
ar
X

iv
:1

60
2.

03
26

6v
2

 [c
s.

S
Y

]
13

 F
eb

 2
01

6

Computing Distances between Reach Flowpipes

Rupak Majumdar Vinayak S. Prabhu

ABSTRACT
We investigate quantifying the difference between two hy-
brid dynamical systems under noise and initial-state uncer-
tainty. While the set of traces for these systems is infinite,
it is possible to symbolically approximate trace sets using
reachpipes that compute upper and lower bounds on the evo-
lution of the reachable sets with time. We estimate distances
between corresponding sets of trajectories of two systems in
terms of distances between the reachpipes.

In case of two individual traces, the Skorokhod distance
has been proposed as a robust and efficient notion of distance
which captures both value and timing distortions. In this
paper, we extend the computation of the Skorokhod distance
to reachpipes, and provide algorithms to compute upper and
lower bounds on the distance between two sets of traces.
Our algorithms use new geometric insights that are used to
compute the worst-case and best-case distances between two
polyhedral sets evolving with time.

1. INTRODUCTION
The quantitative conformance problem between two dy-

namical systems asks how close the traces of the two sys-
tems are under a given metric on hybrid traces [1, 2, 9]. If
the systems are deterministic and start from unique initial
conditions, each has exactly one trace, and the quantitative
conformance problem computes the distance between these
two traces. In this case, we have shown in previous work
that the Skorokhod metric between traces provides a robust
and efficiently computable distance that captures the intu-
itive notion of closeness of two systems [18, 9]. However,
if there is uncertainty in the initial states and noise in the
inputs, each system defines not just a single trace but a set
of traces. In this work, we investigate algorithms to com-
pute distances between sets of trajectories of two dynamical
systems under initial state and input uncertainties.

Given two sets F1, F2 of trajectories of two dynamical sys-
tems, the natural generalization of the Skorokhod distance
between traces is to ask what is the farthest a trajectory
in one set can be from a trajectory in the other, i.e., to

Affiliations: MPI-SWS and University of Porto.

Emails:rupak@mpi-sws.org, vinayak@mpi-sws.org

This research was funded in part by a Humboldt foundation grant, FCT
grant SFRHBPD902672012, and by a contract from Toyota Motors.

Copyright held by the authors.

compute

Dvar(F1, F2) = sup
f1,f2

Dtr(f1, f2)

where Dtr is the given Skorokhod metric on traces1.
Unfortunately, due to the continuous nature of systems,

trace sets F1 and F2 are not available in closed form for
most kinds of systems. Instead, given a trace set F , one ap-

proximates it using a reachpipe, a function R : [0, T] → 2R
d

,
such that R(t) = ∪f∈F {f(t)}, i.e., R(t) is the set of all trace
values that can be observed at time t. A reachpipe R can
be viewed as an approximation Fp(R) to the original set
of traces, the approximation Fp(R) includes every trace f
such that f(t) ∈ R(t), not just those allowed by the dynam-
ics. In practice, even the reachpipe may not have an exact
representation, and instead, one computes over- or under-
approximations to the reachpipe by computing a sequence
of reach set samples at discrete timepoints t0, t1, Indeed,
there are several techniques to compute such approximations
of reach sets [7, 17, 11, 13, 15, 10, 20, 8, 6], differing in the
quality of the approximation, the efficiency of computation,
or the representation of the reach set approximations.

We consider the problem of estimating trajectory set dis-
tances when we only have the sampled sequences of over-
and under-approximations of reach sets. As a first step, we
define a lower and an upper bound on the distance between
F1 and F2 based on the reach set approximations.

Second, we show how to compute these bounds. To com-
pute the distance, we re-formulate reachpipes as set-valued
traces, i.e., as traces over the time interval [0, T] where the
trace value at time t is the set R(t) ⊆ Rd. This alternative
viewpoint allows us to define trace distances D

† between
reachpipes by viewing them as set-valued traces. We derive
relationships between the distances D

† under this alterna-
tive viewpoint, and distances bounding the trace set distance
(obtained using approximations to the reachpipes).

Finally, we derive algorithms to compute the D† distances
between reachpipes in case the underlying metric on traces
is given by the Skorokhod distance and the reach set se-
quences are given as polytopes in Rd. The Skorokhod dis-
tance on traces takes into account both timing distortions
and value differences; our algorithms lift the metric to reach
sets viewed as time-varying polytopes. The algorithms al-
lows for timing distortions, and generalize the Skorokhod
distance algorithm over polygonal lines to polytopes which

1In comparing sets, we use the term “distance” for simi-
larity/dissimilarity functions Dvar satisfying the triangle in-
equality; these functions are not necessarily metrics, as
Dvar(F, F) need not be zero.

http://arxiv.org/abs/1602.03266v2

vary with time. The main technical constructions in our al-
gorithms are two novel geometric routines in a core part of
the Skorokhod distance algorithm which allow us to move to
the domain of time-varying polytopes for the set distances
under consideration.

Putting everything together, we obtain polynomial time
algorithms which compute bounds on traceset distances
where the tracesets are observed only as reachset sample-
polytopes at discrete timepoints.

Outline of the Paper. In Section 2, we recall the Sko-
rokhod trace metric, and the related Fréchet metric. In
Section 3, we formally present tracepipes and reachpipes,
distances between trace sets, and bounds on these set dis-
tances. In Section 4 we explore the alternative viewpoint of
reachpipes being set valued traces, and relate distances un-
der this viewpoint and distances between reachpipes viewed
as trace sets. In Section 5, we solve for the distance decision
problems between reachpipes viewed as time-varying poly-
topes of Rd. In Section 6 we put everything together and
present various algorithms to compute bounds on Skorokhod
traceset distances.

2. PRELIMINARIES: TRACE METRICS
A (finite) trace f : [Ti, Te] → Rd is a continuous mapping

from a finite closed interval [Ti, Te] of R+, with 0 ≤ Ti < Te,
to Rd.

2.1 The Skorokhod Trace Metric
We define a metric on the space of traces corresponding

to a given metric on Rd. A retiming r : I 7→ I ′, for closed
intervals I, I ′ of R+, is an order-preserving (i.e., monotone)
continuous bijective function from I to I ′; thus if t < t′ then
r(t) < r(t′). Let RI 7→I′ be the class of retiming functions
from I to I ′ and let id be the identity retiming. Given a
trace f : If → Rd, and a retiming r : I 7→ If ; the function
f ◦ r is another trace from I to Rd.

Definition 1 (Skorokhod Metric). Given a retiming r : I 7→
I ′, define

|| r− id ||sup := sup
t∈I

| r(t)− t|.

Given two traces f : If 7→ Rd and f ′ : If ′ 7→ Rd, a norm L

on Rd, and a retiming r : If 7→ If ′ , define
∥

∥f − f ′ ◦ r
∥

∥

sup
:= supt∈If

∥

∥f(t)− f ′ (r(t))
∥

∥

L
.

The Skorokhod metric2 between the traces f and f ′ is de-
fined to be:

DS(f, f
′) := inf

r∈RIf 7→I
f′

max
(

‖r− id‖sup ,
∥

∥f − f ′ ◦ r
∥

∥

sup

)

.

Intuitively, the Skorokhod metric incorporates two compo-
nents: the first component quantifies the timing discrepancy
of the timing distortion required to “match” the two traces,
and the second quantifies the value mismatch (in the vector
space (Rd, ‖·‖L)) of the values under the timing distortion.
In the retimed trace f ◦ r, we see exactly the same values as
in f , in exactly the same order, but the times at which the
values are seen can be different.

2The two components of the Skorokhod metric (the retim-
ing, and the value difference components) can be weighed
with different weights – this simply corresponds to a change
of scale.

2.2 The Fréchet Trace Metric
We showed in [18] that the Skorokhod metric is related to

another metric, the Fréchet metric, over traces. We recall
the definition and the relationship.

Definition 2 (Fréchet metric). Let C1 : I1 → Rd and C2 :
I2 → Rd be traces. The Fréchet metric between the two
traces C1,C2 (given a norm L on Rd) is defined to be

DF(C1,C2) := inf
α1:[0,1]→I1
α2:[0,1]→I2

max
0≤θ≤1

‖C1 (α1(θ))− C2 (α2(θ))‖L

where α1, α2 range over continuous and strictly increasing
bijective functions onto I1 and I2, respectively.

Intuitively, the reparameterizations α1, α2 control the
“speed”of traversal along the two traces by two entities. The
positions of the two entities in the two traces at “time” θ is
given by α1(θ) and α2(θ) respectively; with the value of the
traces at those positions being C1 (α1(θ)), and C2 (α2(θ)).
The two entities always have a speed strictly greater than 0.

Given a trace f : [Ti, Te] → Rd, we define the time-explicit
trace Cf : [Ti, Te] → Rd × R where we add the time value
as an extra dimension, that is, Cf (t) = (f(t), t) for all t ∈
[Ti, Te]. Given a value 〈p, t〉 ∈ Rd ×R, and a a norm L over
Rd, define the norm

‖〈p, t〉‖Lmax = max
(

‖p‖L, |t|
)

. (1)

Proposition 1 (From Skorokhod to Fréchet [18]). Let f :

[T f
i , T

f
e] → Rd and g : [T g

i , T
g
e] → Rd be two continuous

traces. Consider the corresponding time-explicit traces Cf :

[T f
i , T

f
e] → Rd+1 and Cg : [T g

i , T
g
e] → Rd+1. Consider the

Skorokhod distance DS(f, g) with respect to a given norm L
over Rd. We have

DS(f, g) = DF(Cf ,Cg),

where the Fréchet distance DF(Cf ,Cg) is with respect to the
norm Lmax over Rd+1.

3. PIPES & PIPE-VARIATION DISTANCES

3.1 Tracepipes, Reachpipes and Set Distances
A tracepipe F is a nonempty collection of traces over some

closed interval [Ti, Te]. A reachpipe R : [Ti, Te] → 2R
d

\ ∅
maps a finite closed interval [Ti, Te] of R+, denoted tdom(R),
to non-empty subsets of Rd. To a reachpipe R, we associate
a tracepipe Fp(R) consisting of all continuous traces f over
tdom(R) such that f(t) ∈ R(t) for all t ∈ tdom(R). Du-
ally, corresponding to each tracepipe F , we associate the
reachpipe Rp(F), over the same time-domain, defined by
Rp(F) (t) = ∪f∈F{f(t)}. Note that F ⊆ Fp (Rp (F)), but
equality need not hold: Fp (Rp (F)) may contain more traces
than F .

A reachpipe R′ : [Ti, Te] → 2R
d

is an over-approximation
(respectively, under-approximation) of a reachpipe R :

[Ti, Te] → 2R
d

if for each t ∈ [Ti, Te], we have R(t) ⊆ R′(t)
(respectively, R′(t) ⊆ R(t)).

Example 1. Consider a linear dynamical system in R de-
scribed by ẋ = ax, for a > 0 with initial state x0 ∈ [0, 0.1]
over the time interval [0, 10]. For a fixed value of x0, we
get a trace x0e

at. Let F = {fx0
| x0 ∈ [0, 0.1] and fx0

(t) =
x0e

at for t ∈ [0, 10]} be a tracepipe. The reachpipe Rp(F)
corresponding to the tracepipe F is given by Rp(F)(t) =
[0, 0.1eat] for t ∈ [0, 10]. Observe that Fp (Rp(F)) contains

the more traces than F , for instance, the constant trace
f(t) = 0.1.

Let Dtr be a given metric on traces. We define the vari-
ation distance Dvar(F1, F2) between two tracepipes F1 and
F2 corresponding to the trace metric Dtr as

Dvar(F1, F2) := sup
f1∈F1,f2∈F2

Dtr(f1, f2) (2)

The value Dvar(F1, F2) gives us the maximum possible inter-
trace distance if one trace is from F1 and the other from F2.
Notice that for all tracepipes F1, F2, F3, we have that

1. Dvar(F1, F2) ≥ 0;
2. Dvar(F1, F2) = Dvar(F2, F1); and
3. Dvar(F1, F3) ≤ Dvar(F1, F2) +Dvar(F2, F3).

We may however have Dvar(F, F) > 0, thus, Dvar need not
be a metric over tracepipes. The value Dvar(F, F) gives us
the maximum distance amongst traces in F according to the
original trace metric Dtr.

Tracepipes cannot be constructed for most dynamical
systems. However, reachpipe sets can be over/under-
approximated at desired timepoints using analytic tech-
niques. In the next subsection, we present a frame-
work for bounding the tracepipe distance Dvar(F1, F2) using
over/under-approximated reachpipes.

3.2 Approximating the Variation Distance
Let F1 and F2 be tracepipes. Since F ⊆ Fp(Rp(F)) for

any tracepipe F , and Rp, Fp, and the variation distance Dvar

are all monotonic, we have that

Dvar(F1, F2) ≤ Dvar

(

Fp (⌈Rp (F1)⌉) ,Fp (⌈Rp (F2)⌉)
)

(3)

for any over-approximations ⌈Rp(F1)⌉ and ⌈Rp(F2)⌉ of the
reachpipes Rp(F1) and Rp(F2). Thus, in order to get an
upper bound onDvar(F1, F2) we can use over-approximations
of the corresponding reachpipes.

Define the minimum set distance:

Dmin(F1, F2) := inf
f1∈F1,f2∈F2

D(f1, f2) (4)

For this distance, it is clear that

Dmin

(

Fp (Rp(F1)) ,Fp (Rp(F2))
)

≤ Dvar(F1, F2)

Combining this with Equation (3), we get the following
Proposition for bounding the variation distance.

Proposition 2 (Tracepipe Variation Distance Bounds). Let
F1 and F2 be tracepipes, and let ⌈Rp(F1)⌉ and ⌈Rp(F2)⌉ be
over-approximations of the reachpipes Rp(F1) and Rp(F2).
We have

Dmin

(

Fp (⌈Rp(F1)⌉) ,Fp (⌈Rp(F2)⌉)
)

≤ Dvar(F1, F2)

Dvar(F1, F2) ≤ Dvar

(

Fp (⌈Rp(F1)⌉) ,Fp (⌈Rp(F2)⌉)
)

Remark: Hausdorff Metric. A natural candidate for
under-approximating the variation distance is the Hausdorff
set metric, defined as:

DH(F1, F2) = max

{

sup
f1∈F1

inf
f2∈F2

D(f1, f2) , sup
f2∈F2

inf
f1∈F1

D(f1, f2)

}

(5)
Intuitively, if supf1∈F1

inff2∈F2
D(f1, f2) is less than

δ, then given any trace f1 ∈ F1, there exists a
trace f2 ∈ F2 such that D(f1, f2) < δ. Note
that supf1∈F1

inff2∈F2
D(f1, f2) ≤ Dvar(F1, F2) and also

supf2∈F2
inff1∈F1

D(f1, f2) ≤ Dvar(F1, F2), thus, we have

DH(F1, F2) ≤ Dvar(F1, F2) (6)

Thus, on first glance, the Hausdorff metric appears to be a
good candidate for under-approximating the variation dis-
tance. As mentioned earlier, obtaining tracepipe sets is
usually not possible; we have to work with over or under-
approximations obtained by way of reachpipes. Unfortu-
nately, there is no obvious relationship between DH(A,B)
and DH(A′, B′) for A ⊆ A′ and B ⊆ B′. This can be seen
pictorially in Figure 1. The sets A,B,A′, B′ are subsets of
the interval [0, 10]. In the first case, we have DH(A,B) >
DH(A′, B′) and in the second, DH(A,B) < DH(A′, B′).

0 2 4 6 8

A B

0 2 4 6 8

A′ B′

0 2 4 6 8

A′ B′

Figure 1: Sets A,B, and two cases of A ⊆ A′, B ⊆ B′

Thus, we cannot use the reachpipe over-approximations
⌈Rp(F1)⌉ and ⌈Rp(F2)⌉ to get a lower (or upper) bound
on DH(F1, F2). This problem occurs even even in the
case of exact reachpipes Rp(F1),Rp(F2) as we may have
F1 (Fp (Rp(F1)) and F2 (Fp (Rp(F2))

For the special case where F1 = {f1} is a singleton set,
we have

DH({f1}, F2) = Dvar({f1}, F2) (7)

Thus, in case of a singleton F1 = {f1}, the value
DH

(

Fp (Rp(F1)) ,Fp (Rp(F2))
)

is equal to the RHS of
Equation (3), and hence only gives an upper bound on
Dvar(F1, F2).

We note that even if we under-approximate the reach sets
to obtain Fp (⌊Rp(F1)⌋), and Fp (⌊Rp(F2)⌋), we still do not
have a lower bound for the Hausdorff distance as we cannot
tell in which direction the distance changes on taking subsets
(Figure 1). In addition, we may have F (Fp (⌊Rp(F)⌋) as
for a traceset F , as Fp (Rp(F)) over-approximate F , and
competes with the fact that ⌊Rp(F)⌋ under-approximates
Rp(F).

3.3 Constructing Reachpipes
For most dynamical systems, one cannot get a closed-form

representation for the set of all traces. However, reachpipe
sets can be over/under-approximated at desired timepoints
using analytic techniques [7, 17, 11, 13, 15, 10, 20, 8, 6]. The
procedure for bounding the tracepipe variation distance in
this paper operates on reachpipes (the bounding quantities
are as in Proposition 2). As a result it is necessary to choose
an appropriate representation of reachpipes so that the dis-
tance computation procedure remains tractable.

Reachpipe Completion. Typically, reachset computation
tools give us reach sets at sampled time-points, i.e., the tools
give us reachpipe samples R(t0), . . . , R(tm) at discrete time-
points t0, . . . , tm. We need to “complete” the reachpipes for
intermediate time values. We do this completion by general-
izing linear interpolation using scaling and Minkowski sums.
Specifically, we define an over-approximated completion of
R in between tk, tk+1 as follows for tk ≤ t ≤ tk+1:

⌈R⌉(t) =

{

p+
t− tk

tk+1 − tk
·(q − p)






p ∈ R(tk) and q ∈ R(tk+1)

}

.

For a set A ⊆ Rd, given λ ∈ R, let λ · A denote {λ · p |
p ∈ A}. The Minkowski sum of two sets A,B is defined as

A+B = {p+ q | p ∈ A and q ∈ B}. We also denote −1 ·A
by −A. Under this notation, we have

⌈R⌉(t) = R(tk) +
t− tk

tk+1 − tk
· (R(tk+1)−R(tk)) . (8)

Alternately, one can observe individual traces of the sys-
tem at discrete times and complete the trace by linear in-
terpolation at intermediate points. That is, suppose we ob-
serve a trace f at discrete points tk and tk+1: f(tk) = p

and f(tk+1) = p′ and complete the trace as f(t) = p +
t−tk

tk+1−tk
(p′ − p) for all points tk ≤ t ≤ tk+1. We explain

why Equation (8) is an over-approximation for linearly in-
terpolated completions of observed trace samples. Recall
that

R(t) = {p | there exists some trace f such that f(t) = p}.

Under linear interpolation completion of traces, this set is

R(t) =







p+
t− tk

tk+1 − tk
·(q − p)









there exists a trace f
such that f(tk) = p and
f(tk+1) = q







(9)
In general R(t) as defined in Equation (9) can be a strict

subset of ⌈R⌉(t) as defined in Equation (8). For an example,

Figure 2: Reachpipe Completion (i) R(t); (ii) ⌈R⌉(t)

see Figure 2, where R(tk) ⊆ R and R(tk+1) ⊆ R are the
disjoint black line segments at the ends, and the shaded
portions are the completions for t ∈ (tk, tk+1). The left side
shows R(t). The traces evolve from the top (resp. bottom)
left black bars to the top (resp. bottom) right black bars.
The figure on the right shows that ⌈R⌉ over-approximates by
assuming traces from the top left black bar to the bottom
right black bar (and similarly from the bottom left bar).
The strict inclusion can hold even if R(tk) and R(tk+1) are
convex sets.

Reachpipe Sample Sets. We now look at choosing appro-
priate forms of reachpipe sample sets R(tk). In hybrid sys-
tems literature the common forms of reach sets are (i) ellip-
soids [17], (ii) support functions [15], (iii) zonotopes [11, 12],
(iv) polyhedra and polytopes [10, 16, 7, 20, 20, 8], (v) poly-
nomial approximations [19, 6].

In this work we use convex polytopes as reachpipe sample
sets. A polyhedron is specified as: A · x ≤ b, where A is
a n × d real-valued matrix, x = [x1, . . . , xd]

T is a column
vector of d variables, b = [b1, . . . , bd]

T is a column vector
with bk ∈ R for every k, and “·” denotes the standard matrix
product. The polyhedron A · x ≤ b consists of all points
(p1, . . . , pd) ∈ Rd such that for all 1 ≤ i ≤ n, we have
∑d

k=1 Ai,k · pk ≤ bk. A polyhedron is thus the intersection

of n halfspaces, namely, the halfspaces
∑d

k=1 Ai,k · xk ≤
bk for 1 ≤ i ≤ n. We use ai · x ≤ bi as a shorthand to
denote the i-th halfspace, where ai is the i-th row vector
of A. A polytope is a bounded polyhedron. Polytopes can
also be specified as convex hulls of a finite set of points [14]
(unfortunately, polynomial time algorithms are not known
to obtain one representation from the other [4]). We use the

halfspace representation as it has been shown to be amenable
to computing over-approximations of reach sets of hybrid
systems using the template polyhedra approach [16, 7, 20,
20, 8], in which the reachsets at sampled timepoints are
over-approximated by polytopes by varying the constants in
b (the matrix A stays unchanged). Zonotopes are special
forms of polytopes, the algorithms developed in this work
are also applicable for these special polytopes.

We note the property that if R(tk) and R(tk+1) are poly-
topes (resp. zonotopes) in Equation (8), the completions
⌈R⌉(t) for every t are also polytopes (resp. zonotopes). This
follows from the facts that for P1 and P2 polytopes (resp.
zonotopes), (i) λ · P1 and λ · P2 are polytopes (resp. zono-
topes) for λ a constant; and (ii) the Minkowski sum P1 +P2

is also a polytope (resp. zonotope) [14].

Polygonal Polytope-Reachpipe (PPR). A polygonal
polytope-reachpipe (PPR) is a reachpipe specified by reach-
pipe time-samples R(0), . . . R(m), such that for k ∈
{0, 1, . . .m − 1} (a) each R(k) is a polytope in Rd+1; and
(b) R(t) for k < t < k + 1 is taken to be the linear interpo-
lation as specified in Equation (8). Note that we take the
reachpipe samples to occur at integer parameter values, this
is WLOG as the actual time value can be added as an extra
dimension as discussed in Subsection 2.2 with a slight modi-
fication: for a polygonal trace f consisting of affine segments
starting at times t0, t1, . . . , we let the corresponding (polyg-
onal) time-explicit trace C be such that C(k) = (f(tk), tk)
for k ∈ {0, 1, . . .m} (for non-integer ρ ∈ [0, m], the trace C
is specified by linear interpolation of the integer endpoints).
Next, we study the variation distance between time-explicit
PPRs with respect to the Fréchet trace metric in order to
bound the Skorokhod distance between the corresponding
tracepipes.

4. FRÉCHET DISTANCES BETWEEN
POLYTOPE-REACHPIPES

We now investigate computing the pipe variation distance
bounds given in Proposition 2 in the case of the Skorokhod
trace metric. As a first step, we show it suffices to consider
the Fréchet metric as the trace metric in the pipe variation
distance.

Consider the setting of Subsection 3.3, which presented
linear interpolation completion of sampled trace values. The
traces so obtained by completion are continuous. We can
define corresponding time-explicit traces Cf : [T f

i , T
f
e] →

Rd × R for the traces f : [T f
i , T

f
e] → Rd obtained by com-

pleting the time sampled traces by linear interpolation. This
makes Proposition 1 applicable. Corresponding to a tra-
cepipe F over Rd, we can define a time-explicit tracepipe
F ∗ over Rd × R with traces f ∈ F corresponding to time-
explicit traces Cf in F ∗. We then have (referring to trace
metrics S or F explicitly in the variation distance through
the notation DSvar or DFvar):

DSvar(F1, F2) = supf1∈F1,f2∈F2
DS(f1, f2)

= supCf1
∈F∗

1
,Cf2

∈F∗

2
DF(Cf1 ,Cf2)

= DFvar(F
∗
1 , F

∗
2)

Thus we focus on computing the pipe variation distances
with respect to the Fréchet trace metric.

In Section 3, we considered distances between sets of
traces, and investigated bounding the variation distance be-
tween sets of traces (i.e., between tracepipes) using over-
approximate tracesets obtained through reachpipes. In the

next two subsections, we define a notion of Fréchet distance
directly on reachpipes, by viewing a reachpipe as a trace
from [0, T] to polytopes of Rd+1.

Let R1, R2 be PPRs from [0,m1] and [0, m2] to poly-
topes over Rd+1. Our objective is to bound the tra-
cepipe variation distance with respect to the Fréchet
trace metric. From Proposition 2, we need to compute
(a) DFvar (Fp(R1),Fp(R2)) and (b) DFmin (Fp(R1),Fp(R2)).

4.1 Variation Distance on PPRs
In this subsection, we consider DFvar (Fp(R1),Fp(R2)).

Recall that this value is defined as:

DFvar(Fp(R1),Fp(R2)) = sup
f1∈Fp(R1),f2∈Fp(R2)

DF(f1, f2) (10)

We define a new variation distance on reachpipes as follows.

Definition 3. Let R1, R2 be PPRs from [0, m1] and [0, m2]
to polytopes over Rd+1, and let L be a given norm on Rd+1.
The reachpipe variation distance DF

†
var (R1, R2) is defined

as:

inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

max
p1∈R1(α1(θ))
p2∈R2(α2(θ))

‖p1 − p2‖L (11)

where α1, α2 range over continuous and strictly increasing
bijective functions onto [0, m1] and [0, m2] respectively.

Note that DF
†
var is defined over reachpipes R, as com-

pared to DFvar which is defined over tracepipes F or Fp(R).
Also note that for any reparameterizations α1, α2, the sets
R1 (α1(θ)) and R2 (α2(θ)) are closed and bounded. Thus,
maxp1∈R1(α1(θ)), p2∈R2(α2(θ))‖p1 − p2‖L is well defined. The

function DF
†
var, like the function DFvar, is not a metric (no-

tably, we can have DF
†
var(R,R) > 0).

Informally, we go along the PPRs R1 and R2 according
to our chosen reparameterizations α1, α2, and compare the
polytopes R1 (α1(θ)) andR2 (α2(θ)) for each value of 0 ≤ θ ≤
1. If we view a PPR R as a mapping from [0, m] to the set
of polytopes of Rd+1, then Definition 3 seems similar to the
definition of the Fréchet distance over traces (Definition 2),
where we use the following function to compare polytopes
P1, P2:

Φmax(P1, P2) = max
p1∈P1,p2∈P2

‖p1 − p2‖L (12)

Using Φmax, Equation (11) can be written as:

DF

†
var(R1, R2) = inf

α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

Φmax

(

R1(α1(θ)) , R2(α2(θ))
)

(13)
The following theorem shows that DF

†
var(R1, R2) over-

approximates the tracepipe distance DFvar (Fp(R1),Fp(R2)).

Theorem 1. Let R1, R2 be PPRs from [0, m1] and [0, m2]
to polytopes over Rd+1, and let L be a given norm on Rd+1.
We have

DF

†
var(R1, R2) ≥ DFvar

(

Fp(R1), Fp(R2)
)

where the tracepipe distance DFvar

(

Fp(R1), Fp(R2)
)

is as
defined in Equation (10), and the reachpipe distance
DF

†
var(R1, R2) is as defined in Definition 3.

Proof. Consider any f1 ∈ Fp(R1), and any f2 ∈ Fp(R2). We
have

DF(f1, f2) = inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

‖f1 (α1(θ))− f2 (α2(θ))‖L

Observe that fj (αj(θ)) ∈ Rj (αj(θ)) for j ∈ {1, 2}. Thus,
for every α1, α2, θ,

‖f1 (α1(θ))− f2 (α2(θ))‖L ≤ Φmax (R1 (α1(θ)) , R2 (α2(θ)))

Thus, we have

DF(f1, f2) ≤ inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

Φmax

(

R1(α1(θ)) , R2(α2(θ))
)

That is, for every f1 ∈ Fp(R1) and f2 ∈ Fp(R2),
we have DF(f1, f2) ≤ DF

†
var(R1, R2). This implies that

supf1∈Fp(R1), f2∈Fp(R2)
DF(f1, f2) ≤ DF

†
var(R1, R2).

The above theorem can be applied with R1 = ⌈Rp(F1)⌉
and R2 = ⌈Rp(F2)⌉ in order to obtain the upper bound in
Proposition 2 using the reachpipe variation distance DF

†
var

between ⌈Rp(F1)⌉ and ⌈Rp(F2)⌉. We next consider the lower
bound.

4.2 Minimum Distance on PPRs
We now considerDFmin

(

FR1 , FR2
)

for PPRs R1, R2 from

[0, m1] and [0, m2] to polytopes over Rd+1 respectively. This
distance is defined as:

DFmin

(

Fp(R1), Fp(R2)
)

= inf
f1∈Fp(R1), f2∈Fp(R2)

DF(f1, f2)

(14)
Analogous to the DFvar function of Definition 3, we define a
minimum set distance DFmin over reachpipes. We use the
following function to compare polytopes (given a norm L
over Rd+1):

Φmin(P1, P2) = min
p1∈P1,p2∈P2

‖p1 − p2‖L (15)

Using this function, we define DFmin as follows.

Definition 4. Let R1, R2 be PPRs from [0,m1] and [0, m2]
to polytopes over Rd+1, and let Φmin be the polytope com-
parison function as described previously. The reachpipe
minimum set distance DF

†
min (R1, R2) is defined as:

DF

†
min(R1, R2) = inf

α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

Φmin

(

R1(α1(θ)) , R2(α2(θ))
)

(16)
where α1, α2 range over continuous and strictly increasing
bijective functions onto [0, m1] and [0, m2] respectively.

The following theorem shows that DF
†
min(R1, R2) is equal

to the tracepipe distance DFmin (Fp(R1),Fp(R2)). The
proof of the theorem can be found in the Appendix.

Theorem 2. Let R1, R2 be PPRs from [0, m1] and [0, m2]
to polytopes over Rd+1, and let L be a given norm on Rd+1.
We have

DF

†
min(R1, R2) = DFmin

(

Fp(R1),Fp(R2)
)

where the tracepipe distance DFmin

(

Fp(R1),Fp(R2)
)

is
as defined in Equation (14), and the reachpipe distance

DF

†
min(R1, R2) is as defined in Definition 4.

Theorems 1 and 2 allow us to bound to the tracepipe
variation distance DFvar using the reachpipe distances DF

†
var

and DF
†
min that were defined in the current section. In the

next section we present algorithms for computing these two
reachpipe distances over PPRs.

5. FRÉCHET DISTANCES BETWEEN
POLYTOPE-TRACES

Theorems 1 and 2 show that the distance functions DF
†
var

and DF
†
min over PPRs can be used to bound the tracepipe

distances DFvar and DFmin. We now present procedures for
computing DF

†
var and DF

†
min as follows. In Subsection 5.1 we

extend the geometric free space concept used in [3, 18] to
compute the Fréchet distance between two traces to the case
of PPRs, and show how the PPR distance decision problem
can be reduced to a two-dimensional reachability problem.
In Subsection 5.2 we present algorithms for the reachability
problems corresponding to DF

†
var and DF

†
min.

5.1 The Free Space for Polytope-Traces
Let PTopes(Rd+1) denote the set of all polytopes in Rd+1.

A PPR R defined over the time interval [0, m] can be
viewed as a polytope-trace, defined as a function from
[0, m] to PTopes(Rd+1). Recall that a PPR R is speci-
fied by reachpipe time-samples R(0), . . . R(m), such that for
k ∈ {0, 1, . . . m − 1} the portion of R in between (k, k + 1)
is assumed to be completed according to linear interpola-
tion using R(k) and R(k + 1). We denote this portion of R

between R(k) and R(k + 1) as R[k], i.e., the portion of R
defined over k ≤ t ≤ k + 1.

Alt and Godau introduced free spaces [3] to compute the
Fréchet distance between piecewise affine and continuous
curves in Rd. We show free spaces can also be used to com-
pute the functions DF

†
var and DF

†
min. First, we show how to

extend free spaces to the domain of PPRs.

Definition 5 (Free Space). Given PPRs R1 : [0, m1] →
PTopes(Rd+1) and R2 : [0, m2] → PTopes(Rd+1), a
real number δ ≥ 0, and a polytope comparison func-
tion Φ : PTopes(Rd+1)×PTopes(Rd+1) → R+, the δ-Free
Space of R1, R2 with respect to Φ is defined as the set
FreeΦδ (R1, R2) =
{

(ρ1, ρ2) ∈ [0,m1]× [0, m2]




 Φ
(

R1(ρ1), R2(ρ2)
)

≤ δ
}

The free space for PPRs serves a similar role as in the case
of the free space for traces. The tuples (ρ1, ρ1) belonging to
FreeΦδ (R1, R2) denote the positions in the two reparameter-
izations such that the Φ value for those position pairs is at
most δ. Thus FreeΦδ (R1, R2) collects the pairs (ρ1, ρ2) which
could be used in valid reparameterizations of Definition 3
or 4. A pictorial representation of the free space is referred
to as the free space diagram. The space [0, m1]× [0, m2] can
be viewed as consisting of m1m2 cells, with cell i, j being
[i, i+1]× [j, j+1] for 0 ≤ i < m1, and 0 ≤ j < m1. Observe
that FreeΦδ (R1, R2) intersected with cell i, j is just the free

space corresponding to the PPR segments R
[i]
1 , R

[j]
2 ; i.e.,

the intersection of the cell i, j with FreeΦδ (R1, R2) is equal to

FreeΦδ (R
[i]
1 , R

[j]
2).

Proposition 3 (Free Space & Reparameterizations). Given
two PPRs R1, R2 from [0, m1] and [0, m2] to PTopes(Rd+1),

we have DF
†
var(R1, R2) ≤ δ (resp., DF

†
min(R1, R2) ≤ δ)

iff there is a non-decreasing (in both dimensions) curve

α : [0, 1] → [0,m1]× [0,m2] in Free
Φmax

δ (R1, R2) (resp.

Free
Φmin

δ (R1, R2)) from (0, 0) to (m1,m2).

The curve α can be thought of as a pair of parame-
terized curves (α1, α2), with α1 : [0, 1] → [0,m1] and
α2 : [0, 1] → [0, m2]. The functions α1, α2 can be viewed

ρ2

ρ1 −→

↑

Figure 3: The Free Space FreeΦδ (R1, R2).

as the reparameterization functions in Definitions 3 and 4.
The general shape of the free space for two PPRs is depicted
in Figure 3. The unshaded portion is the free space. The fig-
ure also includes a continuous curve which is non-decreasing
in both coordinates, from (0, 0) to (m1,m2).

Note that the curve α (and hence also each of α1, α2) in
Proposition 3 is non-decreasing; whereas the reparameteri-
zations in Definitions 3 and 4 are strictly increasing. This
is to account for the fact that optimal reparameterizations
in Definitions 3 and 4 might not exist, as we have an “inf”.
It can be shown that DF

†
min and DF

†
var values do not change

over PPRs if we allow non-decreasing reparameterizations
since PPRs change smoothly due to the linear interpolation
scheme. This issue also arises in the case of traces, and
is discussed (for the case of traces) in more detail in [18].
We omit the technicalities, and henceforth assume that non-
decreasing reparameterizations are allowed in Definitions 3
and 4.

5.2 The Polytope-TraceD† Decision Problems
In this section, we solve for the decision problems

DF
†
var(R1, R2) ≤ δ and DF

†
min(R1, R2) ≤ δ, given a δ ≥ 0

and PPRs R1, R2. We use the free space reduction of Propo-
sition 3 for these decision problems. The first step in this
procedure is to compute the free space. Towards this step,
we first show that the free spaces for the polytope compar-
ison functions Φmin and Φmax are convex in individual cells
of the free space diagram. This is done in Subsection 5.2.1.
Using this convexity property, we show in Subsection 5.2.2
that in order to obtain the free space of a cell, it suffices to
obtain the free space at the cell boundaries. We obtain algo-
rithms to compute the free space cell boundaries in Subsec-
tion 5.2.3 (for Φmin), and in 5.2.4 (for Φmax). The procedure
of Subsection 5.2.4 has a high time complexity, we present
a polynomial time algorithm which works in case the PPRs
satisfy certain conditions in Subsection 5.2.5. The results of
the section are summarized in Propositions 5, 6 and 8.

5.2.1 Convexity of Free Space
The following lemma proves that the free space in the first

cell (over [0, 1]× [0, 1]) is convex for both the set comparison
functions Φmin and Φmax. Other cells are translations and
have a similar proof.

Lemma 1 (Convexity of Free Space of Individual Cells). Let
P 0
a , P

1
a , and P 0

b , P
1
b be polytopes in Rd+1. Let Ra : [0, 1] →

PTopes(Rd+1) and Rb : [0, 1] → PTopes(Rd+1) be (single-
segment) PPRs constructed from the polytopes P 0

a , P
1
a and

P 0
b , P

1
b respectively, via linear interpolation (as described in

Equation (8)), taking P 0
a = Ra(0) and P 1

a = Ra(1) and
P 0
b = Rb(0) P 1

b = Rb(1), respectively.
The free space of Ra, Rb given a δ ≥ 0 for both

Φmin and Φmax is convex. That is, Free
Φmin

δ (Ra, Rb) and

Free
Φmax

δ (Ra, Rb) are both convex sets.

Proof. Let Φ be Φmin or Φmax. Suppose two points (in
[0, 1] × [0, 1]) belong to FreeΦδ (Ra, Rb). Let these points
be ρ = (ρa, ρb) and ρ′ = (ρ′a, ρ

′
b). We show that for any

0 ≤ λ ≤ 1, the point ρ∗ = λ · ρ+ (1− λ) · ρ′ also belongs to
FreeΦδ (Ra, Rb). The point ρ∗ is the tuple

(ρ∗a, ρ
∗
b) =

(

λ · ρa + (1− λ) · ρ′a , λ · ρb + (1− λ) · ρ′b
)

. (17)

To show (ρ∗a, ρ
∗
b) ∈ FreeΦδ (Ra, Rb), we need to show that

Φ
(

Ra(ρ
∗
a), Rb(ρ

∗
b)
)

≤ δ (18)

We show this individually for Φmin and Φmax.

(1) Φmin.
By the definition of Φmin (Equation (15)), and the facts that

(ρa, ρb) and (ρ′a, ρ
′
b) are in Free

Φmin

δ (Ra, Rb), we have that:
• There exist points pa ∈ Ra(ρa) and pb ∈ Rb(ρb) such

that ‖pa − pb‖ ≤ δ.
• There exist points p′

a ∈ Ra(ρ
′
a) and p′

b ∈ Rb(ρ
′
b) such

that ‖p′
a − p′

b‖ ≤ δ.
Consider the points p∗

a = λ · pa + (1 − λ) · p′
a; and p∗

b =
λ · pb + (1− λ) · p′

b (where λ is the same value as that used
in Equation (17)). We have

‖p∗
a − p

∗
b‖ =

∥

∥

∥

(

λ · pa + (1− λ) · p′
a

)

−
(

λ · pb + (1− λ) · p′
b

)∥

∥

∥

=
∥

∥λ · (pa − pb) + (1− λ) ·
(

p
′
a − p

′
b

)∥

∥

≤ λ · ‖pa − pb‖+ (1− λ) ·
∥

∥p
′
a − p

′
b

∥

∥

(by basic norm properties)

≤ λ · δ + (1− λ) · δ

= δ

We now show p∗
a ∈ Ra(ρ

∗
a), and p∗

b ∈ Rb(ρ
∗
b) Observe that

the polytope Ra(ρ
∗
a) which is defined to be the polytope

Ra(0) + ρ∗a · (Ra(0)−Ra(1))

= Ra(0) +
(

λ · ρa + (1− λ) · ρ′a

)

· (Ra(0) −Ra(1))

= λ · (Ra(0) + ρa · (Ra(0)−Ra(1))) +

(1− λ) ·
(

Ra(0) + ρ′a · (Ra(0)−Ra(1))
)

= λ · Ra(ρa) + (1− λ) · Ra(ρ
′
a)

(19)

Thus, Ra(ρ
∗
a) equals the polytope λ·Ra(ρa)+(1−λ)·Ra(ρ

′
a).

Since p∗
a = λ · pa + (1 − λ) · p′

a for pa ∈ Ra(ρa) and
p′
a ∈ Ra(ρ

′
a), this means that p∗

a ∈ Ra(ρ
∗
a). Similarly, p∗

b ∈
Rb(ρ

∗
b). Since we have demonstrated that ‖p∗

a − p∗
b‖ ≤ δ,

this means that Φmin (Ra(ρ
∗
a), Rb(ρ

∗
b)) ≤ δ. This shows that

Equation (18) holds for Φmin.

(2) Φmax.
Now we show that Equation (18) holds for Φmax. By the def-
inition of Φmax (Equation (12)), and the facts that (ρa, ρb)

and (ρ′a, ρ
′
b) are in Free

Φmin

δ (Ra, Rb), we have that:
• For all points pa ∈ Ra(ρa) and pb ∈ Rb(ρb) we have

that ‖pa − pb‖ ≤ δ.
• For all points p′

a ∈ Ra(ρ
′
a) and p′

b ∈ Rb(ρ
′
b) we have

that ‖p′
a − p′

b‖ ≤ δ.
Consider any point p∗

a which belongs to Ra(ρ
∗
a) and any

point p∗
b which belongs to Rb(ρ

∗
b). By Equation (19), we

have Ra(ρ
∗
a) = λ · Ra(ρa) + (1 − λ) · Ra(ρ

′
a); and similarly

for Rb(ρ
∗
b) Thus, by definition,

a
2

b
2

b
1

a
1

b
0a

0

b
3

a
3

Figure 4:Cell Crossing with Non-Decreasing Curves.

• p∗
a = λ · pa + (1 − λ) · p′

a for some pa ∈ Ra(ρa) and
p′
a ∈ Ra(ρ

′
a); and

• p∗
b = λ · pb + (1 − λ) · p′

b for some pb ∈ Ra(ρb) and
p′
b ∈ Rb(ρ

′
b)

It can be shown (as in the Φmin case) using the above two
facts that ‖p∗

a − p∗
b‖ ≤ δ. That is, we have that for any

point p∗
a ∈ Ra(ρ

∗
a), and any point p∗

b ∈ Rb(ρ
∗
b), the value

‖p∗
a − p∗

b‖ does not exceed δ. This means that

sup
p∗

a∈Ra(ρ∗a),p
∗

b
∈Rb(ρ

∗

b
)

‖p∗
a − p

∗
b‖ ≤ δ

Thus, Φmax (Ra(ρ
∗
a), Rb(ρ

∗
b)) ≤ δ. This shows that Equa-

tion (18) holds also for Φmax (in addition to Φmin).

5.2.2 Computing the Free Space
The convexity demonstrated by Lemma 1 simplifies the

problem of computing a non-decreasing curve in the free
space. As a result of the convexity of the free space for a
cell, it suffices to only compute the free space boundaries at
the cell boundaries. We refer to Figure 4. The dotted lines
are example non-decreasing curves that cross the cell. As
can be seen, to check if we can go from the left free space
boundary to the top free space boundary of the cell, we
only need the top free space boundary (and the precondition
that the left free space boundary is non-empty). A similar
situation arises for checking traversal from the bottom to
top or bottom to right boundaries via non-decreasing curves.
Convexity makes the internal shape of the free space inside
a cell irrelevant. Invoking convexity again, we actually only
need to compute the points ak, bk for k ∈ {0, 3}. We present
the computation procedure next.

We compute the bottom free space boundaries of cells (the
other boundaries have similar algorithmic solutions). We
need to compute the points a0, b0 in Figure 4. We do this for
the first cell (over [0, 1]× [0, 1]), other cells are translations
and are similar. The point a0 = 〈λmin, 0〉, and the point b0 =
〈λmax, 0〉 for some λmin and λmax in [0, 1]. It hence suffices
to compute λmin and λmax. We solve for λmin (the solution
for λmax is similar) . This value λmin is the solution of the
following optimization problem (where R1(0), R1(1), R2(0)
are given polytope samples of PPRs R1 and R2) :

minimize λ

subject to Φ (R1(λ), R2(0)) ≤ δ

0 ≤ λ ≤ 1

Expanding R1(λ), we get:

minimize λ

subject to Φ
(

λ·R1(0) + (1− λ)·R1(1), R2(0)
)

≤ δ

0 ≤ λ ≤ 1

(20)

The solution to the above problem depends on the func-
tion Φ. We solve each case Φmin and Φmax individually.

5.2.3 Free Space Cell Boundaries for Φmin

In this subsection, we compute the bottom free space bound-
ary of the first cell (over [0, 1] × [0, 1]). The optimization
problem (20) for Φ = Φmin has the same solution as:

minimize λ

such that
∃ point p ∈ λ · R1(0) + (1− λ) · R1(1),
∃ point q ∈ R2(0)

s.t. ‖p− q‖ ≤ δ

0 ≤ λ ≤ 1

Let R1(0) be the polytope A
0
1·x ≤ b01, R1(1) be the polytope

A1
1 ·x ≤ b11, and R2(0) be the polytope A2 ·x ≤ b2; where the

As are n×(d+1) matrices of given constants, and bs are col-
umn vectors of size d+1 containing given constants; and xs
are column vectors of variables. The previous optimization
problem can be stated using these polytopes as:

minimize λ

subject to
∥

∥λ · x0 + (1− λ) · x1 − y
∥

∥ ≤ δ

A0
1 · x

0 ≤ b
0
1

A1
1 · x

1 ≤ b
1
1

A2 · y ≤ b2

0 ≤ λ ≤ 1

(21)

The optimization above is over the variables λ,x0,x1,y.
The values for A0

1, A
1
1, A2, b

0
1, b

1
1, b2, δ are given. We would

like to reduce the problem to Linear Programming (LP),
however we note that, as stated, the problem is an instance
of quadratic programming due to the multiplication of the
parameter λ with parameter column vectors x0 and x1. We
show that these multiplicative constraints can be removed.
Towards this, we need the following lemma.

Lemma 2. Suppose A · x ≤ b is a non-empty polytope in
Rd+1 and b 6= 0. Then A · x ≤ 0 either has no solution, or
contains the only point x = 0.

Using the above lemma, the following result can be shown
(the proof is in the Appendix).

Lemma 3. Let A0
1·x

0 ≤ b01, and A1
1·x

1 ≤ b11, and A2·y ≤ b2
be non-empty polytopes in Rd+1. The following optimization
problem has the same solution as Problem (21).

minimize λ

subject to
∥

∥z
0 + z

1 − y
∥

∥ ≤ δ

A0
1 · z

0 ≤ λ · b01

A1
1 · z

1 ≤ (1− λ) · b11

A2 · y ≤ b2

0 ≤ λ ≤ 1

(22)

We thus can take λmin to be the solution of the opti-
mization problem (22). Consider the norms Lmax

1 (recall the
derived norms given in Equation (1)); or Lmax

∞ (which is just
the same as the L∞ norm). Let us use any of these norms as
the norm in

∥

∥z0 + z1 − y
∥

∥. The optimization problem (22)
as stated is not a LP instance. However, we showed in [18]
how constraint problems involving the Lmax

1 , or L∞ norms
can be framed as LP by doubling the number of variables.
A similar approach works here, thus, Problem (22) can be
solved using linear programming. We solved for the mini-
mal λ. We can employ the same techniques for finding the
maximal λ. This gives us the following result.

Proposition 4 (Free Space Cell Boundaries for Φmin).

Given two PPRs R1, R2, the set Free
Φmin

δ (R1, R2)
at cell-(i, k) boundaries can be computed in time
O
(

LP
(

Si
1 + Si+1

1 + Sk
2 + Sk+1

2

))

, where Sl
j denotes the

halfspace representation size of polytope Rj(l), and LP(·)
is the (polynomial time) upper bound for solving linear
programming instances.

After computing the free space cell boundaries, we can
employ a dynamic programming algorithm to check if there
is a non-decreasing curve travelling through the free space
from the point (0, 0) to (m1,m2).

Proposition 5 (DF

†
min Decision Problem). Given PPRs

R1, R2 represented as m1, m2 polytopes respectively , and a
δ ≥ 0, we can decide the question DF

†
min(R1, R2) ≤ δ in time

O (m1 ·m2 ·LP(Smax)) for both Lmax
1 and L∞ norms on Rd+1,

where Smax is the maximum of the halfspace representation
sizes of the given polytopes, and LP(·) is the (polynomial
time) upper bound for solving linear programming.

5.2.4 Free Space Cell Boundaries for Φmax

In this subsection, we compute the bottom free space bound-
ary of the first cell (over [0, 1] × [0, 1]). The optimization
problem (20) for Φ = Φmax has the same solution as:

minimize λ

such that
∀ points p ∈ λ · R1(0) + (1− λ) · R1(1),
∀ points q ∈ R2(0)

we have ‖p− q‖ ≤ δ

0 ≤ λ ≤ 1

Unfortunately, this cannot be converted into an LP instance
as in the Φmin case because of the “for all” quantifier in the
constraints. The above optimization problem can be ex-
pressed in the theory of reals which is decidable [5]. This
gives us a procedure to compute the free space cell bound-
aries for Φmax. Once we have the free space boundaries, we
can use a dynamic programming algorithm (as in the Φmin

case) to obtain the following result.

Proposition 6 (DF
†
var Decision Problem). Given PPRs

R1, R2 represented as m1, m2 polytopes respectively , and
a δ ≥ 0, it is decidable to check DF

†
var(R1, R2) ≤ δ for both

Lmax
1 and L∞ norms on Rd+1.

The check in Proposition 6 uses the theory of reals and
has a high complexity. We show in the next subsection that
under certain assumptions on the PPRs, we can obtain a
polynomial time procedure.

5.2.5 Φmax Free Space: Polynomial Time Special Case
In this subsection, we obtain a polynomial time algorithm

for computing the free space for Φmax, under mild condi-
tions on the PPRs.

For a fixed λ, we can check if

Φmax

(

λ ·R1(0) + (1− λ) · R1(1), R2(0)
)

≤ δ.

This is done as follows. Consider the optimization problem

maximize ∆

such that
∥

∥λ · x0 + (1− λ) · x1 − y
∥

∥ ≥ ∆

A0
1 · x

0 ≤ b
0
1

A1
1 · x

1 ≤ b
1
1

A2 · y ≤ b2

0 ≤ ∆

(23)

The following cases arise.
• If the optimal ∆ is strictly bigger than δ, then

Φmax

(

λ · R1(0) + (1− λ) · R1(1), R2(0)
)

> δ

because in this case the constraints in (23) imply that
there exist points x0 ∈ R1(0) and x1 ∈ R1(1) and y ∈
R2(0) such that

∥

∥λ · x0 + (1− λ) · x1 − y
∥

∥ ≥ ∆ > δ.
Hence 〈λ, 0〉 does not belong to the free space.

• If ∆ ≤ δ, it implies that Φmax

(

λ ·R1(0) + (1− λ) ·

R1(1), R2(0)
)

≤ δ. Hence 〈λ, 0〉 belongs to the free
space.

Finally, note that the feasible region of (23) is never empty
since for ∆ = 0 the variables x0,x1,y can range over values
in R1(0), R1(1), R2(0) respectively; hence one of the above
cases will hold. Problem (23) can be framed as an LP in-
stance by adding additional variables using the same meth-
ods as in the case for Φmin for Lmax

1 or L∞ norms.
If we can find one λ value such that Φmax

(

λ · R1(0) +

(1 − λ) · R1(1), R2(0)
)

≤ δ, then we can do binary search

over the interval [0, λ] to get λmin (and similarly for λmax).
We next present a heuristic to do this in polynomial time.
Fix an integer K, partition [0, 1] into K equal intervals, and
check for λ = 0, 1

K
, 2
K
, . . . , 1 whether 〈λ, 0〉 belongs to the

free space.
Once the first λ ∈ {0, 1

K
, 2
K
, . . . , 1} is found such that

〈λ, 0〉 belongs to the free space, we perform a binary search
around it over the interval (λ − 1/K, λ] to obtain λmin to
a desired degree of accuracy (which we take to be less than
2−cK for a constant c for convenience), and similarly for
λmax. If the binary search fails to obtain a lower or upper
boundary, we set the corresponding lower or upper boundary
to λ. In total, we solve O(K) instances of problem (23).
Suppose that the actual free space interval at the bottom
boundary of the cell is [λmin, λmax]× {0}. If λmax − λmin <
1/K, we may find an empty subinterval. If λmax − λmin ≥
1/K, we are guaranteed to find the interval (to any desired
degree of accuracy).

Observe that if the bottom boundary of cell i, j is
[λmin, λmax] × {j}, then it means that the set of all op-
timal reparameterizations α1, α2 in Equation (13) in ad-
dition satisfy

(

α2(θ) = j
)

→
(

α1(θ) ∈ [λmin, λmax]
)

. In
other words, the polytope at time α2(θ) in the PPR R2

can only be mapped to R1 polytopes in between times
[λmin, λmax]. The smaller the interval [λmin, λmax], the more
restricted the allowable timing distortions which witness
DF

†
var(R1, R2) ≤ δ, and thus, the smaller the degree of free-

dom of time-distorting of the time-point j in R2; which in
turn means the less robust the possible reparameterizations..

Proposition 7 (Φmax Free Space in Polyomial time). Given

two PPRs R1 and R2, the set Free
Φmax

δ (R1, R2) at the
boundaries of cell i, k can be computed to a precision of O(K)
bits in time O

(

K · LP
(

Si
1 + Si+1

1 + Sk
2 + Sk+1

2

))

, provided
the free space intervals at the cell boundaries, if non-empty,
are of length at least 1

K
, where Sl

j denotes the halfspace rep-
resentation size of polytope Rj(l), and LP(·) is the (polyno-
mial time) upper bound for solving linear programming.

This gives us the following decision procedure using a dy-
namic programming algorithm, and improves Proposition 6
time complexity if the PPRs satisfy certain conditions.

Proposition 8 (DF
†
var Decision Problem in Polynomial

Time). Given PPRs R1, R2 represented by m1, m2 poly-
topes respectively, δ ≥ 0, and integer K > 0, we can decide
the question DF

†
var(R1, R2) ≤ δ under the two conditions:

1. ∀ i ∈ {0..m1}, and ∀ j ∈ {0..m2 − 1}, either (a) there
exists a sub-interval [λmin, λmax] ⊆ [j, j + 1], with
λmax − λmin ≥ 1/K, such that Φmax (R1(i), R2(t)) ≤ δ
for all t ∈ [λmin, λmax], or (b) for all t ∈ [j, j + 1], we
have Φmax (R1(i), R2(t)) > δ; and

2. ∀ j ∈ {0..m2}, and ∀ i ∈ {0..m1 − 1}, either (a) there
exists a sub-interval [λmin, λmax] ⊆ [i, i + 1], with
λmax −λmin ≥ 1/K, such that Φmax (R1(t),R2(j)) ≤ δ
for all t ∈ [λmin, λmax], or (b) for all t ∈ [i, i + 1], we
have Φmax (R1(t), R2(j)) > δ

in time O (m1 ·m2 ·K ·LP(Smax)) for both Lmax
1 , L∞ norms

where Smax is the maximum of the halfspace representation
sizes of the given polytopes, and LP() is the (polynomial
time) upper bound for solving linear programming.

An analysis of the dynamic programming reachability al-
gorithm shows that the two conditions in Proposition 8 are
only required for an i, j pair collection for which a cell-i, j
from the collection occurs in every path from 0, 0 to m1,m2

in the free space diagram of the two PPRs. As a result, for
a sufficiently large K, we expect the algorithm of this sub-
section to work in all except for certain pathological cases.

Proposition 8 gives us a conservative procedure in case
the validity of the two stated conditions is not known: if for
a chosen K > 0, the procedure returns that the distance is
less than or equal to δ, then indeed DF

†
var(R1, R2) ≤ δ. Also

note that as δ increases, the corresponding free space and the
free space boundaries become larger, and when δ is increases
enough, the PPR conditions are satisfied. Since we intend
to use the DF

†
var distances of PPRs as over-approximations

of tracepipes, the conservative nature of Proposition 8 does
not break the over-approximation scheme.

6. VARIATION DISTANCE BOUNDS
We now put everything together, using the results of the

preceding sections to obtain bounds on the variation dis-
tance DSvar(F1, F2) for PPRs F1 and F2. From Proposi-
tions 2, 1, and Theorems 1, 2, and using binary search on
the decision algorithms of Propositions 5 and 6 we get the
following theorem.

Theorem 3. Suppose tracepipes F1 and F2 corre-
spond to sampled over-approximate reach set polytopes
⌈Rp(F1)⌉(t

1
1), . . . , ⌈Rp(F1)⌉(t

m1

1) at time-points t11, . . . , t
m1

1 ,
and ⌈Rp(F2)⌉(t

1
2), . . . , ⌈Rp(F2)⌉(t

m2

2) at time-points
t12, . . . , t

m2

2 respectively. Let ⌈Rp(F1)⌉ and ⌈Rp(F1)⌉ be
corresponding reachpipe completions constructed by linear
interpolation. We can compute βmin, βmax with

βmin ≤ DSvar(F1, F2) ≤ βmax

for the Skorokhod trace metric over L1, L∞ norms on Rd

such that
• βmin = DSmin

(

Fp
(

⌈Rp(F1)⌉
)

, Fp
(

⌈Rp(F2)⌉
))

and
• βmax is an upper-bound of the variation distance

DSvar

(

Fp
(

⌈Rp(F1)⌉
)

, Fp
(

⌈Rp(F2)⌉
))

; and is equal to

the the Skorokhod distance DS
†
var(⌈Rp(F1)⌉, ⌈Rp(F2)⌉)

between the reachpipes ⌈Rp(F1)⌉ and ⌈Rp(F2)⌉ (where
DS

†
var is defined analogously to DF

†
var).

In order to do binary searches on the decision procedures
used in Theorem 3, we need an upper bound U on βmax.
This upper bound can be obtained as follows (in polyno-
mial time). We pick one pair of reparameterizations and use
these to get an upper bound U on DF

†
var(R1, R2) (and thus

on DS
†
var(R1, R2)) for R1 = ⌈Rp(F1)⌉, and R2 = ⌈Rp(F2)⌉.

Assume m2 ≥ m1. Fix α1 : [0, 1] → [0,m1] to be any
non-decreasing reparameterization such that α1(θ) = m1

for θ ≥ 0.5; and let α2 : [0, 1] → [0, m1] be a non-decreasing
reparameterization such that α2(θ) = α1(θ) for θ ≤ 0.5, and
α2 over [0.5, 1] being non-decreasing to [m1,m2]. An upper
bound of DF

†
var(R1, R2) is

max
0≤θ≤1

Φmax

(

R1(α1(θ)) , R2(α2(θ))
)

(24)

The stated reparameterizations are such that R1(i) is
compared to R2(i) for 0 ≤ i ≤ m1 in Φmax, and
R2(i) for i > m1 is compared to R1(m1). It
can be shown that the value of Expression (24) is
the maximum of maxi∈{0,1,...,m1} Φmax (R1(i), R2(i)) and
maxj∈{m1,...,m2} Φmax (R1(m1), R2(j)). These two maxi-
mums can be computed in polynomial time by comput-
ing Φmax (R1(i), R2(j)) for required i, j pairs using linear
programming (Lemmas 4, and 5 in the Appendix). Once
the upper bound U is obtained, we can compute βmin in
O ((lg(U) +B) ·m1 ·m2 · LP(Smax)) time, where B is the
number of desired bits of the fractional part in βmin, and
Smax is the maximum of the halfspace representation sizes
of the given polytopes, and LP(·) is the (polynomial time)
upper bound for solving linear programming.

Polynomial Time Case for βmax. Theorem 3 uses the
theory of reals to obtain βmax. In case an upper bound U
on βmax is given and the PPRs and δ < U are such that
the conditions of Proposition 8 are satisfied, we can employ
the polynomial time algorithm of the proposition in the de-
cision question queries for obtaining βmax. This procedure
runs in O ((lg(U) +B) ·m1 ·m2 ·K · LP(Smax)) time, where
K is an integer governing the robustness of retiming func-
tions (in the sense discussed above Proposition 7). Note
that if the PPRs do not satisfy the the conditions of Propo-
sition 8, then this procedure will still give an upper bound
on Dvar

(

Fp
(

⌈Rp(F1)⌉
)

, Fp
(

⌈Rp(F2)⌉
))

, but it may be larger

than the Skorokhod distance DS
†
var(⌈Rp(F1)⌉, ⌈Rp(F2)⌉) be-

tween the reachpipes ⌈Rp(F1)⌉ and ⌈Rp(F2)⌉.

Using Sliding Windows. The Skorokhod metric al-
lows matching an F1 trace segment in between times t01, t

1
1

to F2 trace segments in between times tm2−1
2 , tm2

2 , i.e.,
the retimings put no limit on the timing distortions. In
practice, we have bounds on timing distortions. As a
result, we can restrict the retimings to be in a win-
dow W : we require that trace segment j of one trace
only be matched to portions of other traces consisting
of segments j −W though j +W . Under this restric-
tion, the algorithm of Theorem 3 can be improved to
run in time O (((lg(U) +B) ·m ·W ·K · LP(Smax)), where
m = max(m1,m2). Usually W,B and K can be taken
to be constants, thus we get a practical running time of
O (m · lg(U) · LP(Smax)), which is linear in the number of
given polytope reachsets, and linear in the LP solving time
involving the largest given polytope representation.

7. CONCLUSIONS
We have considered the problem of determining the dis-

tance between two tracepipes. Such problems arise in the
analysis of dynamical systems under the presence of uncer-
tainties and noise. Our starting point was the polynomial-
time algorithm to compute the Skorokhod metric between
individual traces [18]. Our algorithm takes as input discrete
sequences of polyhedral approximations to the reach set,

such as those provided by symbolic tools such as SpaceEx
[13, 10]. Our main result shows polynomial time algorithms
to approximate the distance from above and from below.

Acknowledgements. The authors thank Fernando Pereira
for helpful discussions; and Raimund Seidel for pointing out
the interpretation of reachpipes as set-valued traces for ap-
plying the free-space technique.

8. REFERENCES
[1] H. Abbas, B. Hoxha, G.E. Fainekos, J.V. Deshmukh,

J. Kapinski, and K. Ueda. Conformance testing as
falsification for cyber-physical systems. CoRR,
abs/1401.5200, 2014.

[2] H. Abbas, H. D. Mittelmann, and G. E. Fainekos.
Formal property verification in a conformance testing
framework. In MEMOCODE 2014, pages 155–164.
IEEE, 2014.

[3] H. Alt and M. Godau. Computing the Fréchet
distance between two polygonal curves. Int. J.
Comput. Geometry Appl., 5:75–91, 1995.

[4] D. Avis, D. Bremner, and R. Seidel. How good are
convex hull algorithms? Comput. Geom., 7:265–301,
1997.

[5] S. Basu, R. Pollack, and M.F. Roy. Algorithms in Real
Algebraic Geometry. Springer-Verlag, 2006.

[6] X. Chen, E. Ábrahám, and S. Sankaranarayanan.
Taylor model flowpipe construction for non-linear
hybrid systems. In RTSS 2012, pages 183–192. IEEE
Computer Society, 2012.

[7] A. Chutinan and B. H. Krogh. Computational
techniques for hybrid system verification. IEEE Trans.
Automat. Contr., 48(1):64–75, 2003.

[8] M. Colón and S. Sankaranarayanan. Generalizing the
template polyhedral domain. In ESOP 2011, LNCS
6602, pages 176–195. Springer, 2011.

[9] J. V. Deshmukh, R. Majumdar, and V. S. Prabhu.
Quantifying conformance using the Skorokhod metric.
In CAV 2015, LNCS 9207, pages 234–250 Part(II).
Springer, 2015.

[10] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. Spaceex: Scalable verification of hybrid
systems. In CAV 2011, LNCS 6806, pages 379–395.
Springer, 2011.

[11] A. Girard. Reachability of uncertain linear systems
using zonotopes. In HSCC 2005, LNCS 3414, pages
291–305. Springer, 2005.

[12] A. Girard and C. Le Guernic. Zonotope/hyperplane
intersection for hybrid systems reachability analysis.
In HSCC, LNCS 4981, pages 215–228. Springer, 2008.

[13] A. Girard, C. Le Guernic, and O. Maler. Efficient
computation of reachable sets of linear time-invariant
systems with inputs. In HSCC 2006, LNCS 3927,
pages 257–271. Springer, 2006.

[14] G.M.Ziegler. Lectures on Polytopes. Springer, 1995.

[15] C. Le Guernic and A. Girard. Reachability analysis of
linear systems using support functions. Nonlinear
Analysis: Hybrid Systems, 4(2):250–262, 2010.

[16] Z. Han and B. H. Krogh. Reachability analysis of
large-scale affine systems using low-dimensional
polytopes. In HSCC 2006, LNCS 3927, pages 287–301.
Springer, 2006.

[17] A. B. Kurzhanski and P. Varaiya. Ellipsoidal
techniques for reachability under state constraints.
SIAM J. Contr. & Optim., 45(4):1369–1394, 2006.

[18] R. Majumdar and V. S. Prabhu. Computing the
Skorokhod distance between polygonal traces. In
HSCC 2015, pages 199–208. ACM, 2015.

[19] P. Prabhakar and M. Viswanathan. A dynamic
algorithm for approximate flow computations. In
HSCC 2011, pages 133–142. ACM, 2011.

[20] S. Sankaranarayanan, T. Dang, and F. Ivancic. A
policy iteration technique for time elapse over
template polyhedra. In HSCC 2008, LNCS 4981,
pages 654–657. Springer, 2008.

9. APPENDIX

Proof of Theorem 2. We prove inequalities in both direc-
tions.

(1) DFmin (Fp(R1),Fp(R2)) ≥ DF
†
min(R1, R2).

Consider any f1 ∈ Fp(R1), and any f2 ∈ Fp(R2). We have

DF(f1, f2) = inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

‖f1 (α1(θ))− f2 (α2(θ))‖

As in the proof of Theorem 1, we have that for every
α1, α2, θ,

‖f1 (α1(θ))− f2 (α2(θ))‖ ≥ Φmin (R1 (α1(θ)) , R2 (α2(θ)))

Thus, for every f1 ∈ Fp(R1), and f2 ∈ Fp(R2), we have

DF(f1, f2) ≥ inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

Φmin

(

R1(α1(θ)) , R2(α2(θ))
)

i.e., DF(f1, f2) ≥ DF

†
min(R1, R2). This implies that

inff1∈Fp(R1),f2∈Fp(R2) DF(f1, f2) ≥ DF

†
min(R1, R2). This

completes the proof of the first direction.

(2) DFmin (Fp(R1),Fp(R2)) ≤ DF
†
min(R1, R2).

Recall that DFmin (Fp(R1),Fp(R2)) =

inf
f1∈Fp(R1),f2∈Fp(R2)

inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

‖f1 (α1(θ))− f2 (α2(θ))‖.

This equals (switching the inf order):

inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

inf
f1∈Fp(R1),f2∈Fp(R2)

max
0≤θ≤1

‖f1 (α1(θ))− f2 (α2(θ))‖.

We need to show that the above expression is ≤ than:

inf
α1:[0,1]→[0,m1]
α2:[0,1]→[0,m2]

max
0≤θ≤1

Φmin

(

R1(α1(θ)) , R2(α2(θ))
)

To show this direction of the inequality, it suffices to show
that for every pair of valid reparameterizations α1, α2, we
have:

inf
f1∈Fp(R1),f2∈Fp(R2)

max
0≤θ≤1

‖f1 (α1(θ))− f2 (α2(θ))‖

≤

max
0≤θ≤1

Φmin

(

R1(α1(θ)) , R2(α2(θ))
)

(25)

The formal proof of the above inequality is technical. We
sketch the main ideas. Fix α1, α2 reparameterizations. De-
fine the function minpairs from [0, 1] to subsets of Rd+1 ×
Rd+1 as minpairs(θ) =
{

〈p1,p2〉











p1 ∈ R1(α1(θ)) , and p2 ∈ R2(α2(θ)) ,

and ‖p1 − p2‖ ≤ Φmin

(

R1(α1(θ)) , R2(α2(θ))
)

}

That is, minpairs(θ) contains point pairs 〈p1,p2〉 with p1 ∈
R1(α1(θ)), and p2 ∈ R2(α2(θ)) such that p1,p2 are the
closest points in the corresponding polytopes R1(α1(θ)) and
R2(α2(θ)) (there may be several such pairs for the two poly-
topes). It can be shown that for each θ, we can pick a single
point tuple from minpairs(θ), namely 〈pθ

1,p
θ
2〉 such that the

functions C1 (α1(θ)) = pθ
1 and C2 (α2(θ)) = pθ

2 are continu-
ous functions from [0, m1] and [0, m2] to Rd+1, ie. they are
continuous traces. This can be done due to the fact that
R1 and R2 are PPRs and thus the polygons R1(α1(θ)) and
R2(α2(θ)) change smoothly with respect to θ.

Observe that the curves C1 and C2 are such that

max
0≤θ≤1

‖C1(α1(θ))− C2(α2(θ))‖

≤

max
0≤θ≤1

Φmin

(

R1(α1(θ)) , R2(α2(θ))
)

This prove Inequality 25. This concludes the second part of
the theorem proof.

Proof of Lemma 3. The basic idea is that we introduce
variables z0 = λ ·x0 and z1 = (1− λ) ·x0, and we multiply
both sides of A0

1 · x0 ≤ b01 by λ, and of A1
1 · x1 ≤ b11 by

1 − λ. For the two optimization problems to be the same,
it suffices to show that for any 0 ≤ λ ≤ 1, and for any y

satisfying A2 · y ≤ b2,

there exist x0,x1 such that:
∥

∥λ · x0 + (1− λ) · x1 − y
∥

∥ ≤ δ

with A0
1 · x

0 ≤ b
0
1

A1
1 · x

1 ≤ b
1
1

(26)
iff

there exist z0,z1 such that:
∥

∥z
0 + z

1 − y
∥

∥ ≤ δ

with A0
1 · z

0 ≤ λ · b01

A1
1 · z

1 ≤ (1− λ) · b11

(27)

Fix a λ, and a y vector. We show the above equivalence.
“Only if”. Suppose there exist x0,x1 satisfying con-
straints 26. Let z0 = λ · x0 and z1 = (1− λ) · x0. Observe
that z0,z1 satisfy the conditions of the second system, and
also

∥

∥z0 + z1 − y
∥

∥ ≤ δ as
∥

∥λ · x0 + (1− λ) · x1 − y
∥

∥ ≤ δ.
This concludes the proof of the “Only if” direction.
“If”. Suppose there exist z0, z1 satisfying constraints 27. If
λ 6= 0 and λ 6= 1, then take x0 = 1

λ
· z0, and x1 = 1

1−λ
· z1.

It can be checked that x0,x1 satisfy constraints 26.
Now suppose λ = 0. The point z0,z1 thus also satisfy:

∥

∥z
0 + z

1 − y
∥

∥ ≤ δ

with A0
1 · z

0 ≤ 0

A1
1 · z

1 ≤ b
1
1

If b0 = 0, then x0 = z0 and x1 = z1 satisfy constraints 26.
Suppose b0 6= 0. From Lemma 2, since A0

1 · z0 ≤ 0, we
must have that z0 = 0. Thus, we have

∥

∥z1 − y
∥

∥ ≤ δ with

A1
1 · z1 ≤ b11. Now we let x0 be any point in the polytope

A0
1 · x

0 ≤ b01, and x1 = z1. It can be seen that these x0,x1

satisfy
∥

∥x
1 − y

∥

∥ ≤ δ

with A0
1 · x

0 ≤ b
0

A1
1 · x

1 ≤ b
1
1

The case of λ = 1 is similar. This concludes the proof of he
“If” part, and thus also the proof of the lemma.

Lemma 4. Let R1, R2 be PPRs represented by m1, m2

polytopes respectively with m2 ≥ m1. Fix α1 : [0, 1] →
[0, m1] to be any non-decreasing reparameterization such
that α1(θ) = m1 for θ ≥ 0.5; and let α2 : [0, 1] →
[0, m1] be a non-decreasing reparameterization such that
α2(θ) = α1(θ) for θ ≤ 0.5, and α2 over [0.5, 1] being non-
decreasing to [m1,m2]. The value of DF

†
var(R1, R2) is at

most the maximum of maxi∈{0,1,...,m1} Φmax (R1(i), R2(i))
and maxj∈{m1,...,m2} Φmax (R1(m1), R2(j)).

Proof. Since α1, α2 are valid non-decreasing reparameteri-
zations, we have

DF

†
var(R1, R2) ≤ max

0≤θ≤1
Φmax

(

R1(α1(θ)) , R2(α2(θ))
)

It is clear that max0≤θ≤1 Φmax

(

R1(α1(θ)) , R2(α2(θ))
)

cannot be smaller than the maximum
of maxi∈{0,1,...,m1} Φmax (R1(i), R2(i)) and
maxj∈{m1,...,m2} Φmax (R1(m1), R2(j)). We prove that
the two quantities are equal. To prove this, it suf-
fices to show that if (a) Φmax (R1(i), R2(i)) ≤ δ, and
(b) Φmax (R1(i+ 1), R2(i+ 1)) ≤ δ, then for all 0 ≤ λ ≤ 1,
we have

Φmax

(

λ ·R1(i) + (1− λ) ·R1(i+ 1),
λ ·R2(i) + (1− λ) ·R2(i+ 1)

)

≤ δ.

We prove the above as follows. As-
sume (a) Φmax (R1(i), R2(i)) ≤ δ, and
(b) Φmax (R1(i+ 1), R2(i+ 1)) ≤ δ. Let pi

1 ∈ R1(i),
and pi+1

1 ∈ R1(i+1), and pi
2 ∈ R2(i), and pi+1

2 ∈ R2(i+1).
We have

∥

∥

∥λp
i
1 + (1− λ)pi+1

1 −
(

λpi
2 + (1− λ)pi+1

2

)∥

∥

∥

≤
∥

∥

∥
λ
(

p
i
1 − p

i
2

)∥

∥

∥
+

∥

∥

∥
(1− λ)

(

p
i+1
1 − p

i+1
2

)∥

∥

∥

≤ λδ + (1− λ)δ = δ

This concludes the proof.

Lemma 5. Let Q1 and Q2 be polytopes in PTopes(Rd+1).
The value Φmax(Q1, Q2) can be computed in time
O (LP(|Q1|+ |Q2|)) where |Q1| and |Q2| denote the halfspace
representation sizes of the respective polytopes, and LP() is
the (polynomial time) upper bound for solving linear pro-
gramming.

Proof. Let Q1 have the halfspace representation A0
1·x

1 ≤ b1,
and let Q2 be A2 · x

2 ≤ b2 for x1 and x2 column vectors of
d+1 variables taking values in R. The value of Φmax(Q1, Q2)
is the solution to the following constraint problem:

maximize ∆

such that
∥

∥x
1 − x

2
∥

∥ ≥ ∆

A0
1 · x

1 ≤ b1

A2 · x
2 ≤ b2

0 ≤ ∆

(28)

The optimization problem (28) can be solved using lin-
ear programming. Suppose the solution of the optimization
problem (28) is δ. It means that (i) there are no points p1 ∈
Q1, and p2 ∈ Q2 such that

∥

∥p1 − p2
∥

∥ > δ, and (ii) there

exist points p1 ∈ Q1, and p2 ∈ Q2 such that
∥

∥p1 − p2
∥

∥ ≤ δ.
These two facts imply Φmax(Q1, Q2) = δ.

