicho. A Symbolic-Numeric Algorithm for Computing
the Alexander Polynomial of a Plane Curve Singularity. International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), Sep 2010, Timisoara, Romania. pp.21-28.
�inria-00542193�

https://inria.hal.science/inria-00542193v1
https://hal.archives-ouvertes.fr


A Symbolic-Numeric Algorithm for Computing the

Alexander Polynomial of a Plane Curve Singularity

Mădălina Hodorog

Johann Radon Institute

for Computational and

Applied Mathematics

Austrian Academy of Science

Altenbergerstrasse 52, Linz, Austria

Email: madalina.hodorog@oeaw.ac.at

Bernard Mourrain

INRIA Sophia-Antipolis

2004 route des Lucioles, B.P. 93

06902 Sophia-Antipolis, France

Email: Bernard.Mourrain@sophia.inria.fr

Josef Schicho

Johann Radon Institute

for Computational and

Applied Mathematics

Austrian Academy of Science

Altenbergerstrasse 52, Linz, Austria

Email: josef.schicho@oeaw.ac.at

Abstract—We report on a symbolic-numeric algorithm for
computing the Alexander polynomial of each singularity of a
plane complex algebraic curve defined by a polynomial with
coefficients of limited accuracy, i.e. the coefficients are both
exact and inexact data. We base the algorithm on combinatorial
methods from knot theory which we combine with computational
geometry algorithms in order to compute efficient and accurate
results. Nonetheless the problem we are dealing with is ill-posed,
in the sense that tiny perturbations in the coefficients of the
defining polynomial cause huge errors in the computed results.

I. INTRODUCTION

Plane complex algebraic curves play an important role in

mathematical topics such as number theory, complex analysis

or algebraic topology as discussed in [1]. For our study, we

consider plane complex algebraic curves defined by polyno-

mials whose coefficients are both exact data (i.e. integer or

rational numbers) and inexact data (i.e. numerical values) as

in [2]. In this context, when we refer to numerical values we

mean indetermination of a given order with respect to compu-

tational operations. For instance, an inexact data represented

by the numerical value 1.976 is interpreted as having attached

an indetermination of order 10−3, which means that the last

digit is uncertain. In this setting, we are interested in the type

of the singularities of the plane complex algebraic curve and in

the way in which the type of these singularities changes when

one slightly varies the coefficients of the polynomial. For this

purpose, we compute the algebraic link of each singularity.

From the algebraic link we compute the Alexander polynomial

of each singularity. From the Alexander polynomial we may

compute other information about the plane complex algebraic

curve: the delta-invariant of each singularity and the genus of

the plane complex algebraic curve.

In this paper, we give a precise symbolic-numeric algorithm

for computing the Alexander polynomial of each singularity

of a plane complex algebraic curve. We base the algorithm

on computational geometry algorithms performed on a graph

data structure [3], on combinatorial methods from knot theory

[4], and on specific results concerning the singular points of

complex hypersurfaces [5] and the Alexander polynomials

of algebraic links [6], [7]. The results computed with this

symbolic-numeric algorithm are interpreted in the frame of

approximate algebraic computation, as described in [8], [9].

This interpretation has the advantage of ensuring that the

computed results continuously depend on the input data.

In Section II we describe the mathematics required for

computing the Alexander polynomial of the singularity of

a plane complex algebraic curve. In Section III we discuss

the ill-posedness of the problem, and we present a strategy

called regularization which we use in order to handle this ill-

posedness. In Section IV we give the algorithm for computing

the Alexander polynomial of each singularity of a plane

complex algebraic curve. In addition, we describe the library

that contains the implementation of this algorithm, and present

an example performed with the library. We end with giving

the conclusion and future directions of research in Section V.

II. MATHEMATICAL DEFINITION OF THE ALEXANDER

POLYNOMIAL

A. Plane Complex Algebraic Curves and Their Singularities

In this subsection, following [10], [11], [12], we define the

objects of our study, i.e. the plane complex algebraic curves:

Definition 1: Let C to be the field of complex numbers,

and A
2(C) = {(x, y) ∈ C

2} the affine plane over C. Let

f(x, y) ∈ C[x, y] to be an irreducible polynomial in x and

y with coefficients in C of degree m. The set of zeroes

of the polynomial f(x, y) denoted with C = {(x, y) ∈
A

2(C)|f(x, y) = 0} is called the (affine) plane complex

algebraic curve of degree m defined by f(x, y).
In particular, we are interested in a special type of points

of each plane complex algebraic curve, i.e the singular points,

that we define as follows:

Definition 2: Let C be a plane complex algebraic curve of

degree m defined by the irreducible polynomial f(x, y) ∈
C[x, y]. The set of singular points (or simply singularities) of

C is defined as Sing(C) = {(x0, y0) ∈ A
2(C)|f(x0, y0) =

∂f(x, y)

∂x
(x0, y0) =

∂f(x, y)

∂y
(x0, y0) = 0}.

Example 1: We consider C the plane complex algebraic

curve defined by f(x, y) = x2 − y5 ∈ C[x, y], i.e. C =
{(x, y) ∈ C

2|x2−y5 = 0}. Based on Definition 2, we compute



Sing(C) by solving the following overdeterminate system of

polynomial equations in C
2:



































f(x0, y0) = x2
0 − y5

0 = 0

∂f(x, y)

∂x
(x0, y0) = 2x0 = 0

∂f(x, y)

∂y
(x0, y0) = 5y4

0 = 0

(1)

We obtain Sing(C) = {(0, 0)}.

B. The Link of a Plane Curve Singularity

In this subsection, we define several notions that are re-

quired for introducing the link of a plane curve singularity.

Firstly, we define the knots (links):

Definition 3: A knot is a piecewise linear or a differentiable

simple closed curve in the 3-dimensional space R
3. A link is

a finite union of disjoint knots.

We add that the knots that make up a link are called the

components of the link, and thus a knot is a link with one

component.

Secondly, we define the stereographic projection in R
3 as

a certain mapping that projects a sphere onto a plane. It is

constructed as in Figure 1: we take a sphere; we draw a line

from the north pole N of the sphere to a point P̂ in the equator

plane to intersect the sphere at a point P . The stereographic

projection of P̂ is P . In fact, the stereographic projection gives

an explicit homeomorphism from the unit sphere minus the

north pole to the Euclidean plane:

Definition 4: Two subsets U ⊂ R
k, V ⊂ R

n are topologi-

cally equivalent or homeomorphic if and only if there exists a

bijective function ϕ : U → V such that both ϕ and its inverse

are continuous. In this case, ϕ is called an homeomorphism.

More generally, the stereographic projection may be applied

to a n-sphere Sn in Rn+1:

x, ξ

y, η

z, ζ

N

P̂

S

P
β

φ

a

Fig. 1. Stereographic projection (generated with PGF/TikZ Latex packages
by T. M. Trzeciak)

Definition 5: Consider a n-sphere

Sn = {(x1, x2, ..., xn+1) ⊂ R
n+1|x2

1 + x2
2 + ... + x2

n+1 = 1}
in R

n+1, and Q(0, 0, 0, ..., 1) ∈ Sn the north point of the

n-sphere. If H is a hyperplane in R
n+1 not containing Q,

then the stereographic projection of the point P ∈ Sn \ Q

is the point P
′

of the intersection of the line QP with

H . The stereographic projection is a homeomorphism from

Sn \ Q ⊂ R
n+1 → R

n.

We now define the link of a plane curve singularity:

Definition 6: Let C = {(x, y) ∈ C
2|f(x, y) = 0} be a

plane complex algebraic curve defined by f(x, y) ∈ C[x, y]
with an isolated singularity in the origin (0, 0) ∈ C

2, i.e. there

is no other singularity on a sufficiently small neighborhood of

(0, 0). Let Sǫ = {(x, y) ∈ C
2|x2 + y2 = ǫ2} be the sphere

centered in the origin of a sufficiently small radius ǫ ∈ R
∗
+.

Consider X = C∩Sǫ ⊂ C
2 ∼= R

4, and π(ǫ,N) the stereographic

projection of the sphere Sǫ in R
4 from the north pole N(0, ǫ)

of the sphere Sǫ, which does not belong to the curve C. Then

π(ǫ,N)(X) ⊂ R
3, i.e. the image of X through the stereographic

projection, is called the link of the singularity (0, 0).
We define the equivalence of two links in the following way:

Definition 7: We say that two links are equivalent if there

exists an orientation-preserving homeomorphism on R
3 that

maps one link onto the other. This equivalence is called

(ambient) isotopy.

We introduce a certain type of links, i.e. the algebraic links:

Definition 8: A link is called algebraic if it is equivalent to

the link of a plane curve singularity.

Remark 1: Under the same assumptions from Definition 6

and considering S1 the unit circle, and | · | the absolute value

function, Milnor fibration theorem states that the mapping

φ : Sǫ \ X → S1, φ(x, y) =
f(x, y)

|f(x, y)|
is a fibration, i.e. the

complement Sǫ \X is a union of smooth surfaces, each being

the preimage of one point.

Example 2: In Figure 2, we see the algebraic link and the

Milnor fibration of the singularity (0, 0) of the plane complex

algebraic curve C defined by f(x, y) = x2 − y5 ∈ C[x, y].

(a) Algebraic link of (0, 0) (b) Milnor fibration of (0, 0)

Fig. 2. Output of the singularity (0, 0) of f(x, y) = x2−y5 produced with
GENOM3CK, see Section IV-B for more information



The equivalence class of the link of the singularity deter-

mines the homeomorphism class of the singularity, by the

following theorem:

Theorem 1: (Milnor[5]) Let V ⊂ C
n+1 be a hypersurface

in C
n+1, i.e. an algebraic variety defined by a single poly-

nomial. Assume ~0 ∈ V and ~0 is an isolated singularity; Sǫ

is the sphere centered in ~0 and of radius ǫ; and Dǫ is the

disk centered in ~0 of radius ǫ. Then, for sufficiently small ǫ,

L = Sǫ ∩ V is a (2n − 1)-dimensional nonsingular set and

Dǫ ∩ V is homeomorphic to the cone over L.

C. The Alexander Polynomial of an Algebraic Link

In this subsection, we define the Alexander polynomial of an

algebraic link. Firstly we need to introduce some preliminary

notions from knot theory. From now on, we consider only

piecewise linear algebraic links. When we work with knots,

we work with their projection in the 2-dimensional space:

Definition 9: A regular projection is a linear projection for

which no three points on the knot project to the same point,

and no vertex projects to the same point as any other point on

the knot. A crossing point is an image of two knot points of

such a regular projection from R
3 to R

2. Then:

1) A (link) diagram is the image under regular projection,

together with the information on each crossing point

telling which branch goes over and which goes under.

Thus we speak about overcrossings and undercrossings.

2) A diagram together with an arbitrary orientation of each

knot in the link is called an oriented diagram.

We define the elements of a diagram as follows:

Definition 10: 1) A crossing is called lefthanded (denoted

with −1) if the underpass traffic goes from left to right or

it is called righthanded (denoted with +1) if the underpass

traffic goes from right to left.

2) An arc is the part of a diagram between two undercross-

ings (Figure 3). Whether lefthanded or righthanded, each

crossing is determined by three arcs and we denote the

overgoing arc with i, and the undergoing arcs with j and k

(Figure 4). The number of arcs in a link diagram is equal

to the number of crossings in the same link diagram.

The main problem in knot theory is to decide whether two

different diagrams represent the same link or not, i.e. whether

two links are equivalent or not. The difficult problem in knot

theory is to show that two links are different up to (ambient)

isotopy. In order to show that two links are not equivalent, we

use the notion of link invariant defined in the following way:

Definition 11: A link invariant is a function from link

diagrams to some discrete set (Z or Z[t]) which is unchanged

when we replace the link by an equivalent one.

For our purpose, we know that the Alexander polynomial

is a complete invariant for algebraic links, i.e. it distinguishes

between all the algebraic links ([13]). We compute the Alexan-

der polynomial ∆L of an algebraic link L in several stages

as follows: from D(L), the diagram of the algebraic link we

compute LM(L), the labeling matrix of L; from LM(L) we

compute PM(L), the prealexander matrix of L; and from

PM(L) we compute ∆L.

Fig. 3. Oriented counterclockwise diagram of the cinquefoil algebraic knot
x2 − y5 with 8 arcs, 8 lefthanded crossings (produced with 3D-XplorMath-J
Applet). We denote the crossings from the upperleft to the lowerright corner
with {c0, c1, c2, c3} and the crossings from the lowerleft to the upperright
corner with {c4, c5, c6, c7}.

������

k GG������

i

j

WW/////////////

−1

��

//////

k
WW//////

i

j

GG�������������

+1

��

Fig. 4. Types of crossings: lefthanded (-1) and righthanded(+1).

Definition 12: Let D(L) be an oriented link diagram with

r components and p crossings xq : q ∈ {0, ..., p − 1}. We

denote the arcs of D(L) with the labels {0, ..., p − 1} and

separately the crossings of D(L) with {0, ..., p−1}. We denote

the labeling matrix of D(L) with LM(L) ∈ M(p, 4, Z). We

define LM(L) = (bql)q,l with q ∈ {0, ..., p−1}, l ∈ {1, ..., 4}
row by row for each crossing xq as follows:

• at bq1 store the type of the crossing xq (+1 or − 1);

• at bq2 store the label of the arc i of xq in D(L);
• at bq3 store the label of the arc j of xq in D(L);
• at bq4 store the label of the arc k of xq in D(L).

Definition 13: Let D(L) be an oriented link diagram with

r components and p crossings xq : q ∈ {0, ..., p − 1}. We

denote the arcs and the crossings of D(L) as in Definition 12.

We consider LM(L) the labeling matrix of D(L) as in

Definition 12. We denote the prealexander matrix of L with

PM(L) ∈ M(p, p, Z[t0, t1, ..., tr−1]). We define PM(L) row

by row for each crossing xq depending on LM(L). For xq we

consider the variable ts, where s ∈ {0, ..., r − 1} is the s-th

knot component of D(L), which contains the overgoing arc

that determines the crossing xq. Then:

• if xq is righthanded, i.e. bq1 = +1 in LM(L) then at

position bq2 of PM(L) store the label 1− ts, at position

bq3 store −1 and at position bq4 store ts;

• if xq is lefthanded, i.e. bq1 = −1 in LM(L) then at



position bq2 of PM(L) store the label 1− ts, at position

bq3 store ts and at position bq4 store −1;

• if two or all of the positions bq2, bq3, bq4 have the same

value, then store the sum of the corresponding labels at

the corresponding position. All other entries of the matrix

are 0.

We define the Alexander polynomial of D(L) depending on

the number of knot components in L:

Definition 14: Let D(L) be an oriented link diagram with

r components and p crossings, LM(L) be its labeling matrix

as in Definition 12 and PM(L) be its prealexander matrix as

in Definition 13.

1) Univariate case, ([14]). The univariate Alexander poly-

nomial ∆L(t0) ∈ Z[t±1
0 ] is the normalized polynomial

computed as the determinant of any (p − 1) × (p − 1)
minor of the prealexander matrix of D(L). A normalized

polynomial is a polynomial in which the term of the

lowest degree is a positive constant.

2) Multivariate case, ([7]). The multivariate Alexander poly-

nomial ∆L(t0, ..., tr−1) ∈ Z[t±1
0 , ..., t±1

r−1] is the nor-

malized polynomial computed as the greatest common

divisor of all the (p− 1)× (p− 1) minor determinants of

the prealexander matrix of D(L).

Example 3: We compute ∆L for the cinquefoil algebraic

knot from Figure 3. We denote the arcs with {0, ..., 7}. Then:

LM(L) =





























type labeli labelj labelk
c0 −1 0 7 1
c1 −1 1 4 3
c2 −1 0 5 6
c3 −1 1 2 0
c4 −1 0 3 2
c5 −1 1 0 5
c6 −1 0 1 4
c7 −1 1 6 7





























PM(L) =

































labeli labelj labelk
c0 0 7 1
−1 1 − t0 t0 −1
c1 1 4 3
−1 1 − t0 t0 −1
c2 0 5 6
−1 1 − t0 t0 −1
... ... ... ...

c7 1 6 7
−1 1 − t0 −1 t0

































=

=





























0 1 2 3 4 5 6 7
1 − t0 −1 0 0 0 0 0 t0

0 1 − t0 0 −1 t0 0 0 0
1 − t0 0 0 0 0 t0 −1 0
−1 1 − t0 t0 0 0 0 0 0

1 − t0 0 −1 t0 0 0 0 0
t0 1 − t0 0 0 0 −1 0 0

1 − t0 t0 0 0 −1 0 0 0
0 1 − t0 0 0 0 0 t0 −1





























det
(

Minor77
(

PM(L)
)

)

= −t50 + t40 − t30 + t20 − t0

∆L(t0) = t40 − t30 + t20 − t0 + 1

D. Relation with the Genus

As an application, we may compute the genus of a plane

complex algebraic curve in terms of the Alexander polynomial

of its singularities:

Definition 15: Let C be a plane complex algebraic curve

of degree m in A
2(C), and C∗ the corresponding projective

plane algebraic curve in P
2(C) defined as in [11]. We denote

with Sing(C∗) the set of singularities of C∗. The genus of C
is defined as:

genus(C) =
(m − 1)(m − 2)

2
−

∑

s∈Sing(C∗)

δs,

with genus(C) ∈ Z, and where δs ∈ N denotes the delta-

invariant of the singularity s.

We notice that the computation of the genus reduces to the

computation of the delta-invariant of each singularity, which

we define in terms of the Alexander polynomial defined in

Subsection II-C:

Definition 16: (based on Milnor[5]) Let ∆L(t0, . . . , tr−1)
be the Alexander polynomial of the link of the isolated

singularity s = (0, 0) of a plane complex algebraic link. Let

r be the number of variables in ∆L and ρ the degree of ∆L.

If r = 1 then we define δs =
ρ

2
, otherwise δs =

ρ + r

2
.

III. REGULARIZATION TECHNIQUES FOR DEALING WITH

ILL-POSEDNESS OF THE PROBLEM

In this subsection, we explain the notion of an ill-posed

problem and we present a regularization method for dealing

with such a problem. In particular, we apply these notions to

the problem we solve, i.e. the computation of the Alexander

polynomial of a plane curve singularity.

Firstly, we introduce basic notions from approximate alge-

braic computation following [15], [16], which we use for our

problem. Approximate algebraic computation is a new promis-

ing and challenging field of mathematics, that developed in the

recent years with important achievements such as for instance

in [17], [18], [19].

The objects of approximate algebraic computation are poly-

nomials with coefficients of limited accuracy, i.e. the coef-

ficients may be exact data (integer or rational numbers) or

inexact data (numerical values). In the polynomial f(x, y) =
x3 − 1.865y2 − y3, for 1.865 we associate a tolerance σ

of 10−3 which means that the last digit is uncertain. When

we apply exact computation on classical algebraic problems

defined in terms of polynomials with coefficients of limited

accuracy, we observe that tiny perturbations in the coefficients

produce huge errors in the solution. This is the case in classical

algorithms such as: the Euclidean algorithm for computing

the greatest common divisor of polynomials, root computation

of polynomials, factorization of polynomials, Groebner bases

computation, etc. These algorithms (or rather the problem

specifications addressed by them) are ill-posed in the sense



of Hadamard, which means that the solution does not depend

continuously on the input data, i.e. the solution is not stable

under small changes of the input data. A major goal of

approximate algebraic computation is to deal with this kind

of ill-posed problems. In particular, the computation of the

Alexander polynomial of each singularity of a plane complex

algebraic curve, is an ill-posed problem in the sense of

Hadamard discussed here.

A method called regularization has been introduced to solve

ill-posed problems, that makes it possible to construct numeri-

cal methods that approximate solutions of ill-posed problems,

which are stable under small changes of the input data.

We adopt such a regularization method for the computation

of the Alexander polynomial of a plane curve singularity,

following [9]. In the rest of this subsection, we describe this

regularization method.

We denote D the set of all squarefree polynomials in x and y

with complex coefficients of degree m ∈ N such that the sum

of squares of absolute values of the coefficients is 1. This is

not a restriction because we are only interested in the zero sets

of these polynomials, and this does not change if we multiply

each polynomial by a scalar. The set D is a metric space by the

Euclidean distance of coefficient vectors, denoted with || − ||.
We denote P = {Z[x0]∪Z[x0, x1]∪ ...∪Z[x0, ..., xi]∪ ...} the

set of all normalized Alexander polynomials either in the x0

variable, or in the x0, x1 variables, or in x0, x1, ...xi sequence

of variables with i ∈ N, etc.

We consider the function: E : D → P, f 7→ E(f). For

the image of E we use the notation I = {E(f))|f ∈ D}. We

consider E as a function for computing the exact algorithm

for the Alexander polynomial of a plane curve singularity. We

notice that the function E is discontinuous. We consider the

partial function R : D × R+ → I, (f, ǫ) 7→ Rǫ(f). For

f ∈ D, we say that the function f : R≥0 → D, δ 7→ fδ is a

perturbation of f if and only if ||fδ−f || < δ, for all δ ∈ R≥0.

We say that Rǫ is a regularization for E : D → I if and only

if for any perturbation function f , the following properties are

fulfilled:

∀f ∈ D lim
ǫ→0

Rǫ(f) = E(f), (2)

∀f ∈ D ∀fδ ∈ D lim
δ→0

Rǫ(δ)(fδ) = E(f), (3)

for some function ǫ(−), which is independent of f .

We call (2) the convergence property for exact data, and (3)

the convergence property for noisy data, where the parameter

δ is called the error (or the noise) in the input data. The

numerical parameter ǫ is called the regularization parameter

of the function Rǫ.

In the following, we introduce the Milnor number depending

on the Alexander polynomial of the singularity s of a plane

complex algebraic curve, and on the algebraic link L of s: if L

has one component, then the Milnor number equals the degree

of the Alexander polynomial; otherwise (i.e. L has more than

one component), the Milnor number equals the degree of the

Alexander polynomial plus 1. The Milnor number measures

the degeneracy of the singularity s of the plane complex

algebraic curve. Thus, on D we consider the partial order <

induced by the Milnor number: ∀p, q ∈ D, p < q if and only

if the Milnor number of p is less than the Milnor number of q.

The partial order induced on D by the Milnor number makes

the exact function E for computing the Alexander polynomial

an upper semicontinuous function based on the result proved

in [20] according to which: the Milnor number is an upper

semicontinuous function of the coefficients of the defining

polynomial of the plane complex algebraic curve.

Under these assumptions, we consider Aǫ : D×R+ → I as

the symbolic numeric algorithm for computing the Alexander

polynomial of the singularity s of a plane complex alge-

braic curve C defined by the polynomial f(x, y) ∈ C[x, y],
constructed using the notions from Section II. We consider

the parameter ǫ to be the radius of the sphere Sǫ which

we intersect with the zero set of f(x, y), as described in

Subsection II-B. We study whether A is a regularization for

the exact function E : D → I , as previously explained. The

convergence property (2) for exact data holds for A , based

on Theorem 1. The partial function A is defined for all (f, ǫ)
such that the intersection of the zero set of f(x, y) with the

sphere Sǫ in C
2 is nonsingular. The domain of definition of

the partial function A denoted with U is open and dense in

D × R≥0, and A is constant on each connected component

of U (in other words A is continuous).

We believe that the following “working hypothesis” is true,

i.e. if E is an (upper) semicontinuous function from a compact

set into a discrete partially ordered set, and A is a partially

continuous function defined on an open subset of D × R≥0

which satisfies the convergence property (2) for exact data,

then A is a regularization of E, i.e. A satisfies also the

convergence property (3) for noisy data. A similar statement

can be found in [9], proposition 3.4. For our study, we

considered the exact upper semicontinuous function for the

computation of the Alexander polynomial to be defined as

E : D → I . We notice that the set D is not compact, but it is

possible to restrict the function E to compact subsets of D. If

we assume this “working hypothesis” true, then it follows that

the algorithm Aǫ, which we construct using the notions from

Section II, is a regularization for the Alexander polynomial.

We present this algorithm thoroughly in Subsection IV-A.

IV. ALGORITHM AND IMPLEMENTATION

A. Description of the Algorithm

In this subsection we describe the algorithm for computing

the Alexander polynomial of the singularities of a plane

complex algebraic curve, constructed using the notions from

Section II.

Remark 2: Once the Alexander polynomial of a plane curve

singularity is known, the computation of the delta-invariant

and the genus are not anymore subject to numerical errors,

because we use discrete combinatorial algorithms combined

with robust computational geometry algorithms for their com-

putation. The Alexander polynomial itself is determined by

the topology of the algebraic link. The computation of the

topology of the link is unstable under tiny perturbations. Thus,



we need to analyze the numerical behavior of the algebraic

link under tiny perturbations. This information is captured

by the Alexander polynomial, which is a complete invariant

for algebraic links, i.e. different algebraic links have different

Alexander polynomials.

For a plane complex algebraic curve C defined by the

squarefree complex polynomial f(x, y) ∈ C[x, y], for a point

p ∈ C
2, and for ǫ ∈ R≥0, we define the curve L(C,p,ǫ)

as the stereographic projection of the intersection of C with

the sphere Sǫ(p) of radius ǫ and origin p. If L(C,p,ǫ) is

a link, then we define the ǫ-Alexander polynomial of C
at p as the Alexander polynomial of L(C,p,ǫ). We give the

algorithm for this computation, denoted in the following with

ALEXPOLY(f, C, ǫ).
Remark 3: If ǫ is sufficiently small, then L(C,p,ǫ) will be

a link and the ǫ-Alexander polynomial will be the Alexander

polynomial of the singularity of C at p.

Algorithm 1 Alexander polynomial of the singularities of a

plane algebraic curve ALEXPOLY(f, C, ǫ)

Input: f(x, y) ∈ C[x, y] a complex squarefree polynomial

C = {(x, y) ∈ C
2|f(x, y) = 0} a plane algebraic curve

ǫ ∈ R
∗
+ a positive real number

Output: ∆L(t0, ..., tr−1) the ǫ-Alexander polynomial of each

numerical singularity of C.

1) Compute numeric Sing(C), the singularities of C, by

solving system (1) with subdivision methods from [21];

2) For each singularity s0 = (x0, y0) ∈ Sing(C) do:

a) Translate (x0, y0) in s = (0, 0) by a change of coor-

dinates, i.e. C = {(x, y) ∈ C
2|f(x + x0, y + y0) = 0}.

b) Compute symbolic-numeric L, the link of the singu-

larity s = (0, 0), with the algorithm LINK(f, C, s, ǫ).
c) Compute symbolic-numeric:

- D(L), the diagram of L,

- r, the number of components of D(L),
- p, the crossings of D(L),
with computational geometry and combinatorial algo-

rithms from [22].

d) Compute symbolic LM(L), the labeling matrix of

D(L), with Definition 12.

e) Compute symbolic PM(L), the prealexander matrix

of D(L), with Definition 13.

f) If r = 1 then:

i) Compute M , any (p−1)×(p−1) minor of PM(L);
ii) Compute D, the determinant of the minor M ;

iii) Return ∆L(t0) = Normalize(D);

g) If r ≥ 2 then:

i) Compute all the (p−1)×(p−1) minors of PM(L);
ii) Compute G, the greatest common divisor of all the

computed minors in g).i);

iii) Return ∆L(t0, ...tr−1) = Normalize(G).

We describe the algorithm LINK(f, C, s, ǫ) for computing

the algebraic link L of the singularity s of the plane complex

algebraic curve C defined by the squarefree complex polyno-

mial f(x, y) ∈ C
2. The parameter ǫ denotes the radius of

the sphere Sǫ ⊂ C
2 which we intersect with the zero set of

f(x, y), as described in Subsection II-B:

Algorithm 2 Link of a plane curve singularity s = (0, 0)
LINK(f, C, s, ǫ)

Input: f(x, y) ∈ C[x, y] a complex squarefree polynomial

C = {(x, y) ∈ C
2|f(x, y) = 0} a plane algebraic curve

s = (0, 0) a numerical singularity of C
ǫ ∈ R

∗
+ a positive real number

Output: G, H ∈ R[u, v, w]
where the common zero set of G, H equals L(C,p,ǫ).

1) Substitute the variables x = a + ib, y = c + id:

f(x, y) ⇔ f(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d)

where R, I ∈ R[a, b, c, d].
2) Intersect the plane complex algebraic curve:

C = {(a, b, c, d)|R(a, b, c, d) = I(a, b, c, d) = 0}

with an isolated singularity in the origin (0, 0, 0, 0), with

the sphere centered in the origin and of small radius ǫ:

Sǫ = {(a, b, c, d)|a2 + b2 + c2 + d2 − ǫ2 = 0} .

3) Obtain X = C ∩ Sǫ ⊂ R
4;

4) Consider a point N(0, 0, 0, ǫ) ∈ Sǫ \ C;

5) Project X with the generalized stereographic projection:

π(ǫ,N) : Sǫ \ {P} ⊂ R
4 → R

3 ,

(a, b, c, d) → (u, v, w) = ( a
ǫ−d

, b
ǫ−d

, c
ǫ−d

) .

6) Compute the inverse:

π−1
(ǫ,N) : R

3 → S3 \ {P}

(u, v, w) → (a, b, c, d) = (2uǫ
n

, 2vǫ
n

, 2wǫ
n

, −ǫ+u2ǫ+v2ǫ+w2ǫ
n

)

where n = 1 + u2 + v2 + w2 .

7) Compute π(ǫ,N)(X) using π−1
(ǫ,N) and finding G, H:

π(ǫ,N)(X) =
{

(u, v, w)|
G := R( 2uǫ

n
, 2vǫ

n
, 2wǫ

n
, m

n
) = 0

H := I( 2uǫ
n

, 2vǫ
n

, 2wǫ
n

, m
n

) = 0

}

where m = −ǫ + u2ǫ + v2ǫ + w2ǫ.

8) Return π(ǫ,N)(X) as computed in step 6.

We notice that after clearing out the denominators G, H ∈
R[u, v, w]. Their common set of zeroes in R

3 is equal to

π(ǫ,N)(X) the differentiable algebraic link of the singularity

(0, 0). In fact, π(ǫ,N)(X) is an implicit algebraic curve in R
3

with no singularities, given as the intersection of two implicit

algebraic surfaces S1, S2 in R
3 with defining polynomials

G, H. The surfaces S1, S2 appear in the Milnor fibration

of R
3 \ π(ǫ,N)(X) over Sǫ. Using the library GENOM3CK

implemented in Axel, we compute a piecewise linear approx-

imation of this differentiable algebraic link. For an example,



see Figure 2.

B. Implementation of the Algorithm

Algorithm 1 and Algorithm 2 described in Subsection IV-A

are implemented in the library GENOM3CK, a library we

originally developed for computing the genus of a plane

complex algebraic curve using knot theory. Together with its

main functionality to compute the genus, the library computes

other topological and algebraic invariants of each singular-

ity of the plane complex algebraic curve. GENOM3CK is

implemented in the free algebraic geometric modeler Axel

[23], [24] (written in C++ and using Qt Script for Appli-

cations), and in the free computer algebra system Math-

emagix [25]. Axel is a new system developed at INRIA-

Sophia Antipolis, which provides for our purposes unique

algebraic tools and visualization techniques to manipulate

implicit algebraic curves and surfaces. Axel uses also libraries

from the free computer algebra system Mathemagix [25],

for instance a library for computing the singularities of a

plane complex algebraic curve. The power of the Axel system

comes from the fact that it allows its extension into ”sub-

programs” with new functionalities that are called plugins.

We implement the proposed symbolic-numeric algorithms into

one of Axel’s plugins, which was further on transformed into

a library. More information on the library is available at:

http://people.ricam.oeaw.ac.at/m.hodorog/software.html.

Example 4: In Figure 5, we visualize the output of the

library on the input plane complex algebraic curve C defined

by f(x, y) = x2 − y5 for ǫ = 1.0 . The library computes:

(i) the set of all distinct singularities both in the affine and

in the projective space by using the subdivision method from

Mathemagix. In this case, the set contains two singularities

Sing(C) = {s1 = (−1.77636e − 14, 0), s2 = (0, 0)}; (ii) the

algebraic link of each singularity; (iii) information on the

diagram of each algebraic link; (iv) the Milnor fibration of

each singularity, i.e. the implicitly defined algebraic surfaces

from the 3-dimensional space that define as their intersection

the algebraic link. This operation is selected and displayed in

Figure 5; (v) the Alexander polynomial of each singularity,

i.e. ∆(s1) = x4
0 − x3

0 + x2
0 − x0 + 1,∆(s2) = x8

0 − x7
0 +

x5
0 − x4

0 + x3
0 − x2

0 + x0 − 1, and the delta-invariant of each

singularity, i.e. δ(s1) = 2, δ(s2) = 4; (vi) the genus of C, i.e.

genus(C) = 0; (vii) and the computational time needed for

the symbolic-numeric algorithms.

Remark 4: The test experiments performed with the library

GENOM3CK indicate that the algorithm is a regularization

for the Alexander polynomial as discussed in Section III. The

precise proof for this statement is under construction.

V. CONCLUSION

We presented a symbolic-numeric algorithm for computing

the Alexander polynomial of each singularity of a plane

complex algebraic curve, that we completely and successfully

automatized in the GENOM3CK library. Together with its

main functionality to compute the Alexander polynomial of

each singularity of a plane complex algebraic curve, the

Fig. 5. GENOM3CK on the input curve defined by F (x, y) = x2 − y5

GENOM3CK library offers tools for computational operations

in algebraic topology and geometry (i.e. algebraic link of

each singularity of the plane algebraic curve, delta-invariant

of each singularity of the plane algebraic curve, genus of

the plane complex algebraic curve), and for computational

operations in knot theory (i.e. information on the diagram of

each algebraic link). The library also allows us to analyze the

performance of the symbolic-numeric algorithm, that turns out

to be efficient. For symbolic input data, the symbolic-numeric

algorithm from the library computes certified and exact results.

For numeric input data, based on the tests performed with the

library GENOM3CK, the symbolic-numeric algorithm from

the library computes a regularization of the problem. Thus,

the library provides certified results for both symbolic and

numeric input data, due to the efficient combination between

the symbolic and numeric algorithms.

ACKNOWLEDGMENTS

Many thanks to Julien Wintz, who contributed to the imple-

mentation of the library in its starting phase. We would like

to especially thank Esther Klann and Ronny Ramlau, and the

other colleagues from the “Doctoral Program - Computational

Mathematics” for their helpful discussions and comments, that

brought many useful insights in handling the numerical part

of the problems. This work is supported by the Austrian

Science Funds (FWF) under the grant W1214/DK9. Bernard

Mourrain is partially supported by the Marie Curie ITN SAGA

[PITN-GA-2008-214584] of the European Communitys Sev-

enth Framework Programme [FP7/2007-2013]

REFERENCES

[1] F. Kirwan, Complex algebraic curves. Cambridge University Press,
1992.

[2] H. J. Stetter, Numerical polynomial algebra. SIAM, Philadelphia, 2004.

[3] M. de Berg, M. Krefeld, M. Overmars, and O. Schwarzkopf, Computa-

tional geometry: algorithms and applications. Second edition. Springer,
Berlin, 2008.

[4] C. A. Colin, The knot book. An elementary introduction to the mathe-

matical theory of knots. W. H. Freeman and Company, U.S.A., 2004.

http://people.ricam.oeaw.ac.at/m.hodorog/software.html


[5] J. Milnor, Singular points of complex hypersurfaces. Princeton Uni-
versity Press and the University of Tokyo Press, New Jersey, 1968.

[6] J. W. Alexander, “Topological invariant of knots and links,” Transactions

of the American Mathematical Society, vol. 30, pp. 275–306, 1928.
[7] D. Cimasoni, “Studying the multivariable Alexander polynomial by

means of Seifert surfaces,” Bol. Soc. Mat. Mexicana (3), vol. 10, pp.
107–115, 2004.

[8] Z. Zeng, “Computing multiple roots of inexact polynomials,” Math.

Comp., vol. 74, pp. 869–903, 2005.
[9] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse

problems. Kluwer Academic Publishers Group, 1996.
[10] E. Brieskorn and H. Knorrer, Plane algebraic curves. Birkhäuser,

Berlin, 1986.
[11] F. Winkler, Polynomial algorithms in computer algebra. Springer-

Verlag, Wien, New York, 1996.
[12] J. R. Sendra and F. Winkler, “Parametrization of algebraic curves over

optimal field extensions,” Symbolic Computation, vol. 23, pp. 191–208,
1997.

[13] M. Yamamoto, “Classification of isolated algebraic singularities by their
Alexander polynomials,” Topology, vol. 23, pp. 277–287, 1984.

[14] C. Livingston, Knot theory. Mathematical Association of America,
U.S.A, 1993.

[15] Z. Zeng, “The approximate irreducible factorization of a univariate
polynomial. revisited,” in Proc. International Symposium on Symbolic

and Algebraic Computation, 2009, pp. 367–374.
[16] H. J. Stetter, “Numerical polynomial algebra: concepts and algorithms,”

in Proc. Asian Technology Conf. in Math., 2000, pp. 22–36.
[17] ——, “The nearest polynomial with a given zero, and similar problems,”

in ACM SIGSAM Bull., vol. 33, 1999, pp. 2–4.
[18] G. Shuhong, E. Kaltofen, J. May, Z. Yang, and L. Zhi, “Approximate

factorization of multivariate polynomials via differential equations,”
Symbolic Computation, vol. 43, pp. 359–376, 2008.

[19] Z. Zeng, Regularization and Matrix Computation in Numerical Polyno-

mial Algebra. Approximate Commutative Algebra (Eds. L. Robbiano
and J. Abbot), Springer Wien, September 2009, ch. 5, pp. 125–162.

[20] J. C. Tougeron, Ideaux de fonctions differentiables. Springer-Verlag,
Berlin, 1972.

[21] B. Mourrain and J. Pavone, “Subdivision methods for solving polyno-
mial equations,” Symbolic Computation, vol. 44, pp. 292–306, 2009.

[22] M. Hodorog and J. Schicho, “Computational geometry and combinato-
rial algorithms for the genus computation problem,” DK Computational
Mathematics Linz, Tech. Rep. 7, 2010.

[23] J. Wintz, “Algebraic methods for geometric modelling,” Ph.D. disserta-
tion, University of Nice, Sophia-Antipolis, 2008.

[24] J. Wintz, S. Chau, L. Alberti, and B. Mourrain, “Axel algebraic geomet-
ric modeler,” http://axel.inria.fr/.

[25] V. D. J. Hoeven, G. Lecerf, and B. Mourrain, “Mathemagix computer
algebra system,” http://www.mathemagix.org/www/main/index.en.html.


	Introduction
	Mathematical Definition of the Alexander Polynomial
	Plane Complex Algebraic Curves and Their Singularities
	The Link of a Plane Curve Singularity
	The Alexander Polynomial of an Algebraic Link
	Relation with the Genus

	Regularization Techniques for Dealing with Ill-Posedness of the Problem
	Algorithm and Implementation
	Description of the Algorithm
	Implementation of the Algorithm

	Conclusion
	References

