FINANCIAL ANALYTICS

MBA BATCH: 2016-18 / TRIMESTER: IV

DEPARTMENT OF MANAGEMENT,

AMRITA SCHOOL OF BUSINESS

AMRITA VISHWA VIDYAPEETHAM (UNIVERSITY)

INSTRUCTOR AND CONTACT INFORMATION

Dr.Prashobhan Palakkeel p_palakkeel@amtita.edu palakkeel@gmail.com mobile:9449612995

COURSE OBJECTIVE

To provide a strong foundation in financial analytics in order to handle complex financial data, build advanced analytical models and deliver effective visualization product and comprehensive reports.

LEARNING OUTCOMES

The course covers a reasonable curriculum in financial analytics At the end of the course the student should be able to

- 1. Analyse and model financial data
- 2. Construct and optimize asset portfolios
- 3. Evaluate and model Risk on various financial assets
- 4. Use the most powerful and sophisticated routines in R for analytical finance.

COURSE DESCRIPTION

The course is an application oriented one and most of the exercises have to be done with real time data. During the course basic concepts regarding computational finance will be revised and applied using real time data. Various capabilities of R environment and computational routines in R for finance will be introduced in a comprehensive manner.

REQUIRED COURSE MATERIALS AND READINGS

Prescribed Text Book for the course

Ruey S. Tsay (2012), "An Introduction to Analysis of Financial Data with R", Wiley, ISBN: 978-0-470-89081-3

OPTIONAL COURSE MATERIALS & READINGS (CASES, ARTICLES, REPORTS ETC)

Argimiro Arratia (2014), "Computational Finance An Introductory Course with R", Atlantis Press, ISBN 978-94-6239-069-0

Bernhard Pfaff (2013), "Financial risk modelling and portfolio optimization with R", Wiley, ISBN 978-0-470-97870-2

Cairns, A.J. G (2004), "Interest Rate Models: An Introduction", Princeton University Press, ISBN: 9780691118949

Christian Gourieroux & Joann Jasiak (2002), "Financial Econometrics: Problems, Models, and Methods", Princeton University Press, ISBN: 9780691088723

David Ruppert (2011), "Statistics and Data Analysis for Financial Engineering", Springer, ISBN 978-1-4419-7786-1

Duffie, D. and Singleton, K.J (2003), "Credit Risk: Pricing, Measurement, and Management", Princeton University Press, ISBN: 9780691090467

John Y. Campbell, Andrew W. Lo, & A. Craig MacKinlay (1997), "The Econometrics of Financial Markets", Princeton University Press, ISBN: 9780691043012

Lando, D (2004), "Credit Risk Modeling: Theory and Applications, Princeton University Press", ISBN: 9780691089294

Ngai Hang Chan (2010). "Time Series Applications to Finance with R and S-Plus®", Second Edition, Wiley, ISBN 978-0-470-58362-3

Ren'e Carmona (2014), "Statistical Analysis of Financial Data in R", Second Edition. Springer, ISBN 978-1-4614-8787-6

Stefano M. Iacus (2011), Option Pricing and Estimation of Financial Models with R", First Edition. Wiley, ISBN: 978-0-470-74584-7

Ruey S. Tsay (2010), "Analysis of Financial Time Series", 3rd Edition, Wiley, ISBN: 978-0-470-41435-4

EVALUATION CRITERIA

Assignments & final Project, Mid term and End term examinations

Components and Weights (faculty can Decide on components

Components	Weightage (%)
Assignments and final projects	30%
Midterm Exam	30%
End term	40%
Total	100%

DETAILS OF SESSION: TENTATIVE COURSE SCHEDULE

WEEK	Session No.	TOPICS TO BE COVERED	ASSIGNED READING, CASE DISCUSSION, ASSIGNMENTS
Week 1	1 to 2	Introduction to Financial Analytics: Definition,	
		relevance and scope financial	
		Analytics, recent trends in	
		financial analytics	
2 to 3	3 to 8	Financial Time Series and	Case: Weekly Regular
		Their Characteristics: Asset	Gasoline Price Page
		Returns, Distributional	No:129
		Properties of Returns, Review	
		of Statistical Distributions and	
		properties of financial time	

		series.	
4to 5		Asset Portfolio Models: Basics	Case : Asset Portfolio
		of portfolio construction,	construction from BSE
	0.4- 12	Markowitz Theorem, Capital	
	9 to 12	Asset Pricing Model,	
		Diversification and Portfolio	
		Optimization	
	13 to 18	Modeling Volatility and	Case: ARCH Volatility
		Risk: Characteristics of	Term Structure Page 244
		volatility. Modeling volatility	
6 to 8		using ARCH/GARCH models.	
		Measuring and modeling risk.	
		Application of Value at Risk	
		(VaR)	
	19 to 22	High-Frequency Data	Case: Empirical
		Analysis: Non synchronous	Characteristics of Trading
		Trading, Bid–Ask Spread of	Data
9 to 10		trading Prices, Empirical	
		Characteristics of Trading	
		Data, Models for Price	
		Changes, Duration Models	
	23 to 28	Modeling Credit	Case: VaR estimation for
		Risk: Corporate Liabilities as	IBM stocks
11 to 12		contingent claims, Endogenous	
		default boundaries and	
		optional Capital Structure,	
		Intensity Modeling, Rating	
		based term-structure models,	
		Credit risk and interest-rate	
		Swaps, Modeling dependent	
		defaults	
13 to 15	29 to 30	Derivative Pricing: Issues	Case: Sectoral Index
		regarding derivative markets.	derivative
		Brownian motion, Black -	
		Sholes model. Modeling	
		derivative prices	

COURSE OUTLINE
YEAR: 2017 | TRIMESTER: 4

ANY OTHER SPECIFIC RULES

Students have to bring their laptops installed with R and R Studio. Download R from http://cran.r-project.org/ and R Studio from http://cran.r-project.org/ and R Studio from http://www.rstudio.com/products/rstudio/download/

Sharing computers are not allowed. They should make their own arrangement for charging the laptops.