
HHVM
general concepts and operations

What is HHVM?

A virtual machine that is able to run PHP code
and is almost 100% compatible with PHP 5.x
(for some value of x > 3). It features JIT
compilation of bytecode.

It is also a multithreaded FastCGI server.

Command line

$ hhvm --php some_evil_script.php
● Slow compared to traditional php
● “php” on the CLI will point to hhvm, via an

installed alternative
$ php some_evil_script.php
● Uses /etc/hhvm/php.ini as a config file

Server mode
$ hhvm -m server --config /etc/hhvm/fcgi.ini

Via init:
$ sudo service hhvm start

HHVM in server mode only speaks FastCGI, by
default it listens on port 9000; It can also listen
on a UNIX socket.

The FastCGI server

Main process binds to socket/port and spawns
some threads.
It starts an event loop that dispatches request
to said workers and fetches the responses
(think of a sane version of what we do with
parsoid).
More are spawned on request, to a max of
hhvm.server.thread_count

The FastCGI server

If all threads are busy, requests are queued.
If the queue becomes long, requests wait
forever, and apache will soon-ish reach
MaxClients.

(Do “HHVM busy threads” and “HHVM queue” alerts make
more sense now?)

How HHVM works

All PHP code gets compiled to bytecode and
stored in the bytecode repo
hhvm.repo.central.path =
/run/hhvm/cache/fcgi.hhbc.sq3

Yes, it’s a sqlite3 file. You can take a peek at its
structure if you feel like that.

How HHVM Works

Execution of code is accelerated thanks to use
of a jit compiler

hhvm.jit = true

hhvm.jit_a_cold_size = 34603008.0
hhvm.jit_a_frozen_size = 104857600
hhvm.jit_a_size = 104857600

How HHVM Works

The JIT compiling means the first requests take
a *serious* penalty (and jit is disabled for the
first N requests). “HHVM is slow upon startup”

If any of the caches is exhausted, HHVM will
simply refuse to work anymore. Luckily it’s
mostly easy to size them.

The admin server

Exposed via HTTP on localhost on port 9002
$ curl localhost:9002/

$ curl localhost:9002/check-health
{
 "load":0, "queued":0, "hhbc-roarena-capac":0,

"tc-hotsize":0, "tc-size":2801221, "tc-profsize":12326486, "tc-coldsize":
1612350, "tc-frozensize":6225585,

"targetcache":81712, "rds":81712, "units":647, "funcs":14264
}

The admin server

Can do all the sort of potentially useful and
surely dangerous things:

$ curl localhost:9002/stop

(guess what it does?)

$ curl localhost:9002/stats-sql
On

$ curl localhost:9002/stats-sql

Off

Puppet

The puppet classes for HHVM are basically:
● The hhvm module (modules/hhvm)
● modules/mediawiki/manifests/hhvm.pp
Most things you want to tune can be tuned via
hiera

Puppet

The puppet classes for HHVM are basically:
● The hhvm module (modules/hhvm)
● modules/mediawiki/manifests/hhvm.pp
Most things you want to tune can be tuned via
hiera
We have canary pools!

Salt
Act on canaries:
salt -G ‘canary:appserver’ test.ping

On all but canaries:
salt -C ‘G@cluster:appserver and not

 @Gcanary:*’ test.ping

How to debug when things go wrong

1) Where are the logs?
2) curl/furl
3) Use the admin server
4) Get a stack trace
5) Perf
6) restart HHVM/clean the bc cache
7) Ask Tim to rewrite the relevant HHVM code

:)

How to debug when things go wrong

1) Where are the logs?
Upstart logs HHVM’s stdout /var/log/upstart/hhvm.
log

Errors go to /var/log/hhvm/error.log, NOT to
/var/log/apache.log!!!

Errors also go to fluorine, logstash
The apache log is full of scary FCGI errors. They are
BOGUS

How to debug when things go wrong

2) curl/furl
Curl speaks to apache (HTTP)
curl -H ‘Host: en.wikipedia.org’ localhost/wiki/Main_Page -v

Sometimes things get lost in the Apache/HHVM
communication (OAUTH is an example)
Furl is Ori’s creation, speaks FastCGI directly to HHVM
furl --headers --docroot /srv/mediawiki/docroot/wikipedia.org \

 --script /w/index.php http://en.wikipedia.org/wiki/Main_Page

How to debug when things go wrong

3) Use the admin server
The /check-health endpoint tells you if the Jit
cache is full, the number of busy threads, the
request queue length.
It is usually a quick way to see what is the state
of the system and if it needs respawning

How to debug when things go wrong
4) Get/analyze a stack trace
$ sudo quickstack -p `pgrep hhvm`

If HHVM already crashed, a core dump you can analyze
with gdb is in /var/log/hhvm
It’s not unusual to get a deadlock where all or most threads
are blocked on a futex. Just find out what is this futex
blocking on, report it and proceed to 6)

HPHP::SynchronizableMulti::wait() means the thread is idle and waiting connections

How to debug when things go wrong
5) Perf
$ sudo perf top -p `pgrep hhvm`

Perf is usually a good way to understand why things
continue to be too slow/HHVM is consuming a lot of
resources. We do maintain perf pid maps that should help
understanding the output. Ex. the disabling of Xhprof
because of a spike of system resource usage.

How to debug when things go wrong
6) Restart HHVM / clean the BC cache

How to debug when things go wrong
6) Restart HHVM / clean the BC cache
After you have determined why HHVM is not
responding/slow you will probably want to restart it. The
“recommended way” is:
service apache2 stop; \

 service hhvm restart; \

 sleep 5;

 service apache2 start;

How to debug when things go wrong
6) Restart HHVM / clean the BC cache

What you will actually do:
$ sudo service hhvm restart

How to debug when things go wrong
6) Restart HHVM / clean the BC cache
It may happen that strange errors (usually 500 errors
originating from the PHP interpreter, not Mediawiki) persist
between restarts. In that case clean the BC cache too (as
in, delete it).
$ sudo service hhvm stop

$ sudo rm -f /run/hhvm/cache/…

$ sudo service hhvm start

How to debug when things go wrong
You didn’t expect me to explain in greater detail option 7,
right?

Question Time

