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Stability of SIS Spreading Processes in Networks
with Non-Markovian Transmission and Recovery

Masaki Ogura, Member, IEEE, and Victor M. Preciado, Member, IEEE

Abstract—Although viral spreading processes taking place in
networks are often analyzed using Markovian models in which
both the transmission and the recovery times follow exponential
distributions, empirical studies show that, in many real scenarios,
the distribution of these times are not necessarily exponential.
To overcome this limitation, we first introduce a generalized
susceptible-infected-susceptible (SIS) spreading model that allows
transmission and recovery times to follow phase-type distribu-
tions. In this context, we derive a lower bound on the exponential
decay rate towards the infection-free equilibrium of the spreading
model without relying on mean-field approximations. Based
on our results, we illustrate how the particular shape of the
transmission/recovery distribution influences the exponential rate
of convergence towards the equilibrium.

I. INTRODUCTION

UNDERSTANDING the dynamics of spreading processes
in complex networks is a challenging problem with a

wide range of practical applications in epidemiology and pub-
lic health [3], information propagation in social networks [21],
or cyber-security [40]. During the last decade, significant
progress has been made towards understanding the relationship
between the topology of a network and the dynamics of
spreading processes taking place over the network (see [28],
[37] for recent surveys). A common approach to investigate
this relationship is by modeling spreading processes using net-
worked Markov processes, such as the networked susceptible-
infected-susceptible (SIS) model [46]. Based on these Marko-
vian models, it is then possible to find an explicit relationship
between epidemic thresholds and network eigenvalues in static
topologies [18], [36], [46], [48], as well as in multilayer
[10], [42], time-varying [29], [35], and adaptive [23], [30]
networks. Markovian models also allow us to design optimal
strategies for containment of spreading processes taking place
in static [39], uncertain [13], and temporal [31] networks.

A consequence of using Markovian models in the analysis
of spreading processes is that both transmission times (i.e.,
the time it takes for an infection to be transmitted from an
infected node to one of its neighbors) and recovery times
(i.e., the time it takes for an infected node to recover) follow
exponential distributions. However, empirical studies show
that, in many real networks, the distribution of transmission
and recovery times are not necessarily exponential. For ex-
ample, the transmission time of messages in Twitter, or news
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in other social media outlets, follows (approximately) a log-
normal distribution [21], [47]. In the context of human contact
networks, the transmission of various infectious diseases [4],
[7], [17], [26], or the time it takes to recover from the influenza
virus [44] are often non-exponential.

Since realistic transmission and recovery times often follow
non-exponential distributions, it is of practical importance to
understand the role of these distributions on the dynamics of
the spread. In this direction, the authors in [47] illustrated,
via numerical simulations, that non-exponential transmission
times can have a substantial effect on the dynamics of the
spread. Motivated by this study, several approximative meth-
ods for quantifying the steady-state fraction of infected nodes
have been proposed in the literature. In this direction, the
authors in [5] analyzed spreading processes with general trans-
mission and recovery times using mean-field approximations.
In [16], [25], simple but yet analytically solvable spreading
models with non-exponential transmission times were studied.
Moment-closure approximations for analyzing spreading pro-
cesses with non-exponential transmission and recovery times
were proposed in [19], [38]. Under the assumption that re-
covery times follow an exponential distribution, the analytical
framework in [43] enables us to reduce non-exponentially
distributed transmission times into exponentially distributed
counterparts without changing the steady-state of the spread.
The authors in [27] used a mean-field approximation to
derive stability conditions for the infection-free equilibrium
of a spreading process with three compartments and non-
Markovian transition dynamics. However, their conditions are
either conservative or guarantees only the local stability of the
infection-free equilibrium.

In this paper, we propose a tractable but rigorous approach
to analyze the transient of SIS spreading processes over
arbitrary networks with general (non-exponential) transmission
and recovery times. In this direction, we first introduce the
generalized networked SIS (GeNeSIS) model, which allows for
transmission and recovery times following arbitrary phase-type
distributions (see, e.g., [2]). Defined as the exit time of time-
homogeneous Markov processes, phase-type distributions form
a dense family in the space of positive-valued distributions [9].
Therefore, the GeNeSIS model allows to theoretically analyze
arbitrary transmission and recovery times within an arbitrary
accuracy [2]. We are particularly interested in quantifying the
exponential decay rate of the spread towards the infection-free
equilibrium; in other words, to eradicate the viral spreading
process. The key tool used in our derivations is a vectorial
representation of phase-type distributions, which we use to
bound the exponential decay rate towards the infection-free
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equilibrium in the stochastic dynamics of the GeNeSIS model.
This paper is organized as follows. In Section II, we

introduce elements of graph theory and stochastic differential
equations with Poisson jumps. In Section III, we describe a
generalized SIS model over networks with arbitrary trans-
mission and recovery times. In Section IV, we provide a
vectorial representation of the GeNeSIS model, which we use
in Section V to analyze the exponential decay rate towards the
infection-free equilibrium. We validate the effectiveness of our
results via numerical simulations in Section VI, where we also
illustrate the effect of non-exponential transmission/recovery
times in the dynamics of the spread.

II. MATHEMATICAL PRELIMINARIES

Let R and N denote the set of real numbers and positive
integers, respectively. For a positive integer n, define [n] =
{1, . . . ,n}. For a real function f , let f (t−) denote the limit
of f from the left at time t. We let In and On denote the
n×n identity and zero matrices. By 1p and 0p, we denote the
p-dimensional vectors whose entries are all ones and zeros,
respectively. A real matrix A (or a vector as its special case)
is said to be nonnegative, denoted by A≥ 0, if A is nonnegative
entry-wise. The notation A ≤ 0 is understood in the obvious
manner. For a square matrix A, the maximum real part of
its eigenvalues, called the spectral abscissa of A, is denoted
by η(A). We say that A is Metzler if the off-diagonal entries
of A are all non-negative. It is easy to see that, if A is Metzler,
then eAt ≥ 0 for every t ≥ 0. The Kronecker product [15] of
two matrices A and B is denoted by A⊗B, and the Kronecker
sum of two square matrices A∈Rp×p and B∈Rq×q is defined
by

A⊕B = A⊗ Iq + Ip⊗B.

Given a collection of n matrices A1, . . . ,An having the same
number of columns, the matrix obtained by stacking the
matrices in vertical (A1 on top) is denoted by col(A1, . . . ,An).

An undirected graph is a pair G = (V ,E), where V =
{1, . . . ,n} is the set of nodes, and E ⊂ V ×V is the set of
edges, consisting of distinct and unordered pairs {i, j} for
i, j ∈ V . We say that a node i is a neighbor of j (or that i and j
are adjacent) if {i, j} ∈ E . The set of neighbors of node i is
denoted by Ni. The adjacency matrix of G is defined as the
n× n matrix whose (i, j)-th entry is 1 if and only if nodes i
and j are adjacent, 0 otherwise.

We let P(·) denote the probability of events. The expectation
of a random variable is denoted by E[·]. A Poisson counter [6,
Chapter 4] of rate λ > 0 is denoted by Nλ . In this paper,
we extensively use a specific class of stochastic differential
equations with Poisson jumps, described below. For each
i ∈ [m], let fi : R×R → R be a continuous function, Nλi
be a Poisson counter, and κi be a continuous-time, real,
and stationary stochastic process defined over the probability
space Ω. All the above stochastic processes are assumed to
be independent of each other. Then, we say that a real and
right-continuous function x is a solution of the stochastic
differential equation

dx =
m

∑
i=1

fi(x(t),κi(t))dNλi , (1)

if x is constant on any interval where none of the counters Nλ1 ,
. . . , Nλm jumps, and

x(t) = x(t−)+ fi(x(t−),κi(t))

when Nλi jumps at time t. This definition can be naturally
extended to the vector case. Below, we present two lemmas for
this class of stochastic differential equations. The first lemma
states a version of Itô’s formula:

Lemma II.1. Assume that x is a solution of (1). Let g be a
real continuous function. Then, y(t) = g(x(t)) is a solution of
the stochastic differential equation

dy =
m

∑
i=1

[g(x(t)+ fi (x(t),κi(t)))−g(x(t))]dNλi ,

i.e., y satisfies

y(t) = y(t−)+g
(
x(t−)+ fi(x(t−),κi(t))

)
−g(x(t−)),

if the Poisson counter Nλi jumps at time t and is constant over
any interval in which none of the counters Nλ1 , . . . ,Nλm jumps.

Proof. Assume that the counter Nλi jumps at time t. Since x is
the solution of the stochastic differential equation (1), it fol-
lows that y(t)−y(t−) = g(x(t−)+ fi(x(t−),κi(t)))−g(x(t−)),
as desired.

We also state the following lemma concerning the expecta-
tion of the solution to the stochastic differential equation (1):

Lemma II.2. Assume that x is a solution of (1). If the
functions f1, . . . , fm are affine with respect to the second
variable, then

d
dt

E[x(t)] =
m

∑
i=1

E
[

fi(x(t),E[κi(t)])
]
λi. (2)

Proof. By the assumption, for each i ∈ [m] we can take real
functions fi,1 and fi,2 such that fi(a,b) = fi,1(a)+b fi,2(a) for
every a,b ∈ R. Let t ≥ 0 and h > 0 be arbitrary. We have the
following three possibilities: (i) no counter jumps on the time
interval [t, t+h]; (ii) exactly one counter jumps in the interval;
or (iii) more than one counter jumps in the interval. The
first case happens with probability 1−(λ1+ · · ·+λm)h+o(h).
For the second case, for each i ∈ [m], one and the only one
counter Nλi jumps on the time interval [t, t+h] with probability
λih+o(h). In this case we have

x(t +h) = x(t)+ fi(x(t),κi(τ))
= x(t)+ fi,1(x(t))+κi(τ) fi,2(x(t))

for some τ ∈ [t, t +h] and, therefore,

E[x(t +h)] = E[x(t)]+E[ fi,1(x(t))]+E[κi(τ)]E[ fi,2(x(t))]

= E[x(t)]+E
[

fi(x(t),E[κi(t)])
]

because κi is a stationary stochastic process. Finally, the third
case occurs with probability o(h). Summarizing, we have
shown that

E[x(t +h)]−E[x]
h

=
o(h)

h
+

m

∑
i=1

E
[

fi(x(t),E[κi(t)])
]
λi,

which proves (2) in the limit of h→ 0.
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III. SIS MODEL WITH GENERAL TRANSMISSION AND
RECOVERY TIMES

The aim of this section is to introduce the generalized
networked susceptible-infected-susceptible (GeNeSIS) model,
which will allow us to analyze the effect of non-exponential
transmission and recovery times in the spreading dynamics.

A. Generalized Networked SIS Model

We start by giving a brief overview of the standard SIS
model (see, e.g., [28], [37]). Let G = (V ,E) be an undirected
and unweighted graph with n nodes. In the SIS model, at
a given (continuous) time t ≥ 0, each node can be in one
of two possible states: susceptible or infected. If a neighbor
of node i is infected, then this neighbor can infect node i
with an instantaneous rate βi, where βi > 0 is called the
transmission rate of node i. Therefore, while being infected,
the neighbor attempts to infect node i with the inter-event times
following an exponential distribution of rate βi. On the other
hand, when a node i is infected, it can randomly transition to
the susceptible state with an instantaneous rate δi > 0, called
the recovery rate of node i. This implies that the time it
takes for an infected node i to recover follows an exponential
distribution of rate δi.

Before we introduce the generalized networked susceptible-
infected-susceptible (GeNeSIS) model, we introduce the fol-
lowing notations. We describe the state of a node i ∈ V by a
{0,1}-valued continuous-time stochastic process, denoted by
zi = {zi(t)}t∈R. We say that node i is susceptible (respectively,
infected) at time t if zi(t) = 0 (respectively, zi(t) = 1). We
assume that the function zi is continuous from the right for
all i ∈ [n]. Under this assumption, we say that node i be-
comes infected (respectively, becomes susceptible) at time t if
zi(t−) = 0 and zi(t) = 1 (respectively, zi(t−) = 1 and zi(t) = 0).
It is assumed that all nodes are susceptible before time t = 0,
i.e., zi(t) = 0 for t < 0. We now introduce the GeNeSIS model
as follows.

Definition III.1. We say that the family z = {zi}i∈[n] of
stochastic processes is a generalized networked susceptible-
infected-susceptible model (GeNeSIS model, for short) if there
exist a subset V0 ⊂ [n], as well as random variables

0 = τ ji
0 (t)< τ ji

1 (t)< · · · ,
and ρ i(t)> 0 satisfying the following conditions for all i∈ [n],
j ∈Ni, and t ≥ 0:

a) Node i becomes infected at time t = 0 if and only if
i ∈ V0, i.e., V0 is the initially infected subset.

b) Assume that node i becomes infected at time t. Then,
node i remains infected during the time interval [t, t +
ρ i(t)) and becomes susceptible at time t+ρ i(t), i.e., the
random variable ρ i(t) is the recovery time of node i;

c) If node i becomes infected at time t, then, until its
recovery, the node attempts to infect node j ∈ Ni at
times {t + τ ji

k (t)}k∈N, i.e., if node j is susceptible at
time t + τ ji

k (t) for any k ∈ N, then node j becomes
infected.

Remark III.2. We call the random increments {τ ji
k (t) −

τ ji
k−1(t)} j∈Ni, t≥0,k∈N the transmission times of node i, since

the difference τ ji
k (t)−τ ji

k−1(t) represents the time between in-
fection attempts from an infected node i towards a neighboring
node j. Note that, when all the recovery and transmission times
follow exponential distributions, the GeNeSIS model recovers
the standard networked SIS model described at the beginning
of this subsection.

Notice that the origin (i.e., zi = 0 for all i ∈ V) is an
absorbing state of the GeNeSIS dynamics. In what follows, we
will refer to the origin as the infection-free equilibrium. The
aim of this paper is to quantify the transient dynamics of the
generalized SIS model according to the following definition:

Definition III.3. The exponential decay rate of the GeNeSIS
model is defined by

λ =− sup
V0⊂[n]

limsup
t→∞

log∑
n
i=1 E[zi(t)]

t
.

Since the sum ∑
n
i=1 E[zi(t)] equals the expected number of

infected nodes at time t, the decay rate λ quantifies how
fast the infectious spreading process dies out in the network
(in average). Besides quantifying the impact of contagious
spreading processes over networks [12], [20], [47], the ex-
ponential decay rate has been used as a standard tool for
measuring the performance of strategies aiming to contain
epidemic outbreaks [1], [13], [39], [48]. We further remark
that, although exponential distributions are not necessarily
appropriate for modeling realistic transmission and recovery
times as discussed in the Introduction, the exponential decay
rate is still a valid quantity for measuring the spreading
capability of epidemic processes.

B. Phase-type Transmission and Recovery Times

In this paper, we consider the GeNeSIS model with trans-
mission and recovery times following phase-type distribu-
tions [2]. In what follows, we briefly describe this class
of probability distributions. Consider a time-homogeneous
Markov process x in continuous-time with p+1 (p∈N) states
(also called phases) such that the states 1, . . . , p are transient
and the remaining state p+ 1 is absorbing. The infinitesimal
generator of the process is then necessarily of the form[

T b
0 0

]
, b =−T1p, (3)

where T ∈ Rp×p is an invertible Metzler matrix with non-
positive row-sums. Let[

φ
0

]
∈ Rp+1 (φ ∈ Rp)

denote the initial distribution of the Markov process x, i.e.,

P(x(0) = m) =

{
φm, m ∈ [p],
0, m = p+1.

Then, the time to absorption into the state p+1 is a random
variable following a phase-type distribution, which we denote
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by the pair (φ ,T ). In the rest of the paper, we make the follow-
ing assumption on the distribution of (random) transmission
and recovery times in the GeNeSIS model:

Assumption III.4. Transmission and recovery times of all
nodes follow phase-type distributions (φ ,T ) and (ψ,R), re-
spectively.

The class of phase-type distributions include various dis-
tributions of theoretical and practical interests. For example,
if we choose the parameters p = 1, T = −β , and φ = 1,
then the phase-type distribution (φ ,T ) equals an exponential
distribution with mean 1/β . A phase-type distribution can also
represent various classes of distributions including the Erlang,
Coxian, and hyper-exponential distributions [8]. Furthermore,
it is known that the set of phase-type distributions is dense
in the set of positive-valued distributions [9]. Therefore, it is
possible to approximate an arbitrary distribution by a phase-
type distribution within any given accuracy. Moreover, there
are efficient numerical algorithms for finding the parame-
ters of an approximating phase-type distribution [2]. Hence,
under Assumption III.4, the GeNeSIS model allows us to
efficiently approximate realistic spreading processes having
non-Markovian transmission and recovery distributions.

IV. VECTORIAL REPRESENTATIONS

The aim of this section is to introduce a vectorial repre-
sentation of the GeNeSIS model under Assumption III.4. We
start our exposition by providing a vectorial representation
of an arbitrary phase-type distribution (Subsection IV-A),
and then present a vectorial representation of the GeNeSIS
model (Subsection IV-B) that shall be used in Section V for
analyzing the decay rate of the spreading model.

A. Vectorial Representation of Phase-Type Distributions

In what follows, we use the following notation: For m,m′ ∈
[p], let Emm′ denote the p× p matrix whose entries are all
zeros, except for its (m,m′)-th entry being one. Also, let em
denote the m-th vector of the canonical basis in Rp (i.e., all the
entries of em are zeros, except for the m-th entry being one).
Finally, given a probability distribution φ on [p], we say that
an Rp-valued random variable x follows the distribution φ ,
denoted by x∼ φ , if

P(x = em) = φm

for every m ∈ [p].
By identifying the state space of the underlying Markov

process by the set of vectors {e1, . . . ,ep,0}⊂Rp, the following
proposition allows us to represent the phase-type distribution
as the exit time (see [34, p. 117]) of a vectorial stochastic
differential equation:

Proposition IV.1. Let (φ ,T ) be a phase-type distribution
having p+1 phases (i.e., T ∈Rp×p) and define the vector b∈
Rp as in (3). Consider the Rp-valued stochastic differential
equation

dx =
p

∑
m=1

p

∑
m′=1

(Em′m−Emm)xdNTmm′ −
p

∑
m=1

EmmxdNbm , (4)

with random initial condition x(0) ∼ φ . Then, the random
variable

ρ = min{t > 0: x(t) = 0}
= min{t > 0: ∃m ∈ [p] such that x(t−) = em,

and Nbm jumps at time t}
(5)

follows (φ ,T ).

Proof. A detailed investigation of the differential equation (4)
shows that the solution x of (4) is a Markov process with
state space {e1, . . . ,ep,0} ⊂ Rp and infinitesimal generator
given by (3). This fact specifically shows that the second
equality in (5) is true. Furthermore, since x(0) follows the
probability distribution φ , the time to absorption of the
stochastic process x into the absorbing state 0 follows the
phase-type distribution (φ ,T ). This completes the proof of the
proposition.

The stochastic differential equation (4) shall be used for
describing phase-type recovery events in the proof of our first
main result (Theorem V.2). On the right-hand side of the
stochastic differential equation (4), the first term represents
the transitions between non-absorbing states, while the second
term represents the transitions into the absorbing state.

In order to derive stochastic differential equations for trans-
mission events, we appropriately modify the second term in
the stochastic differential equation (4) and derive a vectorial
representation for renewal sequences (see, e.g., [6, Chapter 9])
whose inter-renewal times follow a phase-type distribution:

Proposition IV.2. Let (φ ,T ) be a phase-type distribution. Let
eφ = {eφ (t)}t≥0 be independent and identically distributed
random variables such that eφ (t) follows the distribution φ
for all t ≥ 0. Consider the Rp-valued stochastic differential
equation

dx =
p

∑
m=1

p

∑
m′=1

(Em′m−Emm)xdNTmm′

+
p

∑
m=1

(eφ (t)e>m−Emm)xdNbm

(6)

with a random initial state x(0) following the distribution φ .
Define τ0 = 0 and let 0 < τ1 < τ2 < · · · be the (random) times
at which x(t−) = em and the counter Nbm jumps for some m ∈
[p]. Then, the increments {τk−τk−1}k∈N are independent and
identically distributed random variables following (φ ,T ).

Proof. Since the stochastic differential equation given in the
proposition is equivalent to the one in Proposition IV.1 on
the time interval [0,τ1), the random variable τ1 has the same
probability distribution as the random variable ρ defined in (5)
and, therefore, follows the phase-type distribution (φ ,T ) by
Proposition IV.1. Furthermore, by the definition of τ1, there
exists an m ∈ [p] such that x(τ1) = (eφ (τ1)e>m −Emm)x(τ−1 )+
x(τ−1 ) = eφ (τ1), which follows φ . Therefore, by the same
argument as above, we see that the random increment τ2−τ1
also follows (φ ,T ). An induction completes the proof.

Using Propositions IV.1 and IV.2 as the machinery for
describing phase-type recovery and transmission events, in the
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next subsection we present a set of vectorial stochastic differ-
ential equations for describing the whole GeNeSIS spreading
model.

B. Vectorial Representation of the Generalized SIS Model

In this subsection, we use Propositions IV.1 and IV.2 to
provide a vectorial representation of the GeNeSIS model under
Assumption III.4. Let A = [ai j]i, j be the adjacency matrix of
the graph G. Define the vectors b and d by (3) and

d =−R1q ∈ Rq,

respectively. For `,`′ ∈ [q], let F̀ `′ denote the q× q matrix
whose entries are all zeros, except for its (`,`′)-th entry being
one. Also, let f` denote the `-th vector in the canonical basis
of Rq. Finally, for i, j ∈ [n] and γ > 0, we let Ni j

γ and Ni
γ denote

independent Poisson counters with rate γ . The next theorem
is the first main result of this paper:

Theorem IV.3. For each i ∈ [n] and j ∈ Ni, let e ji
φ =

{e ji
φ (t)}t≥0 and f i

ψ = { f i
ψ(t)}t≥0 be independent and identi-

cally distributed random variables such that

e ji
φ (t)∼ φ , f i

ψ(t)∼ ψ

for all t ≥ 0. Let x ji and yi be, respectively, the Rp- and Rq-
valued stochastic processes satisfying the following stochastic
differential equations:

dx ji =
p

∑
m=1

p

∑
m′=1

(Em′m−Emm)x ji dN ji
Tmm′

+
p

∑
m=1

(e ji
φ e>m−Emm)x ji dN ji

bm

− x ji
q

∑
`=1

yi
` dNi

d` + e ji
φ (1−1>q yi)

n

∑
k=1

aik

p

∑
m=1

xik
m dNik

bm
, (7)

dyi =
q

∑
`=1

q

∑
`′=1

(F̀ ′`− F̀ `)yi dNi
R``′

− yi
q

∑
`=1

yi
` dNi

d` + f i
ψ(1−1>q yi)

n

∑
k=1

aik

p

∑
m=1

xik
m dNik

bm
, (8)

where for an initially infected subset V0 ⊂ [n], the initial
conditions satisfy{

x ji(0)∼ φ , yi(0)∼ ψ, if i ∈ V0,

x ji(0) = 0p, yi(0) = 0q, otherwise.
(9)

Then, the generalized networked SIS model in Definition III.1
with transmission and recovery times following, respectively,
phase-type distributions (φ ,T ) and (ψ,R) can be equivalently
described as the family of stochastic processes z = {zi}n

i=1,
where

zi(t) = 1>q yi(t) (10)

for all t ≥ 0 and i ∈ [n].

The representations of the GeNeSIS model as the set of
stochastic differential equations (7) and (8) allows us to
analyze the model via symbolic computations, as will be
illustrated in Section V. Before proceeding to the proof of
Theorem IV.3, we provide an intuitive explanation of the

theorem. As is shown in Corollary IV.5 below, the variable x ji

is related to spread of the infection from an infected node i to
a susceptible node j, while yi controls the recovery process of
node i. Specifically, on the right-hand side of the differential
equation (7), the first two terms have the same structure as in
(6) and correspond to renewal sequences of transmissions. The
third and fourth terms represent the recovery and infection of
node i, respectively. Similarly, on the right-hand side of the
differential equation (8), the first two terms correspond to the
phase-type recovery and have almost the same structure as
in (4), while the remaining last term is related to the infection
of the node i.

In order to prove Theorem IV.3, we first state the following
lemma.

Lemma IV.4. The following statements are true for all i∈ [n],
j ∈Ni, and t ≥ 0:

1) 1>p x ji(t) = 1>q yi(t).
2) x ji(t) ∈ {0p,e1, . . . ,ep}.
3) yi(t) ∈ {0q, f1, . . . , fq}.

Proof. To prove the first statement, fix i ∈ [n] and j ∈Ni, and
let

ε = 1>p x ji−1>q yi.

From (7) and (8), we obtain that

dε = ε
q

∑
`=1

yi
` dNi

d` .

This equation implies that ε is constant over [0,∞) because
ε(0) = 0. Therefore, we have ε(t) = ε(0) = 0 for every t ≥ 0,
completing the proof of the first statement.

Let us prove the second and third statements. Notice that
x ji and yi are piecewise constant since they are the solutions
of the stochastic differential equations (7) and (8). Moreover,
their values can change only when one of the Poisson counters
in the stochastic differential equations jumps. Finally, if we let

U = {0p,e1, . . . ,ep},
V = {0q, f1, . . . , fq},

then, (9) shows x ji(0) ∈ U and yi(0) ∈ V . Therefore, it is
sufficient to show that the jump of any Poisson counter leaves
the sets U and V invariant.

Let t > 0 be arbitrary and assume that x ji(t−) ∈ U
and yi(t−)∈V . The stochastic differential equations (7) and (8)
have the following five different types of Poisson counters:
Nik

bm
, Ni

d`
, N ji

Tmm′
, Ni

R``′
, and N ji

bm
. Careful investigations of the

stochastic differential equations (7) and (8) show that any of
these counters leave the sets U and V invariant as follows. For
example, when Nik

bm
jumps at time t, we have that

x ji(t) =x ji(t−)+ e ji
φ (t)(1−1>q yi(t−))aikxik

m(t
−)

=

{
x ji(t−), if 1>q yi(t−) = 1, aik = 0, or xik

m(t
−) = 0,

e ji
φ (t), otherwise.

(11)
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Also,

yi(t) = yi(t−)+ f i
ψ(t)(1−1>q yi(t−))aikxik

m(t
−)

=

{
yi(t−), if 1>q yi(t−) = 1, aik = 0, or xik

m(t
−) = 0,

f i
ψ(t), otherwise.

(12)
Therefore, this jump leaves U and V invariant. Similarly, when
Ni

d`
jumps at time t, we obtain

x ji(t) = x ji(t−)− x ji(t−)yi
`(t
−)

=

{
0, if yi

`(t
−) = 1,

x ji(t−), otherwise,

(13)

and hence x ji(t) ∈U . We also have yi(t) ∈V because

yi(t) = yi(t−)− yi(t−)yi
`(t
−)

=

{
0, if yi

`(t
−) = 1,

yi(t−), otherwise.

(14)

The cases of other counters can be analyzed in a similar
manner and, therefore, the proofs are omitted.

The next corollary of Lemma IV.4 clarifies the roles of
the variables x ji, yi and the various Poisson counters in the
stochastic differential equations (7) and (8).

Corollary IV.5. The following statements are true for every
i ∈ [n], j ∈Ni, and t ≥ 0:

1) Node i attempts to infect node j at time t, if and only if,
x ji

m(t−) = 1 and N ji
bm

jumps at time t for some m ∈ [p].
2) Node i becomes susceptible at time t, if and only if,

yi
`(t
−) = 1 and Ni

d`
jumps at time t for some ` ∈ [q].

Proof. From the proof of Lemma IV.4, the value of zi =
1>p x ji = 1>q yi can change from zero to one when and only
when a counter Nik

bm
jumps. Therefore, from equations (11)

and (12), we see that node i becomes infected at time t ≥ 0, if
and only if, zi(t−)= 0, node i is adjacent to node k, xik

m(t
−)= 1,

and Nik
bm

jumps at time t for some m ∈ [p]. Therefore, node k
attempts to infect node i at time t if and only if xik

m(t
−) = 1

and Nik
bm

jumps at time t for some m ∈ [p], as desired.
Similarly, we see that the value of zi can change from one

to zero when and only when a counter Ni
d`

jumps. Therefore,
equations (13) and (14) imply that node i becomes susceptible
at time t if and only if yi

`(t
−) = 1 and the counter Ni

d`
jumps

at time t for some ` ∈ [q], showing the second assertion of the
corollary.

Now we are ready to prove Theorem IV.3.

Proof of Theorem IV.3. We prove that the family of stochastic
processes z = {zi}n

i=1, defined by (7)–(10), satisfies items a)-c)
in Definition III.1, as well as Assumption III.4. Item a) is true
by the given initial conditions. Let us prove item b). Assume
that node i becomes infected at time t ≥ 0; hence, we have
that either t = 0 or t > 0. In this proof, we only consider the
case t = 0, as the other case can be proved in a similar way.
Let ρ be the earliest time at which yi(ρ) = 0q. Then, on the

time interval [0,ρ), the stochastic differential equation (8) is
equivalent to

dyi =
q

∑
`=1

q

∑
`′=1

(F̀ ′`− F̀ `)yi dNi
R``′
−

q

∑
`=1

F̀ `yi dNi
d`

since yiyi
` = F̀ `yi. Moreover, the vector yi(0) follows the

distribution ψ . Therefore, by Proposition IV.1, we see that
ρ follows the phase-type distribution (ψ,R), proving item b)
in Definition III.1 under Assumption III.4 for t = 0. A similar
discussion using Proposition IV.2 shows that the family of
stochastic processes z satisfies item c) in Definition III.1
under Assumption III.4. This completes the proof of the
theorem.

Before presenting our analysis of the decay rate in the next
section, we state another corollary of Lemma IV.4:

Corollary IV.6. The family of stochastic processes

ξ = {x ji,yi}i∈[n], j∈Ni , (15)

where x ji and yi are the solutions of the stochastic differential
equations (7) and (8), is a Markov process. Moreover, the
states of ξ are all transient except for the absorbing state α at
which x ji = 0 and yi = 0 for all i∈ [n] and j∈Ni. Furthermore,
the size of the state space of ξ equals

Nξ =
n

∏
i=1

(1+ p|Ni|q),

where |Ni| denotes the size of the neighbor set Ni.

Proof. A careful investigation of the proof of Lemma IV.4
shows the first and the second claims. The third claim is an
immediate consequence from the constraint 1>p x ji(t) = 1>q yi(t)
that was proved in Lemma IV.4.

V. DECAY RATE ANALYSIS

In this section, we use our previous results to bound the
exponential decay rate of the GeNeSIS model under Assump-
tion III.4. We begin by presenting a characterization of the
decay rate in terms of the eigenvalues of a matrix whose size
grows exponentially with respect to the model parameters. To
overcome the difficulty of computing the eigenvalues of a very
large matrix, we then present an alternative bound on the decay
rate based on the representation of the GeNeSIS model as the
stochastic differential equations (7) and (8).

Throughout this section, we consider the GeNeSIS model
with transmission and recovery times following, respectively,
phase-type distributions (φ ,T ) and (ψ,R) (i.e., satisfying As-
sumption III.4). The following proposition illustrates the com-
putational difficulty in computing the exponential decay rate
of the GeNeSIS model:

Proposition V.1. Let Q∈RNξ×Nξ be the transition rate matrix
of the Markov process ξ (see (15) for the definition of ξ ), and
let r < 0 be the maximum real part of the non-zero eigenvalues
of Q. Then, the exponential decay rate of the GeNeSIS model
is given by

λ =−r.
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Proof. Since ξ (t) 6= α if and only if at least one node is
infected at time t, we have the inequality

E[zi(t)]≤ P(ξ (t) 6= α)≤
n

∑
i=1

E[zi(t)]

for all i ∈ [n] and t ≥ 0. Therefore, the exponential decay
rate of the GeNeSIS model is determined by that of the
function P(ξ (t) 6=α) of t. By Corollary IV.6, a basic argument
on Markov processes (see [46] for the case of exponential
transmission and recover times) shows that i) if λ <−r, there
exists a constant C > 0 such that P(ξ (t) 6= α)≤Ce−λ t for all
t and any initial state ξ (0), and ii) if λ >−r, there exists an
initial state of ξ such that the function P(ξ (t) 6= α) cannot be
bounded from above by the exponential function Ce−λ t for any
value of C. These observations immediately prove the claim
of the proposition.

Proposition V.1 yields the exact value of the decay rate,
since the proposition uses the transition rate matrix of the
whole Markov process ξ that exactly describes the GeNeSIS
model. However, Proposition V.1 is not easily applicable in
practice because the dimension Nξ of the matrix Q grows
exponentially as

Nξ ≥
n

∏
i=1

(p|Ni|q) = p2mqn, (16)

where m denotes the number of the edges in the network. The
following theorem overcomes this computational difficulty by
providing a lower bound on the growth rate in terms of the
eigenvalues of a matrix whose size grows linearly with respect
to the parameters in the GeNeSIS model.

Theorem V.2. Define the (npq)× (npq) matrix

A= (φb>)⊗A⊗(ψ1>q )+ Inp⊗R>+(T>+φb>)⊗ Inq, (17)

where A is the adjacency matrix of the graph G and the
vector b is defined in (3). Then,

λ ≥−η(A), (18)

where η(A) is the spectral abscissa of A.

Before providing a proof of Theorem V.2, we below present
a series of corollaries of the theorem. The proofs of the
corollaries are straightforward and, therefore, omitted. The first
corollary gives a bound on the decay rate of the GeNeSIS
model with exponential transmission times and phase-type
recovery times.

Corollary V.3. Assume that the transmission times follow an
exponential distribution with mean 1/β . Define the (nq)×(nq)
matrix

Aβ = βA⊗ (ψ1>q )+ In⊗R>

Then, the decay rate satisfies λ ≥−η(Aβ ).

The next corollary deals with the dual case with phase-type
transmission times and exponential recovery times.

Corollary V.4. Assume that the recovery times follow an
exponential distribution with mean 1/δ . Define the (np)×(np)

matrix

Aδ = (φb>)⊗A+(T>+φb>)⊗ In−δ Inp.

Then, the decay rate satisfies λ ≥−η(Aδ ).

As the special case of Theorem V.2, as well as Corollar-
ies V.3 and V.4, we can prove the following bound on the
decay rate of the standard SIS model:

Corollary V.5 ([12], [39]). Assume that the transmission and
recovery times follow exponential distributions with means
1/β and 1/δ , respectively. Define the n×n matrix

Aβ ,δ = βA−δ In.

Then, the decay rate satisfies λ ≥−η(Aβ ,δ ).

The above corollaries suggest an intuitive understanding of
the terms in the matrix A defined in (17). Comparing the
expressions of the matrices Aδ and Aβ ,δ , we see that the role
of the exponential transmission rate β is played by the p× p
matrix φb> in the case of phase-type transmission times. On
the other hand, the second term of the matrix Aδ , namely,
(T>+φb>)⊗ In, can be understood as a correction term that
arises independently of the topology of the network. Similarly,
comparing the matrices Aβ and Aβ ,δ , we see that the second
term In⊗R> of the matrix Aβ represents the effect of phase-
type recoveries. On the other hand, we can understand the
matrix ψ1>q as a correction term resulting from using phase-
type recovery times.

We now give the proof of Theorem V.2.

Proof of Theorem V.2. Combining equations (7) and (8), we
obtain the following Rp+q-valued stochastic differential equa-
tion

d
[

x ji

yi

]
=

p

∑
m=1

p

∑
m′=1

[
(Em′m−Emm)x ji

0nq

]
dN ji

Tmm′

+
p

∑
m=1

[
(e ji

φ e>m−Emm)x ji

0nq

]
dN ji

bm

+
q

∑
`=1

q

∑
`′=1

[
0np

(F̀ ′`− F̀ `)yi

]
dNi

R``′

+
q

∑
`=1

[
−x jiyi

`
−yiyi

`

]
dNi

d`

+
n

∑
k=1

p

∑
m=1

aik

[
e ji

φ (1−1>q yi)xik
m

f i
ψ(1−1>q yi)xik

m

]
dNik

bm
.

Then, we apply Itô’s formula in Lemma II.1 using the function

g
([

x ji

yi

])
= w ji = x ji⊗ yi

to obtain the following Rpq-valued stochastic differential equa-
tion (after tedious, but simple, algebraic manipulations)

dw ji =
p

∑
m=1

p

∑
m′=1

(
(Em′m−Emm)⊗ Iq

)
w ji dN ji

Tmm′

+
p

∑
m=1

(
(e ji

φ e>m−Emm)⊗ Iq
)
w ji dN ji

bm
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+
q

∑
`=1

q

∑
`′=1

(
Ip⊗ (F̀ ′`− F̀ `)

)
w ji dNi

R``′

+
q

∑
`=1

(−yi
`w

ji)dNi
d`

+
n

∑
k=1

p

∑
m=1

aik(e
ji
φ ⊗ f i

ψ)(1−1>pqw ji)(e>m⊗1>q )w
ik dNik

bm
.

(19)

For brevity, we omit the details of this derivation. Define

ω ji(t) = E[w ji(t)]

for t ≥ 0. Then, using Lemma II.2, from (19) we can derive
the Rpq-valued differential equation

dω ji

dt
=
[
(T>+B)⊗ Iq +(φb>−B)⊗ Iq

+
(
Ip⊗ (R>+D)

)]
ω ji− (Ip⊗D)ω ji

+(φ ⊗ψ)(e>m⊗1>q )
p

∑
m=1

bm

n

∑
k=1

(aikωik)− ε ji, (20)

where B and D are the n × n diagonal matrices having
the diagonals b1, . . . ,bn and d1, . . . ,dn, respectively, and the
Rpq-valued function ε ji is defined by

ε ji(t) =
n

∑
k=1

p

∑
m=1

bmaik(φ ⊗ψ)E[1>pqw ji(t)(e>m⊗1>q )w
ik(t)]

(21)
for every t ≥ 0.

Now, for every i∈ [n], we take an arbitrary ji ∈Ni. We then
define the function ωi by ωi = ω jii, as well as the Rnpq-valued
function

ω = col(ω1, . . . ,ωn).

Notice that, from (19), for each i ∈ [n], all the stochastic
processes in the set {w ji} j∈Ni follow the same stochastic
differential equation and, therefore, present the same proba-
bility distribution. This implies that ωi = ω ji for every j ∈Ni.
Therefore, we can rewrite the last summation appearing in (20)
as ∑

n
k=1 aikωik = ∑

n
k=1 aikωk = (Ai⊗ Ipq)ω , where Ai denotes

the i-th row of the adjacency matrix A. Then, from (11), it
follows that

dωi

dt
=
(

T>⊗ Iq + Ip⊗R>+(φb>)⊗ Iq

)
ωi

+
(

Ai⊗ (φb>)⊗ (ψ1>q )
)

ω− ε jii.

Defining
ε = col(ε j11, . . . ,ε jnn),

we obtain the differential equation

dω
dt

=A′ω− ε,

for the matrix A′ = In⊗ (T>⊗ Iq + Ip⊗R>+(φb>)⊗ Iq)+
A⊗ (φb>)⊗ (ψ1>q ).

Since A′ is Metzler, we have that eA
′t ≥ 0 for every t ≥ 0.

Also, since both x ji(t) and yi(t) are nonnegative for all i∈ [n],
j ∈ Ni, and t ≥ 0, we have that ε(t) ≥ 0 for every t ≥ 0.

Therefore, it follows that

ω(t) = eA
′tω(0)−

∫ t

0
eA
′(t−τ)ε(τ)dτ ≤ eA

′tω(0).

This inequality implies that ω(t) converges to zero as t→ ∞

with a decay rate at least −η(A′) since ω(t)≥ 0 for all t ≥ 0.
On the other hand, for each i ∈ [n] and j ∈Ni, we have

1>pqw ji(t) = (1>p x ji(t))(1>q yi(t)) = 1>q yi(t) = zi(t)

from Lemma IV.4. Therefore, we have E[zi(t)] = 1>pqω ji(t),
which shows the exponentially fast convergence of E[zi(t)]
towards zero with a decay rate at least−η(A′). This completes
the proof of the inequality (18) since A′ and A are similar.

Remark V.6. Unlike the necessary and sufficient condition
in Proposition V.1, the condition in Theorem V.2 is only
sufficient. This conservatism arises from ignoring the higher-
order term ε ji in (21). The inclusion of these higher-order
terms into the analysis (see, e.g., [33], [41]) would allow
us to reduce the conservatism, at the cost of increasing the
dimension of the matrix A .

VI. NUMERICAL SIMULATIONS

In this section, we illustrate the effectiveness of our re-
sults with numerical simulations in a real social network
having n = 247 nodes and 940 edges. We focus on log-
normal transmission and recovery times, which are observed
in empirical studies, including information spread on online
social networks [11], [45] and human epidemiology [22], [26].
In our simulations, we illustrate the effect of using exponential
distributions to model transmission and recovery times that,
in reality, follow log-normal distributions. In particular, we
analyze how using standard Markovian models with expo-
nential rates induce errors in the computation of the decay
rate. Furthermore, we are also interested in how the variances
of log-normal distributions, which cannot be incorporated
into the standard Markovian model, affect the decay rates.
For this purpose, we use the following four distributions to
model transmission and recovery times in the GeNeSIS model:
(i) the exponential distribution with mean µ (and, hence,
variance µ2); (ii) the log-normal distribution with mean µ and
variance µ2; (iii) the log-normal distribution with mean µ and
variance 2µ2; and (iv) the log-normal distribution with mean µ
and variance 4µ2.

In order to analyze the decay rate of the GeNeSIS model
whose transmission and recovery times follow one of these
four distributions, we first approximate the three log-normal
distributions in (ii)–(iv) using phase-type distributions (as
described in Section III) having p = 10 phases. Fig. 1 shows
the probability density functions of the (exact) log-normal dis-
tributions, as well as the fitted phase-type distributions, when
the value of the parameter µ is in the range [0.5 : 0.1 : 1.5].
We notice that, since the inequality (16) shows that the size of
the exact state transition matrix satisfies Nξ > 102127, it is not
practical to use Proposition V.1 to compute the exact decay
rate.

Using the proposed phase-type distributions, we apply
Theorem V.2 to analyze the decay rate of the GeNeSIS
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(a) Log-normal distributions (solid lines) with
mean µ and variance µ2, and their phase-type
approximations (dashed lines).

(b) Log-normal distributions (solid lines) with
mean µ and variance 2µ2, and their phase-type
approximations (dashed lines).

(c) Log-normal distributions (solid lines) with
mean µ and variance 4µ2, and their phase-type
approximations (dashed lines).

Fig. 1. Approximations by phase-type distributions. Solid: Probability density functions of the log-normal distributions for µ in the range [0.5 : 0.1 : 1.5].
Dashed: Probability density functions of phase-type distributions. The darker the colors of the plots, the smaller the values of µ .
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model when the transmission/recovery times follow one of
the four distributions described above. We compute the decay
rate −η(A) for each one of the possible sixteen combinations
of transmission/recovery distributions when µ is in the range
[0.5 : 0.05 : 1.5]. In the subfigures of Fig. 2, we include contour
plots of the decay rates for these sixteen cases. In the figure,
the values of the decay rates are indicated by different colors.
The darker the color, the faster the epidemics converges to the
infection-free equilibrium.

We remark that, even though the four distributions used in
our simulations have the same mean, the resulting GeNeSIS

models exhibit different decay rates. We can furthermore
observe that the variances of the distributions used to model
transmission and recovery times can dramatically affect the de-
cay rate of the GeNeSIS model, as was previously indicated by
numerical simulations [47] and mean-field approximations [5].
For a fixed recovery distribution (i.e., for a fixed column in the
table in Fig. 2), the colored region (indicated by black solid
lines) shrinks as we increase the variance of the log-normal
distribution modeling the transmission times (see rows 2 to 4
in Fig. 2). From this observation, we see that the heavier the
tail of the transmission distribution, the slower the extinction
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rate −η(A) for each one of the possible sixteen combinations
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plots of the decay rates for these sixteen cases. In the figure,
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our simulations have the same mean, the resulting GeNeSIS

models exhibit different decay rates. We can furthermore
observe that the variances of the distributions used to model
transmission and recovery times can dramatically affect the de-
cay rate of the GeNeSIS model, as was previously indicated by
numerical simulations [47] and mean-field approximations [5].
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table in Fig. 2), the colored region (indicated by black solid
lines) shrinks as we increase the variance of the log-normal
distribution modeling the transmission times (see rows 2 to 4
in Fig. 2). From this observation, we see that the heavier the
tail of the transmission distribution, the slower the extinction
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of the spreading process, as was numerically confirmed in [47].
We also observe that for a fixed transmission distribution (i.e.,
for a fixed row in the table), the colored region remains almost
unaltered as we increase the variance of the distribution mod-
eling the recovery time, confirming the validity of the mean-
field analysis in [5] for the case of exponential transmission
times. We can furthermore observe that the exponential decay
rate −η(A) increases more abruptly inside the region as
we decrease this variance as indicated by steeper gradients.
The above observations illustrate the effectiveness of the
proposed framework for analyzing the decay rate of epidemics
in networks with non-Poissonian transmission and/or recovery
distributions.

VII. CONCLUSION

In this paper, we have analyzed the dynamics of an SIS
model of spreading over arbitrary networks with phase-type
transmission and recovery times. Since phase-type distribu-
tions form a dense family in the space of positive-valued dis-
tributions, our results allow to theoretically analyze arbitrary
transmission and recovery times within an arbitrary accuracy.
In this context, we have derived conditions for this generalized
spreading model to converge towards the infection-free equi-
librium (i.e., to eradicate the spread) with a given exponential
decay rate. We have specifically provided a transient analysis
of the stochastic spreading dynamics over arbitrary networks
without relying on mean-field approximations. Our results
illustrate that the particular shape of the transmission/recovery
distribution heavily influences the exponential decay rate of the
convergence towards the infection-free equilibrium. Through
numerical simulations, we have specifically observed that
our results allow to theoretically confirm some observations
previously obtained by numerical simulations and mean-field
approximations.

A possible direction for future research is considering time-
varying (temporal) networks [14], [24] in which transmis-
sion and recovery events follow non-Poissonian distributions.
Another interesting research direction is developing an opti-
mal resource allocation strategy for non-Markovian epidemic
spreading processes. Although we can find in the literature
various research efforts [1], [13], [32], [39], [48] for designing
containment methodologies for networked epidemic spreading
processes, many of them are based on decay rates that are
derived under the Markovian assumption on transmission and
recovery events. In this direction, it is of practical interest to
investigate how the non-Markovianity of spreading dynamics
alters the optimal allocation strategies that have been investi-
gated in the literature.
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[6] E. Çinlar, Introduction to Stochastic Processes. Prentice-Hall, 1975.
[7] G. Chowell and H. Nishiura, “Transmission dynamics and control of

Ebola virus disease (EVD): a review,” BMC Medicine, vol. 12, no. 1,
p. 196, 2014.

[8] C. Commault and S. Mocanu, “Phase-type distributions and representa-
tions: Some results and open problems for system theory,” International
Journal of Control, vol. 76, no. 6, pp. 566–580, 2003.

[9] D. R. Cox, “A use of complex probabilities in the theory of stochastic
processes,” Mathematical Proceedings of the Cambridge Philosophical
Society, vol. 51, no. 02, pp. 313–319, 1955.

[10] F. Darabi Sahneh, C. Scoglio, and P. Van Mieghem, “Generalized
epidemic mean-field model for spreading processes over multilayer
complex networks,” IEEE/ACM Transactions on Networking, vol. 21,
no. 5, pp. 1609–1620, 2013.

[11] C. Doerr, N. Blenn, and P. Van Mieghem, “Lognormal infection times of
online information spread.” PLoS ONE, vol. 8, no. 5, p. e64349, 2013.
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Markovian and Markovian dynamics in epidemic spreading processes,”
Physical Review Letters, vol. 118, 2017.

[44] T. Suess, U. Buchholz, S. Dupke, R. Grunow, M. An der Heiden, A. Hei-
der, B. Biere, B. Schweiger, W. Haas, and G. Krause, “Shedding and
transmission of novel influenza virus A/H1N1 infection in households-
Germany, 2009,” American Journal of Epidemiology, vol. 171, no. 11,
pp. 1157–1164, 2010.

[45] P. Van Mieghem, N. Blenn, and C. Doerr, “Lognormal distribution in the
digg online social network,” The European Physical Journal B, vol. 83,
pp. 251–261, 2011.

[46] P. Van Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,”
IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 1–14, 2009.

[47] P. Van Mieghem and R. van de Bovenkamp, “Non-Markovian infection
spread dramatically alters the susceptible-infected-susceptible epidemic
threshold in networks,” Physical Review Letters, vol. 110, no. 10, p.
108701, 2013.

[48] Y. Wan, S. Roy, and A. Saberi, “Designing spatially heterogeneous
strategies for control of virus spread,” IET Systems Biology, vol. 2, no. 4,
pp. 184–201, 2008.

PLACE
PHOTO
HERE

Masaki Ogura received the B.Sc. degree in Engi-
neering and M.Sc. degree in Informatics from Kyoto
University, and the Ph.D. degree in Mathematics
from Texas Tech University. He was a Postdoctoral
Researcher with the Department of Electrical and
Systems Engineering at the University of Pennsyl-
vania. He is currently an Assistant Professor with
the Division of Information Science, Nara Institute
of Science and Technology, Japan. His research
interests include network science, dynamical sys-
tems, and convex optimizations with applications to

epidemic control, consensus formation, and product development processes.

PLACE
PHOTO
HERE

Victor M. Preciado received the PhD degree in
electrical engineering and computer science from the
Massachusetts Institute of Technology, in 2008. He
is currently an associate professor of electrical and
systems engineering with the University of Penn-
sylvania, where he is a member of the Networked
and Social Systems Engineering (NETS) program,
the Warren Center for Network and Data Sciences,
and the Applied Math and Computational Science
(AMCS) program. He is a recipient of the 2017
National Science Foundation Faculty Early Career

Development (CAREER) Award and the 2018 Outstanding Paper Award
from the IEEE Control Systems Magazine. His main research interests lie
at the intersection of big data and network science; in particular, in using
innovative mathematical and computational approaches to capture the essence
of complex, high-dimensional dynamical systems. Relevant applications of
this line of research can be found in the context of socio-technical networks,
brain dynamical networks, healthcare operations, biological systems, and
critical technological infrastructure.


	I Introduction
	II Mathematical Preliminaries
	III SIS Model with General Transmission and Recovery Times
	III-A Generalized Networked SIS Model
	III-B Phase-type Transmission and Recovery Times

	IV Vectorial Representations
	IV-A Vectorial Representation of Phase-Type Distributions
	IV-B Vectorial Representation of the Generalized SIS Model 

	V Decay Rate Analysis
	VI Numerical Simulations
	VII Conclusion
	References
	Biographies
	Masaki Ogura
	Victor M. Preciado


