MODELING WITH STRUCTURAL AND DIFFERENTIAL EQUATIONS

3-0-0-3

Unit-I: First-order differential equations

Direction fields, existence and uniqueness of solution, numerical methods for first-order differential equations, solution of linear equations with integrating factors, complex exponentials; sinusoidal functions, linear system response to exponential and sinusoidal input: gain, phase lag; autonomous equations.

Unit-II: Second-order linear differential equations

Modes and the characteristic polynomial, damping conditions, exponential response formula, complex gain, operators, undetermined coefficients, resonance, frequency response, LTI systems, superposition, RLC circuits.

Unit-III: Structural equation models

Factor analysis, path analysis, structural equations, causality and equivalent models, latent class regression, analysis of panel data with observed and latent variable models, itemresponse models, Rasch models.

Text Books/ References:

- 1. R. Kline, "Principles and Practice of Structural Equation Modeling", Guilford Press, 2016.
- 2. W. Boyce and R. DiPrima, "Elementary Differential Equations and Boundary Value Problems", Wiley, 10th Edition, 2012.