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Research Highlights 

A new sustainability assessment model specifically configured to analyze THUs 

This considers the most relevant indicators, based on quick and easy localization  

Study case on temporary housing units for post-earthquake disaster in Bam 

The local alternative, concrete masonry unit, is the most sustainable one 
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Abstract 

Temporary housing units (THUs) have been used for displaced population (DP) in the 
aftermath of natural disasters to serve as an alternative residence while the permanent 
housing process is completed. A THU is often provided as a prefabricated system, which 
has been criticized due to the economic, environmental, and social aspects of THUs. 
However, this model has been widely used in previous recovery programs. Additionally, it 
should be highlighted that the lack of potential of certain areas persuades decision-makers 
to implement the THUs.° This paper presents a new model for choosing optimized THUs 

                                                
THU : Temporary housing unit  3D : 3D sandwich panels  DCv : Decrease concavely 
TH : Temporary housing  Smax : Maximum satisfaction  DCx : Decrease convexly 
DP : Displaced population  Smin : Minimum satisfaction  ICx : Increase convexly 
HFIR : Housing Foundation of 

Islamic Republic of Iran  
 I : Sustainability index  IS : Increase S-shape 

AAC : Autoclaved aerated 
concrete blocks 

 
 

: Requirement value  IRR : Iranian Rial (Iranian 
currency) 

CMU : Concrete masonry units  
 

: Criterion value  pts. : Points 

PR : Pressed reeds  
 

: Indicator value      
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based on the sustainability concept. This model supports decision-makers in selecting a 
more adequate type of THU, to reduce the negative impact of temporary housing (TH) 
when there is no other possibility.  

The Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria 
Decision Making (MCDM) model that includes the value function concept, is used to 
evaluate the sustainability value of each THU alternative.   

THU technologies that had been suggested for the Bam earthquake recovery program by a 
semi-public organization have been analysed by this method to achieve two aims: (1) to 
determine the most sustainable technology to use and (2) to test the designed model.  

 

Keywords: Post-disaster temporary housing, Sustainability, Bam earthquake, MIVES, MCDM, AHP 

 

Introduction  

 According to Global Estimates 2014, Twenty-two million people worldwide lost their 
homes to natural disasters in 2013. Additionally, in 2050, the population of areas highly 
prone to natural disasters is expected to be double that of 2009 for the same area (Lall & 
Deichmann, 2009). Furthermore the urban population will reach 66% of the world 
population by 2050 (UN, 2014). Meanwhile, UN-habitat (2014) reported that in developing 
countries, one third of the urban population lives in slums that are highly vulnerable in 
terms of temporary housing (TH) provision (Johnson, Lizarralde, & Davidson, 2006).  

DP need somewhere to live in secure and sanitary conditions, and to return to normal life as 
before the disaster while their permanent houses are reconstructed; this is called TH 
(Collins, Corsellis, & Vitale, 2010; Davis, 1978; United Nations Disaster Relief 
Organization (UNDRO), 1982). TH has generally been criticized due to the lack of 
sensibility towards an integrated view of sustainability, especially regarding the THUs.  

THUs which need to be constructed after natural disasters are often categorized as a camp 
(United Nations High Commissioner for Refugees (UNHCR), 1999), grouped in planned 
camps (Corsellis & Vitale, 2005), organized in a top-down approach (Johnson, 2007a).  
According to Félix et al. (2013), THUs consist of (1) ready-made units and (2) supply kits. 
Although a THU is often conceived as a precast system (Johnson, 2009), on-site masonry 
construction was used in previous TH programs.  

The problems of the THU as a commonly used type of TH can be: (1) delays, (2) lack of fit 
with the culture of the DP, (3) the need for large public expenditures, (4) consumption of 
resources and investment assigned to permanent buildings, (5) permanent building 
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reconstruction delays, (6) discordant durability of used materials and usage time, (7) site 
development process requirements, (8) site pollution, (9) infrastructure needs, (10) 
inflexibility, and (11) top-down approaches (Arslan, 2007; Arslan & Cosgun, 2008; 
Barakat, 2003; Chandler, 2007; El-Anwar, El-Rayes, & Elnashai, 2009a; Hadafi & Fallahi, 
2010; Johnson, Lizarralde, & Davidson, 2006; Johnson, 2007a).  

In this sense, most significant research studies and guidelines acknowledge that THUs have 
discordant characteristics and have focused on solving the aforementioned issues. However, 
according to El-Anwar, El-Rayes, & Elnashai (2009a) and Yi & Yang (2014), there are few 
studies that have considered THU optimization and sustainable construction such as: 
Johnson, 2007a; El-Anwar, El-Rayes, & Elnashai, 2009a, b, c; El-Anwar, 2010,2013; 
Chen, 2012; Karatas & El-Rayes, 2014. Meanwhile, the use of THUs has been widespread 
in previous TH, as shown in Table 1.  

 

Despite the weakness of the THU, the use of this TH model illustrates why decision-makers 
have chosen this model for DP. The factors in THU choice can be: (1) immediacy, (2) high 
demand, (3) DP pressure on the government, (4) lack of other options, and (5) avoiding the 
mass exodus of DP (Hadafi & Fallahi, 2010; Quarantelli, 1995). Therefore, for the 
aforementioned reasons, sometimes there are no suitable TH alternatives (e.g., apartment 
rental) besides THUs. Although this type of building, with its short life span, has generally 
been criticized in terms of sustainability, it is possible to determine a more adequate 
alternative within this category.  

The objective of this paper is to present a model for selecting the optimized THU by 
considering local characteristics and sustainability for regions using exclusively THUs, 
either because it is the only choice or because THUs are part of the region’s TH program. 
The model is capable of identifying the optimized THU based on the satisfaction function 
of the involved stakeholders. 

To that end, the Integrated Value Model for Sustainable Assessment (MIVES) from the Spain has 
been used in this paper. The MIVES model, which is a multi-criteria decision-making method 
which incorporates the concept of a value function (Alarcon et al., 2011), assesses the main 
sustainability requirements of different alternatives which answer the same housing requirements. 
MIVES can also be calibrated to a certain time period and applied for different areas with varied 
local living standards and characteristics by adapting the indicators and weights defined in the 
requirements tree. MIVES has been used to evaluate sustainability and to make decisions in the 
fields of (1) university professors (Viñolas et al., 2009), (2) infrastructure (Ormazabal, Viñolas, & 
Aguado, 2008), (3) industrial buildings (Aguado et al., 2012; del Caño, 2012; Fuente et al., 2015; 
Lombera & Rojo, 2010; Pons & Aguado, 2012; Pons & Fuente, 2013), and (4) TH.  

As a case study, four technologies suggested for THUs after the Bam earthquake are assessed. This 
paper aims to reconsider these technologies to determine suitable options and to evaluate the 
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sustainability of each technology. This study also assesses the THUs for a total usage period of 50 
years: 5 years of temporary use and the rest as permanent use in the same location. This assumption 
has been made based on THUs of Bam, especially those which have been erected in private 
properties.  

Methodology 

The decision-making process proposed in this paper was organized in three choice phases: 
(1) initial, (2) middle, and (3) final choice, as shown in Fig. 1. In the initial choice phase, 
decision-makers consider the local potential based on TH features. In the middle choice 
phase, a requirements tree comprises criteria and indicators. The tree is designed with three 
varying levels (economic, environmental, and social) based on local characteristics 
(geographic and stakeholder requirements). In the final choice phase, a suitable decision-
making model is used to determine sustainable THUs. Finally, the weights of the indexes 
have been determined by a group of experts using the Analytical Hierarchy Process (AHP) 
(Saaty, 1990).  

Certain indexes, such as material availability, plan, storey, and second life of THUs can 
have considerable effects on the design tree and weights. Meanwhile, in this paper, only the 
second and third phases of the method have been applied in the case study to determine a 
suitable alternative, as shown in Fig. 1. Eight technologies had already been suggested by 
decision-makers as initial alternatives after the Bam earthquake, based on local potential.  

Technologies Suggested for Constructing THUs in Bam  

An earthquake that was estimated at Mw=6.6 by the USGS (United States Geological 
Survey) (Kuwata, Takada, & Bastami, 2005)  occurred on September 26th, 2003, in Bam, 
which is located in southeastern Iran, approximately 1000 km southeast of Tehran 
(Anafpour, 2008). The population of Bam was approximately 100,000 before the disaster 
(Ahmadizadeh & Shakib, 2004). In the aftermath of the earthquake, 80% of buildings were 
completely destroyed (Havaii & Hosseini, 2004), approximately 30% of Bam´s population 
was killed (Kuwata, Takada, & Bastami, 2005), and approximately 75,000 people were left 
homeless (Khazai, M.EERI, & Hausler, 2005).  

In general, the Bam THU provision was based on two approaches: (1) THU provision in 
public camps and (2) THU provision on private properties. A total of 35,905 THUs were 
built: 26,900 units on private properties and 9,005 in 23 camps (Ghafory-Ashtiany & 
Hosseini, 2008; Rafieian & Asgary, 2013).  THUs that were provided at camp sites had 
considerable problems. Khatam (2006) states the TH cost reached $60 million, while 10-20 
percent of THUs have never been occupied.  

In April 2004, most of the DP received THUs with an area of 18–20 m2 (Fallahi, 2007; 
Havaii & Hosseini, 2004) that were built using different technologies by several contractors 
about seven months after the earthquake. The Foundation of Islamic Republic of Iran 
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(HFIR) and the Minstry of Defence were selected for the responsibility of THU provision 
by the Iranian government. These organizations constructed THUs directly or by hiring 
contractors (Khazai, M.EERI, & Hausler, 2005). 

Therefore, the HFIR delegated responsibility of THU design and construction to one of its 
subsets, called the Bonyadbeton Iran Co., and the experts at this organization designed 
eight alternatives based on four wall technologies and two roofing technologies, as shown 
in Table 2. Additionally, the designed THUs were considered in eighteen, twenty, and 
thirty-six square meter types with different plans and light steel structures. The eighteen 
and twenty m2 plans are shown in Fig. 2.  

The wall technologies were: (1) autoclaved aerated concrete blocks (AAC Block), which is 
called “Siporex” in Iran; (2) cement block which is a concrete masonary unit (CMU); (3) 
pressed reeds panel, which is a prefabricated panel consisting of pressed reeds and joined 
by galvanized wire and framed by wooden or metal components, called “Cantex panel” in 
Iran. The two sides of a Cantex panel can be covered with different plasters, such as 
concrete and gypsum plaster (What Is Cantex?, 2013); and (4) 3D sandwich panel, which is 
a prefabricated lightweight structural panel consisting of a polystyrene core sandwiched 
between two welded steel wires meshes (Rezaifar et al., 2008), as shown in Fig. 3. Each 
side of the 3D panel is covered  in sprayed concrete. Furtheremore, two materials were 
suggested for roofing: (1) sandwich panel roofing, which includes galvanized iron sheets 
on theoutside, polyurethane in the core, and foil cover for the inside, for a roof thickness 
two centimeters; and (2) Corrugated galvanized iron with four centimeters of polystyrene. 

Elements of the Sustainability Assessment Method Proposed for THUs 

 Requirements tree 

The THU indexes have been defined based on Sustainability and Performance Assessment 
and Benchmarking of Buildings (Häkkinen, T. et al., 2012) and collected TH data, 
including TH characteristics and TH stakeholders’ needs. The TH data have been collected 
through primary and secondary sources in previous TH programs, such as Iran, Turkey, 
USA, Japan, and especially the Bam recovery process in 2003. The general indexes 
involved in TH are organized into three main groups in Table 3, based on a global model 
according to (Anderson & UNHCR, 1994; Berardi, 2013; Davis & Lambert, 2002; 
Johnson, 2009; Karatas & El-Rayes, 2014; Krank, Wallbaum, & Gret-Regamey, 2010; 
McConnan, 1998; UNHCR, 1999; UNISDR, 2010).  

 

Therefore, as different locations have different standards and requirements (Davis, 1978; 
Johnson, 2007a), the indicators and weights can be different based on the local 
characteristics. Thus, based on the local characteristics and seminars results, the specific 
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indicators for this case study have been collected from the general indexes of Table 3 and 
organized into three main requirements, as shown in Fig. 4.  

 

The economic requirement (R1) assesses the investment demanded of each proposed TH 
model over its entire life cycle. The social requirement (R2) takes into account the impact 
of each TH alternative on DP as users of temporary houses and third parties who are 
involved. The environmental requirement (R3) assesses the environmental effects of TH 
alternatives on the entire life cycle. 

 Economic indicators 

I1. The building cost indicator evaluates the construction cost of the building, including 
mobilization, site preparation, material, transportation, and installation for each unit.  

I2. The maintenance cost indicator considers the alternatives when these are used in the 
same location with the same function (THUs for the next natural disaster) or other function 
(permanent housing, low-income housing, etc.) based on this paper scenario and technology 
possibilities. The service lifespans of TH materials have been assigned based on The 
Whitestone facility maintenance and repair cost reference 2012–2013 (Lufkin, et al., 2012).  

Social indicators 

I3. The construction time indicator assesses the alternatives in terms of normal time for the 
housing provision process, from the very raw materials up to delivery of the house.  

I4. The risk resistance indicator evaluates the strength of the alternatives against a natural or 
man-made disaster, such as a fire, earthquake, typhoon, tsunami, etc. Thus, this indicator 
has been assessed using two sub-indicators: S1. natural disaster risk is evaluated by an 
assigned point system. As the steel structure of the case study alternatives was designed 
based on Iranian National Building Regulations, the steel frame generally has a low 
percentage of critical damping in an earthquake response (Dowrick, 2009), and the ductility 
of the structure has not been considered. Therefore, the ductility of partition materials is 
assessed to determine the value of this sub-indicator. S2. Fire resistance assesses the 
durability of the exterior wall material subject to fire, based on comparing minimum 
international fire resistance times as shown in Table 4.  

I5. The comfort indicator considers the rate of comfortable conditions in terms of indoor 
quality for THU users based on international code, as shown in Table 4. This indicator has 
two sub-indicators: S3. Acoustics range considers the rate of air-borne soundproofing of 
each alternative by sound transmission class (STC). STC is calculated based on ASTM 
E413 and ISO/R717 (Long, 2005). However, Long (2005) mentions the minmum STC 
rating of dwelling walls is 50 dB.  In this paper, the minimum STC rating has been set at 45 
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dB based on other standards, as shown in Table 4, and the high quality rating has been set 
at 65 dB according to Long. S4. thermal resistance assesses the amount of heat and mass 
transfer from exterior walls (Feng, 2004), which must resist passing the heat into and out of 
the building (Allen & Iano, 2013). This sub-indicator controls the thermal comfort of 
alternatives, which is one of the main reasons to use spaces sheltered from the weather 
(Häkkinen, T. et al., 2012).  

 

I6. The compatibility indicator evaluates the adaptability of THU characteristics to the local 
culture. This indicator includes three sub-indicators: S5. cultural acceptance, which 
considers whether technologies are consistent with DP culture, indigenous material, and 
pre-disaster local housing, and can be a reason for THU rejection (Marcillia & Ohno, 2012; 
UNDRO, 1982). Therefore, the alternatives are evaluated based on similarity of the 
technologies to common pre-disaster local housing by an assigned point system. S6. skilled 
labour index considers the adaptability of technologies with local labour proficiency. THU 
technologies that are provided by highly skilled labour require training, professional 
equipment, etc. Consequently, these technologies cause some problems, such as: (a) 
insufficient THU quality, (b) minimum DP participation, (c) low level of maintenance, (d) 
unemployed local labour, (e) migration of non-local labour to affected areas and vice versa, 
(f) construction delays, and (g) an increase in required expenditures (Abulnour, 2014; 
Kennedy et Al., 2008; Ophiyandri et al., 2013; Sadiqi, Coffey, & Trigunarsyah, 2012; 
Transitional Shelter guidelines, 2012). Therefore, a technology that requires a minimum 
skill level is the more sufficient technology (Wallbaum, Ostermeyer, Salzer, & Escamilla, 
2012). S7. Flexibility evaluates the modifiability of each technology by users during the 
construction process and usage phase. THUs are usually provided based on a top-down 
approach, with minimum stakeholder participation as a weakness of the process (Davidson, 
Lizarralde, & Johnson, 2008).  Therefore, TH projects can be failures because of THU 
abandonment (Davidson et al., 2007) or lack of resident responsibility during the 
maintenance phase (Arslan & Unlu, 2006). In other to objectively measure I6 and its sub-
indicators, point systems have been used.  

Environmental indicators 

Buildings cause resource consumption and gas emissions during their lifespans, including 
the construction, usage, and demolitions phases (Dakwale, Ralegaonkar, & Mandavgane, 
2011; Miller, Doh, Panuwatwanich, & Oers, 2015; Nkwetta & Haghighat, 2014; Pons & 
Wadel, 2011). Thus, four indicators should be designed to assess the TH impact on the 
environment based on Life-Cycle Assessment (LCA), as stated in ISO 14040. The life-
cycle assessment of the building industry can be arranged in four phases: (1) manufacturing 
(building material production, transportation); (2) construction (activities, transportation, 
and water consumption); (3) use (water and energy consumption, such as electricity or gas); 
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and (4) demolition (Bribia, Uso, & Scarpellini, 2009; Mosteiro-Romero, et al., 2014; 
Pacheco-Torres et al., 2014).  

I7. The energy consumption indicator evaluates the amount of energy consumed based on 
LCA in three of the four phases: manufacturing, construction, and demolition. Inventory of 
Carbon & Energy (ICE) (Hammond & Jones, 2011) has been used to evaluate energy 
consumption. 

Energy consumed to provide comfortable conditions during the operations phase has not 
been evaluated in the energy consumption indicator. The thermal resistance sub-indicator 
embraces both comfortable conditions and energy consumption. Based on the MIVES 
concept, indicators should be independent from each other and considered once; thus, this 
indicator has not been assessed again. Additionally, as alternatives conditions were almost 
same during the operation phase in terms of other environmental indicators, these indicators 
have not considered for this phase. 

I8. The water consumption indicator assesses the amount of water usage in the three 
mentioned phases. The amount of water consumption has been determined based on 
Wuppertal institute for climate, environment and energy (2011). 

I9. The waste material indicators evaluate the amount of waste material remaining from the 
manufacturing, construction, and demolition phases. This paper considers the waste 
material range of each technology during the construction phase.  

I10. The CO2 emissions indicator measures the amount of CO2 emissions for each alternative 
in the three aforementioned phases, according to a Life-Cycle Assessment (LCA). To 
evaluate CO2 emissions, Inventory of Carbon & Energy (ICE) (Hammond & Jones, 2011) 
has been used because this database raises the possibility of considering used materials 
individually.   

5. Analysis 

This paper aims to reassess the four alternatives shown in Fig. 3 to determine the most 
sustainable alternative and to evaluate the sustainablity of technologies using a newly 
designed sustainability model based on MIVES, with a simplified Life-Cycle Assessment 
(LCA), local standards, and local needs, by considering all indexes and the entire life cycle 
of THUs. In this paper, four alternatives with corrogated galvanized iron roofing (AAC-C, 
CMU-C, PR-C, and 3D-C) have been assessed. The two roof materials and costs are almost 
equal.   

 

To evaluate the sustainability values of different technologies in this case study based on 
defined indexes, one square meter of these building designs is considered. The common 
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materials have not considered by this model. The same construction materials for all 
alternatives excluding service, kitchen, electrical, and mechanical materials are summarized 
in Table 5. Furthermore, the technologies’ materials and their characteristics are 
individually organized in Table 6 and as assembled in Table 7.  

 

In this stage, the parameters necessary for evaluating each indicator are assigned.  
According to Alarcon et al. (2011), in the next step, the tendency of the value function 
(increase or decrease) is determined, and then the points that produce minimum and 
maximum satisfaction (Smin and Smax) are assigned. Finally, the shape of the value function 
(concave, convex, linear, S-shaped) and the mathematical expression of the value function 
are determined. 

 

According to Alarcon et al. (2011), when satisfaction increases rapidly or decreases 
slightly, a concave-shaped function is the most suitable. The convex function is used when 
the satisfaction tendency is contrary to the concave curve case. If satisfaction 
increases/decreases steadily, a linear function is presented. An S-shaped function is used 
when the satisfaction tendency contains a combination of concave and convex functions, as 
shown in Fig. 5. 

 

The parameters, tendency and shape of the value function for each indicator are determined 
from international guidelines, scientific literature, Iranian National Building Regulations, 
and the background of experts, including professors and HFIR engineers and experts that 
participated in the seminars, as shown in Table 8. In the next step, the value function is 
obtained based upon the general exponential in MIVES Eq. (1).  

 =                                                                                  (1) 

 A : The response value  (indicator’s abscissa), Generally A = 0 

 : The considered indicator abscissa which generates a value  

 : A shape factor that determines if the curve is concave or convex; or is linear 
or shaped as a ‘‘S’’  

 : Factor that establishes, in curves with Pi > 1, abscissa’s value for the inflexion 
point. 

 : Factor that defines the response value to  
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B : The factor that prevents the function from getting out of the range (0.00, 
1.00), is obtained by Eq. (2). 

The sets of indicator values (   ) that are between 0 and 1, according to the 
satisfaction range, is generated by Eq. (1). 1 

 =                                                                                          (2) 

 The indicators tendencies have been determined based on seminars results and cases study 
data, for instance to evaluate the sustainability value of the building cost indicator (I1), Xmin 
= 600,000 IRR /m2; this price had been suggested by the HFIR and accepted by the local 
government as a base price for each square meter of THUs. Xmax = 1,350,000 IRR/m2 based 
on the cost of other THU types (Khazai, M.EERI, & Hausler, 2005). Additionally, 
satisfaction decreases rapidly when the building cost increases, a decreasing, convex (DCx) 
curve is assigned for the tendency of this indicator value function, as shown in Fig. 6. 

 

Regarding the shape of the value functions assigned to the indicators, six decrease in a 
convex manner (DCx) and four increase, of which two are S-shape (IS) and two increase in 
a convex manner (ICx). Furthermore, the Xmin and Xmax of each indicator are defined, as 
shown in table 8. 

 

Additionally, some indicators comprise sub-indicators, such as I4, I5, and I6. The defined 
process for indicators is applied to sub-indicators as well, so the demanded parameters and 
shape of the value function are assigned to each of the sub-indicators as shown in Table 9. 
The sub-indicator functions also have the following shapes: seven increase, of which four 
are S-shape (IS) and three increase in a convex manner (ICx).  

 

After the assessment of the sustainability value of the indicators for each alternative 
technology, the formula that is presented in Eq. (3) should be applied to each tree level. In 
this equation, the indicator value (Vi(xi)) has previously been determined and the weights 
( ) are assigned to determine the sustainability value of each branch. For the multi-criteria 
case, the additive formula corresponding to Eq. (3) is applied to determine the sustainability 
value of each technology. 

 =                                                                                                                    (3)  
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 : The value function of each indicator and each criterion 

 : The weight of considered indicator or criterion. 

 

Therefore, based on previous studies and the knowledge of the professors and HFIR experts 
involved in the seminars, the weights for requirements, criteria, and indicators were 
assigned using the Analytical Hierarchy Process (AHP), as shown in Table 10. Finally, Eq. 

(3) is applied for each level of the tree when the value function of each index and 
its weight  had been determined.  

 

 6. Results and Discussion  

The results from this evaluation are a sustainability index (I), requirements values (VRk), 
criteria values (VCk), and indicators values (VIk) for each alternative shown in Table 11. 
This sustainability index (I) quantifies the four technologies from more to less sustainable: 
CMU, PR, AAC and 3D, with indexes of 0.53, 0.53, 0.50 and 0.36, respectively. The 
results show that the case study alternatives mostly fell in the middle of the sustainability 
index range. As permanent housing standards have been used to evaluate indicator values, 
especially in terms of social aspects, the range of the obtained sustainability indexes is not 
large. However, if the quality of THUs is equal to permanent housing, it is very difficult to 
motivate DP to move to their new permanent housing. Thus, the difference between 
temporary and permanent usage should be considered.  

 

The specific sustainability indexes and requirement values of the four technologies are 
shown in Fig. 7. This consideration shows that each technology has strengths and 
weaknesses, while the CMU and PR technologies obtained higher sustainability index 
values. In general, the AAC and CMU technologies achieved the highest social requirement 
value (0.39); meanwhile, the AAC and PR technologies obtained the highest economic 
requirement (0.76) and environmental requirement (0.79), respectively.  

In terms of the economic requirement, the AAC technology has obtained the highest value 
among the alternatives, as the construction cost of this technology was the lowest according 
to the HFIR at that time, as shown in Fig. 7. The economic values of THUs are closely 
related to the economic power of the affected area.  

 

In terms of social requirements, ACC, CMU, and 3D technologies are almost the same, 
while the PR technology obtained the lowest social requirement value. The model results 
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show that the alternatives must be enhanced for long-term use in terms of social aspects; 
however, these alternatives are generally acceptable for use in emergencies as a THU, 
except for PR. Because of the low fire resistance rating of PR technology, this technology 
must be enhanced with a longer fire resistance time to be reconsidered.  

The AAC and CMU technologies have minimum construction time indicator values, and 
these technologies obtained maximum customization criterion values, especially for CMU. 
These two technologies also have maximum fire rating.  

3D has a maximum construction time indicator and natural disaster resistance sub-indicator. 
Moreover, this technology is acceptable in terms of fire rating, thermal resistance, and STC 
rating; however, this technology obtains a low social requirement satisfaction value 
compared to AAC and CMU. Because 3D technology was unfamiliar for the DP of Bam, 
this technology was refused and could not achieve a high social value. Meanwhile, AAC 
and CMU have high compatibility indicator values, and PR has a lower value.    

In terms of environmental requirements, the values of the four technologies are, from 
greatest to least, PR, CMU, 3D and AAC; with indexes 0.79, 0.49, 0.46 and 0.19, 
respectively. PR has the highest environmental requirement value; this technology obtained 
the highest values of any alternative in all indicators related to the environment, as shown 
in Fig. 8. In this case, PR has the highest energy consumption value, and AAC has the 
lowest. The energy consumption values of CMU and 3D technologies are located between 
those of PR and AAC, from high to low, respectively.  

CMU consumes more water than other technologies, although the amount of water 
consumed is negligible compared to the operation phase; thus, a low weight of 18% has 
been assigned for the water consumption indicator.  

CMU and AAC have lower values for waste material than the other technologies because 
CMU and AAC are masonry technologies. According to Table 11, the waste material 
values of the alternatives are lower than the middle value range, 0.50. Furthermore, CO2 
emissions values for the four technologies are ranked, from most to least, PR, 3D, CMU, 
and AAC, with indexes of 0.9, 0.52, 0.51 and 0.11, respectively.  

 

In the end, the most sustainable technology(s) has been determined using economic, social, 
and environment requirement weights of 45%, 25%, and 30%, respectively, as determined 
by experts. Consequently, CMU and PR technologies obtained the highest sustainability 
index and AAC comes after the first two technologies. Beyond a determination of the 
sustainability indexes of alternatives, this study has presented a model that has the ability to 
specify strengths and weaknesses of alternatives. Meanwhile, this decision-making model is 
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capable of considering alternatives in various scenarios using different requirement weights 
to obviate deficiencies and increase the acceptability range of THUs.   

Therefore, each technology has been considered with different requirement weights to 
obtain suitable alternatives in diverse conditions and situations, with the suitable 
requirement weights assigned by experts. Sixteen different scenarios have been considered 
to determine sustainability index trends of the four technologies when the requirement 
ratios would be different, as shown in Fig. 9. The highlighted point on the horizontal axis 
(economic 45%, social 25%, and environmental 30%) shows the sustainability indexes of 
technologies based on suitable weights chosen by experts. If the environmental weight 
increases compared to the social weight, such as the first point on the horizontal axis in Fig. 
9 (economic 47%, social 18%, and environmental 35%), PR becomes a more sustainable 
technology. If the social requirement weight increases, CMU and AAC will be suitable 
alternatives, although the social and environmental requirement weights can qualify either 
CMU or ACC as a final result. Therefore, if the quality life of DP were the first priority for 
decision-makers, these two technologies could be suitable alternatives. However, CMU 
obtains a high sustainability value in this condition, several times more than that of ACC 
and the other technologies. 

 

The sustainability indexes for 3D technology did not change drastically when considering 
different requirement weights. As this technology was more expensive, unfamiliar to DP, 
and consumed high energy compared to CMU and PR, 3D cannot obtain a high 
sustainability index. Additionally, the trend of the 3D sustainability index will approach 
other technology points if the economic requirement weight decreases drastically.  

In the end, it should be mentioned that, according to the results of this study, CMU 
obtained the highest sustainability index. However, this technology has been an unsuitable 
alternative for THUs at first glance because of its weaknesses, such as construction delivery 
time. To choose a suitable THU, all factors, including essential and lower-priority factors, 
must be considered. 

7. Conclusions 

This research paper presented a new sustainability assessment model that has been 
specifically configured to analyse THU alternatives. This model enables decision-makers to 
determine more sustainable THUs after the initial choice phase is complete and acceptable 
or available alternatives have been chosen. This model is based on the MIVES 
methodology, which has proven to be a suitable strategy for conducting multi-criteria 
decision processes for an integral sustainability analysis of each alternative. This 
methodology can be used for different locations with diverse characteristics without being 
limited by the present conjuncture. Therefore, this model is an ideal tool for choosing 
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THUs, because it embraces the essential aspects of THU provision, such as quick and easy 
localization, the ability to address THU issues consisting of various criteria with different 
priorities, and using a value function system that is a suitable approach to the particularities 
of THU indicators.  

For the application example, a total of four different THUs from the Bam earthquake in 
2003 have been assessed to test the designed model and analyse the THUs used. In this 
sense, CMU and PR have the highest sustainability indexes, though CMU has a greater 
impact on the environment than does PR. Nevertheless, CMU technology has been chosen 
as the more sustainable of the technologies, because this technology obtained higher 
sustainability indexes with regard to different requirement weights, as shown in Fig. 9. 
Additionally, the local alternative can be an appropriate solution based on the results of this 
study; however, decision-makers can improve the sustainability index of this alternative by 
recognizing low indicator values and modifying them. 

However, this model has only been applied to determine qualities of the four THU 
alternatives used in Bam. This model can be used to determine the most sustainable 
alternative for any type of post-disaster TH. To this end, some indicators and weights 
should be adjusted to the new location’s characteristics and requirements. Furthermore, this 
paper provides this customizable model as a specific approach to dealing with TH for future 
research.  
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Fig. 1. Methodology for considering the TH process 

Fig. 2. Plan of a THU constructed in Bam after the 2003 earthquake; the left plan is the 20 m2 type and the 
right plan is the 18 m2 type 

Fig. 3. View of the four wall technologies; (a) autoclaved aerated concrete block (AAC Block), (b) concrete 
masonry unit (CMU), (c) pressed reeds panel, and (d) 3D sandwich panel wall 

Fig. 4. Requirements tree designed for this model 

Fig. 5. Value function types  

Fig. 6. Value function of building cost indicator (I1) 

Fig. 7. Requirements values for the four alternatives 

Fig. 8. Environmental indicator values for the four alternatives 
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Fig. 9. Sustainability indexes of the four technologies with different requirement weights (economic (Ec), 
social (S), and environmental (En)) 

 

 

 

Table 1. The use of THUs in previous TH programs 

Prefabricated                               Method 

Natural disaster Kit approach Ready-made 

References 

Mexico-1985 X  Johnson, 2007b 

Japan-1995 X X Johnson, 2007b; UNISDR, 2010 

Turkey -1999 X X Arslan, 2007; Arslan & Cosgun, 2008; Johnson, 2007a, b; 
Johnson, Lizarralde, & Davidson, 2006  

Iran-2003 X X Fayazi & Lizarralde, 2013; HFIR, 2013; Mahdi & Mahdi, 2013; 
Rafieian & Asgary, 2013 

USA-2005 X X McIntosh, Gray, & Fraser, 2009; Sobel & Leeson, 2006; 
UNISDR, 2010  

China-2008 X  UN, 2009 

New Zealand-2011 X X Giovinazzi, Stevenson, Mason, & Mitchell, 2012; Siembieda, 
2012 

Turkey-2011 X X Erdik, Kamer, Demircioglu, & Sesetyan, 2012; IFRC, 2012 

Japan-2011 X X EERI Special Earthquake Report, 2011; Murao, 2015; Shiozaki, 
Tanaka, Hokugo, & Bettencourt, 2012 

Iran-2012 X  HFIR, 2012 
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Table 2. Eight alternatives including wall materials, roof materials, and construction cost per square meter. 

Alternative Abbreviation Wall Roof  Building Cost * 

(IRR./m2) *** 

Total cost ** 

(IRR./m2)*** 

Alternative 1 AAC-S Autoclaved aerated concrete 
blocks 

Sandwich panels 516528 716528 

Alternative 2 AAC-C Autoclaved aerated concrete 
blocks 

Corrugated galvanized iron 491194 691194 

Alternative 3 CMU-S Concrete masonry units Sandwich panels 563750 763750 

Alternative 4 CMU-C Concrete masonry units Corrugated galvanized iron 538417 738417 

Alternative 5 PR-S Pressed reeds Sandwich panels 596972 796972 

Alternative 6 PR-C Pressed reeds Corrugated galvanized iron 571639 771639 

Alternative 7  3D-S 3D sandwich panels Sandwich panels 719672 919672 

Alternative 8 3D-C 3D sandwich panels Corrugated galvanized iron 694339 894339 

 

* Cost of construction materials, excluding lighting and piping 

** Total of construction material cost including the coefficients: site preparation, area conditions, overhead, 
etc.; which had been considered by HFIR 

*** At the time, one US$ equalled 8500 Iranian Rials (IRR.) (Havaii & Hosseini, 2004) 

 

 

Table 3. The main influential indexes of TH by guideline 

Requirement Category Definition 

Construction Considers the need for public expenditures to provide THUs.  

Economic Maintenance/Reuse  Assesses the investment demanded during the operation phase.  

 

 

Health Takes into account mental and physical aspects, such as risk 
resistance, sanitary conditions, community participation, 
infrastructure, etc. 
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Convenience Embraces indicators concern to comfortable conditions.     Social 

Local capacity Considers local characteristics, such as facilities, skilled 
labours, etc.   

Consumption Considers resource consumption. 

Land use Assesses land use change. 

 

Environmental 

Solid waste Takes into account the amount of waste management during 
the construction and the demolition phases.  

 

 

 

Table 4. Exterior wall standards for residential buildings  

 Exterior wall standards References 

Iran Bedroom:  >45; Living room:  >40; Kitchen:  
>35 

INBC part 18, 2009 

USA Grade 1:STC>55; Grade 2:STC>52; Grade 3:STC>48  

(general STC>50) 

Garg, Sharma, & Maji, 2011 

UK  DnT,w + Ctr >45 Building Regulations, 2010 

 

 

Acoustic 
range 

Germany* Class A:  >68; Class B:  >63; Class C:  >57 Garg, Sharma, & Maji, 2011 

Iran 1 Publication No.613, 2013 Fire 
resistance (h) 

USA 1 IBC, 2009 

Light Group 1: R>2.8; Group 2: R>2.1; Group 3: R>1.5 Iran 

** Heavy Group 1: R>1.9; Group 2: R>1.4; Group 3: R>1.0 

INBC part 19, 2011  

Thermal 
Resistance 

UK U-value: 0.3–0.4 Papadopoulos, 2005 

 

* Row housing  

** Light wall: surface mass < 150 kg/m2  

** Heavy wall: surface mass > 150 kg/m2 

 : Weighted sound reduction index (dB); DnT,w + Ctr : Airborne sound insulation (dB); R: Thermal 
resistance (m2.K/W)  
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Table 5. Common materials for all alternatives 

Component Material 

Foundation  Strap footing foundation, the height is 0. 35 m  

Floor lean concrete 150 kg/m3, the thickness is 0.15 m 
and Iranian mosaic tile  

Structure Steel hollow square section 

Footing (Plinth) Brick or block, the height is 0.20 m 

Window Metal widow, the dimension is 1.00 m *1.00 m 

Door Metal door, the dimension is 2.00 m *1.00 m 

Mortar Cement mortar 1:6 

 

Table 6. Major materials and their properties 

                               Features 

Material 

Density 
(kg/m3) 

Thermal 
conductivity 
(w/(m.k)) 

Embodied 
energy 
(MJ/kg) 

Embodied 
CO2 
(kgCO2/kg) 

Water 
consumption 

(kg/kg) 

References 

Cement mortar (1:6) 1650 0.72 0.85 0.136 - Hammond & Jones, 2011 

Cement mortar (1:3) 1900 0.93 1.33 0.221 - Hammond & Jones, 2011 

Steel  7800 45 13.1 0.72 63.67 Hammond & Jones, 2011; 
Wuppertal institute, 2011 

concrete 16/20 Mpa * 2350 2.2 0.70 0.100 3.42 * Hammond & Jones, 2011; 
Wuppertal institute, 2011 

Autoclaved aerated 
concrete block  

500 0.16 3.50 0.24 to 0.37 13.42* Hammond & Jones, 2011; 
Wuppertal institute, 2011 

Concrete masonry block   2050 0.9 0.59 0.063 11.49 ** Hammond & Jones, 2011; 
Wuppertal institute, 2011 

 

Reed  

120-225 

76 

75.6 

0.055-0.090 

0.076 

0.08-0.09 

- 

*** 

- 

*** 

- 

*** 

Hammond & Jones, 2011; 
Miljan et al., 2014; 
Pfundstein et al., 2012; 
Vejeliene et al., 2011  

Polystyrene (E.P.S.) 15 - 88.6 3.29 137.68 Hammond & Jones, 2011; 
Wuppertal institute, 2011 
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Wuppertal institute, 2011 

* General  

** Cellular concrete 600 kg/m3  

*** Generic wood (As the embodied energy and CO2 are not available in Inventory of Carbon & Energy 
(ICE), 2011, the parameters of generic wood have been used) 

  

Table 7. The important features of the technologies 

Components characteristics  

Technology 

(wall) 

Material Dimension 
(cm) 

Thermal 
resistance 

 (m2.k)/w 

Fire 
resistance 
(h) 

STC Ductility Construction 
time 

References 

AAC 60*10*25 

in Gypsum plaster 3 

 

Autoclaved 
aerated 
concrete 
blocks 

 

out 

 

Cement plaster 

 

2.5 

 

 

0.625a 

 

 

4 

 

 

35a 

 

 

 

Medium 
to low b 

 

 

Low 

Charleson, 2008; 
1980; Hammond & Jones, 
2011; Ingberg, Mitchell, & 
NIST, 1944; International 
Masonry Institute, 2010

CMU 40*20*30 

in Gypsum plaster 3 

 

Concrete 
masonry 
units  

out 

 

Cement plaster 

 

2.5 

 

 

0.222a 

 

 

1.75 

 

 

43-48 a 

 

 

Medium 
to low b 

 

 

Very low 

Cavanaugh & Wilkes, 1999; 

Charleson, 2008; 
2013; Ingberg, Mitchell, & 
NIST, 1944;  

Reeds panel 5 

in Gypsum plaster 3 

 

Pressed 
reeds 

 
out Cement plaster 2.5 

 

0.667a 

 

0.5 

 

Rw =15 c 

 

Medium 
to low b 

 

Medium 

Charleson, 2008; 
Jiménez, Navacerrada, & 

Pedrero, 2012; IS 4407

1967, 2002; HFIR, 2013

EPS 5 

Steel mesh 0.25/0.25/8/8 

in Sprayed 
concrete 

3 

 

 

3D panels 

out Sprayed 
concrete 

3 

 

R11 

1.9373 d 

 

1.5 d 

 

40 d 

 

Medium 
to high a 

 

high 

Charleson, 2008; 
2013; Publication No. 385
Poluraju & Rao, 2014; 
Sarcia, 2004  

 

a Without plaster 
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b General  

c Weighted sound reduction index of 5 cm reeds without plaster / 1.8 cm MDF on each side and 5 cm reeds in 
the core Rw=39  

d 1.5-inch layer of concrete on either side and 2.5-inch EPS in the core (1Btu/h.ft2.°F = 5.678 W/m2.K), and 
the sprayed concrete is 120 pounds per cubic foot . 

 

 

Table 8. Parameters and coefficients for each indicator value function. 

Indicator Unit Xmax Xmin C K P Shape References 

I1 currency/m2 13.5·104 0.6·106 1.4·106 0.1 2.3 DCx HFIR, 2013; Khazai, M.EERI, & 
Hausler, 2005  

I2 currency/m2 5.6·103 2.3·103 0.8·104 0.01 1.5 DCx HFIR, 2013;  Iranian Publication No. 
385; Lufkin, et al., 2012  

I3 pts. 1 0.00 1.5 0.8 2.5 ICx HFIR, 2013; Pons & Aguado, 2012  

I4 pts. 1 0.00 0.25 0.2 2 IS HFIR, 2013 

I5 pts. 1 0.00 0.5 0.8 2 IS HFIR, 2013 

I6 pts. 1 0.00 0.35 0.1 1.8 ICx HFIR, 2013 

I7 MJ 2.5·102 1.2·102 0.2·103 0.8 1.6 DCx Hammond & Jones, 2011; HFIR, 
2013  

I8 kg 2.15·103 2.4·102 2.1·103 0.2 1.6 DCx HFIR, 2013; Wuppertal institute, 2011 

I9 % 20 5 30 0.6 2 DCx Harris, 1999; HFIR, 2013; Iranian 
Publication No. 385;  Saghafi & 
Teshnizi, 2011 

I10 kg CO2 26 13 25 0.3 1.4 DCx HFIR, 2013; Hammond & Jones, 
2011 

 

Xmax: maximum value indicator; Xmin: minimum value indicator; C: establishes, in curves with Pi > 1, 
abscissa’s value for the inflexion point; K: defines the response value to C; P: is a shape factor 
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Table 9. Parameters and coefficients for each sub-indicator value function. 

Sub-indicator Unit Xmax Xmin C K P Shape References 

Natural Disaster Risk pts. 1 0.00 0.55 0.8 2.5 IS Charleson, 2008 I4 

Fire Resistance  h(s) 4 0.00 2 0.8 3.5 IS Cavanaugh & Wilkes, 1999; IBC, 
2009; IS 4407-1967 

Acoustic STC 60 30 6 0.2 2 IS Building Regulations, 2010; Garg, 
Sharma, & Maji, 2011; INBC part 18, 
2009; Long, 2005  

I5 

Thermal Resistance m2.k/w 2.5 0.00 1.6 0.8 2.5 IS Hammond & Jones, 2011; INBC part 
19; Sarcia, 2004  

Cultural Acceptance  pts. 1 0.00 1 0.8 2 ICx HFIR, 2013; UNDRO, 1982  

Skilled Labour pts. 1 0.00 2 0.1 2 ICx Corsellis & Vitale, 2005; HFIR, 
2013; UNDRO, 1982 

I6 

Flexibility pts. 1 0.00 1.5 0.8 1.5 ICx HFIR, 2013; UNDRO, 1982 

 

Table 10. Requirements tree with assigned weights. 

Requirements  Criteria Indicators Sub-indicators 

C1. Implementation Cost (85%) I1. Building Cost (100%)  

R1. Economic (45%) C2. Maintenance Cost (15%) I2. Reusability Cost (100%) 

I3. Construction Time (36%) 

 

S1. Natural Disaster Risk (50%) I4. Risk Resistance (42%) 

S2. Fire Resistance (50%) 

S3. Acoustic (50%) 

 

C3. Safety (60%) 

  

  I5. Comfort (22%) 

S4. Thermal Resistance (50%) 

S5. Cultural Acceptance (45%) 

S6. Skilled Labour (30%)  

 

 

R2. Social (25%) 

  

  

  C4. Customization (40%) I6. Compatibility (100%) 

S7. Flexibility (25%) 

I7. Energy Consumption (47%) 

I8. Water Consumption (18%) 

 

C5. Resources Consumption (67%) 

I9. Waste Material (35%) 

  

R3. Environmental (30%) 

  

C6. Emissions (33%) I10. CO2 Emissions (100%) 
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Table 11. Sustainability index (I), requirements (VRk), criteria (VCk), indicator (VIk), and sub-indicator (VSk) 
values for the four alternatives 

 I VR1 VR2 VR3 VC1 VC2 VC3 VC4 VC5 VC6 

AAC 0.50 0.76 0.39 0.20 0.74 0.87 0.43 0.34 0.25 0.11 

CMU 0.53 0.62 0.39 0.49 0.63 0.59 0.29 0.55 0.48 0.51 

PR 0.53 0.55 0.19 0.79 0.55 0.52 0.21 0.15 0.74 0.9 

3D 0.36 0.28 0.38 0.46 0.32 0.06 0.61 0.02 0.43 0.52 

 

 VI1 VI2 VI3 VI4 VI5 VI6 VI7 VI8 VI9 VI10 

AAC 0.74 0.87 0.2 0.83 0.04 0.34 0.1 0.55 0.3 0.11 

CMU 0.63 0.59 0.11 0.41 0.36 0.55 0.79 0.03 0.3 0.51 

PR 0.55 0.52 0.37 0.18 0.01 0.15 0.87 0.98 0.44 0.9 

3D 0.32 0.06 0.52 0.65 0.7 0.02 0.33 0.66 0.44 0.52 

 

 VS1 VS2 VS3 VS4 VS5 VS6 VS7 

AAC 0.40 1.00 0.13 0.08 0.66 0.49 0.15 

CMU 0.40 0.39 0.72 0.01 1.00 0.57 0.15 

PR 0.48 0.01 0.00 0.09 0.33 0.36 0.15 

3D 0.85 0.25 0.43 0.75 0.09 0.06 0.15 

 

 

 

 


