Objectives:

- 1. To understand the processes that shape the landforms around us
- 2. To apply geomorphological concepts to problems of slope instability and try to identify the factors responsible for landslide occurrences in various environments

Unit I: INTRODUCTION TO GEOMORPHOLOGY

Geomorphology: Basic concepts; branches of geomorphology; historical geomorphology; process geomorphology: definition, introduction, measuring geomorphologic processes; endogenous and exogenous processes; tropics, marine, fluvial types and tools; processes of weathering and soil formation; mass movement, planation surfaces and geomorphic cycle definition; geomorphic systems: open, close, isolated system; geomorphic system dynamics: equilibrium and steady state

Unit II: FLUVIAL PROCESSES AND LAND FORMS

Drainage basin and network characteristics; drainage patterns: consequent, obsequent, antecedent, superimposed; genetic classification of streams, river valleys, work of river, sediment load, yield, and channel geometry; bedrock channels; classification of rivers and river metamorphosis; origin of lakes: types of origin – tectonic, volcanic, landslides, glacial, solution, fluvial action, wind, marine, organic, and meteorite impacts; karst landforms.

Unit III: AEOLIAN PROCESSES AND LANDFORMS

Aeolian landforms: sand deposits and types; age of desert, weathering in deserts, major causes of aridity; glacial forms: glacial erosion, deposition, and processes; glaciations during the Quaternary period in the Himalayas and other examples.

Unit IV: COASTAL PROCESSES AND FORMS

Coastal landforms, coral reefs, time-based coastal changes, coasts of the world; sea level changes, causes and neotectonism.

Unit V: NATURAL HAZARDS AND ENVIRONMENTAL MANAGEMENT

Slope processes: introduction, slope evaluation, classification, analysis, applied geomorphology, geomorphological importance, land use, infrastructural development, vulnerability assessment; models of sediment deposition due to natural hazards; studies in three and four dimensions; natural hazards and methods of environmental management.

Unit VI: REMOTE SENSING

Remote sensing: introduction, elements of interpretation, application to geomorphology; identification of landforms: palaeochannels, bajada, alluvial pans, river meanderings; geomorphology map preparation; site suitability analysis; coastal zone regulation.

Laboratory

Topographical map interpretation for different landforms, analysis of weathering trends, interpretation of geological and geomorphological changes.

TEXT BOOKS/REFERENCES:

- 1. Huggett R., (2007). Fundamentals of geomorphology (second edition). Routledge.
- 2. Small R J., (1978). Study of Landforms: A Textbook of Geomorphology. Cambridge University Press.
- 3. Thornbury W., (1969). Principles of geomorphology (second edition) John Wiley. New York.
- 4. Kale V.S. and Gupta A. Introduction to Geomorphology, Orient Longman, Hyderabad, 2001.
- 5. Holmes A. Principles of physical geology, Thomas Nelson and Sons, USA, 1964.
- 6. Goudie A.S. Geomorphology, Springer, UK, 1998.