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Preface

Every map must begin, either consciously or 
unconsciously, with the choice of a map projec­ 
tion, the method of transforming the spherelike 
surface being mapped onto a flat plane. Because 
this transformation can become complicated, 
there is a tendency to choose the projection 
that has been used for a suitable available 
base map, even if it does not emphasize the 
desired properties.

This album has been prepared to acquaint 
those in the cartographic profession and other 
cartophiles with the wide range of map projec­ 
tions that have been developed during the past 
few centuries. Because including all of the hun­ 
dreds of known projection systems would be 
both difficult and expensive, this volume pre­ 
sents some 90 basic projections in over 130 
different modifications and aspects. Dozens of 
other projections are mentioned briefly. All the 
popular projections have been included, along 
with many others that have interesting appear­ 
ances or features, even if their usefulness for 
any serious mapping is limited.

The most important question to raise about a 
map projection concerns distortion. How accu­ 
rately does the flat projection show the desired 
portion of the spherelike Earth (or heavens or 
planetary body)? Since accuracy is desired in 
area, shape, and distance but cannot be achieved 
in all three simultaneously and since the region 
mapped may vary in overall extent and shape, 
the answer is not clear cut. Because this album 
emphasizes visual comparisons rather than 
tables of scale variation, the Tissot indicatrix 
has been adopted as the most common means 
of comparing distortion on different parts of 
the same projection and on different projec­ 
tions.

Computerized plotting has facilitated the 
preparation of many outline map projections

on a standardized basis, so that comparisons 
are more realistic. These maps have been plot­ 
ted on film as lines 0.005 in. wide by means of 
a photo-head computer-driven plotter and World 
Data Bank I shoreline files (national boundaries 
included where appropriate). Central meridians 
and other parameters have been given the same 
values in so far as it was practical.

Some smaller maps have been prepared with 
the Dahlgren (Hershey) shoreline file. The map 
projection software for any given map 
consisted of one of three programs. WORLD 
was developed for a mainframe computer by 
Philip Voxland at the University of Minnesota. 
CYLIND and AZIMUTH were developed for a 
personal microcomputer and converted to 
mainframe computer programs at the U.S. 
Geological Survey (USGS) by John Snyder, 
with the guidance of Michael K. Linck, Jr., and 
John F. Waananen. The authors thank Joel L. 
Morrison, past president of the International 
Cartographic Association and Assistant 
Division Chief for Research, National Mapping 
Division, USGS, for writing the introduction to 
this book, as well as Tau Rho Alpha (USGS) 
and Arthur H. Robinson (University of 
Wisconsin/Madison) for many constructive 
comments on the manuscript. The authors also 
thank Christopher J. Cialek, Kathie R. Fraser, 
Carolyn S. Hulett, and Ann Yaeger of the USGS 
for their assistance.

John P. Snyder 
Philip M. Voxland





Introduction

The puzzling world of map projections has 
fascinated humans for at least 2,500 years. 
Perhaps no single aspect of the cartographic 
discipline has held the cartographer's interest 
so consistently throughout history. How does 
one portray on a nonspherical surface the es­ 
sentially spherical shape of the planet on which 
we live? It cannot be done without distortion, 
but the number of ways in which that distortion 
can be handled is infinite.

Although the subject is inherently mathemat­ 
ical and very complex in some instances, it 
also is highly visual and readily calls forth 
human reactions ranging from near disbelief to 
unquestioned acceptance as truth, from confu­ 
sion to a clear understanding of information. 
Map projections have been devised for prop­ 
aganda purposes, as evidence in court, for use 
in detailed planning, and to attract attention.

Most people are affected more than they 
realize by map projections. Cognition of the 
relative areas and shapes on the Earth's surface 
and knowledge (correct or incorrect) of angles, 
sizes, distances, and other relationships among 
places on the globe are determined by the car­ 
tographer's choice of map projections. "An 
Album of Map Projections" should enable read­ 
ers to sharpen and in some cases to correct 
their knowledge of the distances, directions, 
and relative areas of the world.

Although there has been no dearth of valuable 
books describing a wide range of map projec­ 
tions, "An Album of Map Projections" is the 
first attempt to set forth in a comprehensive 
manner most of the useful and commonly known 
map projections. Consistent and concise non- 
mathematical textural descriptions are accom­ 
panied by standardized visual protrayals. De­ 
scriptions of graticules, scale, distortion char­ 
acteristics, and aspects are carefully worded. 
Supplemental information on usage, origin, and 
similar projections is also presented.

No other collection of world portrayals is 
comparable, because of the standard-format 
illustrations and the accompanying distortion 
diagrams presented in this volume. These il­ 
lustrations will be useful for classroom teaching, 
for selecting a projection to fit an output format, 
and for making visual comparisons between 
projections.

An appendix contains forward formulas for 
all but a few highly complex projections to 
transform from latitude and longitude positions 
on a sphere to rectangular coordinates. Inverse 
formulas and formulas treating the Earth as 
an ellipsoid have not been included. Standardized 
notation is introduced and used throughout.

Finally, it must be noted that this volume 
could not have been realistically produced with­ 
out the aid of a computer. Although a compen­ 
dium of this nature has been needed for decades 
(to avoid some of the confusion resulting from 
identical projections' being called by different 
names, if nothing else), the enormity of manu­ 
ally compiling the necessary information pre­ 
vented its production. The computer's ability to 
calculate and plot the portrayals made this 
album possible.

Joel L. Morrison



Glossary

Aspect Conceptual placement of a projection 
system in relation to the Earth's axis (direct, 
normal, polar, equatorial, oblique, and so 
on).

Authalic projection See Equal-area projection.
Azimuthal projection Projection on which the 

azimuth or direction from a given central 
point to any other point is shown correctly. 
Also called a zenithal projection. When a 
pole is the central point, all meridians are 
spaced at their true angles and are straight 
radii of concentric circles that represent 
the parallels.

Central meridian Meridian passing through the 
center of a projection, often a straight line 
about which the projection is symmetrical.

Central projection Projection in which the Earth 
is projected geometrically from the center 
of the Earth onto a plane or other surface. 
The Gnomonic and Central Cylindrical pro­ 
jections are examples.

Complex algebra Branch of algebra that deals 
with complex numbers (combinations of 
real and imaginary numbers using the 
square root of -1).

Complex curves Curves that are not elementary 
forms such as circles, ellipses, hyperbolas, 
parabolas, and sine curves.

Composite projection Projection formed by 
connecting two or more projections along 
common lines such as parallels of latitude, 
necessary adjustments being made to 
achieve fit. The Goode Homolosine projec­ 
tion is an example.

Conformal projection Projection on which all 
angles at each point are preserved. Also 
called an orthomorphic projection.

Conceptually projected Convenient way to visu­ 
alize a projection system, although it may 
not correspond to the actual mathematical 
projection method.

Conic projection Projection resulting from the 
conceptual projection of the Earth onto a

tangent or secant cone, which is then cut 
lengthwise and laid flat. When the axis of 
the cone coincides with the polar axis of 
the Earth, all meridians are straight equidis­ 
tant radii of concentric circular arcs repre­ 
senting the parallels, but the meridians are 
spaced at less than their true angles. 
Mathematically, the projection is often only 
partially geometric.

Constant scale Linear scale that remains the 
same along a particular line on a map, 
although that scale may not be the same 
as the stated or nominal scale of the map.

Conventional aspect See Direct aspect.
Correct scale Linear scale having exactly the 

same value as the stated or nominal scale 
of the map, or a scale factor of 1.0. Also 
called true scale.

Cylindrical projection Projection resulting from 
the conceptual projection of the Earth onto 
a tangent or secant cylinder, which is then 
cut lengthwise and laid flat. When the axis 
of the cylinder coincides with the axis of 
the Earth, the meridians are straight, paral­ 
lel, and equidistant, while the parallels of 
latitude are straight, parallel, and perpen­ 
dicular to the meridians. Mathematically, 
the projection is often only partially geomet­ 
ric.

Direct aspect Form of a projection that provides 
the simplest graticule and calculations. It 
is the polar aspect for azimuthal projections, 
the aspect having a straight Equator for 
cylindrical and pseudocylindrical projec­ 
tions, and the aspect showing straight meri­ 
dians for conic projections. Also called 
conventional or normal aspect.

Distortion Variation of the area or linear scale 
on a map from that indicated by the stated 
map scale, or the variation of a shape or 
angle on a map from the corresponding 
shape or angle on the Earth.

Ellipsoid When used to represent the Earth, a

solid geometric figure formed by rotating 
an ellipse about its minor (shorter) axis. 
Also called spheroid.

Equal-area projection Projection on which the 
areas of all regions are shown in the same 
proportion to their true areas. Also called 
an equivalent or authalic projection. Shapes 
may be greatly distorted.

Equatorial aspect Aspect of an azimuthal pro­ 
jection on which the center of projection or 
origin is some point along the Equator. For 
cylindrical and pseudocylindrical projec­ 
tions, this aspect is usually called conven­ 
tional, direct, normal, or regular rather 
than equatorial.

Equidistant projection Projection that maintains 
constant scale along all great circles from 
one or two points. When the projection is 
centered on a pole, the parallels are spaced 
in proportion to their true distances along 
each meridian.

Equivalent projection See Equal-area projec­ 
tion.

Flat-polar projection Projection on which, in 
direct aspect, the pole is shown as a line 
rather than as a point.

Free of distortion Having no distortion of shape, 
area, or linear scale. On a flat map, this 
condition can exist only at certain points or 
along certain lines.

Geometric projection See Perspective projec­ 
tion.

Globular projection Generally, a nonazimuthal 
projection developed before 1700 on which a 
hemisphere is enclosed in a circle and meri­ 
dians and parallels are simple curves or 
straight lines.

Graticule Network of lines representing a selec­ 
tion of the Earth's parallels and meridians.

Great circle Any circle on the surface of a 
sphere, especially when the sphere repre­ 
sents the Earth, formed by the intersection 
of the surface with a plane passing through



the center of the sphere. It is the shortest 
path between any two points along the circle 
and therefore important for navigation. All 
meridians and the Equator are great circles 
on the Earth taken as a sphere.

Indicatrix Circle or ellipse having the same 
shape as that of an infinitesimally small 
circle (having differential dimensions) on 
the Earth when it is plotted with finite 
dimensions on a map projection. Its axes 
lie in the directions of and are proportional 
to the maximum and minimum scales at 
that point. Often called a Tissot indicatrix 
after the originator of the concept.

Interrupted projection Projection designed to 
reduce peripheral distortion by making use 
of separate sections joined at certain points 
or along certain lines, usually the Equator 
in the normal aspect, and split along lines 
that are usually meridians. There is nor­ 
mally a central meridian for each section.

Large-scale mapping Mapping at a scale larger 
than about 1:75,000, although this limit is 
somewhat flexible.

Latitude (geographic) Angle made by a perpen­ 
dicular to a given point on the surface of a 
sphere or ellipsoid representing the Earth 
and the plane of the Equator (+ if the 
point is north of the Equator, - if it is 
south). One of the two common geographic 
coordinates of a point on the Earth.

Latitude of opposite sign See Parallel of oppo­ 
site sign.

Limiting forms Form taken by a system of 
projection when the parameters of the for­ 
mulas defining that projection are allowed 
to reach limits that cause it to be identical 
with another separately defined projection.

Longitude Angle made by the plane of a meri­ 
dian passing through a given point on the 
Earth's surface and the plane of the (prime) 
meridian passing through Greenwich, Eng­ 
land, east or west to 180° (+ if the point is

east, - if it is west). One of the two common 
geographic coordinates of a point on the 
Earth.

Loxodrome Complex curve (a spherical helix) 
on the Earth's surface that crosses every 
meridian at the same oblique angle; in 
navigation, called a rhumb line. A navigator 
can proceed between any two points along 
a rhumb line by maintaining a constant 
bearing. A loxodrome is a straight line on 
the Mercator projection.

Meridian Reference line on the Earth's surface 
formed by the intersection of the surface 
with a plane passing through both poles 
and some third point on the surface. This 
line is identified by its longitude. On the 
Earth as a sphere, this line is half a great 
circle; on the Earth as an ellipsoid, it is 
half an ellipse.

Minimum-error projection Projection having the 
least possible total error of any projection 
in the designated classification, according 
to a given mathematical criterion. Usually, 
this criterion calls for the minimum sum of 
squares of deviations of linear scale from 
true scale throughout the map ("least 
squares").

Nominal scale Stated scale at which a map 
projection is constructed.

Normal aspect See Direct aspect.
Oblique aspect Aspect of a projection on which 

the center of projection or origin is located 
at a point which is neither at a pole nor 
along the Equator.

Orthoapsidal projection Projection on which 
the surface of the Earth taken as a sphere 
is transformed onto a solid other than the 
sphere and then projected orthographically 
and obliquely onto a plane for the map.

Orthographic projection Specific azimuthal 
projection or a type of projection in which 
the Earth is projected geometrically onto a

surface by means of parallel projection 
lines.

Orthomorphic projection See Conformal projec­ 
tion.

Parallel Small circle on the surface of the 
Earth formed by the intersection of the 
surface of the reference sphere or ellipsoid 
with a plane parallel to the plane of the 
Equator. This line is identified by its 
latitude. The Equator (a great circle) is 
usually also treated as a parallel.

Parallel of opposite sign Parallel that is equally 
distant from but on the opposite side of the 
Equator. For example, for lat 30° N. (or 
+ 30°), the parallel of opposite sign is lat 
30° S. (or -30°). Also called latitude of op­ 
posite sign.

Parameters Values of constants as applied to a 
map projection for a specific map; examples 
are the values of the scale, the latitudes of 
the standard parallels, and the central meri­ 
dian. The required parameters vary with 
the projection.

Perspective projection Projection produced by 
projecting straight lines radiating from a 
selected point (or from infinity) through 
points on the surface of a sphere or ellipsoid 
and then onto a tangent or secant plane. 
Other perspective maps are projected onto 
a tangent or secant cylinder or cone by 
using straight lines passing through a single 
axis of the sphere or ellipsoid. Also called 
geometric projection.

Planar projection Projection resulting from the 
conceptual projection of the Earth onto a 
tangent or secant plane. Usually, a planar 
projection is the same as an azimuthal 
projection. Mathematically, the projection 
is often only partially geometric.

Planimetric map Map representing only the 
horizontal positions of features (without 
their elevations).
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Polar aspect Aspect of a projection, especially 
an azimuthal one, on which the Earth is 
viewed from the polar axis. For cylindrical 
or pseudocylindrical projections, this aspect 
is called transverse.

Polyconic projection Specific projection or 
member of a class of projections in which, 
in the normal aspect, all the parallels of 
latitude are nonconcentric circular arcs, 
except for a straight Equator, and the cen­ 
ters of these circles lie along a central 
axis.

Pseudoconic projection Projection that, in the 
normal aspect, has concentric circular arcs 
for parallels and on which the meridians 
are equally spaced along the parallels, like 
those on a conic projection, but on which 
meridians are curved.

Pseudocylindrical projection Projection that, in 
the normal aspect, has straight parallel 
lines for parallels and on which the merid­ 
ians are (usually) equally spaced along 
parallels, as they are on a cylindrical pro­ 
jection, but on which the meridians are 
curved.

Regional map Small-scale map of an area cov­ 
ering at least 5 or 10 degrees of latitude 
and longitude but less than a hemisphere.

Regular aspect See Direct aspect.
Retroazimuthal projection Projection on which 

the direction or azimuth from every point 
on the map to a given central point is shown 
correctly with respect to a vertical line 
parallel to the central meridian. The reverse 
of an azimuthal projection.

Rhumb line See Loxodrome.
Scale Ratio of the distance on a map or globe 

to the corresponding distance on the Earth; 
usually stated in the form 1:5,000,000, for 
example.

Scale factor Ratio of the scale at a particular 
location and direction on a map to the stated 
scale of the map. At a standard parallel,

or other standard line, the scale factor is 
1.0.

Secant cone, cylinder, or plane A secant cone 
or cylinder intersects the sphere or ellipsoid 
along two separate lines; these lines are 
parallels of latitude if the axes of the geomet­ 
ric figures coincide. A secant plane inter­ 
sects the sphere or ellipsoid along a line 
that is a parallel of latitude if the plane is 
at right angles to the axis.

Similar (projection) Subjective and qualitative 
term indicating a moderate or strong re­ 
semblance.

Singular points Certain points on most but not 
all conformal projections at which confor- 
mality fails, such as the poles on the normal 
aspect of the Mercator projection.

Small circle Circle on the surface of a sphere 
formed by intersection with a plane that 
does not pass through the center of the 
sphere. Parallels of latitude other than the 
Equator are small circles on the Earth 
taken as a sphere.

Small-scale mapping Mapping at a scale smaller 
than about 1:1,000,000, although the limiting 
scale sometimes has been made as large 
as 1:250,000.

Spheroid See Ellipsoid.
Standard parallel In the normal aspect of a 

projection, a parallel of latitude along which 
the scale is as stated for that map. There 
are one or two standard parallels on most 
cylindrical and conic map projections and 
one on many polar stereographic projec­ 
tions.

Stereographic projection Specific azimuthal 
projection or type of projection in which 
the Earth is projected geometrically onto a 
surface from a fixed (or moving) point on 
the opposite face of the Earth.

Tangent cone or cylinder Cone or cylinder that 
just touches the sphere or ellipsoid along a 
single line. This line is a parallel of latitude

if the axes of the geometric figures coin­ 
cide.

Thematic map Map designed to portray primar­ 
ily a particular subject, such as population, 
railroads, or croplands.

Tissot indicatrix See Indicatrix.
Topographic map Map that usually represents 

the vertical positions of features as well as 
their horizontal positions.

Transformed latitudes, longitudes, or poles 
Graticule of meridians and parallels on a 
projection after the Earth has been turned 
with respect to the projection so that the 
Earth's axis no longer coincides with the 
conceptual axis of the projection. Used for 
oblique and transverse aspects of many 
projections.

Transverse aspect Aspect of a map projection 
on which the axis of the Earth is rotated 
so that it is at right angles to the conceptual 
axis of the map projection. For azimuthal 
projections, this aspect is usually called 
equatorial rather than transverse.

True scale See Correct scale.
Zenithal projection See Azimuthal projection.



Guide to Selecting Map Projections

This publication displays the great variety of 
map projections from which the choice for a 
particular map can be made. Although most of 
the projections illustrated in this album have 
been in existence for many years, cartographers 
have been content with using only a few of 
them.

This past lack of innovation is easily under­ 
stood. The difficulty and expense of creating a 
new base map using a different projection often 
outweighed the perceived benefits. The advent 
of computer-assisted cartography has now made 
it much easier to prepare base maps. A map 
can now be centered anywhere on the globe, 
can be drawn according to any one of many 
projection formulas, and can use cartographic 
data files (coastline boundaries, for example) 
having a level of generalization appropriate to 
the scale of the map.

However, now that more choices can be made, 
the actual decision may be more difficult. Some 
of the traditional rules for selection are now 
merely guidelines. This chapter discusses clas­ 
sifications of maps and presents well-established 
principles for their evaluation. Technical and 
mathematical methods also exist for determin­ 
ing exactly the characteristics of a specific 
projection, but those methods are not used 
here.

First, we should define what is meant by a 
map projection. A projection is a systematic 
transformation of the latitudes and longitudes 
of locations on the surface of a sphere or an 
ellipsoid into locations on a plane. That is, lo­ 
cations in three-dimensional space are made to 
correspond to a two-dimensional representa­ 
tion.

If we assume for simplicity that a globe, 
which is a sphere, can perfectly represent the 
surface of the Earth, then all of the following 
characteristics must be true of that globe: 
1. Areas are everywhere correctly represented.

2. All distances are correctly represented.
3. All angles are correctly represented.
4. The shape of any area is faithfully rep­ 
resented.

When the sphere is projected onto a plane, 
the map will no longer have all of these char­ 
acteristics simultaneously. Indeed, the map 
may have none of them. One way of classifying 
maps and their projections is through terms 
describing the extent to which the map preserves 
any of those properties.

Properties of Map Projections
An equal-area map projection correctly rep­ 

resents areas of the sphere on the map. If a 
coin is placed on any area of such a map, it 
will cover as much of the area of the surface 
of the sphere as it would if it were placed else­ 
where on the map. When this type of projection 
is used for small-scale maps showing larger 
regions, the distortion of angles and shapes 
increases as the distance of an area from the 
projection origin increases.

An equidistant map projection is possible only 
in a limited sense. That is, distances can be 
shown at the nominal map scale along a line 
from only one or two points to any other point 
on the map. The focal points usually are at the 
map center or some central location. The term 
is also often used to describe maps on which 
the scale is shown correctly along all meri­ 
dians.

An azimuthal map likewise is limited in the 
sense that it can correctly show directions or 
angles to all other points on the map only with 
respect to one (or rarely two) central point(s).

A conformal map is technically defined as a 
map on which all angles at infinitely small 
locations are correctly depicted. A conformal 
projection increasingly distorts areas away 
from the map's point or lines of true scale and

increasingly distorts shapes as the region be­ 
comes larger but distorts the shapes of moder­ 
ately small areas only slightly.

Consistent with these definitions, maps simul­ 
taneously exhibiting several of these properties 
can be devised:

Equal 
Conformal area Equidistant Azimuthal

Conformal 
Equal area 
Equidistant 
Azimuthal

No 
No 
Yes

No

No 
Yes

No 
No

Yes

Yes 
Yes 
Yes

In summary, any map will distort areas, 
angles, directions, or distances to some extent. 
Since all of these distortions can be measured 
or estimated, one rigorous selection rule would 
be "to select a projection in which the extreme 
distortions are smaller than would occur in any 
other projection used to map the same area" 
(Maling, 1973, p. 159).

A map projection may have none of these 
general properties and still be satisfactory. A 
map projection possessing one of these proper­ 
ties may nevertheless be a poor choice. As an 
example, the Mercator projection continues to 
be used inappropriately for worldwide thematic 
data. The Mercator map projection is conformal 
and has a valid use in navigation but very 
seriously distorts areas near the poles, which it 
cannot even show. It should not be used (al­ 
though it frequently is) for depicting general 
information or any area-related subjects.

Classification Based on Construction

From the perspective of design as well as 
distortion reduction, a projection may be 
selected because of the characteristic curves 
formed by the meridians and parallels. L.P. 
Lee preferred terms based on the pattern formed 
by the meridians and parallels in the normal 
aspect or orientation. The following definitions
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are quoted from his 1944 paper, "The nomen­ 
clature and classification of map projections" 
(Lee, 1944, p. 193):
Cylindric: Projections in which the meridians 
are represented by a system of equidistant 
parallel straight lines, and the parallels by a 
system of parallel straight lines at right angles 
to the meridians.
Pseudocylindric: Projections in which the paral­ 
lels are represented by a system of parallel 
straight lines, and the meridians by concurrent 
curves.
Conic: Projections in which the meridians are 
represented by a system of equally inclined 
concurrent straight lines, and the parallels by 
concentric circular arcs, the angle between any 
two meridians being less than their true differ­ 
ence of longitude.
Pseudoconic: Projections in which the parallels 
are represented by concentric circular arcs, 
and the meridians by concurrent curves.
Polyconic: Projections in which the parallels 
are represented by a system of nonconcentric 
circular arcs with their centres lying on the 
straight line representing the central meridian. 
Azimuthal: Projections in which the meridians 
are represented by a system of concurrent 
straight lines inclined to each other at their 
true difference of longitude, and the parallels 
by a system of concentric circles with their 
common centre at the point of concurrency of 
the meridians.

D.H. Mating used an additional term consistent 
with Lee's definitions: 
Pseudoazimuthal: Projections comprised of 
"concentric circular parallels and curved meri­ 
dians which converge at the pole at their true 
angular values" (Maling, 1960, p. 209).

Finally, a small class of projections has also 
been identified by the term retroazimuthal, de­ 
noting projections in which the direction to a

central point from every point on the map is 
shown correctly.

Philosophy of Map-Projection Selection

On the basis of these concepts, three tradi­ 
tional rules for choosing a map projection were 
at one time recommended:
1. For low-latitude areas: cylindrical.
2. For middle-latitude areas: conical.
3. For polar regions: azimuthal.

Inherent in these guidelines was the idea that 
it would be difficult to recenter a map so that 
the area of main interest was near the area of 
the map that has the least areal or angular 
distortion. On the other hand, it is now much 
less difficult than it formerly was to rotate 
latitude and longitude coordinates so that any 
point is moved to any other new location. As a 
result, a projection does not need to be rejected 
merely because the only available copy is cen­ 
tered inappropriately for a new application. 
In fact, many projections permit the user to 
alter the form of the map to reduce the distor­ 
tions within a certain area. Most commonly, 
such alteration is accomplished by establishing 
standard lines along which distortion is absent; 
often, these lines are parallels of latitude. How­ 
ever, most properties of the map projection 
are affected when a standard line is changed. 
Another way to alter the relationships on a 
map is by using different aspects, which involves 
moving the center of a projection from the 
normal position at a pole or along the Equator 
to some other position.

"Map makers must first define the purpose 
of a map which in turn can provide answers to 
many questions essential to decisions concerning 
the projections" (Hsu, 1981, p. 170). When a 
map requires a general property, the choice of 
a projection becomes limited. For example, 
because conformal projections correctly show 
angles at every location, they are advisable for

maps displaying the flow of oceanic or atmos­ 
pheric currents. The risk of using a conformal 
projection for a worldwide map is that the 
distortion of areas greatly enlarges the outer 
boundaries, and a phenomenon may seem to 
take on an importance that the mapmaker did 
not intend. Equal-area maps should be consid­ 
ered for displaying area-related subjects or 
themes, such as crop-growing regions.

"Once the purpose of a map has been decided, 
the geographical area to be included on the 
map must be determined. Let us call it the 
map area for brevity. The map area can be a 
region or the entire world. The larger the area 
covered, the greater is the earth's curvature 
involved on the map. . . .If the map area is a 
region, then its shape, size, and location are 
important determinants in making decisions 
concerning projections" (Hsu, 1981, p. 172).

Bearing in mind these determinants, map- 
makers can apply traditional rules of choice, 
such as those mentioned above, or they can 
study the patterns of distortion associated with 
particular projections. For example, azimuthal 
projections have a circular pattern for lines of 
constant distortion characteristics, centered on 
the map origin or projection center. Thus, if an 
area is approximately circular and if its center 
is made the origin of the projection, it is possible 
to create a map that minimizes distortion for 
that map area. Ideally, the general shape of a 
geographic region should be matched with the 
distortion pattern of a specific projection. 
An appropriate map projection can be selected 
on the basis of these principles and classifica­ 
tions. Although there may be no absolutely 
correct choice, it is clearly possible to make a 
bad judgment.

Edge Matching
One problem encountered by many map users 

is the edge matching of adjacent regions. For 
two or more maps to fit exactly along their



edges, whether these be common meridians, 
parallels, or rectangular coordinate gridlines, 
not only must they be cast on the same projec­ 
tion and at the same scale, but the projection 
for each map must also have the same critical 
parameters. The critical parameters, which 
vary somewhat with each projection, are those 
specifications that affect the shape and size but 
not the position or orientation of a projection.

The Mercator projection, which is commonly 
used in edge-matching operations, must be 
based on the same ellipsoid or sphere and must 
use the same scale at the same latitude for 
each map. Conic projections such as the Aibers, 
Lambert Conformal, or Equidistant will match 
only if the standard parallels and the ellipsoid 
are the same for each map. For the Mercator 
and conic projections, the central meridian and 
the latitude of origin do not have to be identical 
for edge matching. For the Transverse Mercator 
projection, however, the ellipsoid, the central 
meridian, and the scale along the central meri­ 
dian must be the same, although the latitude of 
origin may vary.

In practice, edge matching is hampered by 
the dimensional instability of the paper or other 
material that the maps are printed on and also 
by cartographic or surveying errors in 
extending roads and streams to the edges of 
the maps. The differences between the 
projections used for large-scale maps may be 
small enough to permit a satisfactory fit, 
depending on the required accuracy and 
purpose of the maps.



Distortion Diagrams

The most important characteristics of a map 
projection are the magnitude of distortion and 
the effect of that distortion on the intended use 
of a map. To assist in evaluating these features, 
many of the graticules for the projections de­ 
scribed herein are presented on two illustra­ 
tions.

The larger of the two plots uses the World 
Data Bank I shoreline file (occasionally includ­ 
ing national boundaries). It also uses the same 
central meridian (90° W.), unless doing so would 
defeat the purpose of the projection, as it would 
with the Briesemeister. Some evaluation of 
distortion can be achieved by comparing famil­ 
iar shapes of islands and shorelines. A more 
uniform comparison can be made by using the 
smaller plots, which include no shorelines but 
which show Tissot indicatrices at every 30° of 
latitude and longitude, except at the poles (ar­ 
bitrarily omitted because of plotting complica­ 
tions).

The Tissot indicatrix, devised by French car­ 
tographer Nicolas Auguste Tissot in the 19th 
century, shows the shape of infinitesimally 
small circles on the Earth as they appear when 
they are plotted by using a fixed finite scale at 
the same locations on a map. Every circle is 
plotted as a circle or an ellipse or, in extreme 
cases, as a straight line. On an equal-area pro­ 
jection, all these ellipses and circles are shown 
as having the same area. The flattening of the 
ellipse shows the extent of local shape distortion 
and how much the scale is changed and in 
what direction. On conformal map projections, 
all indicatrices remain circles, but the areas 
change. On other projections, both the areas 
and the shapes of the indicatrices change. 

For example, for the conformal Mercator

projection, all indicatrices are circles (fig. \A, 
p. 10). Scale is constant along every parallel; 
thus, every circle along a given parallel is the 
same size. On the other hand, the farther the 
parallel from the Equator, the greater the size 
of the circle. Quantitatively, the diameter of 
the circle is proportional to the linear scale at 
that point, and the area of the circle is 
proportional to the area scale. The shape of 
the circle also indicates that the (linear) scale 
is the same in every direction at a given 
point.

Figure 13>4 (p. 37) represents indicatrices for 
the equal-area Sinusoidal projection. The indi­ 
catrices are circles along the Equator and along 
the central meridian, because there is no local 
shape distortion there. As it did in figure 1>4, 
the shape of the circles indicates that the scale 
is the same in all directions at each location. 
The indicatrices elsewhere are ellipses, charac­ 
terized by varying degrees of flattening and by 
axes pointed in various directions. Because the 
areas of all these ellipses are equal, the pro­ 
jection is equal area. The orientation and flat­ 
tening of a given ellipse provide additional 
information. The major axis represents the 
magnitude and direction of the greatest scale 
at that point. The magnitude can be determined 
by multiplying the map scale by the ratio of 
the length of the major axis of the ellipse to 
the diameter of the circle at a point of no dis­ 
tortion, such as a point along the Equator of 
this projection. The minor axis represents the 
magnitude and direction of the smallest scale 
at that point, determined in the same manner. 
The angular distortion at each point is similarly 
indicated by the indicatrix. At every point,

there is no angular distortion in plotting the 
intersection of two particular lines on the Earth, 
one in the direction of the major axis of the 
ellipse and the other in the direction of the 
minor axis. These two lines intersect at right 
angles on the Earth (lines AB and CD) and 
also at right angles on the map (lines A'B' and 
CD'). A pair of perpendicular lines inclined at 
45° to these lines on the Earth (lines EF and 
GH) will not intersect at right angles on the 
map if the indicatrix is an ellipse (lines E'F' 
and G'H'). This statement is true for every 
pair of lines other than the two axes mentioned. 
The scale in these various directions is propor­ 
tional to the length of the diameter across the 
ellipse in the same direction. In two particular

An infinitely small circle on the Earth, circumscribed 
by a square.
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The circle shown on the preceding page as plotted on a non- 
conformal map, circumscribed by a rectangle.

directions, between the directions of the major 
and minor axes on an elliptical indicatrix of an 
equal-area map projection, the scale is the 
same as that of the map.

Figure 32A (p. 82) illustrates distortions on 
the Robinson, a projection that is neither equal 
area nor conformal. Both the size and the shape 
of the indicatrices change. No point is completely 
free of distortion; therefore, all indicatrices 
are at least slightly elliptical. Their areas are 
proportional to the area scale, and linear scale 
and angular distortion can be interpreted just 
as they were for the ellipses of the Sinusoidal 
plot, except that there is no circular indicatrix. 
The indicatrices as shown in this volume are 
obviously too small to permit effective quan­ 
titative scale and distortion measurements. 
Nevertheless, they provide more certainty in 
this evaluation than do the larger plots of 
shorelines.



Cylindrical Projections

MERCATOR Projection
Figure 1A Mercator projection with Tissot indicatrices, 30° 
graticule. All indicatrices are circular (indicating conformality), but 
areas vary.

Classifications
Cylindrical 
Conformal

Graticule
Meridians: Equally spaced straight parallel
lines
Parallels: Unequally spaced straight parallel
lines, closest near the Equator, perpendicular
to meridians
Poles: Cannot be shown
Symmetry: About any meridian or the
Equator

Scale
True along the Equator or along two parallels
equidistant from the Equator
Increases with distance from the Equator to
infinity at the poles
Constant along any given parallel; same scale
at parallel of opposite sign (north +, south -)
Same in all directions near any given point

Distortion
Infinitesimally small circles (indicatrices) of 
equal size on the globe appear as circles on 
the map (indicating conformality) but increase 
in size away from the Equator (indicating area 
distortion) (fig. 1A). Great distortion of area 
in polar regions. Conformality (and therefore 
local angle preservation) fails at the poles.

Other features
All loxodromes or rhumb lines (lines that make 
equal angles with all meridians and are 
therefore lines of constant true bearing) are 
straight lines.

Meridians can be geometrically projected onto 
a cylinder, the axis of which is the same as 
that of the globe.
Parallels cannot be geometrically (or 
perspectively) projected. 
Meridians cannot be compressed relative to 
parallels, as they can on Cylindrical Equal- 
Area and Equirectangular projections, since 
conformality would be lost.

Usage
Designed and recommended for navigational
usage because of straight rhumb lines; standard
for marine charts
Recommended and used for conformal mapping
of regions predominantly bordering the
Equator
Often and inappropriately used as a world map
in atlases and for wall charts. It presents a
misleading view of the world because of the
excessive distortion of area.

Origin
Presented by Gerardus Mercator (1512-94) of 
Flanders in 1569 on a large world map "for use 
in navigation"

Aspects
Normal is described here. 
Transverse and Oblique aspects are listed 
separately (p. 12-15) because of importance 
and common treatment as separate projections.

Other names
Wright (rare) (after Edward Wrightof England, 
who developed the mathematics in 1599)

e e e o e e e e o
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Similar projections
Central Cylindrical projection (p. 30) also cannot
show poles, but it is not conformal, and the
spacing of parallels changes much more
rapidly.
Miller Cylindrical projection (p. 35) shows the
poles, is not conformal, and has more gradual
spacing of parallels.
Gall projection (p. 33) shows the poles, is not
conformal, and has more gradual spacing of
parallels.
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Figure 1S. Mercator projection, with shorelines, 15° graticule. Central meridian 90° W.
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Cylindrical Projections

TRANSVERSE MERCATOR Projection Figure 2A Transverse Mercator projection, with Tissot indicatrices, 
30° graticule.

Classifications
Transverse aspect of Mercator projection
Cylindrical
Conformal

Graticule
Meridians and parallels: Central meridian, 
each meridian 90° from central meridian, and 
the Equator are straight lines. Other meridians 
and parallels are complex curves, concave 
toward the central meridian and the nearest 
pole, respectively.
Poles: Points along the central meridian 
Symmetry: About any straight meridian or the 
Equator

Scale
True along the central meridian or along two 
straight lines on the map equidistant from and 
parallel to the central meridian 
Constant along any straight line on the map 
parallel to the central meridian. (These lines 
are only approximately straight for the 
projection of the ellipsoid.)
Increases with distance from the central 
meridian
Becomes infinite 90° 
meridian

from the central

Distortion
At a given distance from the central meridian 
in figure 1A, the distortion in area is identical 
with that at the same distance from the 
Equator in figure \A .

Other features
Conceptually projected onto a cylinder wrapped
around the globe tangent to the central
meridian or secant along two small circles
equidistant from the central meridian
Cannot be geometrically (or perspectively)
projected
Rhumb lines generally are not straight lines.

Usage
Many of the topographic and planimetric map
quadrangles throughout the world at scales of
1:24,000 to 1:250,000
Basis for Universal Transverse Mercator
(UTM) grid and projection
Basis for State Plane Coordinate System in U.S.
States having predominantly north-south
extent
Recommended for conformal mapping of
regions having predominantly north-south
extent

Origin
Presented by Johann Heinrich Lambert (1728- 
77) of Alsace in 1772. Formulas for ellipsoidal 
use developed by Carl Friedrich Gauss of 
Germany in 1822 and by L. Kruger of Germany, 
L.P. Lee of New Zealand, and others in the 20th 
century.

Other names
Gauss Conformal (ellipsoidal form only) 
Gauss-Kriiger (ellipsoidal form only) 
Transverse Cylindrical Orthomorphic

12



Figure 2B. Transverse Mercator projection, with shorelines, 15° graticule. Central meridian 90° E. and W. North Pole at -90° longitude 
on base projection.
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Cylindrical Projections

OBLIQUE MERCATOR Projection
Figure 3A Oblique Mercator projection, with Tissot indicatrices, 
30° graticule. North Pole at +30° latitude, -90° longitude on base 
projection.

Classifications
Oblique aspect of Mercator projection
Cylindrical
Conformal

Graticule
Meridians and parallels: Two meridians 180° 
apart are straight lines. Other meridians and 
parallels are complex curves. 
Poles: Points not on the central line 
Symmetry: About either straight meridian

Scale
True along a chosen central line (a great circle 
at an oblique angle) or along two straight lines 
on the map parallel to the central line 
Constant along any straight line parallel to the 
central line
(The scale for the projection of the ellipsoid 
varies slightly from these patterns.) 
Increases with distance from the central line 
Becomes infinite 90° from the central line

Distortion
At a given distance from the central line, 
distortion on figure 3A is the same as that on 
the regular Mercator projection (fig. 1>4).

Other features
Conceptually projected onto a cylinder wrapped 
around the globe tangent to an oblique great 
circle or secant along two small circles 
equidistant from and on each side of the central 
great circle

Cannot be geometrically (or perspectively)
projected
There are various means of adapting to the
ellipsoid, but none can simultaneously maintain
both perfect conformality and constant scale
along the central line.

Usage
Large-scale mapping in Switzerland, 
Madagascar, and Borneo 
Atlas maps of regions having greater extent 
in an oblique direction, such as Hawaii 
Recommended for conformal mapping of 
regions having predominant extent in oblique 
direction, neither east-west nor north-south

Origin
Developed for various applications, chiefly 
large-scale mapping of the ellipsoid, by M. 
Rosenmund of Switzerland in 1903, J. Laborde 
of France in 1928, Martin Hotine of England 
in 1947, and others during the 20th century.

Other names
Rectified Skew Orthomorphic (when using
Hotine's formulas)
Laborde (when using Laborde's formulas)
Hotine Oblique Mercator (when using Hotine's
formulas)
Oblique Cylindrical Orthomorphic

Limiting forms
Mercator (p. 10), if the Equator is the central
line
Transverse Mercator (p. 12), if a meridian is
the central line

14



Figure 36. Oblique Mercator projection, with shorelines, 15° graticule. Central meridian 90° W. North Pole at +30° latitude, -90° 
longitude on base projection.
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Cylindrical Projections

LAMBERT CYLINDRICAL EQUAL-AREA Projection

Classifications
Cylindrical 
Equal area 
Perspective

Graticule
Meridians: Equally spaced straight parallel
lines 0.32 as long as the Equator.
Parallels: Unequally spaced straight parallel
lines, farthest apart near the Equator,
perpendicular to meridians
Poles: Straight lines equal in length to the
Equator
Symmetry: About any meridian or the
Equator

Scale
True along the Equator 
Increases with distance from the Equator in 
the direction of parallels and decreases in the 
direction of meridians to maintain equal area 
Same scale at the parallel of opposite sign

Distortion
Infinitesimally small circles (indicatrices) of 
equal size on the globe are ellipses except at 
the Equator, where they are circles (fig. 4>4). 
The areas of all the indicatrices are the same. 
Thus, there is shape distortion but no area 
distortion. Shape distortion in polar regions is 
extreme.

Other features
Simple graticule, perspectively projected in 
lines perpendicular to the axis onto a cylinder 
wrapped around the globe tangent to the 
Equator

Usage
Minimal except to describe basic principles in 
map projection texts

&

e e

Figure 4A. Lambert Cylindrical Equal-Area projection with Tissot indicatrices, 30° graticule. Standard parallel 0°. All ellipses have the 
same area, but shapes vary.

Prototype for Behrmann and other modified 
cylindrical equal-area projections (fig. 5B) 
Recommended for equal-area mapping of 
regions predominantly bordering the Equator

Origin
Presented by Johann Heinrich Lambert (1728- 
77) of Alsace in 1772

Aspects
Normal is described here. 
Transverse and oblique aspects are rarely used 
(figs. 4C, 4D) but are recommended for equal- 
area mapping of predominantly north-south 
regions or regions extending obliquely.

Other names
Cylindrical Equal-Area

Similar projections
If meridians are compressed relative to 
parallels and if the spacing of parallels is 
increased in inverse proportion, other 
cylindrical equal-area projections result (fig.

5B), and the standard parallel changes. The 
extreme case, in which the poles are standard 
parallels, consists of a single vertical line, 
infinitely long. 
Named examples are as follows:

Behrmann
Gall Orthographic
Trystan Edwards
Peters
(See Behrmann Cylindrical Equal-Area
projection, p. 19, for the differences.)

16



Figure 4S. Lambert Cylindrical Equal-Area projection with shorelines, 15° graticule. Standard parallel 0°. Central meridian 90° W.
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LAMBERT CYLINDRICAL EQUAL-AREA Projection
Figure 4C. Transverse Lambert Cylindrical Equal-Area projection with shorelines, 15° graticule. Central meridians 90° E. and W., at true 
scale. North Pole at +90° longitude on base projection.

Cylindrical Projections

Figure 4D. Oblique Lambert Cylindrical Equal-Area projection with shorelines, 15° graticule. Central meridian 90° W. Central great circle 
at true scale through latitude 60° N., longitude 180° and latitude 60° S., longitude 0°. North Pole at +30° latitude, -90° longitude on base 
projection.
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Cylindrical Projections

BEHRMANN CYLINDRICAL EQUAL-AREA Projection

Classifications
Cylindrical 
Equal area 
Perspective

Graticule
Meridians: Equally spaced straight parallel
lines 0.42 as long as the Equator.
Parallels: Unequally spaced straight lines,
farthest apart near the Equator, perpendicular
to meridians
Poles: Straight lines equal in length to the
Equator
Symmetry: About any meridian or the
Equator

Scale
True along latitudes 30° N. and S.
Too small along the Equator but too large at
the Equator along meridians
Increases with distance from the Equator in
the direction of parallels and decreases in the
direction of meridians to maintain equal area
Same scale at the parallel of opposite sign

Distortion
In contrast to figure 44, figure 5A shows 
indicatrices as circles at latitudes 30° N. and 
S., where there is no distortion, instead of at 
the Equator. All others appear as ellipses, but 
their areas remain the same. They are 
compressed east to west and lengthened north 
to south between latitudes 30° N. and S. The 
opposite is true poleward of these latitudes.

Other features
Same as the Lambert Cylindrical Equal-Area 
projection except for horizontal compression 
and vertical expansion to achieve no distortion

Figure 5/4. Behrmann Cylindrical Equal-Area projection with Tissot indicatrices, 30° graticule. Standard parallels 30° N. and S.

at latitudes 30° N. and S. instead of at the
Equator
Equivalent to a projection of the globe using
parallel lines of projection onto a cylinder
secant at 30° N. and S.

Origin
Presented by Walter Behrmann (1882-1955) of 
Berlin in 1910

Similar projections
Lambert Cylindrical Equal-Area (p. 16) by
Johann Heinrich Lambert in 1772 (Standard
parallel: Equator)
Gall Orthographic (fig. 5Q by James Gall in
1855 (Standard parallels: 45° N. and S.)
Trystan Edwards in 1953 (Standard parallels
37°24' N. and S.)
Peters (fig. 5C) by Arno Peters in 1967
(Standard parallels: approximately 45° N. and
S., thus essentially identical with the Gall
Orthographic)
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BEHRMANN CYLINDRICAL EQUAL-AREA Projection
Figure 50. Behrmann Cylindrical Equal-Area projection with shorelines, 15° graticule. Central meridian 90° W. Standard parallels 30° 
N. and S.

Cylindrical Projections

20



Figure 5C. Gall Orthographic or Peters projection with shorelines, 15° graticule. A cylindrical equal-area projection with standard parallels 
45° N. and S. Central meridian 90° W.
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Cylindrical Projections

PLATE CARREE Projection Figure 6A. Plate Carree projection with Tissot indicatrices, 30° graticule.

Classifications
Cylindrical 
Equidistant

Graticule
Meridians: Equally spaced straight parallel
lines half as long as the Equator.
Parallels: Equally spaced straight parallel
lines, perpendicular to and having same
spacing as meridians
Poles: Straight lines equal in length to the
Equator
Symmetry: About any meridian or the
Equator

Scale
True along the Equator and along all
meridians
Increases with the distance from the Equator
along parallels
Constant along any given parallel; same scale
at the parallel of opposite sign

Distortion
Infinitesimally small circles of equal size on 
the globe (indicatrices) are ellipses except 
along the Equator, where they remain circles 
(fig. 6>4). Areas of the ellipses also vary. Thus, 
there is distortion of both shape and area.

Other features
Most simply constructed graticule of any
projection
Conceptually projected onto a cylinder wrapped
around the globe tangent to the Equator
Not perspective

Usage
Many maps during the 15th and 16th centuries

Simple outline maps of regions or of the world Similar projections
or index maps If meridians are compressed relative to
Used only for the Earth taken as a sphere parallels, the Equirectangular projection (p. 24)

results.
Origin
May have been originated by Eratosthenes 
(275?-195? B.C.)
Marinus of Tyre also credited with its invention 
about A.D. 100

Aspects
Normal is described here.
Transverse aspect is the Cassini projection
(figs. 8A, SB), which is also applied to the
ellipsoid.
Oblique aspect is rarely used (see fig. 95).

Other names
Simple Cylindrical
Equidistant Cylindrical (particular form)
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Figure 60. Plate Carree projection with shorelines, 15° graticule. Central meridian 90° W.
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Cylindrical Projections

EQUIRECTANGULAR Projection

Classifications
Cylindrical 
Equidistant

Graticule
Meridians: Equally spaced straight parallel
lines more than half as long as the Equator.
Parallels: Equally spaced straight parallel
lines, perpendicular to and having wider
spacing than meridians
Poles: Straight lines equal in length to the
Equator
Symmetry: About any meridian or the
Equator

Scale
True along two standard parallels equidistant 
from the Equator and along all meridians 
Too small along the Equator but increases with 
distance from the Equator along the parallels 
Constant along any given parallel; same scale 
at the parallel of opposite sign

Distortion
Infinitesimally small circles on the globe 
(indicatrices) are circles on the map at 
latitudes 30° N. and S. for this choice of 
standard parallels (fig. 7A). Elsewhere, area 
and local shape are distorted.

Other features
Simple modification of Plate Carree (p. 22)
having east-west compression
Conceptually projected onto a cylinder secant
to the globe along the chosen standard
parallels
Not perspective

G Q

Q G
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Figure 7A. Equirectangular projection with Tissot indicatrices, 30° graticule. Standard parallels 30° N. and S.

Usage Die Rechteckige Plattkarte
Simple outline maps of regions or of the world Projection of Marinus
or for index maps GaM | SOgraphic (if standard parallels are
Used only in the spherical form latitudes 45° N. and S.)

Origin
Marinus of Tyre about A.D. 100

Other names
Equidistant Cylindrical
Rectangular
La Carte Parallelogrammatique
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Figure 7B. Equirectangular projection with shorelines, 15° graticule. Central meridian 90° W. Standard parallels 30° N. and S.
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Cylindrical Projections

CASSINI Projection

Classifications
Transverse aspect of Plate Carr6e (p. 22)
Cylindrical
Equidistant

Graticule
Central meridian, each meridian 90° from 
central meridian, and the Equator are straight 
lines.
Other meridians and parallels are complex 
curves, concave toward the central meridian 
and the nearest pole, respectively. 
Poles: Points along the central meridian
Symmetry: About any straight meridian or the 
Equator

Scale
True along the central meridian and along any
straight line perpendicular to the central
meridian
Increases with distance from the central
meridian, along a direction parallel to the
central meridian

Distortion
Function of the distance from the central 
meridian. No distortion occurs along the central 
meridian, but there is both area and local shape 
distortion elsewhere. Long horizontal straight 
lines near the upper and lower limits of figure 
8/4 represent infinitesimal circles on the globe 
90° from the central meridian.

Other features
Conceptually projected onto a cylinder tangent 
to the globe at the central meridian

Figure 8A. Cassini projection with Tissot indicatrices, 30° graticule.

Can be compressed north-south to provide a 
Transverse Equirectangular projection, but 
rarely done

Usage
Topographic mapping (ellipsoidal form) of
British Isles before the 1920's; replaced by the
Transverse Mercator
Topographic mapping of a few countries
currently

Origin
Developed by C6sar Francois Cassini de Thury 
(1714-64) for topographic mapping of France 
in the middle 18th century
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Figure 88. Cassini projection with shorelines, 15° graticule. Central meridian 90° W.
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Cylindrical Projections

OBLIQUE PLATE CARREE Projection

Classifications
Oblique aspect of Plate Carree
Cylindrical
Equidistant

Graticule
Two meridians 180° apart are straight lines.
Other meridians and parallels are complex
curves.
Poles: Points away from central line
Symmetry: About either of the straight
meridians

Scale
True along the chosen central line (a great 
circle at an oblique angle) and along any 
straight line perpendicular to the central line. 
Increases with distance from the central line 
along a direction parallel to the central line.

Distortion
At a given distance from the central line, 
distortion on figure 9A is the same as that on 
the Plate Carrie (fig. 6A) .

Limiting forms
Plate Carree (p. 22), if the Equator is the
central line
Cassini (p. 26), if a meridian is the central
line

Figure 9A Oblique Plate Carree projection with Tissot indicatrices, 30° graticule. North Pole at +30° latitude, 0° longitude on base 
projection.
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Figure 98. Oblique Plate Carree projection with shorelines, 15° graticule. Central meridian 90° W. North Pole at +30° latitude, 0° 
longitude on base projection.
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Cylindrical Projections

CENTRAL CYLINDRICAL Projection Figure 10/4. Central Cylindrical projection with Tissot indicatrices, 
30° graticule.

Classifications
Cylindrical
Perspective
Neither conformal nor equal area

Graticule
Meridians: Equally spaced straight parallel
lines
Parallels: Unequally spaced straight parallel
lines, closest near the Equator, but spacing
increases poleward at a much greater rate than
it does on the Mercator. Perpendicular to
meridians.
Poles: Cannot be shown
Symmetry: About any meridian or the
Equator

Scale
True along the Equator
Increases with distance from the Equator to
infinity at the poles
Changes with direction at any given point,
except at the Equator, but scale in a given
direction is constant at any given latitude or
at the latitude of opposite sign

Distortion
Shape, area, and scale distortion increase 
rapidly away from the Equator, where there 
is no distortion (fig.

Other features
Projection is produced geometrically by 
projecting the Earth's surface perspectively

from its center onto a cylinder tangent at the 
Equator. Should not be confused with the 
Mercator (p. 10), which is not perspective.

Usage
Distortion is too great for any usage except 
showing the appearance of the Earth when so 
projected and contrasting with the Mercator.

Origin
Uncertain

Aspects
Normal is described above. 
Transverse aspect (fig. 10Q is called the 
Wetch projection, since it was discussed by 
J. Wetch in the early 19th century.

Other names
Simple Perspective Cylindrical

Similar projections
Mercator projection (p. 10), which is not 
perspective, also cannot show the poles, but 
the poleward increase in the spacing of the 
parallels does not occur as rapidly as it does 
on the Central Cylindrical projection. 
Gall (p. 33) and other perspective cylindrical 
projections can be produced by moving the 
point of perspective away from the center of 
the Earth. The poles can then be shown. 
Gnomonic projection (p. 116) is projected 
perspectively from the center of the Earth onto 
a tangent plane rather than a cylinder and is 
very different in appearance.
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Figure 105. Central Cylindrical projection with shorelines, 15° graticule. Central meridian 90° W.
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Cylindrical Projections

CENTRAL CYLINDRICAL Projection

Figure 10C. Transverse Central Cylindrical projection with shorelines, 15° graticule. Central meridian 90° E. and W. at true scale.
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Cylindrical Projections

GALL Projection Figure 11A Gall projection with Tissot indicatrices, 30° graticule.

Classifications
Cylindrical
Perspective
Neither conformal nor equal area

Graticule
Meridians: Equally spaced straight parallel 
lines 0.77 as long as the Equator 
Parallels: Unequally spaced straight parallel 
lines, closest near the Equator, but spacing 
does not increase poleward as fast as it does 
on the Mercator. Perpendicular to meridians.
Poles: Straight lines equal in length to the
Equator
Symmetry: About any meridian or the
Equator

Scale
True along latitudes 45° N. and S. in all
directions.
Constant in any given direction along any other
given latitude or the latitude of opposite sign
Changes with latitude and direction but is
always too small between latitudes 45° N. and
S. and too large beyond them

Distortion
None at latitudes 45° N. and S. Shape, area, 
and scale distortion increases moderately away 
from these latitudes but becomes severe at 
poles (fig. 11/4).

Other features
Projection is produced geometrically by 
projecting the Earth perspectively from the 
point on the Equator opposite a given meridian 
onto a secant cylinder cutting the globe at 
latitudes 45° N. and S.

Usage
World maps in British atlases and some other

atlases, as a projection somewhat resembling 
the Mercator but having less distortion of area 
and scale near the poles

Origin
Presented by James Gall of Edinburgh in 1855 
as his Stereographic, which he preferred to his 
Orthographic (equal-area) and Isographic 
(equidistant) cylindrical projections presented 
at the same time and also based on cylinders 
secant at latitudes 45° N. and S.

Aspects
Only the normal aspect is used.

Other names
Gall Stereographic

Similar projections
Miller Cylindrical projection (p. 35) has
different spacing of the parallels, and the line
of no distortion is the Equator rather than
latitudes 45° N. and S.
B.S.A.M. (Great Soviet World Atlas) projection
of 1937 is the same, except that the cylinder
is secant at latitudes 30° N. and S.
V.A. Kamenetskiy used an identical projection
for Russian population density in 1929, except
that the cylinder was made secant at latitudes
55° N. and S.
Guy Bomford of Oxford University in England
about 1950 devised a Modified Gall projection,
which is like the regular Gall in spacing except
that meridians are slightly curved at higher
latitudes to decrease scale exaggeration at the
poles.
Moir devised "The Times" projection in which
the straight parallels are spaced as they are
on the Gall projection but the meridians are
distinctly curved.
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Cylindrical Projections

GALL Projection

Figure 11 B. Gall projection with shorelines, 15° graticule. Central meridian 90° W. 
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Cylindrical Projections

MILLER CYLINDRICAL Projection Figure 12A Miller Cylindrical projection with Tissot indicatrices, 
30° graticule.

Classifications
Cylindrical
Neither conformal nor equal area

Graticule
Meridians: Equally spaced straight parallel
lines 0.73 as long as the Equator
Parallels: Unequally spaced straight parallel
lines, closest near the Equator, but spacing
does not increase poleward as fast as it does
on the Mercator. Perpendicular to meridians.
Poles: Straight lines equal in length to the
Equator
Symmetry: About any meridian or the
Equator

Scale
True along the Equator in all directions 
Constant in any given direction along any other 
given latitude; same scale at the latitude of 
opposite sign 
Changes with latitude and direction

Distortion
None at the Equator. Shape, area, and scale 
distortion increases moderately away from the 
Equator but becomes severe at the poles (fig. 
1Z4).

Other features
Parallels are spaced from the Equator by 
calculating the distance for 0.8 of the same 
latitude on the Mercator and dividing the result 
by 0.8. Therefore, the two projections are 
almost identical near the Equator.

Usage
World maps in numerous American atlases and 
some other atlases, as a projection resembling 
the Mercator but having less distortion of area 
and scale, especially near the poles

Origin
Presented by Osborn Maitland Miller (1897- 
1979) of the American Geographical Society in 
1942

Aspects
Normal aspect is commonly used.
Oblique aspect has been used by the National
Geographic Society.

Similar Projections
Gall projection (p. 33) has different spacing 
of parallels. The lines of no distortion are at 
latitudes 45° N. and S. rather than at the 
Equator.
Miller proposed other alternates in 1942, 
including one identical with his preferred 
cylindrical but using two-thirds instead of 0.8.
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Cylindrical Projections

MILLER CYLINDRICAL Projection

Figure 12R Miller Cylindrical projection with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

SINUSOIDAL Projection Figure 13/4. Sinusoidal projection with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical
Equal area
Equally spaced parallels

Graticule
Meridians: Central meridian is a straight line
half as long as the Equator. Other meridians
are equally spaced sinusoidal curves
intersecting at the poles and concave toward
the central meridian.
Parallels: Equally spaced straight parallel
lines perpendicular to the central meridian
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along every parallel and along the central 
meridian

Distortion
Severe near outer meridians at high latitudes 
(fig. 13>4) but can be substantially reduced by 
interruption with several central meridians 
(fig. 13C). Free of distortion along the Equator 
and along the central meridian.

Usage
Atlas maps of South America and Africa. 
Occasionally used for world maps. Formerly 
used for other continental maps and star maps. 
Combined with Mollweide projection to develop 
other projections such as the Homolosine and 
the Boggs.

Origin
Developed in the 16th century. Used by J. 
Cossin in 1570 and by J. Hondius in Mercator 
atlases of the early 17th century. Often called 
Sanson-Flamsteed projection after later users. 
Oldest current pseudocylindrical projection.

Aspects
For educational purposes, it has been shown 
in various aspects as examples of normal, 
transverse, and oblique aspects of almost any 
pseudocylindrical projection (figs. 13C-13F).

Other names
Sanson-Flamsteed 
Mercator Equal-Area

Similar projections
Several other pseudocylindrical projections, 
such as Craster Parabolic (p. 70) and Boggs 
Eumorphic (p. 68), are very similar, but 
parallels are not equally spaced, and meridians 
are curved differently. Eckert V (p. 46) and 
VI (p. 50) have sinusoidal meridians but have 
lines for poles.

37



Pseudocylindrical Projections

SINUSOIDAL Projection
Figure 136. Sinusoidal projection with shorelines, 15° graticule. Central meridian 90° W.
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Figure 13C. Transverse Sinusoidal projection with shorelines, 15° graticule. Central meridian 90° W. North Pole centered on base 
projection (at 0° longitude).
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Pseudocylindrical Projections

SINUSOIDAL Projection
Figure 13D. Transverse Sinusoidal projection with shorelines, 15° graticule. Central meridian 90° W. North Pole at -90° longitude 
on base projection.
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Figure 13E. Oblique Sinusoidal projection with shorelines, 15° graticule. Central meridian 90° W. North Pole at +45° latitude, 0° longitude 
on base projection.
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SINUSOIDAL Projection
Pseudocylindrical Projections

Figure 13F. Oblique Sinusoidal projection with shorelines, 15° graticule. Central meridian 90° W. North Pole at +45° latitude, -90° 
longitude on base projection.
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Figure 13G. Interrupted Sinusoidal projection, with shorelines, 10° graticule. Interruptions symmetrical about Equator.
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Pseudocylindrical Projections

McBRYDE-THOMAS FLAT-POLAR SINUSOIDAL Projection

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced sinusoids, concave toward 
the central meridian.
Parallels: Unequally spaced straight parallel 
lines, widest separation near the Equator. 
Perpendicular to the central meridian. 
Poles: Lines one-third as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 55°51' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Free of distortion only at latitudes 55°51' N. and 
S. on the central meridian (fig. 14v4).

Usage
Basis of merged projections by McBryde (see 
McBryde S3, p. 52)

Origin
Presented by F. Webster McBryde and Paul 
D. Thomas through the U.S. Coast and Geodetic 
Survey in 1949

Similar projections
Sinusoidal projection (p. 37) uses sinusoids for 
meridians, but the poles are points. 
Eckert VI projection (p. 50) uses sinusoids for 
meridians and is equal area, but the poles are 
lines half as long as the Equator.

Figure 14/1. McBryde-Thomas Flat-Polar Sinusoidal projection, with Tissot indicatrices, 30° graticule.
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Figure 14R McBryde-Thomas Flat-Polar Sinusoidal projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

ECKERT V Projection Figure 15A Eckert V projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equally spaced parallels 
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced sinusoids, concave toward 
the central meridian.
Parallels: Equally spaced straight parallel 
lines. Perpendicular to the central meridian.
Poles: Lines half as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 37°55' N. and S., if the 
world map retains correct total area 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
No point is free of all distortion, but the 
Equator is free of angular distortion (fig. 
15,4).

Origin
Presented by Max Eckert (1868-1938) of 
Germany in 1906. The projection is an 
arithmetical average of the x and y coordinates

of the Sinusoidal (p. 37) and Plate Carrie (p. 
22) projections.

Similar projections
Eckert VI projection (p. 50) has meridians
positioned identically, but parallels are spaced
for equal area.
Winkel I (p. 48) is an average of coordinates
of the Sinusoidal and Equirectangular
projections.
Wagner III projection uses part rather than all
of the sinusoidal curve for meridians.
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Figure 15fi. Eckert V projection, with shorelines, 15° graticule. Central meridian 90° W.

47



Pseudocylindrical Projections

WINKEL I Projection

Classifications
Pseudocylindrical 
Equally spaced parallels 
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line 
0.61 (or other value) as long as the Equator. 
Other meridians are equally spaced sinusoidal 
curves, concave toward the central meridian. 
Parallels: Equally spaced straight parallel 
lines. Perpendicular to the central meridian. 
Poles: Lines 0.61 (or other value) as long as 
the Equator
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 50°28' N. and S. (or other 
chosen value)
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Not free of distortion at any point

Origin
Developed by Oswald Winkel (1873-1953) of 
Germany in 1914 as the average of the 
Sinusoidal (p. 37) and Equirectangular (p. 24) 
projection in both x and y coordinates. When 
the standard parallels of the Equirectangular 
projection are varied, the standard parallels 
and appearance of Winkel I vary. Use of 
latitudes 50°28' N. and S. results in a map at 
the correct total-area scale, but the local-area 
scale varies.

Limiting form
Eckert V (p. 46), if the Equator is the standard 
parallel
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Figure 16. Winkel I projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallels 50°28' N. and S.
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Pseudocylindrical Projections

ECKERT VI Projection Figure 17A Eckert VI projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced sinusoids, concave toward 
the central meridian.
Parallels: Equally spaced straight parallel 
lines, widest separation near the Equator. 
Perpendicular to the central meridian. 
Poles: Lines half as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 49°16' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Free of distortion only at latitudes 49°16' N. and 
S. at the central meridian (fig. MA)

Usage
Thematic world maps in Soviet World Atlas of 
1937
Some recent use for climatic maps by U.S. 
publishers

Origin
Presented by Max Eckert (1868-1938) of 
Germany in 1906.

Similar projections
Eckert V projection (p. 46) has meridians 
positioned identically, but parallels are equally 
spaced.
Wagner I projection (1932) is almost identical 
to Eckert VI, but Wagner I uses only part of 
the sinusoidal curve. Kavrayskiy VI projection 
(1936) is identical to Wagner I. Werenskiold II 
projection (1944) is the same as Wagner I, 
except for scale.
McBryde-Thomas Flat-Polar Sinusoidal (p. 44) 
uses the full sinusoid and is equal area, but the 
poles are one-third the length of the Equator.
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Figure 176. Eckert VI projection, with shorelines, 15° graticule. Central meridian 90° W.
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McBRYDE S3 Projection

Pseudocylindrical Projections

Classifications
Pseudocylindrical composite 
Equal area

Graticule
Meridians: Where the central meridian extends 
across the Equator, it is a straight line 0.44 as 
long as the Equator. Other central meridians 
in the usual interrupted form are straight and 
half as long. Other meridians are equally 
spaced sinusoidal curves, bending slightly at 
latitudes 55°51' N. and S., and all are concave 
toward the local central meridian.

Parallels: Straight parallel lines, perpendicular 
to the central meridian(s). Equally spaced 
between latitudes 55°51' N. and S. 
Gradually closer together beyond these 
latitudes

Poles: Interrupted straight lines totaling 0.31 
the length of the Equator

Symmetry: About the central meridian or the 
Equator (in uninterrupted form)

Scale
True along every latitude between 55°51' N. and 
S. and along the central meridian within the 
same latitude range. Constant along any given 
latitude; same for the latitude of opposite 
sign.

Distortion
Same as the Sinusoidal projection between 
latitude 55°51' N. and S. (see fig. 13>4). Same 
as the McBryde-Thomas Flat-Polar Sinusoidal 
projection beyond this range (see fig. 14A). 
McBryde S3 is almost always used in the 
interrupted form and has several central 
meridians.

Usage
World map interrupted to show oceans or land 
masses, by McBryde

Origin
Developed by F. Webster McBryde (1908- ) 
of Potomac, Md., in 1977 as a merging of the 
Sinusoidal with the McBryde-Thomas Flat- 
Polar Sinusoidal projection at the parallels of 
identical scale on the two projections, latitudes 
55°51' N. and S. U.S. Patent by McBryde.

Similar projections
Identical with the Sinusoidal (p. 37) between 
latitudes 55°51' N. and S.; identical with the 
McBryde-Thomas Flat-Polar Sinusoidal (p. 44) 
poleward of those latitudes, except that those 
portions are closer to the Equator than they 
are on the McBryde-Thomas Flat-Polar 
Sinusoidal projection itself. 
McBryde merged projections in several other 
similar combinations, also in 1977.
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Figure 18. Interrupted McBryde S3 projection, with shorelines, 10° graticule, to show oceans. Projection: U.S. Patent No. 4,315,747, 
held by F. Webster McBryde and used by permission.
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Pseudocylindrical Projections

MOLLWEIDE Projection Figure 19X1. Mollweide projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line
half as long as the Equator. Meridians 90° E.
and W. of the central meridian form a circle.
Others are equally spaced semiellipses
intersecting at the poles and concave toward
the central meridian.
Parallels: Unequally spaced straight parallel
lines, farthest apart near the Equator; spacing
changes gradually. Perpendicular to the central
meridian.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along latitudes 40°44' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Severe near outer meridians at high latitudes 
(fig. 19A) but can be substantially reduced if 
interrupted with several central meridians (fig. 
19D). Free of distortion only at latitudes 40°44' 
N. and S. on the central meridian.

Usage
Occasional world maps, especially thematic 
maps. Combined with Sinusoidal projection to 
develop other projections such as the Goode 
Homolosine and the Boggs.

Origin
Presented by Carl B. Mollweide (1774-1825) of 
Germany in 1805

Aspects
For educational purposes, it has been shown 
in various aspects as examples of normal, 
transverse, and oblique aspects of almost any 
Pseudocylindrical projection. The transverse 
aspect has also been used by John 
Bartholomew in The Times Atlas in England 
in 1958 (fig. 19C).

Other names
Homolographic projection 
Homalographic projection 
Babinet projection 
Elliptical projection

Similar projections
Goode Homolosine (p. 66) (Mollweide merged 
with Sinusoidal)
Boggs Eumorphic (p. 68) (Mollweide averaged 
with Sinusoidal)

Bromley, by Robert H. Bromley in 1965 
(Mollweide compressed from north to south 
with east-west expansion to achieve no 
distortion along the Equator) 
Hyperelliptical, by Waldo R. Tobler in 1973 
(equal-area Pseudocylindrical having 
"hyperelliptical" meridians that lie between the 
Mollweide ellipses and a circumscribed 
rectangle)
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Figure 196. Mollweide projection, with shorelines, 15° graticule. Central meridian 90° W
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MOLLWEIDE Projection
Pseudocylindrical Projections

Figure 19C. "Atlantis" projection, a Transverse Mollweide used by John Bartholomew to highlight the Atlantic Ocean, with shorelines, 
15° graticule. Central meridian 30° W. North Pole at -45° longitude on base projection.
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Figure 19O. Interrupted Mollweide projection, with shorelines, 10° graticule, to show oceans.
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Pseudocylindrical Projections

ECKERT III Projection Figure 20A Eckert III projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equally spaced parallels 
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced semiellipses, concave 
toward the central meridian. The outer 
meridians (180° east and west of the central 
meridian) are semicircles. 
Parallels: Equally spaced straight parallel 
lines. Perpendicular to the central meridian. 
Poles: Lines half as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 35°58' N. and S., if the 
world map retains correct total area (area 
varies locally). Constant along any given 
latitude; same for the latitude of opposite 
sign.

Distortion
No point is free of all scale distortion, but the 
Equator is free of angular distortion (fig. 
20A).

Origin
Presented by Max Eckert (1868-1938) of 
Germany in 1906

Similar projections
Eckert IV (p. 60) has meridians positioned
identically, but parallels are spaced for equal
area.
Putnins PV has meridians that are only
portions of semiellipses, but parallels are
equidistant.
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Figure 206. Eckert III projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

ECKERT IV Projection

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced semiellipses, concave 
toward the central meridian. The outer 
meridians (180° east and west of the central 
meridian) are semicircles. 
Parallels: Unequally spaced straight parallel 
lines, widest separation near the Equator. 
Perpendicular to the central meridian. 
Poles: Lines half as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 40°30' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Free of distortion only at latitudes 40°30' N. and 
S. at the central meridian (fig. 21>4).

Usage
Thematic and other world maps in numerous 
atlases and textbooks and for sheet maps

Origin
Presented by Max Eckert (1868-1938) of 
Germany in 1906

Figure 21/4. Eckert IV projection, with Tissot indicatrices, 30° graticule.

Aspects
Like most projections, transverse and oblique 
aspects can be prepared, although they are 
seldom used in this case.

Similar projections
Eckert III (p. 58) has meridians positioned 
identically, but parallels are equally spaced. 
Putnins P2 ' (p. 62) has meridians that are only 
portions of semiellipses, but parallels are also 
spaced for equal area.
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Figure 21 B. Eckert IV projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

PUTNINS P2 Projection Figure 22A. Putnins P2' projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced portions of ellipses (less 
than semiellipses) that would intersect beyond 
the poles and are concave toward the central 
meridian. The meridians at 103°55' east and 
west of the central meridian are circular 
arcs.
Parallels: Unequally spaced straight parallel 
lines, widest separation near the Equator. 
Perpendicular to the central meridian. 
Poles: Lines half as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 42°59' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Distortion is not as extreme near outer 
meridians at high latitudes as it is on pointed- 
polar Pseudocylindrical projections, but there 
is considerable distortion throughout polar 
regions (fig. 22A). Free of distortion only at 
latitudes 42°59' N. and S. at the central 
meridian.

Origin
Presented by Reinholds V. Putnins of Latvia 
in 1934

Similar projections
Wagner IV projection (1949) is identical.
Werenskiold IN projection (1944) is identical,
except that true scale is maintained along the
Equator by enlarging the map.
Putnins P2 equal-area projection (1934) uses
the same portions of ellipses, but the poles are
points.
Putnins PI and P^ projections (1934) have
meridians identical in shape and position to
those of Putnins P2 and P2 ', respectively, but
parallels are equally spaced, and the
projections are not equal area.
Robinson projection (p. 82) is not equal area,
meridians are not elliptical, and parallels are
spaced differently.
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Figure 22S. Putnins P2' projection, with shorelines, 15° graticule. Central meridian 90° W.
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HATANO ASYMMETRICAL 
EQUAL-AREA Projection

Pseudocylindrical Projections

Figure 23/4. Hatano Asymmetrical Equal-Area projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: The central meridian is a straight 
line 0.48 as long as the Equator. Other 
meridians are equally spaced elliptical arcs, 
concave toward the central meridian, but the 
eccentricity of each ellipse changes at the 
Equator.
Parallels: Unequally spaced straight parallel 
lines. Perpendicular to the central meridian. 
Spacing not symmetrical about the Equator. 
Poles: Lines. The North Pole is two-thirds as 
long and the South Pole is three-fourths as long 
as the Equator.
Symmetry: About the central meridian but not 
about the Equator

Scale
True along latitudes 40°42' N. and 38°27' S. 
Constant along any given latitude; normally 
different for the latitude of opposite sign

Distortion
Free of distortion only at latitudes 40°42' N. and 
38°27' S. at the central meridian (fig. 23,4).

Origin
Presented by Masataka Hatano of Japan in 1972 
as a modification of the Mollweide and Putnins 
P2 ' projections

Similar projections
Mollweide projection (p. 54) uses full 
symmetrical semiellipses for meridians, and 
poles are points.
Putnins P2 ' projection (p. 62) uses arcs less 
than semiellipses for meridians, but they are 
symmetrical about the Equator, and poles are 
lines half the length of the Equator. 
Hatano Symmetrical Equal-Area projection 
(1972) uses the same graticule for the Northern 
Hemisphere. The Southern Hemisphere is 
symmetrical (the South Pole is also two-thirds 
the length of the Equator).
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Figure 23B. Hatano Asymmetrical Equal-Area projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

GOODE HOMOLOSINE Projection

Classifications
Pseudocylindrical composite 
Equal area

Graticule
Meridians: In the interrupted form, there are 
six central meridians, each a straight line 0.22 
as long as the Equator but not crossing the 
Equator. Other meridians are equally spaced 
sinusoidal curves between latitudes 40°44' N. 
and S. and elliptical arcs elsewhere, all concave 
toward the central meridian. There is a slight 
bend in meridians at the 40°44' latitudes. 
Parallels: Straight parallel lines, perpendicular 
to the central meridians. Equally spaced 
between latitudes 40°44' N. and S. Gradually 
closer together beyond these latitudes as a pole 
is approached. 
Poles: Points
Symmetry: None in the usual interrupted form. 
If uninterrupted, there is symmetry about the 
central meridian or the Equator.

Scale
True along every latitude between 40°44' N. and 
S. and along the central meridian within the 
same latitude range. At higher latitudes, scale 
varies but is the same for the latitude of 
opposite sign.

Distortion
Same as Sinusoidal projection between 
latitudes 40°44' N. and S. (see fig. 13>4). Same 
as Mollweide projection beyond this range (see 
fig. 19>\). Goode Homolosine projection is 
almost always presented interrupted, as the 
inventor originally intended.

Usage
Numerous world maps, especially in Goode's 
Atlas (Rand McNally)

Origin
Developed in 1923 by J. Paul Goode (1862-1932) 
of the University of Chicago as a merging of 
the Mollweide (or Homolographic) with the 
Sinusoidal at the parallels of identical scale, 
latitudes 40°44' N. and S.; hence, the name 
Homolosine. Frequently plotted with some 
northern regions repeated on different 
interrupted sections to reduce discontinuities 
of land.

Other names
Homolosine

Similar projections
Identical with Sinusoidal (p. 37) between 
latitudes 40°44' N. and S. and identical with 
Mollweide (p. 54) beyond these latitudes, except 
that the Mollweide portions are closer to the 
Equator than they are on the original 
projection
Sinu-Mollweide, devised by Alien K. Philbrick 
in 1953, is a merging of the Mollweide, used 
from the North Pole to latitude 40°44' S., with 
the Sinusoidal, used only south of latitude 40°44' 
S. It is equal area.
In 1968, Gyorgy Erdi-Kraus used a special Flat- 
Polar Sinusoidal projection between latitudes 
60° N. and S. and the Mollweide projection 
poleward. It is equal area only within each of 
the two projections, which are at two different 
area scales.
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Figure 24. Interrupted Goode Homolosine projection, with shorelines, 10° graticule, to show land masses.
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Pseudocylindrical Projections

BOGGS EUMORPHIC Projection Figure 25A. Boggs Eumorphic projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced complex curves intersecting 
at the poles and concave toward the central 
meridian.
Parallels: Unequally spaced straight parallel
lines perpendicular to the central meridian
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along latitudes 40°15' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Distortion is severe near outer meridians at 
high latitudes (fig. 25/4) but can be 
substantially reduced by interruption. Free of 
distortion only at latitudes 40°15' N. and S. at 
the central meridian.

Other features
Designed as the arithmetic mean of the 
Sinusoidal and MoIIweide projections for north- 
south (y) coordinates only, when drawn with 
the same area scale

Usage
Thematic world maps in atlases and textbooks, 
usually in interrupted form

Origin
Presented by S. Whittemore Boggs (1884-1954) 
of the U.S. Department of State in 1929

Similar projections
Several pseudocylindricals, such as the 
Sinusoidal (p. 37) and Craster Parabolic 
(P- 70).
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Figure 256. Boggs Eumorphic projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

CRASTER PARABOLIC Projection

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced parabolas intersecting at 
the poles and concave toward the central 
meridian.
Parallels: Unequally spaced straight parallel 
lines, farthest apart near the Equator; spacing 
changes very gradually. Perpendicular to the 
central meridian.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along latitudes 36°46' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Distortion is severe near outer meridians at 
high latitudes (fig. 26A) but somewhat less than 
that of the Sinusoidal projection. Can be 
substantially reduced by interruption (see 
similar example for Sinusoidal, fig. 13C). Free 
of distortion only at latitudes 36°46' N. and S. 
at the central meridian.

Usage
Thematic world maps in textbooks

Origin
Presented by John Evelyn Edmund Craster

Figure 26A Craster Parabolic projection, with Tissot indicatrices, 30° graticule.

(1873-?) of England in 1929. Developed further 
by Charles H. Deetz and O.S. Adams in 1934

Aspects
Oblique aspect used for map of Asia by 
National Geographic Society

Other names
Putnins P4, independently presented in Latvia 
in 1934.

Similar projections
Several pseudocylindricals, such as the 
Sinusoidal (p. 37) and the Boggs Eumorphic 
(p. 68)
Putnins P3 projection (1934) has meridians, 
poles, and Equator identical to those of the 
Craster, but parallels are equally spaced.
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Figure 260. Craster Parabolic projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

McBRYDE-THOMAS FLAT-POLAR PARABOLIC Projection

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
0.48 as long as the Equator. Other meridians 
are equally spaced parabolic curves, concave 
toward the central meridian. 
Parallels: Unequally spaced straight parallel 
lines, farthest apart near the Equator. 
Perpendicular to the central meridian. 
Poles: Lines one-third as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 45°30' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Distortion is severe near outer meridians at 
high latitudes (fig. 27,4) but less than the 
corresponding distortion on pointed-polar 
projections. Free of distortion only at latitudes 
45°30' N. and S. at the central meridian.

Usage
Basis of merged projections by McBryde

Origin
Presented by F. Webster McBryde and Paul 
D. Thomas through the U.S. Coast and Geodetic 
Survey in 1949

Figure 27/4. McBryde-Thomas Flat-Polar Parabolic projection, with Tissot indicatrices, 30° graticule.

Similar projections
Craster Parabolic projection (p. 70), equal area 
with parabolic meridians but with pointed poles 
and a central meridian that is half the length 
of the Equator
Putnins P4 ' projection (1934), equal area with 
parabolic meridians but with poles and a 
central meridian that are all half the length 
of the Equator. Werenskiold I (1944) is identical 
to Putnins P4 ' except for the scale. 
Putnins P3 ' projection (1934) has meridians, 
poles, and Equator identical to those of Putnins 
P4 ', but parallels are equally spaced.
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Figure 27B. McBryde-Thomas Flat-Polar Parabolic projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

QUARTIC AUTHALIC Projection Figure 28-4. Quartic Authalic projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
0.45 as long as the Equator. Other meridians 
are equally spaced curves fitting a fourth-order 
(quartic) equation and concave toward the 
central meridian.
Parallels: Unequally spaced straight parallel
lines, farthest apart near the Equator. Spacing
changes gradually. Perpendicular to the central
meridian.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along the equator
Constant along any given latitude; same for
the latitude of opposite sign

Distortion
Distortion is severe near outer meridians at 
high latitudes (fig. 28A) but somewhat less than 
that of the Sinusoidal projection. Distortion can 
be substantially reduced by interruption (see 
similar example for Sinusoidal, fig. 13G). Free 
of distortion along the Equator.

Usage
Basis for McBryde-Thomas Flat-Polar Quartic 
projection (p. 76)

Origin
Presented by Karl Siemon (?-1937) of Germany 
in 1937. Independently presented by Oscar 
Sherman Adams (1874-1962) of the U.S. Coast 
and Geodetic Survey in 1945.

Similar projections
Several pseudocylindricals, such as the 
Sinusoidal (p. 37)

Eckert-Greifendorff (p. 166) has slightly curved 
parallels.
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Figure 28S. Quartic Authalic projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

McBRYDE-THOMAS FLAT-POLAR QUARTIC Projection

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Central meridian is a straight line 
0.45 as long as the Equator. Other meridians 
are equally spaced curves fitting a fourth-order 
(quartic) equation and concave toward the 
central meridian.
Parallels: Unequally spaced straight parallel 
lines, farthest apart near the Equator. 
Perpendicular to the central meridian. 
Poles: Lines one-third as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 33°45' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Distortion is severe near outer meridians at 
high latitudes (fig. 29,4) but less than the 
corresponding distortion on pointed-polar 
projections. Free of distortion only at latitudes 
33°45' N. and S. at the central meridian.

Usage
Examples in various geography textbooks. 
Basis of merged projections by McBryde.

Origin
Presented by F. Webster McBryde and Paul

Figure 29A McBryde-Thomas Flat-Polar Quartic projection, with Tissot indicatrices, 30° graticule.

D. Thomas through the U.S. Coast and Geodetic 
Survey in 1949

Other names
Flat-Polar Quartic projection

Similar projections
Quartic Authalic projection (p. 74), the basis 
of this projection, has pointed poles. 
Other McBryde-Thomas projections also have 
poles one-third the length of the Equator and 
otherwise resemble the projection described 
here.
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Figure 29S. McBryde-Thomas Flat-Polar Quartic projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

PUTNINS P5 Projection Figure 30/4. Putnins P5 projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equally spaced parallels 
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line 
half as long as the Equator. Other meridians 
are equally spaced portions of hyperbolas, 
concave toward the central meridian. 
Parallels: Equally spaced straight parallel 
lines, perpendicular to the central meridian.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along latitudes 21°14' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign. Constant along the 
central meridian.

Distortion
Similar to other pointed-polar cylindrical but 
not free of distortion at any point (fig. 30>4).

Origin
Presented by Reinholds V. Putnins of Latvia 
in 1934

Similar projections
Putnins P6 equal-area projection (1934) has

hyperbolic meridians identical in shape to those 
of the pointed-polar P5 ; parallels are straight 
but are spaced for equal area. 
Putnins P5 ' projection (1934) has hyperbolic 
meridians, but the poles are straight lines half 
the length of the Equator. Parallels are equally 
spaced. The projection is not equal area. 
Putnins P6 ' equal-area projection (1934) has 
hyperbolic meridians identical in shape to those 
of the flat-polar P5 ', but parallels are straight 
lines spaced for equal area.
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Figure 30S. Putnins P5 projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

DENOYER SEMI-ELLIPTICAL Projection

Classifications
Modified pseudocylindrical 
Equally spaced parallels 
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line
half as long as the Equator. Other meridians
are curves that are nearly elliptical areas and
nearly equally spaced, with some spreading
near the outer limits; all are concave toward
the central meridian.
Parallels: Equally spaced straight parallel
lines. Perpendicular to the central meridian.
Poles: Lines about 0.31 times the length of the
Equator
Symmetry: About the central meridian or the
Equator

Scale
True along the central meridian and the
Equator
Constant along any given latitude; same for
the latitude of opposite sign

Distortion
Free of distortion along the Equator (fig. 31A)

Usage
By Denoyer-Geppert in thematic maps and 
atlases of the early and middle 20th century

Origin
Developed by L. Philip Denoyer of Chicago 
about 1920. Exact design basis not known. 
Empirical approximations are used for 
computer plots.

Figure 31 A. Denoyer Semi-Elliptical projection approximation, with Tissot indicatrices, 30° graticule.
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Figure 31 S. Denoyer Semi-Elliptical projection approximation, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

ROBINSON Projection Figure 32A Robinson projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line 
0.51 as long as the Equator. Other meridians 
resemble elliptical arcs, are equally spaced, 
and are concave toward the central meridian. 
Parallels: Straight parallel lines, equally 
spaced between latitudes 38° N. and S.; space 
decreases beyond these limits. 
Poles: Lines 0.53 as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 38° N. and S.
Constant along any given latitude; same for
the latitude of opposite sign

Distortion
No point is completely free of distortion, but 
distortion is very low within about 45° of the 
center and along the Equator (fig. 325). 
Considerable distortion near the poles.

Usage
By Rand McNally in Goode's Atlas for thematic 
world maps and in numerous other 
publications

Origin
Presented by Arthur H. Robinson (1915- ) of 
the University of Wisconsin in 1963, at the 
request of Rand McNally and Company. Uses

tabular coordinates rather than mathematical 
formulas to make the world map "look" right.

Other names
Orthophanic ("right appearing")

Similar projections
Putnins P2 ' (p. 62), an equal-area projection 
on which meridians are elliptical arcs 
In 1968, Janos Baranyi presented seven 
Pseudocylindrical projections characterized by 
various graduated tabular spacings of the 
parallels. The poles are usually points but 
occasionally are lines, and the outer meridians 
180° from the central meridian are circular arcs 
combined in some cases with straight lines. His 
projections are neither equal area nor 
conformal.
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Figure 32B. Robinson projection, with shorelines, 15° graticule. Central meridian 90° W.

Figure 32C. Robinson projection, with shorelines, 30° graticule. Central meridian 0°.
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COLLIGNON Projection

Pseudocyllndrical Projections

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Equally spaced straight lines
converging at the North Pole
Parallels: Unequally spaced straight parallel
lines, farthest apart near the North Pole,
closest near the South Pole. Perpendicular to
the central meridian.
Poles: North Pole is a point; South Pole is a
line 1.41 times as long as the Equator
Symmetry. About the central meridian

Scale
True along latitudes 15°51' N.
Constant along any given latitude; different for
each latitude

Distortion
Severe in many regions. Free of distortion only 
at latitude 15°51' N. at the central meridian.

Usage
Novelty showing straight-line equal-area 
graticule

Origin
Presented by Edouard CoIIignon of France in 
1865

Similar projections
Eckert I (p. 86) and II (p. 88) also use straight 
lines for both meridians and parallels, but 
meridians are broken at the Equator. 
The Trapezoidal projection has equidistant 
straight parallel lines for parallels and 
converging straight meridians equally spaced

along each parallel (top and bottom parallels 
and perpendicular central meridian true to 
scale). It was used for numerous maps from 
the 15th to the 18th centuries but is neither 
equal area nor conformal. 
Polyhedric projection, formerly used for large- 
scale mapping in various parts of central 
Europe. There were various forms, all 
resembling the Trapezoidal projection but 
applied to the ellipsoid.
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Figure 33. Collignon projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

ECKERT I Projection Figure 34/4. Eckert I projection, with Tissot indicatrices, 30° 
graticule.

Classifications
Pseudocylindrical 
Equally spaced parallels 
Neither conformal nor equal area

Graticule
Meridians: Equally spaced converging straight 
lines broken at the Equator. Central meridian 
is half as long as the Equator. 
Parallels: Equally spaced straight parallel 
lines, perpendicular to the central meridian. 
Poles: Lines half as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 47°10' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign. Constant along any 
given meridian.

Distortion
No point free of distortion (fig. 344). Break at 
the Equator introduces excessive distortion 
there. Discontinuous ellipses are shown there 
owing to the plotting algorithm; actually, the 
shape is indeterminate on the Equator.

Usage
Novelty showing straight-line graticule

Origin
Presented by Max Eckert (1868-1938) of 
Germany in 1906

Similar projections
Eckert II (p. 88) has meridians positioned 
identically, but parallels are spaced for equal 
area.
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Figure 346. Eckert I projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

ECKERT II Projection Figure 35/4. Eckert II projection, with Tissot indicatrices, 30° graticule.

Classifications
Pseudocylindrical 
Equal area

Graticule
Meridians: Equally spaced straight lines 
broken at the Equator. Central meridian is half 
as long as the Equator. 
Parallels: Unequally spaced straight parallel 
lines, widest separation near the Equator. 
Perpendicular to the central meridian. 
Poles: Lines half as long as the Equator 
Symmetry: About the central meridian or the 
Equator

Scale
True along latitudes 55°10' N. and S. 
Constant along any given latitude; same for 
the latitude of opposite sign

Distortion
Free of distortion only at latitudes 55°10' N. and 
S. at the central meridian (fig. 35>4). Break at 
the Equator introduces excessive distortion 
there. Discontinuous ellipses are shown there 
owing to the plotting algorithm; actually, the 
shape is indeterminate on the Equator.

Usage
Novelty showing straight-line equal-area 
graticule

Origin
Presented by Max Eckert (1868-1938) of 
Germany in 1906

Similar projections
Eckert I (p. 86) has meridians positioned 
identically, but parallels are equidistant. 
Collignon projection (p. 84) has straight 
meridians and is equal area, but meridians are 
not broken at the Equator, and the poles are 
different.
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Figure 358. Eckert II projection, with shorelines, 15° graticule. Central meridian 90° W.
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Pseudocylindrical Projections

LOXIMUTHAL Projection

Classifications
Pseudocylindrical 
Equally spaced parallels 
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line 
generally over half as long as the Equator, 
depending on the central latitude. If the central 
latitude is the Equator, the ratio is 0.5; if it 
is 40° N. or S., the ratio is 0.65. Other meridians 
are equally spaced complex curves intersecting 
at the poles and concave toward the central 
meridian.
Parallels: Equally spaced straight parallel 
lines. Perpendicular to the central meridian. 
Poles: Points
Symmetry: About the central meridian. 
Symmetry occurs about the Equator if the 
specified central latitude is the Equator.

Scale
True along the central meridian
Constant along any given latitude; normally
different for the latitude of opposite sign

Distortion
Distortion is moderate to extreme, but the 
projection is intended for the special property 
noted below, not as a normal world map. Free 
of distortion only at the central latitude on the 
central meridian.

Special feature
Loxodromes (rhumb lines) from the central 
point (at the intersection of the central 
meridian and the central parallel) are shown 
straight, true to scale, and correct in azimuth 
from the center. Because of angular distortion 
on the map projection, the azimuths with 
respect to other points along a rhumb line are 
not shown correctly.

Origin
Presented by Karl Siemon (?-1937) of Germany 
in 1935. Independently presented as 
"Loximuthal" by Waldo R. Tobler (1930- ) of 
the University of Michigan (1966).

Similar projections
Loxodromes are shown straight and at the 
correct azimuth between any two points on the 
regular Mercator projection, but they are not 
at true scale.
The Bordone Oval projection of 1520 is similar 
to the Loximuthal projection having the 
Equator as the central latitude.
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Figure 36. Loximuthal projection, with shorelines, 15° graticule. Central meridian 90° W. Central latitude 40° N.
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Conic Projections

EQUIDISTANT CONIC Projection Figure 37 A Equidistant Conic projection, with Tissot indicatrices, 
30° graticule. Standard parallels: 20° and 60° N.

Classifications
Conic
Equally spaced parallels
Neither conformal nor equal area

Graticule
Meridians: Equally spaced straight lines 
converging at a common point, which is 
normally beyond the pole. The angles between 
them are less than the true angles. 
Parallels: Equally spaced concentric circular 
arcs centered on the point of convergence of 
the meridians, which are therefore radii of 
the circular arcs
Poles: Normally circular arcs enclosing the 
same angle as that enclosed by the other 
parallels of latitude for a given range of 
longitude 
Symmetry: About any meridian

Scale
True along each meridian and along one or 
two chosen standard parallels, usually but not 
necessarily on the same side of the Equator. 
As a rule of thumb, these parallels can be 
placed at one-sixth and five-sixths of the range 
of latitudes, but there are more refined means 
of selection. Scale is constant along any given 
parallel.

Distortion
Free of distortion only along the two standard 
parallels (fig. 37,4). Distortion is constant 
along any given parallel. Compromise in 
distortion between equal-area and conformal 
conic projections.

Usage
The most common projection in atlases for 
small countries
Also used by the Soviet Union for mapping 
that nation
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Origin
Rudimentary forms developed by Claudius 
Ptolemy (about A. D. 100). Improvements by 
Johannes Ruysch in 1508, Gerardus Mercator 
in the late 16th century, and Nicolas de I'Isle 
in 1745.

Other names
Simple Conic 
Conic

Limiting forms
Polar Azimuthal Equidistant projection (fig. 
37C and p. 133), if a pole is made the single 
standard parallel. The cone of projection 
thereby becomes a plane. 
Plate Carree (fig. 37D, also p. 22), if the single 
standard parallel is the Equator. The cone of 
projection thereby becomes a cylinder. 
Equirectangular (Cylindrical) projection (p. 24), 
if two standard parallels are symmetrically 
placed north and south of the Equator.

Standard conic formulas must be rewritten 
for the second and third limiting forms.

Similar projections
Various methods of determining optimum 
standard parallels have been proposed by 
Patrick Murdoch (projections I, III) in 1758, 
Leonhard Euler in 1777, British Ordnance in 
the late 19th century, Dmitri I. Mendeleev in 
1907, Wilhelm Schjerning (projection I) in 
1882, V.V. Vitkovskiy (projection I) in 1907, 
and V.V. Kavrayskiy (projections II, IV) in 
1934. Once the standard parallels are selected, 
all these projections are constructed by using 
formulas used for the Equidistant Conic with 
two standard parallels.
John Bartholomew combined the Equidistant 
Conic projection with the Bonne projection 
(see p. 112).



Figure 37S. Equidistant Conic projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallels: 20° and 60° N.
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Conic Projections

EQUIDISTANT CONIC Projection

Figure 37C. North Polar Azimuthal Equidistant projection, with 
shorelines, 30° graticule. Central meridian 90° W. Polar and planar 
limit of Equidistant Conic projection.

vc \
7̂

Figure 37D. Plate Carree projection, with shorelines, 30° graticule. Central meridian 90° W. Equatorial and cylindrical limit of Equidistant 
Conic projection.
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Conic Projections

LAMBERT CONFORMAL CONIC Projection

Classifications
Conic 
Conformal

Graticule
Meridians: Equally spaced straight lines 
converging at a common point, which is one 
of the poles. The angles between them are 
less than the true angles. 
Parallels: Unequally spaced concentric 
circular arcs centered on the pole of 
convergence of the meridians, which are 
therefore radii of the circular arcs. Spacing 
of parallels increases away from the central 
latitudes.
Poles: The pole nearest a standard parallel is 
a point; the other pole cannot be shown. 
Symmetry: About any meridian

Scale
True along one or two chosen standard 
parallels, usually but not necessarily on the 
same side of the Equator. As a rule of thumb, 
these parallels can be placed at one-sixth and 
five-sixths of the range of latitudes, but there 
are more refined means of selection. 
Scale is constant along any given parallel and 
is the same in all directions at a given point.

Distortion
Free of distortion only along the one or two 
standard parallels (fig. 38/4). Distortion is 
constant along any given parallel. Conformal 
everywhere except at the poles.

Usage
Extensively used in ellipsoidal form for large- 
scale mapping of regions of predominantly 
east-west extent, including topographic 
quadrangles (1:24,000 and 1:62,500 scale) for 
many of the U.S. State Plane Coordinate

Figure 38/4. Lambert Conformal Conic projection, with Tissot indicatrices, 30° graticule. Standard parallels: 20° and 60° N.

System zones, many maps in the International 
Map of the World (1:1,000,000 scale) series, 
the U.S. State Base Maps (1:500,000 scale), 
and topographic mapping in many other 
nations

Also used for atlas maps of some countries 
Recommended for conformal mapping of 
regions of predominantly east-west extent
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Conic Projections

LAMBERT CONFORMAL CONIC Projection

Figure 38B. Lambert Conformal Conic projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallels: 20° and 60° N. 
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Origin
Presented by Johann Heinrich Lambert (1728- 
77) of Alsace in 1772

Aspects
Bipolar Oblique Conic Conformal projection 
(p. 99) is the only common oblique aspect. 
See figure 38E for another example applied to 
the world.

Other names
Conical Orthomorphic

Limiting forms
Polar Stereographic projection (fig. 38C and 
p. 121), if a pole is the single standard parallel. 
The cone of projection thereby becomes a 
plane.
Mercator projection (fig. 38D, also p. 10), if 
the single standard parallel is the Equator or 
if two standard parallels are symmetrically 
placed north and south of the Equator. The 
cone of projection thereby becomes a cylinder. 
Standard conic formulas must be rewritten.

Similar projections
Various methods of determining optimum 
standard parallels have been proposed by 
John Herschel in 1860, V.V. Vitkovskiy 
(projection III) in 1907, N.Ya. Tsinger in 1916, 
and V.V. Kavrayskiy (projection III) in 1934. 
Once the standard parallels are selected, all 
these projections are constructed by using the 
same formulas used for the Lambert Conformal 
Conic with two standard parallels. 
Bipolar Oblique Conic Conformal projection 
(p. 99) consists of oblique aspects of two 
Lambert Conformal Conic projections laid 
side by side.

Figure 38C. North Polar Stereographic projection, with shorelines, 
30° graticule. Central meridian 90° W. Polar and planar limit of Lam­ 
bert Conformal Conic projection.

Figure 38D. Mercator projection, with shorelines, 30° graticule. 
Central meridian 90° W. Equatorial and cylindrical limit of Lambert 
Conformal Conic projection.
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Conic Projections

LAMBERT CONFORMAL CONIC Projection

Figure 38E. Oblique Lambert Conformal Conic projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallels + 20° and + 60° on base projection. North Pole at + 30° latitude, - 90° 
longitude on base projection.
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Conic Projections

BIPOLAR OBLIQUE CONIC CONFORMAL Projection

Classifications
Conic 
Conformal

Graticule
Meridians: Unequally spaced curved lines,
except for two straight meridians from the
transformed poles to the nearest geographic
pole
Parallels: Unequally spaced curved lines
Poles: Points
Symmetry: None

Scale
True along four circular arcs joined to form 
two S curves. These arcs do not follow any 
parallel or meridian.
Scale is constant along circular arcs centered 
on each transformed pole for part of the map. 
The pole for most of North America is in the 
North Atlantic, and that for South America is 
in the South Pacific.

Distortion
Low throughout North and South America. 
None along the lines of true scale and constant 
along circular arcs centered on the transformed 
pole for the given part of the map. Slight 
nonconformality near the line joining the two 
transformed poles.

Usage
Designed specifically for a low-error map of 
North and South America constructed by the 
American Geographical Society. Other 
organizations, including the U.S. Geological 
Survey, have used the American Geographical 
Society map as a base for maps of North or 
South America alone, but, since the advent of 
computer plotting, other projections are 
preferable and practical for regional maps.

Origin
Presented by Osborn Maitland Miller (1897- 
1979) and William A. Briesemeister of the 
American Geographical Society in 1941

Figure 39. Bipolar Oblique Conic Conformal projection, with 
shorelines, 10° graticule. Specially designed for North and South 
America.
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Conic Projections

ALBERS EQUAL-AREA CONIC Projection Figure 40A Albers Equal-Area Conic projection, with Tissot 
indicatrices, 30° graticule. Standard parallels: 20° and 60° N.

Classifications
Conic 
Equal area

Graticule
Meridians: Equally spaced straight lines
converging at a common point, which is
normally beyond the pole. The angles between
them are less than the true angles.
Parallels: Unequally spaced concentric
circular arcs centered on the point of
convergence of the meridians. The meridians
are therefore radii of the circular arcs. Spacing
of parallels decreases away from the central
latitudes.
Poles: Normally circular arcs enclosing the
same angle as that enclosed by the other
parallels of latitude for a given range of
longitude
Symmetry: About any meridian

Scale
True along one or two chosen standard 
parallels, usually but not necessarily on the 
same side of the Equator. As a rule of thumb, 
these parallels can be placed at one-sixth and 
five-sixths of the range of latitudes, but there 
are more refined means of selection. 
Scale is constant along any given parallel. 
The scale factor at any given point along the 
meridian is the reciprocal of that along the 
parallel, to preserve area.

Distortion
Free of angular and scale distortion only along 
the one or two standard parallels (fig. 40>4) 
Distortion is constant along any given 
parallel.

Usage
Frequently used in the ellipsoidal form for 
maps of the United States in the National

Atlas of the United States, for thematic maps, 
and for world atlases
Also used and recommended for equal-area 
maps of regions that are predominantly east- 
west in extent

Origin
Presented by Heinrich Christian Albers (1773- 
1833) of Germany in 1805

Aspects
Rarely used in oblique aspect but occasionally 
proposed in journal articles

Limiting forms
Polar Lambert Azimuthal Equal-Area 
projection (fig. 40C and p. 137), if a pole is 
made the single standard parallel. The cone 
of projection thereby becomes a plane. 
Lambert Equal-Area Conic projection (p. 102), 
if the pole and another parallel are made the 
two standard parallels 
Lambert Cylindrical Equal-Area projection 
(fig. 40D and p. 17), if the Equator is the 
single standard parallel. The cone of projection 
thereby becomes a cylinder. 
Behrmann or other cylindrical equal-area 
projections (p. 19), if the two standard parallels 
are symmetrically placed north and south of 
the Equator.
Standard conic formulas must be rewritten 
for the third and fourth limiting forms.

Similar projections
Various methods of determining optimum 
standard parallels have been proposed by 
N.A. Tissot in 1881, V.V. Vitkovskiy (projection 
II) in 1907, N.Ya. Tsinger in 1916, and F.N. 
Krasovskiy (projection I) in 1922. Once the 
standard parallels are selected, all these 
projections are constructed by using the same 
formulas used for the Albers Equal-Area Conic 
with two standard parallels.

100



Figure 400. Albers Equal-Area Conic Projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallels 20° and 
60° N.

Figure 40C. North Polar Azimuthal Equal-Area 
projection, with shorelines, 30° graticule. Central 
meridian 90° W. Polar and planar limit of Albers 
Equal-Area projection.

Figure 40D. Lambert Cylindrical Equal-Area projection, with shorelines, 30° graticule. Standard 
parallel 0°. Central meridian 90° W. Equatorial and cylindrical limit of Albers Equal-Area 
projection.

101



Conic Projections

LAMBERT EQUAL-AREA CONIC Projection

Classifications
Conic 
Equal area

Graticule
Meridians: Equally spaced straight lines
converging at a common point, which is one
of the poles. The angles between them are
less than the true angles.
Parallels: Unequally spaced concentric
circular arcs centered on the pole of
convergence of the meridians. The meridians
are therefore radii of the circular arcs. Spacing
of parallels decreases away from the pole of
convergence.
Poles: One pole is a point; the other pole is a
circular arc enclosing the same angle as that
enclosed by the other parallels of latitude for
a given range of longitudes.
Symmetry: About any meridian

Scale
True along the chosen standard parallel 
Scale is constant along any given parallel. 
The scale factor at any given point along the 
meridian is the reciprocal of that along the 
parallel, to preserve area.

Distortion
Free of scale and angular distortion only along 
the standard parallel. Severe stretching near 
each pole.
Scale distortion and angular distortion are 
constant along any given parallel.

Origin
Presented by Johann Heinrich Lambert (1728- 
77) of Alsace in 1772

Limiting form
Polar Lambert Azimuthal Equal-Area

projection (p. 136), if the central pole is the 
standard parallel. The cone of projection 
thereby becomes a plane.

Similar projections
Albers Equal-Area Conic projection (p. 100) 
also has concentric circular arcs for parallels 
and straight meridians, but it has two standard 
parallels close to the latitudes of interest. If 
just one of its standard parallels is made a 
pole, it becomes the Lambert Equal-Area 
Conic projection, but that pole is not free of 
distortion, as the usual standard parallel is.
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Figure 41. Lambert Equal-Area Conic projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallel 0°.
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Conic Projections

PERSPECTIVE CONIC Projection
Figure 42B. North Polar Gnomonic projection, with shorelines, 
30° graticule. Central meridian 90° W. Range 60° from center. 
Polar and planar limit of Perspective Conic projection.

Classifications
Conic
Perspective
Neither conformal nor equal area

Graticule
Meridians: Equally spaced straight lines 
converging at a common point, which is one 
of the poles. The angles between them are 
less than the true angles.

Parallels: Unequally spaced concentric 
circular arcs centered on the pole of 
convergence of the meridians. The meridians 
are therefore radii of the circular arcs. Spacing 
of parallels increases away from the central 
latitudes.
Poles: One pole is a point; the other pole 
cannot generally be shown, but, under some 
conditions, it is a circular arc. 
Symmetry: About any meridian

Figure 42A. Perspective Conic projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallels 20° and 60° N. 
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Scale
True along one or two chosen standard 
parallels, which may be on the same side of 
or both sides of the Equator 
Scale is constant along any given parallel.

Distortion
Free of distortion only along the one or two 
standard parallels. Distortion is constant along 
any given parallel but changes more rapidly 
in a north-south direction than it does on 
conformal or equal-area conies, and the 
Perspective Conic has no compensating 
advantage. Other projections should be used 
instead.

Other features
Projection is produced geometrically by 
projecting the Earth perspectively from the 
center (or from some other point) onto a cone 
tangent or secant along the standard 
parallels.

Limiting forms
Polar Gnomonic projection (fig. 425 and p. 
117), if the pole is the single standard parallel. 
The cone of projection thereby becomes a 
plane.
Central Cylindrical projection (fig. 42C and p. 
30), if the Equator is the single standard 
parallel. The cone of projection thereby 
becomes a cylinder. Standard conic formulas 
must be rewritten.

Similar projection
A stereographic perspective conic was 
presented by Carl Braun in 1867. The map is 
projected from the South Pole onto a cone 
tangent at latitude 30° N.

Figure 42C. Central Cylindrical projection, with shorelines, 30° 
graticule. Central meridian 90° W. Equatorial and cylindrical limit of 
Perspective Conic projection.
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Conic Projections

POLYCONIC Projection

Classifications
Polyconic
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight 
line. All other meridians are complex curves, 
spaced equally along the Equator and along 
each parallel and concave toward the central 
meridian.
Parallels: Equator is a straight line, poles 
are points, and all other parallels are 
nonconcentric circular arcs spaced at true 
distances along the central meridian. Each 
parallel has a curvature identical to its 
curvature on a cone tangent at that latitude. 
Many cones are involved; hence, the name 
"Polyconic projection." 
Symmetry: About the central meridian and 
the Equator

Scale
True along the central meridian and along 
each parallel

Distortion
Free of distortion only along the central 
meridian (fig. 43,4). Extensive distortion if 
the range extends very far east or west.

Usage
The sole projection used for large-scale
mapping in the ellipsoidal form (topographic
quadrangles) of the United States by the U.S.
Geological Survey until the 1950's
Basis for Progressive Military Grid used by
the U.S. Army until the 1940's
Projection for many early coastal charts by
the U.S. Coast and Geodetic Survey
Not recommended for regional maps, because
other projections are better

Figure 43A. Polyconic projection, with Tissot indicatrices, 30° 
graticule.

Origin
Apparently originated about 1820 by Ferdinand 
Rudolph Hassler (1770-1843), first director of 
the Survey of the Coast (later the U.S. Coast 
and Geodetic Survey)

Aspects
Transverse aspect (fig. 43D) was proposed by 
Charles H. Deetz of the U.S. Coast and Geodetic 
Survey in the early 20th century. The National 
Geographic Society has used the transverse 
aspect for maps of Eurasia and the Soviet 
Union.

Other names
American Polyconic 
Ordinary Polyconic

Similar projections
Rectangular Polyconic projection (p. 110) has 
identical parallels of latitude, but meridians 
are plotted to intersect parallels at right 
angles.
The Modified Polyconic projection for the 
International Map of the World (p. 111) series 
has two meridians that are true to scale. 
An "Equidistant Polyconic" projection was 
used by the U.S. Coast and Geodetic Survey 
for coastal charts in the 19th century. Its 
construction is unclear, but it was apparently 
different from other polyconics. 
Equal-area polyconic projections were 
presented by Hans Maurer in 1935 in Germany 
and by Albert H. Bumstead of the National 
Geographic Society in 1937. 
Other modified Polyconics have been presented 
by G.T. McCaw in England in 1921, by G.A. 
Ginzburg and T.D. Salmanova in the Soviet 
Union in 1949 and 1951, and by G.E. Bousfield 
in Canada in 1950. 
"Polyconic" is sometimes applied to all

projections having circular arcs for parallels 
of latitude, including regular conies and the 
Stereographic, but this usage is not common.
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Figure 435. Polyconic projection, with shorelines, 10° graticule. Central meridian 90° W.
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POLYCONIC Projection
Conic Projections

Figure 43C. Polyconic projection, with shorelines (world map), 30° graticule. Central meridian 90° W.
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Figure 430. Transverse Polyconic projection, with shorelines, 10° graticule. Central meridian 160°W. North Pole at -40° longitude on 
base projection, showing North Pacific Ocean.
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Conic Projections

RECTANGULAR POLYCONIC Projection Figure 44. Rectangular Polyconic projection, with shorelines, 10° 
graticule. Central meridian 90° W. Equator at true scale.

Classifications
Polyconic
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight 
line. All other meridians are complex curves, 
equally spaced along the Equator or along 
two chosen parallels symmetrical about the 
Equator. Meridians intersect all parallels at 
right angles.
Parallels: Equator is a straight line, poles 
are points, and all other parallels are 
nonconcentric circular arcs spaced at true 
distances along the central meridian. Each 
parallel has a curvature identical to its 
curvature on a cone tangent at that latitude. 
Many cones are involved; hence, the name 
"Polyconic projection."
Symmetry: About the central meridian or the 
Equator

Scale
True along the central meridian and along 
the Equator or two chosen parallels of true 
scale

Distortion
Free of distortion only along the central 
meridian. Although meridians intersect 
parallels at right angles, there is some angular 
distortion at all points other than along the 
central meridian.

Usage
Large-scale military mapping in Great 
Britain

Other names
War Office (British)

Similar projections
Listed under Polyconic projection (p. 106)
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MODIFIED POLYCONIC Projection for the International 
Map of the World series

Conic Projections

Classifications
Polyconic
Neither conformal nor equal area

Graticule
Meridians: Straight lines converging but not
to a common point
Parallels: Equator is a straight line, poles
are points, and all other parallels are
nonconcentric circular arcs spaced at true
distances along the two meridians 2° on either
side of the central meridian (or 4° or 8° at
latitudes beyond 60° N. or S.). Each parallel
has a curvature identical to its curvature on
a cone tangent at that latitude.
Poles: Points
Symmetry: About the central meridian.
Theoretically about the Equator, but the use
is confined to zones that do not cross the
Equator.

Scale
True along two meridians 2° on either side of 
the central meridian (or 4° or 8° at latitudes 
beyond 60° N. or S.) and along two parallels 
at the northern and southern edges of the 
quadrangles, which extend 4° in latitude, 
beginning at the Equator

Distortion
Not completely free of distortion anywhere, 
but distortion for the small quadrangles 
involved is very low

Other features
Quadrangles in the International Map of the 
World series using this projection can be joined 
at the edges from north to south or from east 
to west but not in all directions at once without 
creating gaps.

Usage
The official projection for all new quadrangle 
maps in the International Map of the World 
series from 1909 to 1962. It is still in use for 
existing quadrangles and for some new 
quadrangles. These quadrangles extend 4° in 
latitude and 6° in longitude, except that, beyond 
latitudes 60° N. or S., the width is 12° or 24° of 
longitude.

Origin
Presented by Charles La 11 em and of France in 
1909 specifically for the International Map of 
the World series

Similar projections
Listed under Polyconic projection (p. 106)
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WEST LONGITUDE

73° 72°

Figure 45. Modified Polyconic projection for the International Map 
of the World series. Typical quadrant with 1° graticule. Lines of 
true scale are heavy lines.
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Conic Projections

BONNE Projection

Classifications
Pseudoconic 
Equal area

Graticule
Meridians: Central meridian is a straight 
line. Other meridians are complex curves 
connecting points equally spaced along each 
parallel of latitude and concave toward the 
central meridian.
Parallels: Concentric circular arcs spaced at
true distances along the central meridian.
The curvature of the central or standard
parallel is identical to its curvature on a cone
tangent at that latitude.
Poles: Points
Symmetry: About the central meridian

Scale
True along the central meridian and along 
each parallel

Figure 466. Bonne projection, with shorelines, 10° graticule. 
Central meridian 90° W. Central parallel 40° N.

Distortion
Free of all distortion along the central meridian 
and the central parallel (fig. 46>4)

Figure 46/4. Bonne projection, with Tissot indicatrices, 30° graticule. 
Central parallel 40° N.
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Figure 46C. Werner projection, with shorelines, 30° graticule. 
Central meridian 90° W. Polar limit of Bonne projection.

Usage
Frequently used until recently for atlas maps 
of continents. Used in the ellipsoidal form for 
topographic mapping of France in the early 
19th century.

Origin
Developed in rudimentary form by Claudius 
Ptolemy (about A. D. 100). Further developed 
by Bernardus Sylvanus in 1511. Used 
considerably by Rigobert Bonne (1727-95) of 
France, especially in 1752; the name is taken 
from him.

Limiting projections
Werner projection (fig. 46C and p. 114) if a 
pole is made the standard parallel

Sinusoidal projection (fig. 46D and p. 37) if 
the Equator is made the standard parallel.

The pseudoconic projection thereby becomes 
a pseudocylindrical projection, but the Bonne 
formulas must be rewritten.

Similar projection
John Bartholomew combined the Bonne 
projection with the Equidistant Conic projection 
with two standard parallels (p. 92). In his 
1942 "Kite" and 1958 "Regional" projections, 
the Equidistant Conic is used in the north 
temperate zone, and the Bonne is used south 
of the Tropic of Cancer in interrupted form. 
The more northern regions are based on the 
Bonne ("Kite") and Conic ("Regional") 
projections. These two projections emphasize 
land masses, and Bartholomew's 1958 "Lotus" 
projection emphasizes the oceans by using a 
southern version of the "Regional" projection.

Figure 460. Sinusoidal projection, with shorelines, 30° graticule. 
Central meridian 90° W. Equatorial and pseudocylindrical limit of 
Bonne projection.
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Conic Projections

WERNER Projection Figure 47/4. Wemer projection, with Tissot indicatrices, 30° 
graticule.

Classifications
Pseudoconic
Equal area
Cordiform (heart shaped)

Graticule
Meridians: Central meridian is a straight
line. Other meridians are complex curves
connecting points equally spaced along each
parallel of latitude and concave toward the
central meridian.
Parallels: Concentric circular arcs spaced at
true distances along the central meridian.
One pole (usually the North Pole) is the center
for these circular arcs.
Poles: Points
Symmetry: About the central meridian

Scale
True along the central meridian and along 
each parallel

Distortion
Free of all distortion only along the central 
meridian (fig. 474)

Usage
Frequently used for world and some continental 
maps of the 16th and 17th centuries. Replaced 
by the Bonne projection for continental maps. 
No longer used except as a novelty.

Origin
Developed by Johannes Stabius (Stab) (?-1522) 
of Vienna about 1500 and promoted by Johannes 
Werner (1466-1528) of Nuremberg in 1514

Other names
Stab-Werner

Similar projections
Bonne projection is a general form on which 
the parallels are also circular arcs but are 
not generally centered on a pole. The Werner 
is the polar limiting form.

In 1904, Wilhelm Schjerning interrupted the 
Werner projection, centered on the South Pole, 
with three central meridians and three "petals" 
for a world map emphasizing the oceans.

Goode Polar Equal-Area projection, presented 
by John Paul Goode in 1928, is an interrupted 
Werner projection, centered on the North Pole 
and using several central meridians to display 
continents in a flowerlike pattern.

"Tetrahedral" projection, presented by John 
Bartholomew by 1944, is a combination of the 
Polar Azimuthal Equidistant projection (p. 133) 
from the pole to the tropic line of the same 
hemisphere and an interrupted Werner from 
there to the opposite pole, some adjustment 
being made to obtain a fit. The North Pole is 
the center for a map of land masses, and the 
South Pole is the center for an ocean map.

In 1968, W. William-Olsson of Sweden combined 
the northern Polar Lambert Azimuthal Equal- 
Area projection, extending to latitude 20° N., 
with four identical lobes extending to the South 
Pole. The lobes are based on the Werner 
projection but are compressed north-south 
and expanded east-west to fit the Lambert 
and to retain equality of area.
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Figure 47ft Werner projection, with shorelines, 15° graticule. Central meridian 90° W.
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GNOMONIC Projection

Classifications
Azimuthal
Perspective
Neither conformal nor equal area

Graticule
Polar aspect (fig. 48S):

Meridians: Equally spaced straight lines 
intersecting at the central pole. Angles 
between them are the true angles. 
Parallels: Unequally spaced circles 
centered at the pole, which is a point. The 
Equator and the opposite hemisphere 
cannot be shown. Spacing increases rapidly 
away from the pole. 
Symmetry: About any meridian

Equatorial aspect (fig. 48C):
Meridians: Unequally spaced straight 
parallel lines. Only meridians within 90° 
of the central meridian can be shown. 
Spacing increases away from the central 
meridian.
Parallels: Equator is a straight line 
perpendicular to the meridians. Other 
parallels are hyperbolic arcs concave 
toward the nearest pole. Spacing increases 
rapidly away from the Equator. Poles 
cannot be shown.
Symmetry: About the central meridian or 
the Equator

Oblique aspect (fig. 48D):
Meridians: Unequally spaced straight 
lines intersecting at the pole nearest the 
center of the projection 
Parallels: Equator is a straight line 
perpendicular to the central meridian. If 
the central parallel is a north latitude, its 
colatitude (90°-central latitude) is shown 
as a parabolic arc, more northern parallels 
are ellipses, and more southern parallels

Azimuthal Projections 
Perspective

Figure 48A Polar Gnomonic projection, with Tissot indicatrices, 
30° graticule. Range 70°.

are hyperbolas, all concave toward the 
nearest pole. If the central parallel is a 
south latitude, opposite signs apply. 
Symmetry: About the central meridian

Range
Less than one hemisphere centered on a given 
pole of projection or map origin

Scale
True only where the central parallel crosses 
the central meridian. Increases rapidly with 
the distance from the center.

Distortion
Figure 48/4 shows distortion for the polar 
aspect. Other aspects have identical distortion 
at the same distance from the projection 
center. Only the center is free from distortion. 
Distortion increases rapidly away from the 
center.

Special features
All great circles (including all meridians and
the Equator) are shown as straight lines.
Therefore, the path of the shortest distance
between any two points on the map is a straight
line.
Perspective projection from the center of the
globe onto a plane tangent at the central point
of projection
Less than a hemisphere can be shown on one
map.

Usage
To show great-circle paths as straight lines
and thus to assist navigators and aviators in
determining appropriate courses. Too much
distortion of many kinds for regular geographic
maps.
Used in the past for some star maps and for
world globes in the shapes of polyhedra

Origin
Possibly developed by Thales (c. 580 B.C.) of 
Greece. Name derived from the gnomon of a 
sundial, since meridians radiate like the hour 
markings on a sundial.

Other names
Gnomic 
Central

Similar projection
Two-Point Azimuthal projection (p. 144) is a 
Gnomonic projection that has been compressed 
in one direction.
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Figure 486. Polar Gnomonic projection, with shorelines, 10° graticule. Central meridian 90° W. Range 60°
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Azimuthal Projections 
Perspective

GNOMONIC Projection

Figure 48C. Equatorial Gnomonic projection, with shorelines, 10° graticule. Central meridian 90° W. Range 60°
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Figure 48D. Oblique Gnomonic projection, with shorelines, 10° graticule, central latitude 40° N., central meridian 90° W. Range 60°.
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STEREOGRAPHIC Projection

Azimuthal Projections 
Perspective

Figure 49-4. Polar Stereographic projection, with Tissot indicatrices, 
30° graticule. Range 100°.

Classifications
Azimuthal 
Conformal 
Perspective 
Polyconic (general)

Graticule
Polar aspect (fig. 49S):

Meridians: Equally spaced straight lines 
intersecting at central pole. Angles between 
them are the true angles. 
Parallels: Unequally spaced circles 
centered at the pole, which is a point. 
Opposite pole cannot be shown. Spacing 
gradually increases away from the pole. 
Symmetry. About any meridian

Equatorial aspect (fig. 49C):
Meridians: Central meridian is a straight 
line. Other meridians are unequally spaced 
circular arcs intersecting at each pole. 
Spacing gradually increases away from 
the central meridian.
Parallels: Equator is a straight line. Other 
parallels are unequally spaced circular 
arcs concave toward the nearest pole. 
Spacing gradually increases away from 
the Equator along the central meridian, 
but spacing is equal along the meridians 
90° from the central meridian. 
Symmetry: About the central meridian or 
the Equator

Oblique aspect (fig. 49D):
Meridians: Central meridian is a straight 
line. Other meridians are circular arcs 
intersecting at each pole and having their 
centers on the straight parallel opposite in 
sign to the central latitude. Spacing 
gradually increases away from the central 
meridian.

Parallels: The parallel opposite in sign to 
the central latitude is a straight line 
perpendicular to the central meridian. All 
other parallels are circular arcs concave 
toward the pole on the same side of the 
straight parallel. 
Symmetry: About the central meridian

Range
One hemisphere conveniently; most but not 
all of the other hemisphere at accelerating 
scale

Scale
True only where the central latitude crosses 
the central meridian or, alternatively, along a 
circle concentric about the projection center 
(or a parallel on the polar aspect). Scale is 
constant along any circle having its center at 
the projection center, but scale increases 
moderately with distance from the center 
within a hemisphere.

Distortion
Figure 49>\ shows distortion for the polar 
aspect. Other aspects have identical distortion 
at the same distance from the projection 
center. Only the center or the circle of true 
scale (if not the center) is free from all 
distortion.

Special features
All great or small circles (including all 
meridians and parallels) on the globe are 
shown as circular arcs or straight lines. 
Perspective projection of the globe onto a 
tangent (or secant) plane from a point on the 
surface just opposite the point of tangency or 
the projection center. The straight parallel of 
latitude passes through this point.

Usage
Commonly used in the polar aspect for 
topographic maps of polar regions. The 
equatorial aspect was used regularly for maps 
of the Eastern and Western Hemispheres in the 
17th and 18th centuries. Oblique aspects are 
used to show paths of solar eclipses.

Recommended for conformal mapping of 
regions approximately circular in shape

Basis of modified Stereographic conformal 
projections using complex algebra, such as the 
Miller Oblated Stereographic (p. 148)

Origin
Apparently developed in polar aspect by 
Egyptians and Greeks by the 2d century B.C.
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Figure 49S. Polar Stereographic projection, with shorelines, 10° graticule. Central meridian 90° W. Range 90°
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Azimuthal Projections 
Perspective

STEREOGRAPHIC Projection

Figure 49C. Equatorial Stereographic projection, with shorelines, 10° graticule. Central meridian 90° W. Range 90°
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Figure 49D. Oblique Stereographic projection, with shorelines, 10° graticule, central latitude 40° N. Central meridian 90° W. Range 
90°.
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Azimuthal Projections 
Perspective

ORTHOGRAPHIC Projection

Classifications
Azimuthal
Perspective
Neither conformal nor equal area

Graticule
Polar aspect (fig. SOB):

Meridians: Equally spaced straight lines 
intersecting at the central pole. Angles 
between them are the true angles. 
Parallels: Unequally spaced circles 
centered at the pole, which is a point. 
Spacing decreases away from the pole. 
Symmetry: About any meridian

Equatorial aspect (fig. 50Q:
Meridians: Central meridian is a straight 
line. Outer meridians 90° away are circles. 
Other meridians are unequally spaced 
elliptical arcs intersecting at each pole 
and concave toward the central meridian. 
Spacing decreases away from the central 
meridian.
Parallels: Unequally spaced straight 
parallel lines perpendicular to the central 
meridian. Spacing decreases away from 
the Equator. Parallels intersect the outer 
meridian, however, at equal intervals. 
Symmetry: About the central meridian or 
the Equator

Oblique aspect (fig. SOD):
Meridians: Central meridian is a straight 
line. Other meridians are semiellipses 
intersecting at each pole. Spacing

decreases away from the central
meridian.
Parallels: Complete or partial ellipses, all
of the same shape (or eccentricity); their
minor axes lie along the central meridian.
Spacing decreases away from the center
of projection.
Symmetry: About the central meridian

Range
No more than one hemisphere at a time

Scale
True at the center and along any circle having 
its center at the projection center but only in 
the direction of the circumference of the circle. 
Scale decreases radially with distance from 
the center.

Distortion
Figure 5QA shows distortion for the polar 
aspect. Other aspects have identical distortion 
at the same distance from the projection 
center. Only the center is free of distortion, 
which increases rapidly away from the center. 
Extreme distortion near the edge of the 
hemisphere.

Special features
Perspective projection of the globe onto a 
tangent plane from an infinite distance (that 
is, orthogonally); thus, the map has the look 
of a globe.
All great or small circles (including all 
meridians and parallels) are shown as elliptical 
arcs or straight lines.

Figure 50A Polar Orthographic projection, with Tissot indicatrices, 
30° graticule. Range 80°.

Usage
Pictorial views of the Earth, resembling those 
seen from space

Origin
Apparently developed by Egyptians and Greeks 
by the 2d century B.C.

Similar projections
General Vertical Perspective (p. 128), when 
projected from more than a few thousand 
kilometers above the Earth
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Figure SOS. Polar Orthographic projection, with shorelines, 10° graticule. Central meridian 90° W.
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Azimuthal Projections 
Perspective

ORTHOGRAPHIC Projection

Figure 50C. Equatorial Orthographic projection, with shorelines, 10° graticule. Central meridian 90° W.

126



Figure SOD. Oblique Orthographic projection, with shorelines, 10° graticule, central latitude 40° N. Central meridian 90° W.
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Azimuthal Projections 
Perspective

GENERAL VERTICAL PERSPECTIVE Projection

Classifications
Azimuthal
Perspective
Neither conformal nor equal area (except in
Stereographic form)

Graticule
Polar aspect (fig. MA):

Meridians: Equally spaced straight lines 
intersecting at the central pole. Angles 
between them are the true angles. 
Parallels: Unequally spaced circles 
centered at the pole, which is a point. If 
the usual perspective from above the 
surface is projected, the spacing of 
parallels decreases away from the pole, 
and the Equator cannot be shown. If point 
of perspective is beneath the surface, the 
spacing may increase or decrease away 
from the pole, and part of the opposite 
hemisphere can be shown. 
Symmetry: About any meridian

Equatorial aspect (fig. 51B):
Meridians: Central meridian is a straight 
line. Other meridians are generally 
unequally spaced elliptical arcs 
intersecting at the poles (which may not 
be visible).
Parallels: Equator is a straight line. Other 
parallels are usually elliptical arcs. If 
point of perspective is beneath the surface, 
the parallels can be elliptical, parabolic, 
or hyperbolic arcs.
Symmetry: About the central meridian or 
the Equator

Oblique aspect (figs. 51C, 51D):
Meridians: Central meridian is a straight 
line. Other meridians are generally 
unequally spaced elliptical arcs 
intersecting at each pole.

Figure 51/4. Polar Vertical Perspective projection (La Hire form), with shorelines, 10° graticule. Central meridian 90°W.. Depth below 
surface 17,250 km.
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Parallels: One parallel, normally nearer 
the pole than is the center of projection, 
depending on the position of the point of 
perspective, is a straight line. Other 
parallels are normally elliptical arcs. 
Symmetry: About the central meridian

Range
If point of perspective is above the surface,
less than one hemisphere
If point of perspective is on the opposite side
of the Earth's center, more than one
hemisphere

Scale
True at the center, if the projection is onto a 
tangent plane. Scale varies away from the 
center, depending on the point of perspective.

Distortion
Only the center is free of distortion, if 
projection is onto a tangent plane. Distortion 
is severe near the outer limit of the projection, 
although special locations for the points of 
projection on the opposite side of the Earth's 
center result in moderate distortion within a 
wide range of the center.

Special features
The General Vertical Perspective projection 
shows the Earth geometrically as it appears 
from any point above or below the surface 
when it is projected onto a tangent or secant 
plane perpendicular to the straight line 
connecting the point of perspective with the 
center of the Earth.

Usage
Pictorial views of the Earth, resembling those 
seen from space

Figure 516. Equatorial Vertical Perspective projection, with shorelines, 10° graticule. Central meridian 90°W. Height above surface 
35,900 km (geosynchronous satellite position).
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Azimuthal Projections 
Perspective

GENERAL VERTICAL PERSPECTIVE Projection

Origin
Aside from the earlier limiting forms listed 
below, the perspective projection from a point 
on the opposite side of the Earth's center was 
studied in the 18th and 19th centuries as a 
source of low-distortion projections having 
geometric construction.

Limiting forms
Gnomonic projection (p. 116), if the point of 
perspective is at the center of the Earth 
Stereographic projection (p. 120), if the point 
of perspective is on the surface of the Earth 
opposite the center of projection 
Orthographic projection (p. 124), if the point of 
perspective is at infinity
In turn, the Vertical Perspective is a limiting 
form of the Tilted Perspective projection (p. 
172).

Other specific forms
In 1701, Philippe de la Hire of France suggested 
a point of projection at 1.7071 times the radius 
(fig. 51y4). This distance is measured from the

Figure 51 C. Oblique Vertical Perspective projection, with shorelines, 5° graticule, central latitude 50°N. Central meridian 90°W. Height 
above surface 2,000 km.
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center in a direction away from the surface 
of projection and gives the Equator of the 
polar aspect twice the radius of 45° latitude. 
Antoine Parent in 1702, Ernst Hammer about 
1890, H.F. Gretschel in 1873, and Hans Maurer 
in 1935 were among others proposing points of 
projection for low-error perspectives. 
A.R. Clarke and Henry James, in 1862 and 
later, calculated points of projection (on the 
far side, below the surface of projection) for 
minimum-error perspective azimuthal 
projections of regions, such as continents, 
bounded by a given great or small circle on 
the Earth. Figure 51D is Clarke's Twilight 
projection of 1879, bounded by a circle 108° in 
radius.
The Army Map Service AMS Lunar projection 
is a far-side perspective selected by Albert L. 
Nowicki in 1963 to show slightly more than a 
hemisphere of the Moon, as seen over a period 
of time from the Earth. The point of projection 
is 1.53748 times the radius from the center. 
See also the Airy nonperspective azimuthal 
projection (p. 140).

Figure 51 D. Clarke's Twilight projection, with shorelines, 15° graticule, central latitude 23.5° N. Central meridian 0°. Depth below 
surface 15,290 km. Range 108°.
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Azimuthal Projections 
Nonperspective

AZIMUTHAL EQUIDISTANT Projection

Classifications
Azimuthal
Equidistant
Nonperspective

Graticule
Polar aspect (fig. 52B):

Meridians: Equally spaced straight lines 
intersecting at the central pole. Angles 
between them are the true angles. 
Parallels: Equally spaced circles, centered 
at the pole, which is a point. The entire 
Earth can be shown, but the opposite pole 
is a bounding circle having a radius twice 
that of the Equator. 
Symmetry: About any meridian

Equatorial aspect (fig. 52C):
Meridians: Central meridian is a straight 
line. Meridian 90° away is a circle. Other 
meridians are complex curves, equally 
spaced along the Equator and intersecting 
at each pole.
Parallels: Equator is a straight line. Other 
parallels are complex curves concave 
toward the nearest pole and equally spaced 
along the central meridian and the 
meridian 90° from the central meridian. 
Symmetry: About the central meridian or 
the Equator

Oblique aspect (fig. 52D):
Meridians: Central meridian is a straight
line. Other meridians are complex curves
intersecting at each pole.
Parallels: Complex curves equally spaced
along the central meridian
Symmetry: About the central meridian

Range
Entire Earth

Scale
True along any straight line radiating from 
the center of projection. Increases in a 
direction perpendicular to the radius as the 
distance from the center increases.

Distortion
Figure 52A shows distortion for the polar 
aspect. Other aspects have identical distortion 
at the same distance from the projection 
center. Only the center is free from distortion. 
Distortion is moderate for one hemisphere but 
becomes extreme for a map of the entire 
Earth.

Special features
The distance between any two points on a 
straight line passing through the center of 
projection is shown at true scale; this feature 
is especially useful if one point is the center. 
Compromise in distortion between 
Stereographic (conformal) and Lambert 
Azimuthal Equal-Area projections

Usage
Commonly used in the polar aspect for maps 
of polar regions, the Northern and Southern 
Hemispheres, and the "aviation-age" Earth. 
The oblique aspect is frequently used for world 
maps centered on important cities and 
occasionally for maps of continents. The 
ellipsoidal form is used for topographic 
mapping of Micronesia and Guam.

Origin
Possibly developed in the polar aspect by 
Egyptians for star charts. Several users during 
the 16th century.

Other names
Postel (in France and Russia, for Guillaume

Postel, who was considered an originator, 
although he first used it in 1581) 
Zenithal Equidistant

Similar projections
Two-Point Azimuthal (p. 144) shows correct
azimuths (but not distances) from either of
two points to any other point.
Two-Point Equidistant (p. 146) shows correct
distances (but not azimuths) from either of
two points to any other point.
Chamberlin Trimetric (P-170) shows
approximately true distances from three
chosen points to any other points (cannot be
exact). The three points are placed near the
edges of the region being mapped to reduce
overall distortion.
Airy (p. 140) and Breusing (p. 143) azimuthal
projections have spacings very similar to
those of the Azimuthal Equidistant if the extent
is less than one hemisphere.
Berghaus Star projection (p. 156) uses the Polar
Azimuthal Equidistant projection for the
Northern Hemisphere.
"Tetrahedral" projection (p. 114) combines the
Polar Azimuthal Equidistant projection with
an interrupted Werner projection.
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Figure 52A Polar Azimuthal Equidistant projection, with Tissot 
indicatrices, 30° graticule. Range 170°.

Figure 526. Polar Azimuthal Equidistant projection, with shorelines, 15° graticule. Central meridian 90° W. Range 180° (world map).
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Azimuthal Projections 
Nonperspective

AZIMUTHAL EQUIDISTANT Projection

Figure 52C. Equatorial Azimuthal Equidistant projection, with shorelines, 15° graticule. Central meridian 90° W. Range 180° (world 
map).
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Figure 52D. Oblique Azimuthal Equidistant projection, with shorelines, 15° graticule, central latitude 40° N. Central meridian 90° W. 
Range 180° (world map).
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LAMBERT AZIMUTHAL EQUAL-AREA Projection

Azimuthal Projections 
Nonperspective

Classifications
Azimuthal 
Equal area 
Nonperspective

Graticule
Polar aspect (fig. 53B):

Meridians: Equally spaced straight lines 
intersecting at the central pole. Angles 
between them are the true angles. 
Parallels: Unequally spaced circles, 
centered at the pole, which is a point. 
Spacing of the circles gradually decreases 
away from the pole. The entire Earth can 
be shown, but the opposite pole is a 
bounding circle having a radius 1.41 times 
that of the Equator. 
Symmetry: About any meridian

Equatorial aspect (fig. 53Q:
Meridians: Central meridian is a straight 
line. Meridian 90° away is a circle. Other 
meridians are complex curves, unequally 
spaced along the Equator and intersecting 
at each pole. Spacing decreases away 
from the central meridian. 
Parallels: Equator is a straight line. Other 
parallels are complex curves concave 
toward the nearest pole. They are 
unequally spaced along the central 
meridian, and spacing decreases away 
from the Equator. Along the meridian 90° 
from the central meridian, parallels are 
equally spaced.
Symmetry: About the central meridian or 
the Equator

Oblique aspect (fig. 53D):
Meridians: Central meridian is a straight 
line. Other meridians are complex curves 
intersecting at each pole shown.

Parallels: Complex curves unequally
spaced along the central meridian; spacing
decreases away from the center of
projection
Symmetry: About the central meridian

Range
Entire Earth

Scale
True only at the center in all directions. 
Decreases with distance from the center along 
radii. Increases with distance from the center 
in a direction perpendicular to radii.

Distortion
Figure 53A shows distortion for the polar 
aspect. Other aspects have identical distortion 
at the same distance from the projection 
center. Only the center is free from distortion. 
Distortion is moderate for one hemisphere but 
becomes extreme for a map of the entire 
Earth.

Usage
Frequently used in the polar aspect in atlases 
for maps of polar regions and of Northern 
and Southern Hemispheres. The equatorial 
aspect is commonly used for atlas maps of 
the Eastern and Western Hemispheres. The 
oblique aspect is used for atlas maps of 
continents and oceans. The equatorial and 
oblique aspects are used by the U.S. Geological 
Survey in cooperation with others for maps of 
the Circum-Pacific Map Project. 
Recommended for equal-area maps of regions 
approximately circular in extent

Origin
Presented by Johann Heinrich Lambert (1728- 
77) of Alsace in 1772

Figure 53-4. Polar Azimuthal Equal-Area projection, with Tissot 
indicatrices, 30° graticule. Range 100°.

Other names
Lorgna (for polar aspect, due to independent 
derivation, 1789) 
Zenithal Equal-Area 
Zenithal Equivalent

Similar projections
W. William-Olsson's projection (p. 114) combines 
the Lambert Azimuthal Equal-Area with a 
modified Werner.
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Figure 53S. Polar Lambert Azimuthal Equal-Area projection, with shorelines, 10° graticule. Central meridian 90° W. Range 90°.
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Azimuthal Projections 
Non perspective

LAMBERT AZIMUTHAL EQUAL-AREA Projection

Figure 53C. Equatorial Lambert Azimuthal Equal-Area projection, with shorelines, 105° graticule. Central meridian 90° W. Range 
90°.
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Figure 53E. Oblique Lambert Azimuthal Equal-Area projection, 
with shorelines, 30° graticule, central latitude 40° N. Central meridian 
90° W. Range 180° (world map).

Figure 53D. Oblique Lambert Azimuthal Equal-Area projection, with shorelines, 10° graticule, central latitude 40° N. Central meridian 
90° W. Range 90°.
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Azimuthal Projections 
Nonperspective

AIRY Projection

Classifications
Azimuthal
Minimum error
Nonperspective
Neither conformal nor equal area

Graticule
Polar aspect (fig. 54B):

Meridians: Equally spaced straight lines 
intersecting at the central pole. Angles 
between them are the true angles. 
Parallels: Nearly but not quite equally 
spaced circles, centered at the pole, which 
is a point. Spacing increases slightly away 
from the center. 
Symmetry: About any meridian

Equatorial aspect (fig. 54Q:
Meridians: Central meridian is a straight 
line. Meridians 90° away are circles. Other 
meridians are complex curves, unequally 
spaced along the Equator and intersecting 
at each pole. Spacing increases slightly 
away from the central meridian. 
Parallels: Equator is a straight line. Other 
parallels are complex curves concave 
toward the nearest pole. They are 
unequally spaced along the central 
meridian, and spacing increases slightly 
away from the Equator. At the meridian 
90° from the central meridian, parallels 
are equally spaced.
Symmetry: About the central meridian or 
the Equator

Oblique aspect (fig. 54D):
Meridians: Central meridian is a straight 
line. Other meridians are complex curves 
intersecting at each pole. 
Parallels: Complex curves unequally 
spaced along the central meridian; spacing

Figure 54A. Polar Airy projection, with Tissot indicatrices, 30° 
graticule. Range 95°.

increases slightly away from the center of
projection
Symmetry: About the central meridian

Range
Should be limited to about a hemisphere or 
less

Scale
Scale increases gradually in all directions 
with distance from the center, but there is no 
point at which the scale is correct in all 
directions.

Distortion
Figure 54>4 shows distortion for the polar aspect 
extending 95° or slightly more than one 
hemisphere. Distortion is moderate throughout 
the range chosen. No point is completely free 
of distortion, although the center is free of 
shape distortion.

Usage
Medium-scale Ordnance Survey map of the 
United Kingdom

Special feature
The minimum-error azimuthal projection of 
the region enclosed by a great or small circle 
of chosen radius from a given center

Origin
Presented by George Bidden Airy (1801-92), 
British astronomer and geodesist, in 1861

Similar projections
Clarke and James minimum-error perspective
azimuthal projections were inspired by Airy's
work.
The Azimuthal Equidistant projection (p. 132)
closely resembles the Airy, but scale is

constant along radii from the center. 
In 1892, A. Breusing proposed the low-error 
geometric mean of the Stereographic and 
Lambert Azimuthal Equal-Area projections. 
In 1920, A.E. Young of England modified the 
Breusing (geometric mean) projection to 
provide a balance between the Stereographic 
and Azimuthal Equidistant projections, called 
the Breusing Harmonic projection (fig. 54E). 
In 1950, N.A. Urmayev of the Soviet Union 
proposed two other low-error azimuthal 
projections.
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Figure 546. Polar Airy projection, with shorelines, 10° graticule. Central meridian 90° W. Range 90°.
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Azimuthal Projections 
Nonperspective

AIRY Projection

Figure 54C. Equatorial Airy projection, with shorelines, 10° graticule. Central meridian 90° W. Range 90°
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Figure 54E. Polar Breusing Harmonic projection, with shorelines, 
30° graticule. Central meridian 90° W. Range 180° (world map).

Figure 54D. Oblique Airy projection, with shorelines, 10° graticule, central latitude 40° N. Central meridian 90° W. Range 90°.
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Modified Azimuthal Projections

TWO-POINT AZIMUTHAL Projection

Classifications
Modified azimuthal
Neither conformal nor equal area

Graticule
Meridians: Straight lines
Parallels: Equator is straight. Other parallels
are ellipses, parabolas, or hyperbolas.
Poles: Points (if shown)
Symmetry: Normally none

Scale
Varies considerably. Projection should not be 
used for measuring distance

Distortion
Direction is correct to all other points from 
two central points at which there is no distor­ 
tion.

Other features
Great circles are shown as straight lines. 
This projection can be obtained by compressing 
a Gnomonic projection in the direction parallel 
to the line joining the two central points.

Usage
Could be used to locate a ship at sea, for 
example, if the exact location of two radio 
transmitters and the direction from the ship 
to the transmitters are known

Origin
Presented by Hans Maurer (1868-1945) of Ger­ 
many in 1914 and Charles F. Close (1865-1952) 
of England independently in 1922

Aspects
Typically oblique

Other names
Doubly Azimuthal
Orthodromic
Close
McCaw
Immler

Limiting forms
If the two central points are identical, the 
Gnomonic projection results.

Similar projections
Gnomonic (p. 116), which can be compressed 
as described above to produce the Two-Point 
Azimuthal projection
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Figure 55. Two-Point Azimuthal projection, with shorelines, 10° graticule. Central points are near Washington, D.C. (longitude 
77° W., latitude 39° N.) and Honolulu, Hawaii (longitude 158°W., latitude 21.5°N.).
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Modified Azimuthal Projections

TWO-POINT EQUIDISTANT Projection

Classifications
Modified azimuthal
Neither conformal nor equal area

Graticule
Meridians: Complex curves 
Parallels: Complex curves 
Poles: Normally points 
Symmetry: Normally none

Scale
True along a straight line from either of two 
central points

Distortion
No points free of distortion

Usage
Map of Asia by the National Geographic
Society
Could be used to determine the distance from
a ship at sea at a known location from the
start and end of a voyage

Origin
Presented by Hans Maurer (1868-1945) of Ger­ 
many in 1919 and Charles F. Close (1865-1952) 
of England independently in 1921

Aspects
Typically oblique

Other names
Doubly Equidistant

Limiting forms
If the two central points are identical, the 
Azimuthal Equidistant projection results.

Similar projections
Azimuthal Equidistant (p. 132), on which dis­ 
tance is correct from only one point 
Donald Elliptical, developed by Jay K. Donald 
of the American Telephone and Telegraph 
Company in 1956. Used by telephone companies 
to establish long-distance rates, the Donald is 
a Two-Point Equidistant projection specially 
modified for the ellipsoid and confined to the 
United States and southern Canada. 
Chamberlin Trimetric (p. 170), an approximate 
three-point equidistant projection 
Two-Point Azimuthal-Equidistant, presented 
by Charles F. Close in 1922, has true azimuths 
from one point and true distances from a 
second point to all other points.
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Figure 56. Two-Point Equidistant projection, with shorelines, 10° graticule. Central points are near Washington, D.C. (longitude 
77° W., latitude 39° N.), and Honolulu, Hawaii (longitude 158° W., latitude 21.5° N.).

147



Modified Azimuthal Projections

MILLER OBLATED STEREOGRAPHIC Projection

Classifications
Modified azimuthal 
Conformal

Graticule
Meridians: Complex curves
Parallels: Complex curves
Poles: Points
Symmetry: About the central meridian as
applied to the map of Europe and Africa. No
symmetry on other prepared maps.

Scale
A line of constant scale bounds an oval re­ 
gion.

Distortion
Scale variations within the oval-shaped region 
covered are less than variations on standard 
conformal projections, such as an oblique 
Mercator or oblique Stereographic projection.

Usage
Used for an area that can be contained within 
an oval shape to minimize the scale distortions 
in the area. Applied by O.M. Miller to Africa 
and Europe in 1953 and to other Eastern Hemi­ 
sphere regions in conjunction with several non- 
conformal fill-in projections in 1955. Used by 
L.P. Lee for the Pacific Ocean in 1974.

Origin
Osborn Maitland Miller (1897-1979) of the 
American Geographical Society in 1953

Other names
Miller Prolated Stereographic 
Oblated Stereographic 
Prolated Stereographic

Similar projections
Stereographic projection (p. 120) has lines of 
constant scale that are concentric circles.

Figure 57. Miller Oblated Stereographic projection of Europe and Africa, with shorelines, 10° graticule, and lines of constant scale. 
Scale factors are 0.94, 0.96, 1.00, 1.04, and 1.08 along ovals, beginning with the smallest. Scale factor at center (latitude 18°N., 
longitude 20° E.) is 0.9245.
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Modified Azimuthal Projections

WIECHEL Projection Figure 58. Polar Wiechel projection. Northern Hemisphere, with shorelines, 10° graticule.

Classifications
Modified azimuthal 
Equal area 
Pseudoazimuthal

Graticule
Polar aspect:

Meridians: Semicircles if extended to a 
world map
Parallels: Concentric circles
Poles: Central pole is a point; other pole
is a circle
Symmetry: Radial about the central pole

Scale
Correct along meridians

Distortion
Considerable distortion of shape at the map 
edge

Usage
A novelty map that, in its polar aspect, has 
semicircular meridians arranged in a pin- 
wheel

Origin
Presented by H. Wiechel in 1879

Aspects
Normally only polar

Similar projections
Lambert Azimuthal Equal-Area projection (p. 
136) has the same spacing of parallels in the 
polar aspect, but the meridians are straight. 
Ginzburg Ml is a general series of 
pseudoazimuthal projections developed by 
G.A. Ginzburg of the Soviet Union in 1952. 
The lines of constant distortion are ovals rather 
than the usual circles of azimuthal projections.

This feature is achieved by the manner in 
which the lines of constant initial azimuth are 
curved. The projection series has been used 
only in the oblique or equatorial aspect.
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Modified Azimuthal Projections

CRAIG RETROAZIMUTHAL Projection

Classifications
Retroazimuthal
Modified azimuthal
Neither conformal nor equal area

Graticule
Meridians: Equally spaced straight parallel
lines
Parallels: Curved
Poles: Curved lines
Symmetry: About the central meridian

Distortion
Extreme distortion of shape and area

Other features
The direction is correct from any location on 
the map to a central point. 
Considerable overlapping when entire sphere 
is shown

Usage
To show, for example, the correct direction 
toward Mecca, from any point on the map, by 
measuring the angle from North. Because the 
meridians are straight parallel lines, this angle 
can be readily measured.

Origin
Presented by James Ireland Craig (1868-1952) 
of the Survey of Egypt in 1909

Other names
Mecca

Similar projections
Hammer Retroazimuthal (p. 152) has curved, 
unequally spaced meridians. 
Hans Maurer of Germany in 1919 and J.E. 
Jackson of England in 1968 devised re- 
troazimuthal projections characterized by 
straight, parallel, unequally spaced meri­ 
dians.
Carl Schoy presented a projection in 1913 hav­ 
ing meridians that are straight, equidistant, 
and parallel but parallels that are curved, so 
that all great circles passing through the cen­ 
tral point are straight lines at their true 
azimuths from center. It is not retroazimuthal, 
nor is its distortion only a function of distance 
from the center, as it is on most azimuthal 
projections.
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Figure 59. Craig Retroazimuthal projection, centered near St. Louis, Mo. (longitude 90° W., latitude 38.5° IM.), with shorelines, 10° 
graticule.
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Modified Azimuthal Projections

HAMMER RETROAZIMUTHAL Projection

Classifications
Retroazimuthal
Modified azimuthal
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other
meridians are curved.
Parallels: Curved
Poles: Curved lines
Symmetry: About the central meridian

Distortion
Extreme distortion of area and shape

Other features
The direction from any point to the center of 
the map is the angle that a straight line con­ 
necting the two points makes with a vertical 
line. This feature is the basis of the term 
"retroazimuthal." Scimitar-shaped boundary- 
Considerable overlapping when the entire 
sphere is shown.

Usage
To determine the direction of a central point 
from a given location

Origin
Presented by H.H. Ernst von Hammer (1858- 
1925) of Germany in 1910. Independently pre­ 
sented by Edward A. Reeves (1862-1945) and 
Arthur R. Hinks (1874-1945) of England in 
1929.

Similar projections
Craig Retroazimuthal (p. 150) has straight, 
equally spaced meridians.

Figure 60. Hammer Retroazimuthal projection, centered near St. Louis, Mo. (longitude 90° W., latitude 40° N.), with shorelines, 15° 
graticule. Two hemispheres, one of which appears backwards; they should be superimposed for the full map.
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LITTROW Projection

Classifications
Retroazimuthal 
Conformal

Graticule
Meridians: Central meridian and meridians
90° away are straight. Others are hyperbolas
convex toward the central meridian.
Parallels: Equator is straight. Other parallels
are ellipses; the Equator lies along their major
axes.
Poles: Not shown
Symmetry: About the central meridian and
the Equator

Scale
Varies rapidly

Distortion
Extreme distortion of area

Other features
Cannot show the entire sphere. Shows the 
correct direction from any point on the map 
to any point along the central meridian as the 
angle between a straight line connecting the 
two points and a vertical straight line parallel 
to the central meridian.

Usage
By the British Navy in the 19th century to 
determine directions to a central point from 
other locations

Origin
Presented by J.J. Littrow of Austria in 1833

Similar projections
Littrow projection is the transverse aspect of 
a Lagrange projection (p. 180) having certain 
parameters.
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Figure 61. Littrow projection, one hemisphere, with shorelines, 
10° graticule. Central meridian 90° W.
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Modified Azimuthal Projections

BERGHAUS STAR Projection

Classifications
Equidistant 
Composite 
Modified azimuthal 
Interrupted

Graticule
Meridians: Straight lines, broken at the
Equator
Parallels: Concentric circular arcs; North Pole
at the center
Poles: Points
Symmetry: Radial about the North Pole

Scale
Correct along meridians in the Northern 
Hemisphere and along the central meridians 
of triangular points in the Southern 
Hemisphere

Distortion
Moderate throughout

Other features
The Northern Hemisphere is a polar Azimuthal

Equidistant projection. The Southern 
Hemisphere is divided into five equal triangular 
lobes.

Usage
Largely for artistic map forms. Landforms do 
not readily fit into the lobes or arms of the star 
pattern. Used for the logo of the Association 
of American Geographers.

Origin
Presented by Heinrich Berghaus (1797-1884) 
of Germany in 1879

Aspects
Polar only

Similar projections
Petermann Star (Germany, 1865) has eight 
unequal points; parallels are concentric 
circular arcs.
Jager Star (Austria, 1865) has eight unequal 
points; parallels are in straight segments. 
Azimuthal Equidistant (p. 132) is the projection 
for the Northern Hemisphere of the Berghaus 
Star.
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Figure 62. Berghaus Star projection, with shorelines, 18° graticule. Central meridian 90° W. World map.
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Modified Azimuthal Projections

AITOFF Projection

Classifications
Modified azimuthal
Neither conformal nor equal area

Graticule
Meridians: Central meridian is a straight line 
half the length of the Equator. Other meridians 
are complex curves, equally spaced along the 
Equator and concave toward the central 
meridian
Parallels: Equator is straight. Other parallels 
are complex curves, equally spaced along the 
central meridian and concave toward the 
nearest pole.
Poles: Points
Symmetry: About the Equator and the central
meridian

Scale
True along the Equator and the central 
meridian

Distortion
Moderate shape and area distortion (fig. 63/4)

Other features
Elliptical border. An equatorial aspect of one 
hemisphere of the Azimuthal Equidistant 
projection, on which horizontal coordinates 
have been doubled and meridians have been 
given twice their original longitudes.

Usage
Design inspired H.H. Ernst von Hammer to 
develop his elliptical projection (p. 160)

Figure 63A Aitoff projection, with Tissot indicatrices, 30° graticule.

Origin
David Aitoff (or Aitow) (1854-1933) in 1889

Similar projections
Hammer (Elliptical) (p. 160), equal area and
mistakenly called Aitoff in the early 20th
century
Briesemeister (p. 162), an oblique modification
of the Hammer
Eckert-Greifendorff (p. 166), a modification of
the Lambert Azimuthal Equal-Area projection
inspired by the Hammer
Winkel Tripel (p. 164) is a combination of the
Aitoff and Equidistant Cylindrical projections.
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Figure 638. Aitoff projection, with shorelines, 15° graticule. Central meridian 90° W.
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Modified Azimuthal Projections

HAMMER Projection Figure 64/4. Hammer projection, with Tissot indicatrices, 30° graticule.

Classifications
Modified azimuthal 
Equal area

Graticule
Meridians: Central meridian is a straight line
half the length of the Equator. Other meridians
are complex curves, unequally spaced along
the Equator and concave toward the central
meridian
Parallels: Equator is straight. Other parallels
are complex curves, unequally spaced along
the central meridian and concave toward the
nearest pole.
Poles: Points
Symmetry: About the central meridian and
the Equator

Scale
Decreases along the central meridian and the 
Equator with distance from the center

Distortion
Moderate (fig. 64/4). Less shearing action on 
the outer meridians near the poles than there 
is on pseudocylindrical projections.

Other features
Elliptical border. An equatorial aspect of one 
hemisphere of the Lambert Azimuthal Equal- 
Area projection, on which horizontal coordi­ 
nates have been doubled and meridians have 
been given twice their original longitudes.

Usage
Whole-world maps, also in interrupted and 
condensed forms

Origin
Presented by H.H. Ernst von Hammer (1858- 
1925) of Germany in 1892

Aspects
Normal and oblique are both in use.

Other names
Hammer-Aitoff
Mistakenly called Aitoff projection in the early
20th century.

Similar projections
Briesemeister(p. 162), a modified oblique Ham­ 
mer
Eckert-Greifendorff (p. 166), a further modifi­ 
cation of the Lambert Azimuthal Equal-Area 
projection
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Figure 645. Hammer projection, with shorelines, 15° graticule. Central meridian 90° W.
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Modified Azimuthal Projections

BRIESEMEISTER Projection

Classifications
Modified azimuthal 
Equal area

Graticule
Meridians: Central meridian is straight. Other
meridians are complex curves.
Parallels: Complex curves
Poles: Points
Symmetry: About the central meridian

Scale
True scale at latitudes 3.6° 
central meridian

and 86.4° N. at

Distortion
None at latitudes 3.6° 
meridian (fig. 65A)

and 86.4° N. at central

Other features
An oblique Hammer projection centered at 
latitude 45° N. and longitude 10° E. and bounded 
by an ellipse having an axis ratio of 1.75 to 1 
instead of 2 to 1, after the vertical coordinates 
are expanded and the horizontal coordinates 
are contracted

Usage
Whole-world maps showing continents grouped 
near the center

Origin
Presented by William A. Briesemeister of the 
American Geographical Society in 1953

Similar projections
Hammer (Elliptical) (p. 160), the normal aspect 
of the Briesemeister, but having an axis ratio 
of 2 to 1
Nordic, by John Bartholomew, is the same as 
the Briesemeister projection, except that the 
axis ratio is 2 to 1 and the central meridian 
is 0°.

Figure 65-4. Briesemeister projection, with Tissot indicatrices, 30° graticule.
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Figure 65S. Briesemeister projection, with shorelines, 15° graticule. Center at 45° N., 10°E.

163



Modified Azimuthal Projections

WINKEL TRIPEL Projection

Classifications
Modified azimuthal
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other 
meridians are curved, equally spaced along 
the Equator and concave toward the central 
meridian.
Parallels: Equator and the poles are straight. 
Other parallels are curved, equally spaced 
along the central meridian and concave toward 
the nearest pole.
Poles: Straight lines about 0.4 as long as the 
Equator, depending on the latitude of the stan­ 
dard parallels of the base Equidistant Cylin­ 
drical projection
Symmetry: About the central meridian or the 
Equator

Scale
True along the central meridian. Constant 
along the Equator.

Distortion
Moderate except near outer meridians in polar 
regions (fig. 66>4)

Other features
Equally spaced central meridian and Equator

Usage
Whole-world maps

Origin
Presented by Oswald Winkel (1873-1953) of 
Germany in 1921. Obtained by averaging coor­ 
dinates of Equidistant Cylindrical and Aitoff 
(not Hammer-Aitoff) projections. Winkel ap­ 
plied the name "Tripel," normally meaning tri­ 
ple.

Figure 66A. Winkel Tripel projection, with Tissot indicatrices, 30° graticule. Standard parallels the 
same as that in figure 66fi.
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Figure 66S. Winkel Tripel projection, with shorelines, 15° graticule. Central meridian 90° W. Standard parallels of Cylindrical Equidistant 
base 40° N. and S.
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Modified Azimuthal Projections

ECKERT-GREIFENDORFF Projection

Classifications
Modified azimuthal 
Equal area

Graticule
Meridians: Central meridian is a straight line 
0.46 of the length of the Equator. Other merid­ 
ians are curved, unequally spaced along the 
Equator and concave toward the central merid­ 
ian.
Parallels: Equator is straight. Other parallels 
are curved, unequally spaced along the central 
meridian and concave toward the nearest pole. 
Poles: Points
Symmetry: About the central meridian or the 
Equator

Scale
Decreases steadily along the Equator and the 
central meridian with distance from the center 
of the projection

Distortion
Moderate near center, but considerable shape 
distortion near outer meridians

Other features
An equatorial aspect of the Lambert Azimuthal 
Equal-Area projection for 90° of longitude, on 
which the horizontal coordinates have been 
quadrupled and the meridians have been given 
four times their original longitudes

Usage
Whole-world map

Origin
Max Eckert-Greifendorff (formerly Max 
Eckert) (1868-1938) of Germany in 1935

Similar projections
Hammer (p. 160), a different modification of the 
Lambert Azimuthal Equal-Area projection 
Quartic Authalic (p. 74) has straight parallels.
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Figure 67. Eckert-Greifendorff projection, with shorelines, 15° graticule. Central meridian 90° W.
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Modified Azimuthal Projections

WAGNER VII Projection

Classifications
Modified azimuthal 
Equal area

Graticule
Meridians: Central meridian is straight and
half the length of the Equator. Other meridians
are curves, unequally spaced along the Equator
and concave toward the central meridian.
Parallels: Equator is straight. Other parallels
are curves, unequally spaced along the central
meridian and concave toward the nearest
pole.
Poles: Curved lines
Symmetry: About the central meridian or the
Equator

Scale
Decreases along the central meridian and the 
Equator with distance from the center of the 
projection

Distortion
Considerable shape distortion in polar areas 
(fig. 68A)

Other features
A modification of the Hammer projection; the 
poles correspond to the 65th parallels on the 
Hammer, and meridians are repositioned

Usage
World maps, such as climatic maps prepared 
by the U.S. Department of Commerce

Figure 68A Wagner VII projection, with Tissot indicatrices, 30° graticule.

Origin
Presented by Karlheinz Wagner of Germany 
in 1941

Other names
Hammer-Wagner

Similar projections
Hammer (Elliptical) (p. 160),truncated and 
otherwise modified for the Wagner VII
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Figure 686. Wagner Vll projection, with shorelines, 15° graticule. Central meridian 90° W.
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Modified Azimuthal Projections

CHAMBERLIN TRIMETRIC Projection

Classifications
Modified azimuthal
Modified equidistant
Neither conformal nor equal area

Graticule
Meridians: Complex curves 
Parallels: Complex curves 
Poles: Points 
Symmetry: Normally none

Scale
Approximately correct from three selected 
widely spaced points on map to any other 
point on map. Cannot be exactly correct.

Distortion
Low distortion throughout map if three source 
points are properly placed near map limits 
(fig. 69,4)

Usage
Atlas maps of continents by the National Geo­ 
graphic Society and some other atlas pub­ 
lishers

Origin
Presented by Wellman Chamberlin (1908-76) 
of the National Geographic Society in 1946

Similar projections
Azimuthal Equidistant projection (p. 132); true 
distance and direction from one point 
Two-Point Equidistant projection (p. 146); true 
distance but not direction from two points

Figure 69/4. Chamberlin Trimetric projection, with Tissot indicat- 
rices, 20° graticule. Source points the same as those in figure 
69B.
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Figure 69S. Chamberlin Trimetric projection of North America with national boundaries, 10° graticule. Three source points for this 
map, as selected by the National Geographic Society: (1) latitude 55° N., longitude 150° W.; (2) latitude 55° N., longitude 35° W.; (3) 
latitude 10°N., longitude 92°30'W.
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Modified Azimuthal Projections

TILTED PERSPECTIVE Projection

Classifications
Modified azimuthal
Perspective
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight; the 
point of perspective is in its plane, but this 
meridian may not appear on the map. Other 
meridians are normally elliptical arcs, but, 
for certain angles of tilt or centers, they may 
be straight lines, parabolas, or hyperbolas. 
Parallels: One parallel, normally nearer to 
the pole than is the center of projection (de­ 
pending on the position of the point of per­ 
spective), is a straight line. Other parallels 
are normally elliptical arcs but, for certain 
angles of tilt, may be parabolas or hyper­ 
bolas.
Poles: Points
Symmetry: Normally none, but there is sym­ 
metry about the central meridian if the direc­ 
tion of view is north or south

Range
Less than one hemisphere if the point of per­ 
spective is above the surface

Scale
Normally varies widely if a large area is 
covered

Distortion
Substantial distortion of shape, area, and scale 
if a large area is covered

Special features
Projection shows the Earth geometrically as 
it appears when photographed or otherwise 
imaged onto a plane from any point in space 
with any pointing of the "camera."

Usage
Pictorial views of the Earth, resembling those 
seen from space

Origin
Developed primarily during the 20th century 
to relate to aerial and space photography and 
photogrammetry

Limiting forms
General Vertical Perspective projection (p. 128) 
Orthographic projection (p. 124), if the point of 
perspective is at infinite distance
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Figure 70. Tilted Perspective projection. Eastern U.S. seaboard, viewed from a point about 160 km above Newburgh, N.Y., 1 C 
graticule. Center of projection latitude 41°30' N., longitude 74° W., tilt 55°, rotation 210°.
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Miscellaneous Projections

BACON GLOBULAR Projection Figure 71. Bacon Globular projection, with shorelines, 10° graticule. 
Central meridian 90° W.

Classification
Globular

Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight.
Other meridians are circular arcs
equally spaced along the Equator but not
along other parallels.
Parallels: Parallel straight lines equally
spaced on the meridians 90° from center
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along the Equator

Distortion
Extreme area and shape distortion near the 
poles

Usage
Early hemispheric maps

Origin
Presented by Roger Bacon (1214-94) of 
England, about 1265, but unclear

Similar projections
Glareanus (Loritz) projection of 1527 is 
identical.

Apian Globular I hemisphere of 1524 has 
straight parallels equally spaced along the 
central meridian.
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Miscellaneous Projections

FOURNIER GLOBULAR I Projection Figure 72. Fournier Globular I projection, with shorelines, 
10° graticule. Central meridian 90° W.

Classification
Globular
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other 
meridians are semiellipses equally spaced 
along the Equator but not along other 
parallels.
Parallels: Parallel straight lines equally 
spaced on the meridians 90° from center
Poles: Points
Symmetry: About the central meridian or the 
Equator

Scale
True along the central meridian and the 
Equator

Distortion
Moderate for a hemisphere

Usage
Early whole-world or hemispheric maps

Origin
Presented by Georges Fournier of France in 
1643

Similar projections
Nicolosi Globular (p. 176) has circular arcs for 
meridians.
Mollweide (p. 54) has straight parallels and is 
used for world maps, but meridians within 
one hemisphere are the same as those on 
Fournier I.
Azimuthal Equidistant (equatorial aspect)
(p. 134) has complex curves for meridians and
parallels.
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Miscellaneous Projections

NICOLOSI GLOBULAR Projection

Classifications
Globular
Polyconic
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight.
Other meridians are circular arcs, equally
spaced along the Equator but not along other
parallels.
Parallels: Parallel straight lines equally
spaced on the meridians 90° from the center
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along the central meridian and the 
Equator

Distortion
Moderate for a hemisphere
Considerable area and shape distortion if used
beyond the 90th meridians

Usage
Hemispheric maps, common in atlases between 
1850 and 1925

Origin
Presented by Giambattista Nicolosi (1610-70) 
of Rome in 1660

Other names
Arrowsmith 
Globular

Similar projections
Van der Grinten IV (p. 204) has parallels of
different curvature and is extended to a world
map.
Azimuthal Equidistant (equatorial aspect)
(p. 134) has complex curves for meridians and
parallels.

Figure 73. Nicolosi Globular projection, with shorelines, 10° 
graticule. Central meridian 90° W.

Fournier Globular I (p. 175) has elliptical arcs 
for meridians.
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Miscellaneous Projections

APIAN GLOBULAR I Projection Figure 74. Apian Globular I projection, with shorelines, 10° 
graticule. Central meridian 90° W.

Classifications
Globular
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight.
Other meridians are circular arcs equally
spaced along the Equator but not along other
parallels.
Parallels: Straight lines, equally spaced along
the central meridian
Poles: Points
Symmetry: Along the central meridian or the
Equator

Scale
True along the central meridian and the 
Equator

Distortion
Moderate

Usage
Early maps of hemispheres

Origin
Presented by Peter Apian (Petrus Apianus or 
Peter Bienewitz) (1495-1552) of Saxony in 1524

Similar projections
Glareanus (Loritz) has identical meridians, 
but straight parallels are equally spaced on 
the 90th meridians.
Apian Globular II has identical parallels, 
central meridian, and 90th meridians, but 
other meridians are equally spaced ellipses. 
Ortelius Oval (p. 178) is identical within 90° of 
the central meridian but is used for a world 
map.
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Miscellaneous Projections

ORTELIUS OVAL Projection

Classifications
Oval
Modified pseudocylindrical
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other 
meridians are circular arcs, becoming 
semicircles between the meridians 90° and 
180° from the central meridian. Equally 
spaced along the Equator but not along other 
parallels.
Parallels: Straight lines, equally spaced on 
the central meridian
Poles: Lines half the length of the Equator 
Symmetry: Along the central meridian or the 
Equator

Scale
True along the central meridian and the 
Equator

Distortion
Moderate

Usage
16th-century whole-world maps

Origin
Battista Agnese (1514-64) used the projection 
in 1544, but the name comes from Abraham 
Ortelius (1527-98) of Flanders, who used it in 
1570.

Similar projections
Often confused with Eckert III (p. 58), which 
has elliptic arcs for meridians

Apian Globular I (p. 177) is the same for one
hemisphere.
Bordone Oval projection of 1528 has points for
poles and near-ellipses or ovals for meridians
but is otherwise very similar.
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Figure 75. Ortelius Oval projection, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

LAGRANGE Projection Figure 76/4. Lagrange projection of sphere in circle, with Tissot indi- 
catrices, 30° graticule.

Classifications
Conformal 
Polyconic

Graticule
Meridians: Central meridian is straight. Other
meridians are circular arcs, concave toward
the central meridian.
Parallels: One parallel, often the Equator, is
straight. Other parallels are circular arcs,
concave toward the pole which is on the same
side of the straight parallel.
Poles: Points
Symmetry: About the central meridian. Also
about the Equator, if the Equator is straight.

Scale
Increases rapidly with distance from the 
center

Distortion
Great distortion of area and scale when the 
center is compared with poles or other outer 
limits (fig. 76,4). Conformality fails at the 
poles.

Other features
The general formula can be used to create a 
variety of conformal maps.

Usage
Whole-world maps and conformal maps within 
a circle of smaller portions of the world

Origin
Johann Heinrich Lambert (1728-77) of Alsace 
presented the world conformally in a circle in 
1772. This projection is usually called the 
Lagrange projection, however, after Joseph 
Louis Lagrange (1736-1813) of France, who 
generalized Lambert's concept in 1779.

Similar projections
Van der Grinten I (p. 200) is not conformal.

Special forms
Equatorial or oblique Stereographic projection 
(fig. 76D, also p. 120) 
Littrow projection (p. 154)
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Figure 768. Lagrange projection of sphere in circle, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

LAGRANGE Projection Figure 76C. Lagrange projection of 0.7 of sphere in circle, with 
shorelines, 15° graticule. Central meridian 90° W.
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Figure 76D. Equatorial Stereographic projection, with shorelines, 
30° graticule. Central meridian 90° W. Special case of Lagrange with 
hemisphere in circle.

Figure 76E. Lagrange projection of sphere in circle with latitude 30° N. shown straight, with shorelines, 15° graticule. 
Central meridian 90° W.
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Miscellaneous Projections

EISENLOHR Projection

Classification
Conformal

Graticule
Meridians: Central meridian is straight.
Other meridians are curved and concave
toward the central meridian.
Parallels: Equator is straight. Other parallels
are curved and concave toward the nearest
pole.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
Increases rapidly with distance from the 
center. Constant scale around the boundary 
of a world map.

Distortion
Great distortion of area near the 180th 
meridians in comparison with the center (fig. 
77A).

Other features
Because the boundary of a world map is at a 
constant scale, the projection provides the 
minimum overall scale variation for a 
conformal world map. Like the August 
Epicycloidal projection (p. 186), the Eisenlohr 
has no "singular" points at which conformality 
fails.

Usage
Novelty whole-world maps

Figure 77A. Eisenlohr projection, with Tissot indicatrices, 30° graticule.

Origin
Presented by Friedrich Eisenlohr of Germany 
in 1870

Similar projections
August Epicycloidal (p. 186) has a boundary of
varying scale.
Van der Grinten IV (p. 204) is not conformal
and has circular arcs for meridians and
parallels.
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Figure 776. Eisenlohr projection, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

AUGUST EPICYCLOIDAL Projection

Classification
Conformal

Graticule
Meridians: Central meridian is straight. Other
meridians are curved and concave toward the
central meridian.
Parallels: Equator is straight. Other parallels
are curved and concave toward the nearest
pole.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
Increases rapidly with distance from the 
center

Distortion
Great distortion of area toward the 180th 
meridians in comparison with the center

Other features
Boundary of the world map is a two-cusped
epicycloid. Like the Eisenlohr projection
(p. 184), this projection has no "singular" point

at which conformality falls. Unlike the 
Eisenlohr, the map boundary has a varying 
scale.

Usage
Novelty whole-world maps

Origin
Presented by F. August and G. Bellermann in 
Germany in 1874

Aspects

Transverse oblique aspect used by Athelstan 
F. Spilhaus in 1942 to show a map of world 
oceans

Other names
August

Similar projections
Eisenlohr (p. 184) has a boundary of constant
scale.
Van der Grinten IV (p. 204) is not conformal
and has circular arcs for meridians and
parallels.
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Figure 78. August Epicycloidal projection, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

GUYOU Projection

Classifications
Conformal

Graticule
Meridians: Central meridian is straight. The
90th meridians are straight but bent at the
45th parallels N. and S. Other meridians are
complex curves.
Parallels: Equator is straight. Other parallels
are complex curves.
Poles: Points, in the midpoint of opposite
sides of a square bounding a hemisphere
Symmetry: About the central meridian or the
Equator

Scale
Varies considerably along each meridian and 
parallel

Distortion
Great distortion of area, especially near the

90th meridian at latitudes 45°N. or S., where 
conformality fails

Other features
Shows hemisphere conformally in a square 
and the world in a 2x1 rectangle. Hemispheres 
can be mosaicked to form a continuous map 
indefinitely.

Usage
Novelty map of a hemisphere or of the world

Origin
Presented by Emile Guyou of France in 1887

Aspects
A transverse aspect is the Peirce Quincuncial 
projection (p. 190). An oblique aspect is the 
Adams projection of a hemisphere in a square 
(p. 192).

Similar projections
Listed under Aspects above
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Figure 79. Guyou projection, with shorelines, 10° graticule. Central meridian 90° W.
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Miscellaneous Projections

PEIRCE QUINCUNCIAL Projection

Classification
Conformal

Graticule
Meridians: Every 90th meridian is straight
but bent at the Equator. Other meridians are
complex curves.
Parallels: Equator is a square, bent at the
straight meridians. Other parallels are
complex curves.
Poles: Points at the center of each
hemispherical map
Symmetry: About the central meridian or the
Equator

Scale
Varies considerably along each meridian and 
parallel

Distortion
Great distortion of area, especially near each 
90th meridian at the Equator, where 
conformality fails

Other features
Actually a "star" projection in the normal 
aspect. Shows a polar hemisphere conformally 
in a square and the world in a larger square. 
The first use of elliptic functions for a map 
projection.

Usage
Novelty whole-world maps

Origin
Presented by Charles Sanders Peirce (1839- 
1914) of the U.S. Coast and Geodetic Survey 
in 1879

Aspects
In normal form, the pole is at the center of a

square. In transverse form, placing the pole 
at the midpoint of one side of a square results 
in the Guyou projection (p. 188). Placing the 
pole at the corner of the square results in the 
Adams projection of a hemisphere in a 
square (p. 192).

Other names
Quincuncial; name applied by Peirce, because 
there are normally five parts within a square 
(the Northern Hemisphere is in the center, 
and four parts of the Southern Hemisphere 
are in the corners)

Similar projections
Listed under Aspects above
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Figure 80. Peirce Quincuncial projection, with shorelines, 10° graticule. Central meridian 105°W.
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Miscellaneous Projections

ADAMS Projection of a Hemisphere in a Square

Classification
Conformal

Graticule
Meridians: Central meridian is straight. The 
90th meridians are straight lines bent at the 
Equator. Other meridians are curved. 
Parallels: Equator is straight. Other parallels 
are curved.
Poles: Points, in opposite vertices of a square 
Symmetry: About the central meridian or the 
Equator

Scale
Varies along each meridian and each parallel

Distortion
Great distortion of area at the poles or the 
intersection of the 90th meridians with the 
Equator. At these four points, conformality 
fails.

Other features
Hemisphere is enclosed in a square. World 
can be enclosed in a 2x1 rectangle.

Usage
Novelty map of a hemisphere

Origin
Presented by Oscar Sherman Adams (1874- 
1962) of the U.S. Coast and Geodetic Survey 
in 1925

Aspects
One transverse aspect is the Peirce Quincuncial 
projection (p. 190). Another transverse aspect is 
a rotation of the original projection. An oblique 
aspect is the Guyou projection (p. 188).

Similar projections
Listed under Aspects above
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Figure 81. Adams projection of a hemisphere in a square, with shorelines, 10° graticule. Central meridian 90° W.
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Miscellaneous Projections

ADAMS Projection of the World in a Square I

Classification
Conformal

Graticule
Meridians: Central meridian is straight. The
180th meridians are straight lines bent at the
latitudes 70°31' N. and S. Other meridians are
complex curves.
Parallels: Equator is straight. Other parallels
are complex curves.
Poles: Points in midpoints of opposite sides
Symmetry: About the central meridian or the
Equator

Scale
Varies along each meridian and each parallel

Distortion
Great area distortion at the higher latitudes. 
Conformality fails at the poles and at two 
points on each of the 180th meridians.

Usage
Novel whole-world maps

Origin
Presented by Oscar Sherman Adams (1874- 
1962) of the U.S. Coast and Geodetic Survey 
in 1925.

Similar projections
A general formula for representing the whole 
sphere or a segment of the sphere conformally 
in a regular polygon of three or more sides 
can be used to create this map and other 
conformal maps.

Figure 82. Adams projection of the world in a square I, with shorelines, 10° graticule. Central meridian 90° W.
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Miscellaneous Projections

ADAMS Projection of the World in a Square II

Classification
Conformal

Graticule
Meridians: Central meridian is straight. The
180th meridians are straight lines bent at the
Equator. Other meridians are complex
curves.
Parallels: Equator is straight. Other parallels
are complex curves.
Poles: Points in opposite vertices
Symmetry: About the central meridian or the
Equator

Distortion
Great area distortion near the 180th meridians 
or at higher latitudes. Conformality fails at 
the poles and at the intersections of the 180th 
meridians with the Equator.

Usage
Novel whole-world maps

Origin
Presented by Oscar Sherman Adams (1874- 
1962) of the U.S. Coast and Geodetic Survey 
in 1925

Similar projections
See note under Adams projection of the world 
in a square I (p. 194).

Figure 83. Adams projection of the world in a square II, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

LEE Conformal Projection of the World in a Triangle

Classification
Conformal

Graticule
Meridians: Central meridian is straight. The 
180th meridians are straight lines bent at a 
southern latitude. Others are complex curves. 
Parallels: Complex curves. 
Poles: Points, one in a vertex and the other 
centered on the opposite side of the triangle 
Symmetry: About the central meridian

Scale
Varies along each meridian and parallel

Distortion
Great area distortion near the poles and 180th 
meridians. Conformality fails at each pole 
and at one point on each of the 180th 
meridians.

Usage
Novel whole-world maps

Origin
Laurence Patrick Lee (1913-85) of New 
Zealand in 1965

Similar projections
See note under Adams projection of the world 
in a square I (p. 194).
Bernard J.S. Cahill, beginning in 1912, arranged 
conformal or nonconformal three-sided octants 
of the world, bounded by the Equator and two 
meridians 90° apart, in a butterfly arrange­ 
ment, called the "Butterfly Map." He promoted 
these interrupted arrangements for weather 
maps.
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Figure 84. Lee conformal projection of the world in a triangle, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

Conformal Projection of the World in an Ellipse

Classification
Conformal

Graticule
Meridians: Central meridian is straight. Other
meridians are complex curves.
Parallels: Equator is straight. Other parallels
are complex curves.
Poles: Points
Symmetry: About the central meridian and
the Equator

Scale
Increases rapidly with distance from the 
center

Distortion
Great distortion of area near the poles and 
the 180th meridians. Conformality fails at the 
poles.

Other features
The shape of the bounding ellipse can be varied. 
Lee uses an axial ratio of about 1.97 to 1 for 
convenience in using tabular values.

Usage
Novel whole-world maps

Origin
Presented by Oscar Sherman Adams (1874- 
1962) of the U.S. Coast and Geodetic Survey 
in 1925. Corrected by Andr6 Gougenheim in 
1950 and Laurence Patrick Lee (1913-85) of 
New Zealand in 1965.

Limiting form
As the modular angle that controls the shape 
of the ellipse approaches 90°, the map 
increasingly resembles the Lagrange circular 
projection (p. 181).

Similar projections
See note under Adams projection of the world 
in a square I (p. 194).
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Figure 85. Conformal projection of the world in an ellipse, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

VAN DER GRINTEN I Projection Figure 86A Van der Grinten I projection, with Tissot indicatrices, 
30° graticule.

Classifications
Polyconic
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other 
meridians are circular, equally spaced along 
the Equator and concave toward the central 
meridian.

Parallels: Equator is straight. Other parallels
are circular arcs, concave toward the nearest
pole.
Poles: Points
Symmetry: Along the central meridian or the
Equator

Scale
True along the Equator. Increases rapidly 
with distance from the Equator.

Distortion
Great distortion of area near the poles (fig. 
868)

Other features
The world is enclosed in a circle.

Usage
World maps by the U.S. Department of 
Agriculture, the U.S. Geological Survey, the 
National Geographic Society, and others

Origin
Presented by Aiphons J. van der Grinten (1852- 
?) of Chicago in 1898. U.S. patent obtained in 
1904.

Other names
Van der Grinten (without I)

Similar projections
Lagrange (p. 181) is conformal.

Van der Grinten II (p. 202) has parallels curved 
to intersect meridians at right angles.

Mercator (p. 10) is conformal and has straight 
meridians and parallels.
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Figure 866. Van der Grinten I projection, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

VAN DER GRINTEN II Projection

Classifications
Polyconic
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other 
meridians are circular, equally spaced along 
the Equator and concave toward the central 
meridian.
Parallels: Equator is straight. Other parallels
are circular arcs, concave toward the nearest
pole.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True on the Equator. Increases rapidly with 
distance from the Equator.

Distortion
Great distortion of area near the poles

Other features
The world is enclosed in a circle. 
All meridians intersect parallels at right 
angles, but projection is not conformal. Spacing 
of parallels along the central meridian is the 
same as that for Van der Grinten I.

Usage
World maps, but rarely

Origin
Presented by Alphons J. van der Grinten (1852- 
?) of Chicago in 1904

Similar projections
Lagrange (p. 181) is conformal.
Van der Grinten I (p. 200) has parallels that do
not intersect meridians at right angles.

Figure 87 Van der Grinten II projection, with shorelines, 15° graticule, central meridian 90° W.
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Miscellaneous Projections

VAN DER GRINTEN III Projection

Classification
Modified pseudocylindrical 
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other
meridians are circular, equally spaced along
the Equator but unequally spaced along other
parallels and concave toward the central
meridian.
Parallels: Straight lines
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along the Equator. Increases rapidly with 
distance from the Equator.

Distortion
Great distortion of area near the poles

Other features
The world is enclosed in a circle.
Spacing of parallels along the central meridian
is the same as that for Van der Grinten I.

Usage
World maps, but rarely

Origin
Presented by Alphons J. van der Grinten (1852- 
?) of Chicago in 1904

Similar projections
Van der Grinten I (p. 200) has curved
parallels.
"The Times," by Moir, has nearly elliptical
meridians, but straight parallels are spaced
like those of the Gall projection (p. 33).

Figure 88. Van der Grinten III projection, with shorelines, 15° graticule, central meridian 90° W.
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Miscellaneous Projections

VAN DER GRINTEN IV Projection

Classification
Polyconic

Globular
Neither conformal nor equal area

Graticule
Meridians: Central meridian is straight. Other 
meridians are circular, equally spaced along 
the Equator and concave toward the central 
meridian.
Parallels: Equator is straight. Other parallels
are circular, equally spaced on the central
meridian and concave toward the nearest
pole.
Poles: Points
Symmetry: About the central meridian or the
Equator

Scale
True along the central meridian and the 
Equator

Distortion
Great distortion of area near the 180th 
meridians at higher latitudes

Other features
The 90th meridians form a complete circle.

Usage
World maps, but rarely

Origin
Presented by Alphons J. van der Grinten (1852- 
?) of Chicago in 1904

Other names
"Apple Shaped"

Similar projections
Eisenlohr (p. 184) is conformal.
August Epicycloidal (p. 186) is conformal.
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Figure 89. Van der Grinten IV projection, with shorelines, 15° graticule. Central meridian 90° W.
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Miscellaneous Projections

ARMADILLO Projection

Classifications
Orthoapsidal (term coined by originator) 
Neither conformal nor equal area

Graticule
Meridians: Central meridian (10° or 15° E.) is 
straight. Other meridians are elliptical arcs, 
concave toward the central meridian. 
Parallels: Elliptical arcs of the same 
eccentricity, concave toward the North Pole 
Poles: North Pole is semiellipse. South Pole 
cannot be shown. 
Symmetry: About the central meridian

Scale
Gradually decreases with distance from the 
center

Distortion
Distortion is moderate in central portions.

Other features
An oblique orthographic projection of the world 
plotted with equidistant meridians and parallels 
onto a portion of a torus ring (similar to a 
doughnut). Antarctic region cannot be shown, 
but the projection was claimed to have "more 
land in proportion to sea than any other world 
map." Often plotted with New Zealand, 
normally hidden from view, appended to 
Australia as a "pigtail."

Usage
Whole-world maps

Origin
Presented by Erwin J. Raisz (1893-1968) of 
Harvard University in 1943

Aspects
Oblique is the basic aspect.

Other names
Raisz

Similar projections
Other "orthoapsidal" projections proposed by 
Raisz in 1943. Raisz coined this term from 
"orthographic" and "apsidal."
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Figure 90. Armadillo projection, with shorelines, 15° graticule, central meridian 15° E.
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Miscellaneous Projections

GS50 Projection

Classification
Conformal

Graticule
Meridians: Complex curves at slightly varying
intervals
Parallels: Complex curves at slightly varying
intervals
Poles: Points beyond the useful range of the
map
Symmetry: None

Scale
True along an irregular line approximately 
encompassing the regions of the 50 States of 
the United States
Varies less than 2 percent from true scale 
throughout the 50 States and adjacent bodies, 
of water

Distortion
Shape and scale distortion very low for 50-State 
region (fig. 915). Greater distortion for regions 
away from 50 States.

Special features
Portrays irregular region of 50 States at about 
one-fourth the variation in scale of the best 
standard projections. Uses tenth-order 
complex-algebra polynomials to modify the 
Stereographic projection and is practical only 
with a computer. Conformal ity is precise in 
these cases even though finite polynomial 
series are used. The coefficients are useful 
only for this design of a 50-State map.

Origin
Developed by John P. Snyder (1926- ) of the 
U.S. Geological Survey in 1982

Similar projections
Oblated (or Prolated) Stereographic 
projections by O.M. Miller in 1953 (p. 148) and 
by L.P. Lee in 1974 are equivalent to third-order 
complex-algebra polynomial modifications of 
the oblique Stereographic, applied to continents 
or the Pacific Ocean. 
New Zealand Map Grid presented by W.I. 
Reilly in 1973 is a sixth-order complex-algebra 
polynomial modification of the Mercator, 
applied to New Zealand. 
Modified-Stereographic Conformal projection 
developed by Snyder in 1983 is a sixth-order 
complex-algebra modification of the oblique 
Stereographic, applied to Alaska.
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Figure 91/4. GS50 projection, with shorelines, 5° graticule.
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GS50 Projection

Miscellaneous Projections

Figure 91 B. GS50 projection, with lines of constant scale.
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SPACE OBLIQUE MERCATOR Projection

Miscellaneous Projections

Classifications
Modified cylindrical 
Basically conformal

Graticule
Meridians: Complex curves at slightly varying
intervals
Parallels: Complex curves at slightly varying
intervals
Poles: Points
Symmetry: Inverse symmetry about each
node (crossing of the Equator by satellite
groundtrack)

Scale
True along the groundtrack
Varies about 0.01 percent within the normal
sensing range of the satellite

Distortion
No distortion along the groundtrack
Distortion is essentially constant along lines
of constant distance parallel to the
groundtrack.
Conformality is correct within a few parts per
million for sensing range.

Special features
Provides continuous conformal mapping of 
swath sensed by an artificial satellite, such as 
Landsats 1 through 5, orbiting the Earth; no 
scale distortion along the groundtrack. The 
first projection to account for the Earth's 
rotation with respect to a satellite orbit.

Usage
Format for imagery from mapping satellites 
Landsats 4 and 5

Origin
Concept presented by Alden P. Colvocoresses 
(1918- ) of the U.S. Geological Survey in 
1973.
Mathematical development by John P. Snyder 
(1926- ) in 1977

Similar projections
Oblique Mercator projection (p. 14) would be 
suitable for a satellite orbiting a nonrotating 
spherical Earth and is the closest standard 
approximation for limited intervals involving 
a rotating Earth.

Figure 92A Two orbits of the Space Oblique Mercator projection, shown for Landsat 5, paths 15 (left) and 31 (right). Designed for 
a narrow band along the groundtrack, which remains true to scale. Note the change in longitude at a given latitude along the 
groundtrack with successive orbits. 30° graticule. Short, straight lines nearly perpendicular to the groundtrack are sample scan lines, 
extended 15° from groundtrack.
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Miscellaneous Projections

SPACE OBLIQUE MERCATOR Projection

Figure 926. One quadrant of the Space Oblique Mercator projection. An enlargement of part of figure 92/4, path 15, beginning at the North Pole, but using 10° graticule.
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Miscellaneous Projections

SATELLITE TRACKING Projections

Classifications
Cylindrical or conic
Neither conformal nor equal area

Graticule
Meridians: Equally spaced straight lines, 
parallel on cylindrical form and converging 
toward common point on conic form 
Parallels: Uequally spaced straight parallel 
lines on cylindrical form, closest near the 
Equator, perpendicular to meridians. 
Unequally spaced concentric circular arcs on 
conic form, centered on the pole of convergence 
of the meridians, which are therefore radii of 
the circular arcs. Spacing of parallels increases 
away from the central latitudes. 
Poles: Since satellite groundtracks do not 
pass over poles, they are not needed on the 
map. They can be shown in arbitrary locations, 
however.
Symmetry: About any meridian. On the 
cylindrical form, also about the Equator.

Scale
On the cylindrical form, true along the Equator
or along two parallels equidistant from the
Equator
On the conic form, true along one chosen
parallel

Distortion
Conformality can be made to occur along two 
parallels equidistant from the Equator on the 
cylindrical form and along any two parallels 
within tracking range on the conic form.

Special feature
Any groundtrack for a given orbiting satellite 
such as Landsat is shown straight, if the map 
is designed for that particular satellite. The

groundtrack may or may not have a sharp 
break at the northern or southern limit of 
tracking, depending on design.

Origin
Developed by John P. Snyder (1926- ) in 
1977

Similar projections
Cylindrical form resembles the Mercator (p. 
10), and the conic form resembles the Lambert 
Conformal Conic (p. 95), but spacing of 
parallels is different. The Mercator and 
Lambert Conformal Conic are conformal 
throughout, except at the poles, but the Satellite 
Tracking projections are only conformal at two 
latitudes.

Figure 93/4. Cylindrical Satellite Tracking projection (standard 
parallels 30° N. and S.). Landsats 1, 2, and 3 orbits. Diagonal lines 
are groundtracks for paths 15, 30, 45, and so on. 15° graticule.
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Miscellaneous Projections

SATELLITE TRACKING Projections

Figure 938. Conic Satellite Tracking projection (conformality at 
parallels 45° and 70° N.). Landsats 1, 2, and 3 orbits. Diagonal 
lines are groundtracks for paths 15, 30, 45, and so on, and are 
tangent to the inner circle. 10° graticule.
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APPENDIX:
FORMULAS FOR PROJECTIONS

This compilation is abridged in several aspects. Only for­ 
ward formulas for the sphere are given to compute rectangular 
coordinates from geographic latitude and longitude. For the 
inverse formulas and for forward or inverse formulas treating 
the Earth as an ellipsoid (if available), other references are 
given below. In addition, the reader is referred to relatively 
recent literature describing projections in more detail. Older 
sources are not listed in this volume, but they are frequently 
given in the literature that is referenced herein.

For a few major projections, the formulas for computing 
oblique, transverse, or equatorial aspects are given specifically. 
General transformation formulas are also given for use with any 
normal aspect, and most general map-plotting computer pro­ 
grams use these or trigonometric identities thereof rather than 
individual transformation formulas, unless ellipsoidal projections 
are to be plotted.

On the other hand, because of the importance of com­ 
puter programs, the formulas below are amplified with condi­ 
tional equations that should be programmed with the main for­ 
mulas to avoid errors resulting from dividing by zero and so on.

In these equations, the following symbols apply:

n cone constant on conic projections, or the 
ratio of the angle between meridians to the 
true angle

R radius of the sphere at the scale of the map

x rectangular coordinate; distance to the right 
of the vertical line (Y axis) passing through 
the origin (if negative, it is distance to the 
left)

y rectangular coordinate; distance above the 
horizontal line (X axis) passing through the 
origin (if negative, it is distance below)

z great-circle distance, as an arc of a circle 

In natural logarithm

9 a special parametric variable, or an angle in 
polar coordinates measured generally coun­ 
terclockwise from due south in these formu­ 
las

X longitude east of Greenwich (for longitude 
west of Greenwich, a minus sign is used)

X0 longitude east of Greenwich of the central 
meridian of the map or of the origin of the 
rectangular coordinates (for west longitude, 
a minus sign is used). If ^ is a pole, X0 is 
the longitude of the meridian extending 
down on the map from the North Pole or up 
from the South Pole. On an interrupted pro­ 
jection, X0 is the central meridian of each 
section.

p radius in polar coordinates

<j> north latitude (if latitude is south, a minus 
sign is used)

<j> 0 middle latitude, or latitude chosen as the 
origin of rectangular coordinates for a pro­ 
jection, in radians. Its choice does not affect 
the appearance of the projection.

0U02 standard parallels of latitude for projections 
having two standard parallels

$! (without <£2) single standard parallel on cylindrical or 
conic projections; latitude of central point 
on azimuthal projections. Its choice normally 
affects the appearance of the projection.

^p,\p latitude and longitude, respectively, of trans­ 
formed pole of oblique, transverse, or equa­ 
torial aspect

Angles are to be expressed in radians, but degrees can be 
equally suitable in some cases, and some numbers are shown as 
degrees. Radians equal degrees times 17/180°. The arctana func­ 
tion corresponds to the Fortran ATAN2 function and must 
therefore be adjusted for quadrant, depending on the signs of 
both numerator and denominator, if the function is not already 
programmed. The programmer should frequently apply normal 
techniques for computing efficiency to minimize computation of 
trigonometric functions; that is, a given function should be com­ 
puted only once, and other functions should be derived by using 
common identities not listed here, since listing these techniques 
would often make the equations more difficult to follow.

The Newton-Raphson iteration suggested in several cases 
involves use of the equation

Av= -f(v)l[df(v)ldv}
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After a suitable initial value of v is used, v is repeatedly adjusted 
with Av until Av becomes less than some preset convergence 
value. For example, equation 31 is transposed to develop a func­ 
tion of 9,/(9), which should approach zero:

/(0) = 0 + sin 0 - (1 + ir/2) sin <£ 

Differentiating, but treating ^ as a constant, 

df(Q)/dQ = 1 + cos 0 

Then,

A0 = -[0 + sin 0 - (1 + ir/2) sin <£]/(! + cos 9) 

If an initial value of 9 equal to <£ is used, convergence is rapid.
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CYLINDRICAL PROJECTIONS

Because of the common use of several transverse or oblique 
aspects of the cylindrical projections, formulas are given sepa­ 
rately for them under this heading. They can also be found from 
the formulas for the normal aspect by using equations 130 and 
131.

Mcreator

x = R(\-\0) (1) 

If <£ = 90°, y = °°; if <f> = -90°, y = -co. If <f> is not ±90°,

y = R In tan (ir/4 + (2)

The X axis lies along the Equator, x increasing east; the Y axis 
lies along the central meridian, y increasing north. For ellipsoi­ 
dal and inverse formulas and more information, see U.S. Geo­ 
logical Survey (USGS) Professional Paper 1395 (Snyder, 1987, p. 
38-47).

Transverse Mcreator

Let

B = cos <£ sin (X   X0) (3)

If B = l,x = <x>; if B =  l,x=   <x>;y is found from equation 
5. If B is not ±1,

x = ViR In [(1 + £)/(! - B)] 

y = R arctan2 [tan <£/cos (X   \0)]

(4)

(5)

The X axis lies along the Equator, x increasing east; the Y axis 
lies along the central meridian, y increasing north. These axes 
are rotated 90° counterclockwise from those corresponding to 
the equations for the Oblique Mercator below. For ellipsoidal 
and inverse formulas and more information, see USGS Profes­ 
sional Paper 1395 (Snyder, 1987, p. 48-64).

Oblique Mercator

x = R arctan2 

Let
B

cos <(>f sin <f>   sin $p cos <f> cos (X   X^ 

cos <£ sin (X - X )

A = sin $p sin <f> + cos $p cos <f> cos (\   \f) 

If A = 1, y = oo; if A = - 1, y = -co. If A is not ± 1, 

y= Y2R In [(1 + A)/(l -A)]

(6)

(7)

(8)

Note that the X axis lies along the central line, x increasing east. 
The y axis crosses the X axis at the actual Equator and a longi­ 
tude 90° less than \p, y increasing north. For ellipsoidal and 
inverse formulas and more information, see USGS Professional 
Paper 1395 (Snyder, 1987, p. 66-75).

Lambert Cylindrical 
Equal-Area

x = same as in equation 1 

y = R sin <£ (9)

For axes, see Mercator. For ellipsoidal and inverse formulas and 
more information for all aspects, see USGS Professional Paper 
1395 (Snyder, 1987, p. 76-85).

Transverse Lambert 
Cylindrical Equal-Area

x = R cos 4> sin (\   X0) 

y = same as in equation 5 

For axes, see Transverse Mercator.

(10)
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Oblique Lambert 
Cylindrical Equal-Area

Cassini Cylindrical Projections

x = same as in equation 6

Let

A = same as in equation 7

y = RA 

For axes, see Oblique Mercator.

Behrmann Cylindrical 
Equal-Area

x = R (\ - \0) cos 30°

y = R sin </>/cos 30° 

For axes, see Mercator.

Plate Carree

x = same as in equation 1

y = R<t> 

For axes, see Mercator.

Equirectangular

x = R (\ - \0) cos 0 X 

y = same as in equation 14

For axes, see Mercator.

(11)

(12)

(13)

(14)

x = R arcsin [cos <f> sin (X   X0)] 

y = same as in equation 5

(16)

For axes, see Transverse Mercator. For ellipsoidal and inverse 
formulas and more information, see USGS Professional Paper 
1395 (Snyder, 1987, p. 92-95).

Oblique Equidistant 
Cylindrical

x = same as in equation 6 

A = same as in equation 7

y = R arcsin A 

For axes, see Oblique Mercator.

(17)

Central Cylindrical

x = same as in equation 1 

If </> = 90°, y = oo; if 0 = -90°, y - -». If </> is not ±90°,

y = R tan (18)

For axes, see Mercator.

Transverse Central Cylindrical

(15) Calculate B from equation 3. If B = l,x = »; if B = 
-oo. If B is not ±1,

x = RB/(l - B 2 )* 

y = same as in equation 5 

For axes, see Transverse Mercator.

-1,* =

(19)
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PSEUDOCYLINDRICAL PROJECTIONS

Cylindrical Projections Gall (Stereographic)

x = R(\ - X0)/2* 

y = R(\ + 2*/2) tan Y2 <f> 

For axes, see Mercator.

Miller Cylindrical

x = same as in equation 1 

y = R[\n tan (ir/4 + 0.4£)]/0.8

(20)

(21)

(22)

For axes, see Mercator. For more information see the article by 
Miller (1942) and USGS Professional Paper 1395 (Snyder, 1987, 
p. 86-89).

PseudOCylindrlcal Projections For axes, see Mercator. For transverse and oblique aspects, use
the general formulas given in 130 and 131. Snyder (1977) pro­ 
vides original references for most of the formulas and descrip­ 
tions of several other pseudocylindrical projections.

Sinusoidal

x = R (X - X0) cos <f> 

y = R<f> (same as in equation 14)

(23)

McBryde-Thomas Flat-Polar 
Sinusoidal

9/2 + sin 9 = (1 + ir/4) sin <t> (24)

Find 9 for the given <f> by using a Newton-Raphson iteration of 
equation 24, in which <f> is the initial estimate of 9.

x = R[6/(4 + IT)]* (0.5 + cos 9)(X - X0)/1.5 (25) 

y = R[6/(4 + ir)]*9 (26)

Eckert V

Winkel I

Eckert VI

x =R(1 + cos *)(X - X0)/(2 + TT)* 

y = 2R<f>/(2 + IT)*

x = R(\ - X0)(cos ^ + cos <f>)/2 

y = Rfi

9 + sin 9 = (1 + iT/2) sin <f>

(27)

(28)

(29)

(30)

(31)

Find 9 for a given <£ by using a Newton-Raphson iteration of 
equation 31 in which <f> is the initial estimate of 9.

x = R(l + cos 9)(X - \0)/(2 + TT)* 

y = 2RQ/(2 + IT)*

(32)

(33)

McBryde S3

For latitudes between 55°51' N. and S., use equations 23 and 14. 
For other latitudes, use equations 24, 25, and the following:

y = R{[6/(4 + ir)]*4 9 - 0.069065 sign

Mollweide

29 + sin 29 = IT sin

(34)

(35)

Find 9 for the given <f> by using a Newton-Raphson iteration of 
equation 35 in which <f> is the initial estimate of 9.

x = 2(2*) R(\ - X0)(cos 9)/ir 

y = 2*R sin 9

(36)

(37)
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Eckert III

X = 2{1 + [1 - (20/TT)2]* } R(\ - \0)/(4TT + TT2)* (38)

y = 4fl0/(4ir + ir2)* (39)

Eckert IV

9 + sin 9 cos 9 + 2 sin 9 = (4 + ir)(sin 0)/2 (40)

Find 9 for the given 0 by using a Newton-Raphson iteration of 
equation 40 in which 0/2 is the initial estimate of 9.

x = 2R(\ - \0)(1 + cos 9)/(4ir + ir2)* (41) 

y = 2ir*fl sin 9/(4 + IT)* (42)

Putnins P,

29 + sin 29 = {[4ir + 3(3*)]/6} sin 0 (43)

Find 9 for the given 0 by using a Newton-Raphson iteration of 
equation 43 in which 0/2 is the initial estimate of 9.

jc= 0.863 IOR (X - \0)cos9 

y = 1.5654&? sin 9

(44)

(45)

Hatano Asymmetrical 
Equal-Area

For all latitudes,

x = O.S5R(\ - \0) cos 9 (46)

The parametric angle 9 and y are calculated differently for dif­ 
ferent latitudes. For latitudes north of the Equator,

29 + sin 29 = 2.67595 sin 0 

y = 1.75859fl sin 9

(47)

(48)

For latitudes south of the Equator,

29 + sin 29 = 2.43763 sin 0 

y = 1.93052# sin 9

(49)

(50)

Find 9 for the given 0 in equations 47 and 49 by using a 
Newton-Raphson iteration in which 0/2 is the initial estimate of 
9.

Goode Homolosine

For latitudes between 40°44' N. and S., use equations 23 and 14. 
For other latitudes, use equations 35, 36, and the following:

y = fl[2* sin 9 - 0.05280 sign 0] (51)

Boggs Eumorphic

If 0 = ±90°, then 9 = 0, x = 0, and y is found from equation 
53. Otherwise, use equation 35 to find 9 from 0. Then,

x = 2.00216R (X - \0)/(sec 0 + 1.11072 sec 9) (52) 

y = 0.4993 U?(0 + 2*sin 9) (53)

Craster Parabolic

x = 3*R(\ - \0)[2 cos (20/3) - l]/ir* (54) 

y = (3ir)* fl sin (0/3) (55)

McBryde-Thomas Flat-Polar 
Parabolic

9 = arcsin [(7/3)(sin 0)/6*] (56)

Pseudocylindrical Projections
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PSEUDOCYLINDRICAL PROJECTIONS

x = 6*7? (X - X0)[2 cos (29/3) - l]/7* (57) Putnins P5

y = 9R(sm (9/3)]/7* (58) * = 1.013467? (X - X0)[2 - (1 + 12* V)*] (64)

y = 1.01346/ty (65)

Quartic Authalic

x = *(X - X0)(cos *)/cos (*/2) (59) PenoVer Semi-Elliptical 
v °'v (approximation)

= 2R sin (tf>/2) (60) Let L = I X - X0 I .

x = R(\ - X0) cos [(0.95 - L/12 + L3/600)(0.9^> 
ty5)]

y = R<f> (same as in equation 14)

McBryde-Thomas Flat-Polar T u' u^ ^ (66) 
Quartic

sin (9/2) + sin 9 = (1 + 2*/2) sin tf> (61)

Find 9 for the given $ by using a Newton-Raphson iteration of Robinson 
equation 61 in which <j> is the initial estimate of 9.

A table is used instead of analytical formulas. The coordinates 
  ., can be used in the following equations for a world map of cor- 

X0)[l + 2cos9/cos(9/2)]/[3(2^) + 6f (62) rect total area (not equal area):

y = 2(3*) R sin (9/2)/(2 + 2*)* (63) x = OM81RX(\ - X0) (67)
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where X and Y are
inson, 1974):

lat <A,

y = 1.3523#Y

interpolated from the

Y
in degrees

90
85
80
75 
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0

0.5322
.5722
.6213
.6732 
.7186
.7597
.7986 
.8350
.8679
.8962
.9216
.9427
.9600 
.9730
.9822
.9900
.9954
.9986

1.0000

(68) Eckert 1

following table (Rob- x = 2[2/(3ir)]H R(\ - X0) (1 - | <f> |/ir)

F y = 2[2/(3ir)]*K*

1.0000
9761 Eckert ||
.9394

Has x = 2R (X - Xo)(4 - 3 sin | <j> |)*/(frr)*
.7903

16769 y = (2ir/3)*/?[2 - (4 - 3 sin | <j> |)H ] sign <f>
.6116
.5571
4958 Loximuthal
.4340
3720 
3100 Jc = .R(X - X0)(0 - 00/111 ttan (-n"/4 + ^/2)/tan (ir/4
.2480 + <^i/2)]
.1860
.1240 _ jff, , v
.0620 y - *(* - *i)
.0000

Pseudocylindrical Projections

(71)

(72)

(73)

(74)

(75)

(76)

Collignon

x = 27? (X - X0)(l - sin

y =

(69)

(70)

where <j> : is the central latitude from which, at the central merid­ 
ian, straight lines are loxodromes of true length and azimuth 
from the center. However, if <j> = 01} equation 75 is replaced by

X = R(\   X0) COS (77)
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CONIC PROJECTIONS

For oblique aspects, use general formulas given in equations 130 Bipolar Oblique Conic 
and 131. Conformal

Equidistant Conic

n = (cos +! - cos (78)

The formulas are too lengthy to be included here. For formulas 
and other information, see USGS Professional Paper 1395 
(Snyder, 1987, p. 116-123).

p = R[(<f>2 cos <t>! -< cos - cos fa) - fa (79) Albers Equal-Area Conic

e = /i(X-X0) 

jc = p sin 9 

= Po - p cos 9

(80)

(81)

(82)

n = (sin

C =

sin

where p 0 is calculated from equation 79 by using ^0 in place of 
. The y axis lies along the central meridian X0 , y increasing

£ x 4- 2n sin ^x 

p = R(C- 2n sin </>)*/« 

Use also equations 80 through 82, p0 being calculated from

(86)

(87)

(88)

north; the X axis crosses the y axis perpendicularly at (fa , X0), x equation 88 by using fa in place of *. For axes, see Equidistant

increasing east. For ellipsoidal and inverse formulas and more 
information, see USGS Professional Paper 1395 (Snyder, 1987, 
p. 111-115).

Conic. For ellipsoidal and inverse formulas and more informa­ 
tion, see USGS Professional Paper 1395 (Snyder, 1987, p. 
98-103).

Lambert Conformal Conic

n = In (cos (ir/4

Lambert Equal-Area Conic

n = (1 + sin

tan (iT/4 -

F = cos fa tan * (ir/4 + fa/2)/n

(83)

(84)

(89)

(90)

If </> = ±90° and n has the same sign, p = 0. If </> = ±90° and n 
has the opposite sign, p = «>. If ^ is not ±90°,

Use also equations 80 through 82, p0 being calculated from 
equation 90 by using <f> 0 in place of ^>. For axes, see Equidistant 
Conic.

p = RF/tana(Tr/4 + (85)
Perspective Conic

Use also equations 80 through 82, p0 being calculated from 
equation 85 by using ^0 in place of ^. If only one standard par­ 
allel is desired, or ^i = ^2 » equation 83 is indeterminate, but n 
= sin <f> r For axes, see Equidistant Conic. For ellipsoidal and 
inverse formulas and more information, see USGS Professional 
Paper 1395 (Snyder, 1987, p. 104-110).

(91)

If <f> is less than or equal to (tf> 0   90°) and tf> 0 is positive or if <f> 
is greater than or equal to (</> 0 + 90°) and <f> 0 is negative, the 
point should be rejected. Otherwise,

n = sin (92)
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PSEUDOCONIC PROJECTIONS

p = R cos > 0 - tan (0 - 00 )] (93) If <t> is 0,

Use also equations 80 through 82, p0 being calculated from 
equation 93 by using </> 0 in place of 0 and thus cancelling the 
last term. For axes, see Equidistant Conic.

Polyconic (American)

If <f> is 0,

x = R(\   \0 ) (same as equation 1)

If <f> is not 0,

x = 2RA

y = -Rto 

E = 2 arctan (A sin

(100)

(101)

(102)

If $ is not zero,

y = -R(f> 0 (94)

E = (X - X0) sin 0 (95)

x = R cot 0 sin £ (96)

y = #[tf> - tf> 0 + cot tf> (1 - cos £)] (97)

For axes, see Equidistant Conic. For ellipsoidal and inverse for­ 
mulas and more information, see USGS Professional Paper 1395 
(Snyder, 1987, p. 124-133).

Rectangular Polyconic

If 0j is 0,

A = (X - X0)/2 (98) 

If </>! is not 0,

A = tan [(X - X0)(sin ^)/2]/sm ^ (99)

Use also equations 96 and 97, if </> is not 0. For axes, see Equi­ 
distant Conic.

Modified Polyconic for 
International Map of the 
World Series

The formulas are too lengthy to be included here. For formulas 
and other information, see USGS Professional Paper 1395 
(Snyder, 1987, p. 131, 134-137).

Bonne

A = cot 0 X + 0 X 

B = (X - X0)(cos 

x = RA sin B 

y = R (cot 0! - A cos B )

(103)

(104)

(105)

(106)

The y axis lies along central meridian X0, y increasing north; the 
X axis crosses the Y axis perpendicularly at (<f> lt X0), x increasing 
east. For ellipsoidal and inverse formulas and more information, 
see USGS Professional Paper 1395 (Snyder, 1987, p. 138-140).

Werner

Use equations 103 through 106, where ^ = ir/2 or 90°, but, if $ 
is also 90°, these equations should not be used, and x = 0 and y 
= 0.

Conic Projections

Pseudoconic Projections
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AZIMUTHAL PROJECTIONS (PERSPECTIVE)

Gnomonic

North polar aspect:

If 0 is equal to or less than zero, reject the point. Otherwise,

p = R cot <t> (107) 

x = p sin (X - \0) (108)

y = -p cos (X - \0) (109)

The origin of the axes is at the North Pole. Meridian X0 follows 
the negative Y axis.

Equatorial aspect:

If cos <j> cos (X - X0) is equal to or less than zero, reject the 
point. Otherwise,

x = R tan (X - X0) 

y = R tan 0/cos (X - X0)

(110)

(111)

The y axis lies along the central meridian X0, y increasing north; 
the X axis lies along the Equator, x increasing east.

Oblique aspect (also polar and equatorial aspects):

cos z = sin <j> l sin <j> + cos ^ cos <j> cos (X - X0) (112)

If cos z is equal to or less than zero, reject the point. Otherwise,

tf=secz (113)

x = RK cos <t> sin (X - X0) (114)

y = RK [cos ^ sin <j>   sin <j>i cos <j> cos(X   X0)] (115)

The y axis lies along the central meridian X0, y increasing north; 
the X axis is perpendicular to the y axis at (^ ls X0), x increasing 
east. For inverse formulas and other information, see USGS 
Professional Paper 1395 (Snyder, 1987, p. 164-168).

Stereographic

North polar aspect:

If tf> is -90°, reject the point. Otherwise, use equations 108 and 
109, but

p = 2Rk0 tan (ir/4 - tf>/2) (116) 

where k0 is the scale factor at the center of the projection. 

Equatorial aspect:

cos z = cos tf> cos (X - X0) (H7) 

If cos z is - 1, reject the point. Otherwise,

K= 2Jt0/(l + cosz) (118) 

x = same as equation 1 14

y = RKsin<l> (119) 

Oblique aspect (also polar and equatorial aspects):

Use equations 112, 118, 114, and 115 in order, but, if cos z is 
- 1, reject the point. Axes for Gnomonic apply here for all 
aspects. For inverse and ellipsoidal formulas and other informa­ 
tion, see USGS Professional Paper 1395 (Snyder, 1987, p. 
154-163).

Orthographic

North polar aspect:

If <j> is less than zero, reject the point. Otherwise, use equations 
108 and 109, but

Equatorial aspect:
p = R cos (120)

If cos <j> cos (X   X0) is less than zero, reject the point. Other­ 
wise,
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x = same as in equation 114, where K = 1 Azimuthal Projections
Perspective

y = R sin 0 (same as in equation 9) 

Oblique aspect (also polar and equatorial aspects):

If cos z, determined from equation 112, is less than zero, reject 
the point. Otherwise,

x = same as in equation 114, where K = 1

y   same as in equation 115, where K = 1

Axes for Gnomonic apply here for all aspects. For inverse for­ 
mulas and other information, see USGS Professional Paper 1395 
(Snyder, 1987, p. 145-153). A hemisphere for any of the aspects 
of the Orthographic is bounded by a circle of radius R.

General Vertical Perspective

North polar aspect:

If sin 0 is less than 1/P, reject the point. Otherwise, use equa­ 
tions 108 and 109, but

p = R(P - 1) cos 0 I(P - sin 0) (121)

where P is the distance of the point of perspective from the cen­ 
ter of the Earth divided by the radius R. If the point is beneath 
the surface and the center of the Earth, apply a minus sign to P.

Equatorial aspect:

Use equations 117, 114, and 119, but, if cos z is less than 1/P, 
reject the point. Otherwise,

K= (P- 1)/(P- cosz) (122) 

Oblique aspect (also polar and equatorial aspects):

Use equations 112, 122, 114, and 115 in order, but, if cos z is 
less than 1/P, reject the point. Axes for Gnomonic apply here 
for all aspects. For inverse and ellipsoidal formulas for either 
Vertical or Tilted Perspective, see USGS Professional Paper 
1395 (Snyder, 1987, p. 169-181).
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AZIMUTHAL PROJECTIONS (NONPERSPECTIVE)

Azimuthal Equidistant

North polar aspect:

Use equations 108 and 109, but

P = R(TT/2 - <

Equatorial aspect:

Use equations 117, 114, and 119, but 

K = z/sin z

(123)

(124)

If cos z = 1, equation 124 is indeterminate, but K = 1. If cos z 
=   1, for the point opposite the center, the point is plotted as a 
bounding circle of radius TrR.

Oblique aspect (also polar and equatorial aspects):

Use equations 112, 124 (including notes), 114, and 115 in order. 
Axes for Gnomonic apply here for all aspects. For inverse and 
ellipsoidal formulas and other information, see USGS Profes­ 
sional Paper 1395 (Snyder, 1987, p. 191-202).

Lambert Azimuthal Equal-Area

North polar aspect:
Use equations 108 and 109, but

Equatorial aspect:

Use equations 117, 114, and 119, but

K = [21(1 + cos z)f (126)

p = 2R sin (ir/4 - <£/2 (125)

If cos z =   1, for the point opposite the center, the point is 
plotted as a bounding circle of radius 2R.

Oblique aspect (also polar and equatorial aspects):

Use equations 112, 126 (including notes), 114, and 115 in order. 
Axes for Gnomonic apply here for all aspects. For inverse and 
ellipsoidal formulas and other information, see USGS Profes­ 
sional Paper 1395 (Snyder, 1987, p. 182-190).

Airy

North polar aspect:

Use equations 108 and 109, but

p = 2R [cot (z/2) In sec (z/2) + tan (z/2) cot2 (0/2) In sec (0/2)]
(127)

where z = [(u/2) - <£] and 0 = the range from the center of the 
region in which distortion is to be minimized, on all aspects. For 
the north polar aspect, 0 = (u/2 - <t> b), where <$> b is the bound­ 
ing latitude. If z = 0, equation 127 is indeterminate, but then p 
= 0.
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Equatorial aspect:

Use equations 117, 114, and 119, but

K= -R{[\n((l + cosz)/2)]/(l - cos z)
+ 2[ln cos(/3/2)]/[tan2(/3/2)(l + cosz)]} (128)

If z = 0, equation 128 is indeterminate, but, then

K = R{0.5 - [In cos (/3/2)]/tan2 (0/2)}

Oblique aspect (also polar and equatorial aspects):

(129)

Use equations 112, 128 or 129, 114, and 115 in order. Axes for 
Gnomonic apply here for all aspects.

General transverse and 
oblique transformations

These formulas can be used with any of the above normal equa­ 
tions for cylindrical, pseudocylindrical, conic, or other projec­ 
tions to obtain transverse or oblique aspects. They can also be 
used with polar aspects of azimuthal projections, but the general 
formulas given above for oblique azimuthal projections are more 
easily used.

To use these formulas, change 0 in the normal equations (for 
example, equations 54 and 55) to <f>' and (X - X0) to X', and 
then compute 0' and X' from the following:

<£' = arcsin [sin <f> 0 ' sin 0 + cos 00 ' cos 0 sin (X - X0)] (130)

X' = X0 ' + arctan2 {cos 0 cos (X   X0)/[cos 00 ' sin 0
- sin 00 ' cos 0 sin (X - X0)]} (131)

But, if 0 = 00 ' and (X - X0) = 90° or if 0 = -£ ' and (X - 
X0) =  90°, then equation 131 is indeterminate, and X' can 
have any value. Under these conditions, 0' = 90° and -90°, 
respectively, and the "point" is a line if the corresponding pole 
of the basic projections is a line.

In the above formulas, (00 ', X0 ') are the north latitude and lon­ 
gitude east of center, respectively, on the normal projection at 
which the North Pole (<£ = 90°) is to be located (00 ' = 0 for the 
transverse aspect, and 90° for the normal aspect).

(0', X') are the latitude and longitude east of center, respec­ 
tively, on the normal projection at which point ( 0, X) is plotted.

X0 is the meridian of the globe 90° less than the meridian X^, 
connecting the actual North Pole to the north pole of the base 
projection. It is the central meridian of the transverse aspect.

For the transverse aspect, this transformation will cause the X 
axis, rather than the Y axis, to lie along the central meridian. To 
reverse the axes, replace y with x and x with  y after all other 
calculations have been completed.

Azimuthal Projections 
Nonperspective
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MODIFIED AZIMUTHAL PROJECTIONS

Two-Point Azimuthal

In the following formulas, the axes of the usual azimuthal pro­ 
jections have been rotated, so that the X axis lies along the two 
central points A and B (B is more easterly, x increases from A to 
B) from which the directions to other points are made correct. 
Points A and B are also equidistant from the Y axis. Azimuth 
A?! and distance d to help determine the center point are

Azl = arctana
cos sn   \A)

cos sin   sn cos cos ^uj
(132)

- \A)] 
(133)

d = (Vi) arccos [sin <f>A sin 4>s + cos $A cos <j>s cos

The latitude and longitude (^ l5 \0) of the point midway between 
A and B are

! = arcsin (sin <f>A cos d + cos <f>A sin d cosAzJ (134)

>s $A cos d
(135)

+ arctan2 [sin d si 
  sin $A sin d cos Az^

The azimuth Az* used to rotate the axes is as follows:

= arctana
[ sin £j

 cos 4>A sin (\A   X0)
(136)cos 4>A (\A   X0)  cos ^i sin q

The above Azit Az& d, <f> lt and X0 apply to the entire map. For 
other points (<f>, X), find the nonrotated (x, y) from equations 
112 through 115 for the Gnomonic projection, and call those 
coordinates (x, y,). Rotate and adjust as follows:

x = cos d (xt sin Az^ + yt cos Az 

y   yt sin Az%   xt cos Az^

(137)

(138)

Two-Point Equidistant

In the following formulas, the axes of the usual azimuthal pro­ 
jections have been rotated so that the X axis lies along the two

central points A and B (B is more easterly, x increases from A to 
B) from which the distances to other points are correct. Points A 
and B are also equidistant from the Y axis.

(139)

y = ± R [4*0 V - (z02 - z/ + z/) 2] */(2z0) (140)

where

cos z0 = sin <f>A sin <f>B + cos ^A cos $B cos (X^ - X^) (141) 

cos ZA = sin $A sin ^ + cos <f>A cos ^ cos (X   X^) (142)

cos ZB = sin sn + cos ^ cos ^ cos (X   X^) (143)

and y normally takes the sign of [cos $A cos $B sin $ sin (X^ - 
X^) - cos <f>A sin $B cos (^ sin (X - \A) + sin $A cos (^^ cos ^ 
sin (X   X^)], but, if (z0 + 2^ + z^) = 2ir, the expression for 
the sign of y gives zero, and y actually has two values at each 
point (^, X), one using the plus and the other using the minus. 
A world map is bounded by an ellipse having a semimajor axis 
TT/? [1  20/(2ir)] and a semiminor axis IT/? (1   Zo/17)2? tne * ° 
axes coinciding with the X and Y axes, respectively.

Miller Oblated Stereographic

First (x,y) are calculated for the oblique Stereographic projec­ 
tion by using equations 112, 118, 114, and 115 in order, but the 
coordinates are called (x^y/). These coordinates are then con­ 
verted to (x,y) as follows:

y = Ky,(l + Q

(144)

(145)

For the map of Europe and Africa, Miller made K = 0.9245 and 
Q = 0.2522, and (0 l5 Xo) in equations 112, 114, and 115 were 
made lat 18° N., long 20° (later 18°) E. If this projection is to be 
applied to other applications, K and Q are selected as follows, so 
that the scales at a selected arc distance da from the center 
along the X axis (left and right) equal the scales at arc distance 
db from the center along the Y axis (up and down):
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Ta = (1 - cos d,)/(l + cos da ) 

Tb = (1 - cos db)l(\ + cos db) 

Q=(Tb - T.)I(T. + T/ + Tb + 

K = !/[(! + r,)(l + fir,)]*

(146)

(147)

(148)

(149)

The nonconformal fill-in projections used as part of this projec­ 
tion in the Eastern Hemisphere are too complicated to describe 
here.

Wiechel (north polar aspect 
only)

x = R [sin (X - \0) cos <f> - cos (X - X0)(l - sin <£)] (150) 

y - -R [cos (X - X0) cos <£ + sin (X - X0)(l + sin <£)] (151)

The origin of the axes occurs at the North Pole. The central 
meridian X0 starts from the pole along the negative Y axis but 
soon deviates because it is curved.

Craig Retroazimuthal

If(X-X0) = 0,

x= 0 

y = R (sin (ft   cos (ft tan

If(X-X0)* 0,

x = R (X - X0)

y = R (X - X0)[sin (f> cos (X - X0)
  cos (f> tan ^jj/sin (X - X0)

(152)

(153)

(154)

The axes pass through (<£ 15 X0), the Y axis following the central 
meridian X0 and y increasing north. The direction from every 
point on the map to (<£ 1; X0) is shown correctly with respect to 
the local meridian.

Hammer Retroazimuthal

Use equations 1 12 and 124 (including notes) to calculate K, and 
then calculate (x,y) from the following alterations to equations 
114 and 115:

x = RKcos 4>i sin (X - X0) (155) 

y = -RK [sin (f>i cos (f> - cos <£ t sin (f> cos (X - X0)] (156)

Modified Azimuthal Projections

The axes and role of (^ X0) are the same as those for the 
Craig Retroazimuthal.

Littrow

x = R sin (X   X0)/cos (f> 

y = R tan <f> cos (X - X0)

(157)

(158)

The X axis lies along the Equator, x increasing east; the Y axis 
lies along the central meridian, y increasing north.

Berghaus Star

If 0 > 0 (north latitudes),

x = R (TT/2 - <£) sin (X - X0) 

y = -R (ir/2 - <£) cos (X - X0) 

If (f> < 0 (south latitudes),

(159)

(160)

y = R {- IT D sin (X - Xfl )+ C [(ir/2
- (f>f (5-4 cos (X - Xfl))- iT2 sin 2 (X
- Uf}/[5 - 4 cos (X - XJ]

where

x = -[IT R sin (X - XJ + y D]/C 

C = cos (X - X0) - 2 cos (Xfl - X0)

(161)

(162)

(163)
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MODIFIED AZIMUTHAL PROJECTIONS

D = sin (X - X0) - 2 sin (\a - X0) (164) 
but if C = 0,

x = ± R (7T/2-0) (165) 

taking the sign of sin (\a - X0).

In the above, X0 is the central meridian for the Northern Hemi­ 
sphere and extends along the negative y axis from the North 
Pole, which is at the origin. The central meridian of each south­ 
ern point is \a , where n is the number (1 to 5) of the point. 
Normally, \! = X0 .

Aitoff

If D = 0,

D = arccos { cos <f> cos [(X, - X0)/2]} (166)

x= 0

y=Q 

Otherwise,

C = sin 0/sin D (167) 

x = ± 2RD (1 -C2 )* (168) 

taking the sign of (X - X0).

y = RDC (169)

The X axis lies along the Equator, x increasing east; the y axis 
lies along the central meridian, y increasing north.

Hammer (Elliptical)

W= 0.5

D = 2/{l + cos <t> cos [W(\ - X0)]}

x = R (D*/W) cos 0 sin [W(\ - X0)]

y = RD*sin<f> 

Axes are same as those for the Aitoff.

Briesemeister

The formulas are the same as those for the Hammer, but x is 
multiplied and y is divided by (1.75/2)* = 0.93541, and the pro­ 
jection is recentered at lat 45° N., long 10° E. The equations can 
be combined as follows:

(170)

(171)

(172)

where

x = R (3.5 D)H cos 0' sin (X'/2) 

y = R (2D)* sin 071.75*

D = 2/[ 1 + cos 0' cos (X72)]

(173)

(174)

(175)

0' = arcsin {[sin 0 - cos ^ cos (X - 10°)]/2*} (176) 

X' = arccos {[sin 0 + cos 0 cos (X - 10°)]/(2* cos tf>')} (177)

The y axis coincides with the central meridian 10° E., y increas­ 
ing north, and the X axis crosses it perpendicularly at lat 45° N.
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The world map is bounded by an ellipse having a semimajor axis 
of 7*/? and a semiminor axis of 4R/1*.

Winkel Tripel

Calculate x and y for the Aitoff projection by using equations 
166 through 169 and calling the coordinates jq and_y1? respec­ 
tively. Then calculate x and y for the Equirectangular projection 
by using equations 14 and 15, where <ft l = 50.467° for Winkel's 
example or 40° for Bartholomew's usage, and call the coordi­ 
nates jca andya, respectively. Finally, average them:

(I 78)

y =

The axes are the same as those for the Aitoff projection.

Eckert-Greifendorff

Same formulas and axes as Hammer (equations 170-172), but W 
= 0.25.

Wagner VII

S = 0.90631 sin <f> (180)

C0 = (1 - S2 )* (181)

= (2/{l + C0 cos [(\ - \0)/3]})* (182)

x = 2.66723 RC0C1 sin [(\ - \0)/3] 

y = 1.24104 RSC1

(183) Modified Azimuthal Projections

(184)

Chamberlin Trimetric

Formulas are too complicated to be provided here. They have 
been developed (forward and inverse) but not published by 
George Bynum of the Mobil Corporation.

Tilted Perspective

Calculate x and y for the Vertical Perspective projection by using 
equations 112, 122, 114, and 115 in order, but, if cos z is less 
than 1/P, reject the point. Call these coordinates*! and_yl5 
respectively. Then calculate the final (x,y) as follows:

x = (xl cos Y   y: sin Y) cos u/A 

y ~ fyi cos Y + jq sin

(185)

(186)

where

A = {(y: cos Y + xj. sin Y) sin a/[R(P - 1)]} + cos a (187)

Y is the azimuth east of north of the Y axis, the most upward- 
tilted axis of the plane of projection relative to the tangent 
plane, and w is the upward angle of tilt, or the angle between 
the Y axis and the tangent plane. The X axis lies at the intersec­ 
tion of the tangent and tilted planes. The origin is at (0 l5 \0).
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MISCELLANEOUS PROJECTIONS

Bacon Globular

y = R (ir/2) sin 0 (188)

F = [(TT/2)2/ I X - X0 I + I X - X0 I ]/2 (189)

x = ±R [ I X - X0 I - F + (F2 - y*/R*)*} (190)

taking the sign of (X - X0). If X = X0, equation 189 is infinite 
and equation 190 is indeterminate, but x = 0. The X axis coin­ 
cides with the Equator, x increasing east, and the Y axis coin­ 
cides with the central meridian X0 .

Fournier Globular I

If(X-X0) = 0,

If 0 = 0,

If I X - X0 I = TT/2,

Otherwise,

x= 0

x = R (X - X0) 

y=0

x = R (X - X0) cos 0 

y = R (ir/2) sin 0

C = TT2/4

P = I TT sin 0 I 

= (C - 02)/(P -2101) 

-4 = (X - X0)2/C - 1

(14)

(1)

(23) 

(188)

(191)

(192)

(193)

(194)

x = ±R (X - X0)[l - C)f (196)

where * and y take the signs of (X - X0) and 0, respectively. 
Axes are the same as those for the Bacon Globular.

Nicolosi Globular

If (X - X0) = 0 or 0 = 0 or I X - X0 I = -rr/2, the limiting for­ 
mulas for the Fournier I apply. Also, if I 0 I = ir/2,

Otherwise,

x= 0

y = R*

b = ir/[2(X - X0)] - 2(X - XO )/TT

(14)

(197)

(198)

(199)

(200)

(201) 

]*} (202)

(203)

in which the plus or minus sign in equation 202 takes the sign of 
(X - X0) and the plus or minus sign in equation 203 takes the 
opposite sign of 0. Axes are the same as those for the Bacon 
Globular.

d= (1 - c 2)/(sin 0 - c)

N = [</ 2 (sin 

x = (TrR/2){M ± [M2 + cos 2

Apian Globular

y = (14)

y = ±R ({S 2 - A[C - PS - (X - X0)2]}* - S)/A (195)

To calculate x, use equations 189 and 190 for the Bacon Globu­ 
lar, except thaty in equation 190 is taken from equation 14 
above. If X = X0, the equations are indeterminate, but x = 0. 
Axes are the same as those for the Bacon.
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Ortelius Oval r = sin (0/2)/[cos (0/2) + (2 cos 0)H cj (214) Miscellaneous Projections

If I X - X0 I <: ir/2, use the Apian Globular I formulas in equa- C = [2/(l + r2)]* (215)
tions 14, 189, and 190. For I X -X0 I >i7/2, use equation 14 for
y, but V = {[cos (0/2) + ((cos 0)/2)*(C1 + S0]/[cos (0/2)

+ ((cos 0)/2)*(C1 - S,)]}* (216) 
x = ±/?{[(i7/2)2 - 02]* + I X - X0 I - 17/2} (204)

x = (3 + 8*)K [-2 In V + C(V - 1/F)] (217) 
taking the sign of (X   X0). Axes are the same as those for the 
Bacon. y = (3 + 8*)K [-2 arctan T + CT (V + 1/F)] (218)

  flnnp Axes are the same as those for the Bacon. The factor ahead of 
' ' R provides a scale factor of 1 at the center.

If I 0 I = 17/2,
August Epicycloidal 

x= o
Ci = [1 - tan2(0/2)]V2 (219)

y=±2R (205)
C = 1 + Q cos [(X - X0)/2] (220)

taking the sign of 0. Otherwise, if W is the range in degrees of
longitude, divided by 180°, within a bounding circle passing *i = sin [(* ~~ ^ o)/^]Ci/C (-21)
through the poles and 0, is the parallel shown as a straight line,

y l = tan (0/2)/C (222)

A-, = [(1 + sin 00/(1 ~ sin 0.)] 1/(2 'r> (206)   -
x = 4Rx-i (3 + x-i   3yi )/3 (223)

A=[(l + sin 0)/(l - sin 0)] 1/(2fn (207) ^ 2 ~  
LV w /J v ' y = 4/tyi (3 + 3^^ - y^)/3 (224)

F = yl,yl (208)
Axes are the same as those for the Bacon. The scale factor is 1

C = (V + l/*0/2 + cos [(X - \0)/W] (209) at the center -

x = 2R sin [(X - \Q)/W]/C (210) Guyou

y = R (V   l/VVC (211) cos a ~ tcos ^ s^n (^ ~ ^°) ~ s^n ^]/^^ (225)

For the usual Lagrange, W = 2 and 0! = 0. For the equatorial cos b = tcos * sin (^ ~ ^o) + sin 0]/2 (226)
Stereographic, W = 1 and 0! = 0.  

sin m = ±(1 + cos a cos fc   sin a sin 6) (227)

Eisenlohr sin n = ±(1 - cos a cos 6 - sin a sin &)* (228)

Si = sin [(X - X0)/2] (212) x = flJV"(l - 0.5 sin2/»)~*^« (229)

Q = cos [(X - X0)/2] (213) y = /?/<,"(! - 0.5 sin 2«)~^n (230)
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MISCELLANEOUS PROJECTIONS

where m takes the sign of (X - \0) and n takes the sign of 0. If 
101 = iT/2, then* = 0, andy = ±1.85407fl, taking the sign of 

0. Equations 229 and 230 are elliptical integrals of the first kind 
and can be computed by means of efficiently converging tech­ 
niques such as the Burlirsch (1965) algorithm (see p. 239). 
Axes are the same as those for the Bacon.

Peirce Quincuncial

cos a = cos 0 [sin (X - X0) + cos (X - X0)]/2* (231) 

cos b = cos 0 [sin (X - X0) - cos (X - X0)]/2* (232)

These values are then used in equations 227 through 230 for the 
Guyou. The axes intersect at the pole, the negative Y axis coin­ 
ciding with the central meridian X0 and parallel to a side of the 
bounding square. In equation 227, m takes the sign of sin (X   
X0), and, in equation 228, n takes the opposite sign of cos (X -

Adams Hemisphere in a 
Square

cos a = cos 0 sin (X - X0)

b = iT/2 - 0

(233)

(234)

These values are then used in equations 227 through 230 for the 
Guyou, where m takes the sign of (sin 0 + cos a ) and n takes 
the sign of (sin 0   cos a). Axes are tilted 45° with respect to 
the central meridian and the Equator but are parallel to the 
sides of the bounding square, x increasing in the quadrant with 
positive 0 and (X - X0).

Adams World in a Square I, 
poles at opposite vertices

cos a = cos 0' sin [(X - X0)/2] 

cos b = sin 0'

(235)

(236)

where

sin 0' = tan (0/2) (237)

These values are then used in equations 227 through 230 for the 
Guyou, where m takes the sign of (sin 0' + cos a) and n takes 
the sign of (sin 0'   cos a). Axes are the same as those used for 
the Adams hemisphere in a square.

Adams World in a Square II, 
poles in centers of sides

cos a = {cos 0' sin [(X - X0)/2] - sin 0'}/2* (238) 

cos b = {cos 0' sin [(X - X0)/2] + sin 0'}/2* (239)

where 0' is found from equation 237 and a and b are then used 
in equations 227 through 230. Signs and axes are as described 
for the Guyou.

Lee Conformal World in a Triangle

The formulas are considered too complicated for listing here. 
For a discussion, see the monograph by Lee (1976).

Conformal World in an Ellipse

The shape of the bounding ellipse is established by a modular 
angle 0 between 0° and 90°. An angle of 23.8958° gives a 
boundary ellipse in which the Equator is twice the length of the 
central meridian. If ke = sin 9 and kc = cos 9,

K' = /0T/2(1 - k? sin 2 V)-*dV (240)

where X' is a convenient function and K' is the complete elliptic 
integral of the first kind. For 9 = 23.8958°, K' = 2.34767. Then,

M! = 2(1 - fcc)cos 0 (241) 

vj. = (1 + fcc)[l + cos 0 cos (X - X0)] (242)
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A = k? [1 - cos 0 cos (\ - \0)] 

B = u l   Vj 

C = M! + Vi

#! =X - (,4 2 - 4/t^C)*

X' = -arcsin [RJ(2Ckc}\

0' = arcsin ({1 - [RJ(2B)]2 }«/kf)

"2 = V(l -*,a sin V)~*</*'

2 = *' - /Ox '(l - fc/ sin2XT* </X

H3 = exp [

= # (w3 + l/H3 )(sin v3 )/2 

= R(ua - l/«3)(cos v,)/2

Equations 249 and 250 are also elliptic integrals of the first kind 
and, like equations 229, 230, and 240, can be computed by 
means of efficiently converging techniques such as the Burlirsch 
(1965) algorithm (see p. 239). Axes are the same as those for 
the Bacon Globular.

Van der Grinten

= 0,

B = I 20/TT I

C = (1 - £ 2)* 

x = R(\- X0)

(255)

(256)

x= 0 

y = ±vRB/(l + C)

(243) If (X - X0 ) = 0,

(244)

(245)

(246) taking the sign of <f>. If I <f> I = ir/2,

(247) x = 0

(248) y = ± IT.

(249)

(250)

(251)

(252)

(253)

(254)

Miscellaneous Projections

taking the sign of <f>. Otherwise,

A = I Tr/(X - X0) - (X - XO)/TT I /2

G = C/(B + C - 1)

P = G (2/B - 1)

Q=A 2 + G

S = P* +A*

T= G-P 2

y = ±

(257)

(258)

(259)

(260)

(261)

(262)

(263)

(264)

(265)

(266)

where x and y take the signs of (X - X0) and 0, respectively. 
Axes are the same as those for the Bacon.

Van der Grinten II

Use equations 255 and 256. If (X   X0) = 0, use equations for 
this limitation under Van der Grinten I, including equation 257. 

(1) Otherwise, use equation 259 and

! = [C (1 + A 2)* - ,4C 2]/(1 + (267)
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MISCELLANEOUS PROJECTIONS

x = ± 

y = ±irR (1 - x? - 2Axl)v>

(268)

(269)

F = (B + C)2(5 2 + C 2D 2 - 1)+ (1 - B*){B*[(B + 3C)2

where x and y take the signs of (\   \0) and <f>, respectively. 
Axes are the same as those for the Bacon.

Van der Grinten III

Use equations 255 and 256. If <f> = 0 or (\   \0) = 0, use equa­ 
tions for these limitations under Van der Grinten I, including 
equations 1 and 257. Otherwise, use equation 259 and

C)

x = ±-nR [(A 2 + 1 - y^)* - A]

(270)

(271)

y = ± (272)

where x and y take the signs of (\ - \0) and <f>, respectively. 
Axes are the same as those for the Bacon.

Van der Grinten IV

x = R (X - \0) (1) 
y=0

If (\ - \0) = 0 or I 4 I = iT/2,

x= 0 

y = R<f> 

Otherwise,

B = I 2<f>/Tr I (255) 

C= (SB - B*-2B*-5)/(2B 3 -2B 2) (273) 

D = ±{[2(\ - \O)/TT + ir/(2(\ - \0))]2 - 4}* (274) 

taking the sign of ( I \ - X0 I - ir/2).

+ 4C 2] + 12 5C 3 + 4C4 }

+ C)2 + C 2 - 1] + 2F*}/[4(5 
+ C)2 + D 2]

x = ±irffc1/2 

y = ±(irfl/2)(l + D I *! I - X!2)*

(275)

(276)

(277)

(278)

where x and y take the signs of (\ - \0) and <£, respectively. 
Axes are the same as those for the Bacon.

Armadillo

x = R (1 + cos <f>) sin [(\ - \0)/2]

y - R {(1 + sin 20° - cos 20°)/2 + sin <f> cos 20° 
- (1 + cos <f>) sin 20° cos [(\ - \0)/2]}

(279)

(280)

<f>, = -arctan {cos[(\ - \0)/2]/tan 20°} (281)

where, for a given longitude \, no latitude <f> more southerly 
than <f>, should be plotted. The southern part of the map is 
bounded by a curve plotted at the (x, y) calculated from equa­ 
tions 279 and 280 for a succession of (<f>, \) points such that 
each <f> is equal to <f>, calculated for \ from equation 281. The y 
axis coincides with the central meridian, y increasing north. The 
X axis crosses the central meridian at lat 28.1° N.

GS50

The formulas are too lengthy to be included here. For formulas 
and other information, see USGS Bulletin 1629 (Snyder, 1985, 
p. 79-92, 147-51) or USGS Professional Paper 1395 (Snyder, 
1987, p. 203-212).

Space Oblique Mercator

The formulas are too lengthy to be included here. For formulas 
and other information, see USGS Bulletin 1518 (Snyder, 1981a) 
or USGS Professional Paper 1395 (Snyder, 1987, p. 214-229).
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Satellite-Tracking

The formulas are too lengthy to be included here. For formulas

taking the sign of Sp . If h < 1 and h > Cb (or 1 <£ 1
101 > 0), for the "incomplete" elliptic integral, use

293 through 305, but, if k < Ep,

< TT/2 and Miscellaneous Projections
equations

and other information, see USGS Professional Paper 1395
(Snyder, 1987, p. 230-238).

Evaluation of elliptic integrals

Equations 229, 230, 240, 249, and 250 can be evaluated by using
a rapidly converging algorithm by Bulirsch (1965), applicable to
all elliptic integrals of the first kind; that is, to solve

F = V (1 - **a sin 20)

let Sp = sin <£, and set convergence values
Cb = 10~ &. Also set a limit Ep = 10~5. (k

~*dt (282)

Ca = 10" 3 and
e is frequently called

F = In [(1 + Sp)/(l - Sp)}!2

Otherwise, let

y = [(1 - hyh]*

n = 0

m = 1.0

p = mk

g = m

(292)

(293)

(294)

f295^ \^yjj

(296)

(297)
sin 9, where 9 is the modulus). Initially, let

h = Sp*

k=(l- k?)*

llh < Cb (or 0 = 0), then F = 0. If h >

(283)

(284)

1.0 (or 1 ^ 1 = ir/2),

m = k + m

y=y- (ply)

If 1 y 1 < 0, then let

for the "complete" elliptic integral, use equations 285 through V ~ cbP n
291, but, if k <, Ep, then F = ±«, taking

m = 1.0

h = m

m = k + m

If

1 h - k \ > Cam

then let

k = (hrf

m = tn/2

the sign of Sp . Let

(285)

(286)

(287)

(288)

(289)

(290)

If 1 g - k 1 > Cag, then let

k-2p*

n = n + n

Ify < 0, then

n = n + 1

and equations 296 through 304 are repeated until the
of equation 301 is no longer met. At this point, ify <
= n + 1. In any case,

F = ± [arctan (m/y) + Trn]/m

(298)

(299)

(300)

(301)

(302)

(303)

(304)

condition
0, then n

(305)

_ 1

and repeat equations 286 through 290 until the condition of 
equation 288 is no longer met. At this point,

F = ± ir/m (291)

taking the sign of 5^ and using the arctan in radians as usual.

The above results are generally accurate to 10 decimal places, if 
Ca is used as given. For accuracy to 10 places or better in all 
cases, Ca , Q,, and Ep can be made smaller as required.
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An Album of Map Projections

INDEX

[Main references in italics] B
Adams, O.S. ------------ 70, 74, 192, 194, 195, 198
Adams projection of hemisphere in square - - 188, 190,

192-193, 236 
Adams projection of world in square I - - - - 194, 236
Adams projection of world in square II - - - - 195, 236
Africa, maps of ----------------------- 37, 148
Agnese, B. ----------------------------- 178
Airy, G.B. ----------------------------- 140
Airy projection --------. 131, 132, 140-143, 228-229
Aitoff, D. ------------------------------ 158
Aitoff projection ----------- 158-159, 160, 164, 232
Alaska, maps of ------------------------ 208
Albers, H.C. ---------------------------- 100
Albers Equal-Area Conic projection ............ 7,

100-101, 102, 224 
American Geographical Society ----- 35, 99, 148, 162
American Polyconic projection ------------- 106
American Telephone & Telegraph Co. -------- 146
AMS Lunar projection -------------------- 131
Apian(us), p. --------------------------- 177
Aipan Globular I projection ------ 174, 777, 178, 234
Apian Globular II projection --------------- 177
"Apple-Shaped" projection ----------------- 204
Armadillo projection --------------- 206-207, 238
Arrowsmith projection -------------------- 176
Association of American Geographers -------- 156
Asia, maps of ------------------------ 70, 146
Aspect ---------------------------------- 2
"Atlantis" projection ---------------------- 56
Atlantic Ocean, maps of ------------------- 56
August Epicycloidal projection - 184, 186-187, 204, 235 
August, F. ..---------------------.----- 186
August projection ----------------------- 186
Authalic projection

See Quartic Authalic projection; equal-area
projection 

Azimuthal Equidistant projection ------- 92, 94, 114,
132-135, 140, 146, 156, 170, 175, 176, 228

Modified ----------------------- 158-159, 170
Azimuthal projection - - 2, 3, 4, 5, 6, 116-143, 226-229

Modified -------------------- 144-173, 230-233
See also specific projection

B.S.A.M. projection 
Babinet projection ------
Bacon Globular projection 
Bacon, R. ------------
Baranyi, J. -----------
Bartholomew, J. -------

............... 33

............... 54

........... 174, 234

.............. 174

............... 82
54, 56, 92, 113, 114, 162 

Behrmann Cylindrical Equal-Area 
projection ----------------- 16, 19-20, 100, 219

Behrmann, W. --------------------------- 19
Bellermann, G. ------------------------- 186
Berghaus, H. --------------------------- 156
Berghaus Star projection ------ 132, 156-157, 231-232
Bienewitz, P. --------------------------- 177
Bipolar Oblique Conic Conformal projection - - - 97, 99,

224
Boggs Eumorphic projection - - - 37, 54, 68-69, 70, 221 
Boggs, S.W. ----------------------------- 68
Bomford, G. ---------------------------- 33
Bonne, R. ----------------------------- 113
Bonne projection ------------ 92, 112-113, 114, 225
Bordone Oval projection ---------------- 90, 178
Borneo, maps of ------------------------- 14
Bousfield, G.E. ------------------------- 106
Braun, C.------------------------------ 105
Breusing Geometric projection ---------- 132, 140
Breusing Harmonic projection ----------- 140, 143
Briesemeister projection - 8, 158, 160, 162-163, 232-233 
Briesemeister, W.A. ..................... 99, 162
British Isles, maps of --------------------- 26
British Navy --------------------------- 154
British Ordnance ------------------------- 92
Bromley projection ----------------------- 54
Bromley, R.H. --------------------------- 54
Bulirsch algorithm ................. 236, 237, 239
Bumstead, A.M. ------------------------- 106
"Butterfly Map" ........................ 196
Bynum, G. ----------------------------- 233

Cahill, B.J.S. ........................... 196
Carte Parallelogrammatique ................ 24
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Cassini de Thury, C.F. .................... 26
Cassini projection ............. 22, 25-27, 28, 219
Central Cylindrical projection .. 2, 10, 30-32, 105, 219 
Central projection ..................... 2, 116
Chamberlin Trimetric projection ......... 132, 146,

770-777, 233 
Chamberlin, W. ......................... 170
Circum-Pacific Map Project ............... 136
Clarke, A.R. ........................ 131, 140
Clarke's "Twilight" projection .............. 131
Close, C.F. .......................... 144, 146
Close projection ......................... 144
Collignon, E. ............................ 84
Collignon projection ............... 84-85, 88, 225
Colvocoresses, A.P. ...................... 211
Combined projections

See Composite projection 
Complex algebra ....................... 2, 120
Composite projection ....... 2, 44, 52, 66, 72, 76, 92,

113, 114, 132, 136, 156 
Conformal projection, general ............ 2, 5, 8

Azimuthal ......................... 120-123
Conic .............................. 95-99
Cylindrical .......................... 10-15
Miscellaneous ................ 180-199, 208-212
Modified azimuthal ............... 148, 154-155
See also specific projection

Conformal projection of world in ellipse ... 198-199,
236-237 

Conic projection ............... 2, 4, 6, 7, 92-115,
213-214, 224-225, 229 

As specific projection .................... 92
See also other specific projections 

Conical Orthomorphic projection ............. 97
Conventional aspect ........................ 2
Cordiform projection ..................... 114
Cossin, J. ............................... 37
Craig, J.I. ............................. 150
Craig Retroazimuthal projection ... 150-151, 152, 257 
Craster, J.E.E. .......................... 70
Craster Parabolic projection ... 37, 68, 70-77, 72, 227 
Cylindric projection ........................ 6

See also Cylindrical projection

Cylindrical Equal-Area projection ............ 10
See also Lambert Cylindrical Equal-Area projection

Cylindrical projection ......... 2, 4, 6, 10-36, 213,
218-220, 229 

Modified ........................... 33, 211
See also specific projection

Deetz, C.H. .......................... 70, 106
De la Hire projection

See La Hire projection 
De I'lsle, N. ............................. 92
Denoyer, L.P. ........................... 80
Denoyer Semi-Elliptical projection ...... 80-81, 222
Denoyer-Geppert ......................... 80
Direct aspect ............................. 2
Distortion ............................ 2, 6, 8

See also specific projection 
Donald Elliptical projection ................ 146
Donald, J.K. ........................... 146
Doubly Azimuthal projection ............... 144
Doubly Equidistant projection .............. 146

Eckert (-Greifendorff), M. ............. 46, 50, 58,
60, 86, 88, 166 

Eckert-Greifendorff projection ......... 74, 158, 160,
166-167, 233 

Eckert projections
I .......................... 84, 86-87, 88, 225
II ......................... 84, 86, 88-89, 223
III ....................... 58-59, 60, 178, 227
IV ............................ 58, 60-61, 221
V ...................... 37, 46-47, 48, 50, 220
VI ...................... 37, 44, 46, 50-51, 220

Edge matching .......................... 6-7
Egypt, Survey of ........................ 150
Eisenlohr, F. ........................... 184
Eisenlohr projection ........ 184-185, 186, 204, 255
Ellipsoid, Earth as ........ 2, 3, 4, 7, 12, 14, 22, 26

95, 100, 106, 113, 132 
Elliptic integrals .................. 236, 237, 239
Elliptical projection ...................... 54
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[Main references in italics] Equal-area polyconic projections ............. 106
Equal-area projection, general ............ 2, 5, 8

Azimuthal .......................... 136-139
Conic ............................ 100-103
Cylindrical .......................... 16-21
Modified azimuthal ............ 160-163, 166-169
Pseudoazimuthal ....................... 149
Pseudoconic ....................... 112-115
Pseudocylindrical .... 37-45, 50-57, 60-77, 84, 88-89
See also specific projection 

Equatorial aspect ......................... 2
See also specific projection 

Equidistant Conic projection ..... 7, 92-94, 113, 224
Equidistant Cylindrical projection ... 22-29, 158, 164 

See also Plate Carrie projection, Equirectangular 
projection 

Equidistant Polyconic projection ............ 106
Equidistant projection, general ............. 2, 5

Azimuthal
See Azimuthal Equidistant projection 

Conic
See Equidistant Conic projection 

Cylindrical
See Equidistant Cylindrical projection 

Equirectangular projection . 10, 22, 24-25, 46, 48, 92, 219 
Equivalent projection

See Equal-area projection 
Eratosthenes ............................ 22
Erdi-Kraus, G. ........................... 66
Euler, L. ............................... 92
Eumorphic projection

See Boggs Eumorphic projection 
Eurasia, maps of ........................ 106
Europe, maps of ........................ 148

Flat-Polar projection, general ................ 2
Flat-Polar Quartic projection ................ 76

See also McBryde-Thomas Flat-Polar Quartic
projection 

Flat-Polar Sinusoidal projection .............. 66
See also McBryde-Thomas Flat-Polar Sinusoidal
projection

Fournier, G. ........................... 175
Fournier Globular I projection ....... 775, 176, 234
France, maps of ...................... 26, 113

Gall Isographic projection ................ 24, 33
Gall, J. .............................. 19, 33
Gall Orthographic projection ........... 16, 19, 33
Gall projection .......... 10, 30, 33-34, 35, 203, 220

Modified .............................. 33
Gall Stereographic projection ............... 33

See also Gall projection 
Gauss, C.F. ............................. 12
Gauss Conformal projection ................. 12
Gauss-Kriiger projection ................... 12
General Vertical Perspective projection . 124, 128-131,

172, 227 
Geometric projection

See Perspective projection 
Ginzburg, G.A. ...................... 106, 149
Ginzburg III projection ................... 149
Glareanus projection .................. 174, 177
Globular projection .............. 2, 174-177, 204

As a specific projection ................. 176
Glossary .............................. 2-4
Gnomic projection ....................... 116
Gnomonic projection ....... 2, 30, 104, 105, 116-119

130, 144, 226 
Goode Homolosine projection ...... 2, 54, 66-67, 221
Goode, J.P. .......................... 66, 114
Goode Polar Equal-Area projection .......... 114
Goode's Atlas ......................... 66, 83
Gougenheim, A. ......................... 198
Graticule ................................ 2

See also specific projection 
Great Britain, maps of ............. 26, 110, 140
Great circle .................. 2^3, 116, 120, 124
Gretschel, H.F. ......................... 131
GS50 projection ................... 208-210, 238
Guam, maps of ......................... 132
Guyou, E. ............................. 188
Guyou projection ........ 188-189, 190, 192, 235-236
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H
Hammer (Elliptical) projection ....... 158, 160-161,

162, 166, 168, 232 
Hammer, H.H.E. von .......... 131, 152, 158, 160
Hammer Retroazimuthal projection . 150, 152-153, 231 
Hammer-Aitoff projection .............. 160, 164

See also Hammer (Elliptical) projection 
Hammer-Wagner projection ................ 168
Harvard University ...................... 206
Hassler, F.R. ........................... 106
Hatano Asymmetrical Equal-Area projection . 64-65,

221 
Hatano, M. ............................. 64
Hatano Symmetrical Equal-Area projection ..... 64
Herschel, J. ............................. 97
Hinks, A.R. ............................ 152
Homalographic projection .................. 54
Homolographic projection ................ 54, 66
Homolosine projection ................ 37, 54, 66

See also Goode Homolosine projection 
Hondius, J. ............................. 37
Hotine, M. .............................. 14
Hotine Oblique Mercator projection ........... 14
Hsu, M.-L., quoted ......................... 6
Hyperelliptical projection .................. 54

I

Immler projection ....................... 144
Indicatrix .............................. 3, 8

See also specific projection 
International Map of the World (IMW) ..... 95, 111
Interrupted projection ..... 3, 43, 54, 57, 66, 68, 70,

74, 113,114,132,156

Jackson, J.E............................ 150
Jager Star projection ..................... 156
James, H. .......................... 131, 140

Kamenetskiy, V.V. ........................ 33

Kavrayskiy, V.V. ....................... 92, 97
Kavrayskiy VI projection .................. 50
"Kite" projection ........................ 113
Krasovskiy, F.N. ........................ 100
Kruger, L. .............................. 12

Laborde, J. ............................. 14
Laborde projection ....................... 14
Lagrange, J.L. .......................... 180
Lagrange projection . 154, 180-183, 198, 200, 202, 235 
La Hire, P. de .......................... 130
La Hire projection ..................128, 130-131
Lallemand, C. .......................... 111
Lambert Azimuthal Equal-Area projection ..... 100,

101, 102, 114, 132, 136-139, 149, 158,160,166, 228 
Lambert Conformal Conic projection ........... 7,

95-98, 213, 224
Lambert Cylindrical Equal-Area projection ... 16-18,

19,100,101, 218 
Lambert Equal-Area Conic projection ......... 100,

102-103, 224 
Lambert, J.H. .......... 12, 16, 19, 97, 102, 136, 180
Landsat ......................... 211, 213, 214
Large-scale mapping ........................ 3
Latitude, defined ....................... 3, 216
Least squares ............................. 3
Lee, L.P. .................. 12, 148, 196, 198, 208

Quoted ............................... 5-6
Lee conformal projection of the world

in triangle ...................... 196-197, 236
L I'sle

See De I'lsle 
Littrow, J.J. ........................... 154
Littrow projection .............. 154-155, 180, 231
Longitude, defined ...................... 3, 216
Lorgna projection ....................... 136
Loritz projection ..................... 174, 177
"Lotus" projection ....................... 113
Loximuthal projection ................ 90-91, 223
Loxodrome .......................... 3, 10, 90
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[Main references in italics] M

Madagascar, maps of ..................... 14
Maling, D.H., quoted ...................... 5,6
Marinus, Projection of ..................... 24
Marinus of Tyre ....................... 22, 24
Maurer, H. ............... 106, 131, 144, 146, 150
McBryde, F.W. .................. 44, 52, 72, 76
McBryde S3 projection ............... 52-53, 220
McBryde-Thomas Flat-Polar Parabolic

projection ..................... 72-73, 221-222
McBryde-Thomas Flat-Polar Quartic

projection ................... 74, 75, 76-77, 222
McBryde-Thomas Flat-Polar Sinusoidal

projection ................... 44-45, 50, 52, 220
McCaw, G.T. ........................... 106
McCaw projection ....................... 144
Mecca projection ........................ 150
Mendeleev, D.I. .......................... 92
Mercator Equal-Area projection ............. 37
Mercator, G. .......................... 10, 92
Mercator projection ...... 3, 4, 5, 7, 8, 10-11, 12, 14,

30, 33, 35, 90, 97, 200, 208, 213, 218
See also Oblique Mercator projection, Transverse
Mercator projection 

Meridian, defined ......................... 3
See also specific projection 

Micronesia, maps of ..................... 132
Miller Cylindrical projection ..... 10, 33, 35-36, 220
Miller Oblated Stereographic projection ... 120, 148,

208, 230-231 
Miller, O.M. .................... 35, 99, 148, 208
Miller Prolated Stereographic projection ... 148, 208 
Minimum-error projection ................ 3, 140
Mobil Corp. ............................ 233
Modified Gall projection ................... 33
Modified Polyconic projection, for International

Map of the World ................ 106, 777, 225
Miscellaneous ......................... 106

Modified projections
See specific types, such as azimuthal and cylindrical 

Modified Stereographic Conformal projection ... 120,
208

Moir ............................... 33, 203
Mollweide, C.B. .......................... 54
Mollweide projection .. 37, 54-57, 64, 66, 68, 175, 220 
Moon, maps of the ....................... 131
Murdoch, P. ............................ 92

N

National Atlas of the United States .......... 100
National Geographic Society . 35, 70, 106, 146, 170, 200 
Navigation, maps for .... 3, 10, 90, 116, 144, 146, 154
New Zealand Map Grid ................... 208
Newton-Raphson iteration .... 216-217, 220, 221, 222
Nicolosi, G. ............................ 176
Nicolosi Globular projection ......... 175, 176, 234
Nominal scale ............................ 3
Nordic projection ........................ 162
Normal aspect

See Direct aspect; see also specific projection 
North America, maps of ................... 99
Nowicki, A.L. .......................... 131

Oblated Stereographic projection ......... 148, 208
Oblique aspect ......................... 3, 229

See also specific projection
Oblique Cylindrical Orthomorphic projection - - - - 14 
Oblique Equidistant Cylindrical projection

See Oblique Plate Carree projection 
Oblique Hammer projection ................ 162
Oblique Lambert Conformal Conic projection ... 98

See also Bipolar Oblique Conic Conformal projection 
Oblique Lambert Cylindrical Equal-Area

projection ........................... 18, 219
Oblique Mercator projection .... 74-75, 148, 211, 218
Oblique Sinusoidal projection ........... 37, 41, 42
Oblique Plate Carree (Oblique Equidistant

Cylindrical) projection .............. 28-29, 219
Ordinary Polyconic projection .............. 106
Ordnance Survey ........................ 140
Ortelius, A. ............................ 178
Ortelius Oval projection .......... 177, 178-179, 235
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Orthoapsidal projection .................. 3, 206
Orthodromic projection ................... 144
Orthographic projection .............. 3, 724-727,

130, 172, 226-227 
Orthomorphic projection

See Conformai projection 
Orthophanic projection .................... 82
Oval projection ...................... 178, 179
Oxford University ........................ 33

Pacific Ocean, maps of ............. 136, 148, 208
Parallel of latitude, defined .................. 3

See also specific projection 
Parameters .............................. 3
Parent, A. .............................. 131
Peirce, C.S. ............................. 190
Peirce Quincuncial projection .............. 188,

190-191, 192, 236 
Perspective Conic projection ............ 104-105,

224-225 
Perspective projection, general ............... 3

Azimuthal ................... 116-131, 226-227
Conic ...................... 104-105, 224-225
Cylindrical ............... 16-21, 30-34, 219-220
Modified azimuthal ................... 172-173
See also specific projection 

Petermann Star projection ................. 156
Peters, A. .............................. 19
Peters projection .................... 16, 19, 21
Philbrick, A.K. .......................... 66
Planar projection .......................... 3
Planimetric map ........................ 3, 12
Plate Carr6e projection ....... 22-23, 24, 26, 28, 46,

92, 94, 27P 
Polar aspect ............................. 4

See also under specific azimuthal projection 
Polyconic projection, type .......... 4, 6, 106-111,

180-183, 200-202, 204-205 
As a specific projection ........... 106-109, 225

Polyhedric projection ...................... 84

Postel, G. .............................. 132
Postel projection ......................... 132
Progressive Military Grid .................. 106
Prolated Stereographic projection ........ 148, 208
Pseudoazimuthal projection ............... 6, 149
Pseudoconic projection ......... 4, 6, 112-115, 225
Pseudocylindric projection ................... 6

See also Pseudocylindrical projection 
Pseudocylindrical projection .......... 2, 4, 37-91,

113, 220-223, 229 
Modified .................. 80-81, 178-179, 203
See also specific projection 

Ptolemy, C. .......................... 92, 113
Putnins, R.V. .......................... 62, 78
Putnins projections 

PT 1.................................. 62
P'i ................................ 58, 62
P2 ................................... 62
P'2 ..................... 60, 62-63, 64, 82, 227
P3 ................................... 70
P'3 .................................. 72
P4 ................................... 70
P'4 .................................. 72
P5 .............................. 75-79, 222
P's .................................. 78
P6 ................................... 78
P'6 .................................. 78

Quartic Authalic projection ..... 74-75, 76, 166, 222 
Quincuncial projection ..................... 190

Raisz, E.J. ............................. 206
Raisz projection .......................... 206
Rand McNally & Co. .................... 66, 82
Rechteckige Plattcarte, Die ................. 24
Rectangular Polyconic projection . 106, 107, 110, 225 
Rectangular projection .................... 24
Rectified Skew Orthomorphic projection ....... 14
Reeves, E.A. ............................ 152
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