
Integration Specification

Resources API v10

Prepared By: IRWIN Core Team

Last Updated: 8/29/2024

Integration Specification – Resource API

Contents

Contents 2
1 Introduction 3

1.1 Purpose and Audience 3
1.1.1 Associated Documents 3

IRWIN Data Mapping Workbook 3
1.2 Communication Network 4

1.2.1 IRWIN Observer 4
1.2.2 IRWIN Website 4
1.2.3 IRWIN Project Wildland Fire Application Information Portal 4

1.2 Points of Contact 4
2 Conceptual Architecture 5
3 Development Considerations 6

3.1 Authentication and Authorization 8
3.2 Resources and Capabilities 9

3.2.1 Resource Layer and Related Tables 9
3.2.2 Key Data Concepts for Resources and Capabilities 10

3.2.1 Resource 10
3.2.2 Capability 12

3.2.3 Reading Resources and Capabilities 12
3.2.3.1 Additional Parameters 12

3.2.4 Resource/Capability Creation 13
3.2.5 Resource Updates 13

3.2.5.1 Additional Parameters 14
3.3 Overhead Resource Transfer/Remove Scenarios 14
3.4 Resource Conflicts 15

3.4.1 Non-Overhead Resources 15
3.4.2 Overhead Resources 16
3.4.3 Resolving Overhead Conflicts 16

3.5 Resource Relationships 17
3.5.1 Deleting Resource Relationships 18

3.6 Resource Requests 18
3.6.1 Reading Resource Requests 19

3.6.1.1 Query Subordinate requests for requested resource 20
3.6.2 Creating and Updating Resource Requests 20

3.6.2.1 Additional Parameters 22
3.7 Resource Experience 23

3.7.1 Resource Experience Creation Method (as communicated to IRWIN by IROC) 24
4 Error Handling 24

2

Integration Specification – Resource API

4.1 Validation Errors 25
8 Contingency Plan 32
9 Document Versions 32

1 Introduction

The IRWIN Resources API is a separate set of methods for external systems to use in addition to the
Incidents API. The Resource data integration is focused on sharing resource data related to incident
dispatch, ordering and statusing. The resource API is structured to facilitate data integration between
external system in 3 main areas:

1. Managing resources (overhead, aircraft, equipment, teams, crews and modules).
2. Sharing resource requests and statusing for initial attack and extended attack.
3. Recording overhead resource experience for currency maintenance by qualification systems.

Business areas supported include (but is not limited to) Dispatch, Property Management, Personnel
Qualification and Training, Resource Ordering, and other incident management related areas.
Resource integration in this context includes specifically Overhead, Equipment, Aircraft, Crews, Teams
and Modules.

The Resources API is used in conjunction with the Incidents API (Integration Specification – Incidents
API v9).

1.1 Purpose and Audience

The Resource Integration Specification introduces and expands upon those topics necessary to begin
data exchange through the IRWIN RESOURCES API. A formal discovery process is required to obtain
an authentication credential, which allows access to both the IRWIN Incidents and Resources API. This
document is not a replacement for that process.

The IRWIN Community is comprised of the IRWIN Core Team and IRWIN Extended Teams. The IRWIN
Core Team is responsible for developing and supporting the technical integration based on
requirements provided by the wildland fire community. The IRWIN Core team is comprised of
technical developers, data architects, business leads and implementation leads. IRWIN Extended
Teams represent the technical and business persons who support a system that exchanges data with
other systems through the IRWIN Integration Service.

This document is intended for extended teams and particularly their system developers responsible for
modifying their application for data exchange within the IRWIN Resource integration services.

1.1.1 Associated Documents

IRWIN Data Mapping Workbook
A workbook containing sheets for the IRWIN data element details and Authoritative Data Source
(ADS) matrix. https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information

3

https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information

Integration Specification – Resource API

1.2 Communication Network

1.2.1 IRWIN Observer

Observer is a tool for discovering IRWIN incidents and resources and understanding the data
exchange transactions that have occurred. Observer is available for all three IRWIN environments
and can be used to interact with both root and next versions of the IRWIN APIs. Access to IRWIN
Observer is granted using a GeoPlatform account (https://geoplatform.maps.arcgis.com).
Authorization to use Observer is explicitly granted using the Groups concept provided by the
GeoPlatform.

● TEST: https://irwint.doi.gov/observer
● TEST/next: https://irwint.doi.gov/observer?v=next
● OAT: https://irwinoat.doi.gov/observer
● OAT/next: https://irwinoat.doi.gov/observer?v=next
● Production: https://irwin.doi.gov/observer

1.2.2 IRWIN Website

Public facing site providing information regarding IRWIN.

https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information

1.2.3 IRWIN Project Wildland Fire Application Information Portal

https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information

1.2 Points of Contact

Kara Stringer – IRWIN Business Lead

kara_stringer@ios.doi.gov

435.400.4301

Brandon Green - IRWIN Project Manager

Brandon_Green@ios.doi.gov

410.303.3307

4

https://geoplatform.maps.arcgis.com/
https://irwint.doi.gov/observer
https://irwint.doi.gov/observer?v=next
https://irwinoat.doi.gov/observer
https://irwinoat.doi.gov/observer?v=next
https://irwin.doi.gov/observer
https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information
https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information
mailto:kara_stringer@ios.doi.gov
mailto:Brandon_Green@ios.doi.gov

Integration Specification – Resource API

2 Conceptual Architecture

The IRWIN Resources API is designed to broker common operational RESOURCE data across
various wildland fire applications. This RESTful API exposes standard Add, Query, Update, Delete
and utility operations, allowing integrated systems to share operational data. Although the API is
customized, it follows standard extension guidelines of the underlying ArcGIS for Server software.
These custom operations:

● Validate data standards
● Enforce updates by authoritative systems only on a role basis
● Provide operations specific to the business needs of the wildland fire community

The API’s role is to provide the ability for many disparate systems to create and edit resource
information, or retrieve updated data on demand. With the understanding that these systems leverage
different core technologies, languages, platforms, are in varying lifecycle stages, or have different
business rules, the API provides a common, flexible approach to integration yet NWCG accepted
standards and business workflows.

5

Integration Specification – Resource API

3 Development Considerations

This section serves as a guidance to developers in understanding the main areas of coding for
interacting with the Resources API to exchange data. Figure 1 below depicts both the Incident
Feature Service layer and the Resource Feature Service layer and their related tables. Incident
layer/tables are depicted in GREEN and the Resources layer/tables in BLUE – including their
relationships to each other. Domain tables are depicted in YELLOW. Focused views of this diagram
are provided in the following sections.

Figure 1 Incident and Resource Layers and Related Tables

6

Integration Specification – Resource API

● Incident
o Describes an individual incident such as Unique Incident Identifier, Fire Discovery Date

& Time, Incident Name, Point of Origin Latitude/Longitude and Fire Cause. There are
over 125 Incident data elements, with only 14 of which are required by a CAD to create
an incident.

● Incident Relationships
o Defines relationships between two or more incidents such as Complexes, Merges and

Potential Duplicates.

● Incident Resource Summary
o A summary of resources assigned to an incident for a given operational time period.

● Resource
o Describes individual resources that could be utilized on an incident. Includes data

specific to Overhead, Equipment, Aircraft, Crews, Teams and Modules.

● Resource Conflicts
o Defines potential conflicts of an overhead resource that is being submitted (add or

update feature) to the resource layer. Potential conflicts are flagged by a series of
checks that include the resources name, home dispatch and provider units, birth
month/day and system of record.

● Capability Type
o A catalog of interagency approved positions and classifications for which a resource can

be qualified to perform.

● Capability
o Describes the positions or classifications in which an individual resource is qualified to

fill and be utilized in response to an incident.

● Capability Type Relationships
o Defines relationships between a parent resource capability and 1 or more child

capabilities tied to that resource. This is commonly known as a lineup template. For
example, a Type 1 Engine and the overhead resources that staff that engine such as the
Engine Boss and the Type 1 Fire Fighters.

● Resource Relationships
o Defines relationships between a specific parent resource and 1 or more child resource

capabilities tied to that resource. For example, a specific Type 1 Engine and the
overhead resources that staff that engine such as John Doe Engine Boss and Jane Doe
Type 1 Fire Fighter.

● Capability Request
o Each record describes the request for a resources capability needed to respond to a

specific incident. In addition, this table tracks the status of the request while it is
unfilled, then filled or unable to fill or canceled, and then closed.

7

Integration Specification – Resource API

● Capability Request Tracking

o A tracking table for when ETA, ETD, DemobETA, and DemobETD are updated on
CapabilityRequests. ModifiedBySystem and ModifiedOnDateTime fields are also
logged in this table. All of these data elements are automatically populated by IRWIN
when updates are made to those fields in the CapabilityRequest table. Systems can
return results from this table while querying for the capability request data elements at
the same time using the parameter includeRequestTracking.

● Experience
o A record of an individual overhead resource utilized on a specific incident and the

position/capacity in which they performed on that incident.

3.1 Authentication and Authorization

All integrated systems are provided a system level account to authenticate with the IRWIN API.
Systems will authenticate by acquiring a short-lived token string via the GenerateToken operation
and adding its value to a token parameter when making any succeeding web calls to IRWIN. As part
of the GenerateToken response, the token’s expiration time is provided. Once the token’s
expiration time is met, the integrated system needs to request a new token.

NOTE: The maximum token lifetime that may be requested in IRWIN is 60 minutes. A
token should not be requested more than twice per hour. Best practice is requesting once
every hour.

When generating a token, a parameter named 'client' is supplied. There are several options for this
parameter as described in the online documentation. It is recommended that systems use the 'referer'
client as the supplied parameter. This option avoids issues such as IPs that may change between
requests of getting the token and subsequent calls that use the token, and is a more stable option in
environments where IPs may not always remain the same.

To implement this, when the token is requested, the client value is supplied as 'referer', and a value is
supplied for the optional 'referer' parameter. This value for 'referer' can be any value, but will need to
be supplied on subsequent calls that use the token and the two values must match.

Sample input:

username='yoursystem',

password='yourpassword',

client='referer',

referer='YOUR REFERER VALUE',

expiration=60,

f=json

On subsequent calls that use this token, the token value must be supplied, and the REFERER header
value in any HTTP requests must match the value for ‘referer’ provided in the token request.

8

Integration Specification – Resource API

Documentation for the GenerateToken operation can be found at:
https://developers.arcgis.com/documentation/

Once a credentialed system connects to IRWIN, access to individual API operations and data elements
is based on authorization roles. Each integrated system is placed into a role defined during the
discovery process. To access the Resource methods, a system must be granted one or more of the
following roles in addition to the appropriate incidents role(s).

For a full list of available roles specific to resources, reference the table below.

IRWIN Resource Authorization Roles

Resource API Role Detail

Ordering Role for systems that perform resource ordering functions. Grants access to create and
update non-overhead resources and their capabilities and also create and update resource
requests.

Qualification Role for systems that manage overhead resource qualifications. Grants access to create and
update overhead resources and read resource experience.

Lineup Role for systems that manage a resource lineups and role call for initial attack purposes.
Grants access to create and update resource relationships.

Dispatch Role for systems that dispatch resources to perform initial attack. Grants access to create
and update resource capabilities, capability requests and resource status.

Capability Type
Admin

Role for maintenance of the capability type domain within IRWIN. Grants access to create,
update and delete capability types.

Resource Read Role for reading resources and request data. Grants read access to the resource layer and
related tales.

3.2 Resources and Capabilities

3.2.1 Resource Layer and Related Tables

The resource feature layer and related tables are utilized for maintenance of a repository of resources
and their capabilities for deployment on a wildland fire. In order to add and update a resource and
their capabilities, it is important to understand the relationship between the resource feature layer and
the related tables pertinent to performing these actions. The figure below depicts the keys that relate
each of the tables. The CapabilityType table is a domain for capabilities. Use this table to establish
the IrwinCTID when adding capabilities.

9

https://developers.arcgis.com/documentation/

Integration Specification – Resource API

3.2.2 Key Data Concepts for Resources and Capabilities

For both reading and updating resources and their capabilities, there are a few data elements that
are fundamental to understanding the IRWIN resource data. Please reference the IRWIN Data
Mapping Workbook, Data Management - Integrated Reporting of Wildfire Information (IRWIN),
detailed information on these data elements.

3.2.1 Resource

● Shape - Geographic representation of resource’s physical location. This location is
submitted as a geometry object. If available to the external system, these coordinates can
represent the position from a resources tracking device. If a tracking device is not
available, then the coordinates could be derived from an organizational address associated
with the resource. When a resource’s OperationalStatus is updated to ‘At Incident’, if no
geometry is provided, IRWIN will update the resource’s SHAPE to the SHAPE of the
incident for that resource’s ‘Filled’ CapabilityRequest.

● LocationTimeStamp - this field can be used in conjunction with the shape to indicate the
date/time of the resource’s last known location. This field is not required however.

10

https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information

Integration Specification – Resource API

● ResourceKind - The resource layer contains all operational resources that can respond to a
fire. This field indicates the kind of resource (Equipment, Crew, Aircraft, Overhead, Team,
Module, Equipment Group, Aircraft Group, Overhead Group). In the data mapping
workbook, you can find which data elements apply to and are required for adding and
updating each resource kind.

● IsValid - Indicates whether the resource is valid within IRWIN. Valid resources are records
from the Provider and Dispatch Center having primary responsibility for the resource.
Invalid resources are a result of duplicates or invalid entries.

○ When IsValid = 0 on a resource, IRWIN will delete any ResourceConflict records and also set
IsValid = 0 for any capability for that resource.

○ When reading or updating resource records, filtering for IsValid = 0 should be taken
into account as appropriate for the intended results. These records will also be
marked for deletion by IRWIN.

● ResourceSOR - The irwin userid of the system that currently is the System of Record for the
resource and their capabilities (i.e. IQCS). The value “None” is also valid and is used for
transferring individuals to another System of Record. Once the ResourceSOR is set to a
system userid, it can only be updated to ‘None’ and likewise only be updated from ‘None’
to a system userid. IRWIN uses the ResourceSOR to restrict the updating of Resource and
Capability data by systems other than the ResourceSOR.

○ The following fields may be updated regardless of the ResourceSOR value:
■ Home Unit, CurrentDispatchUnit, GeneralStatus, OperationStatus, and

SHAPE
○ All other fields, such as IsValid/IsActive/IsQuarantined, are restricted to being edited

by the ResourceSOR

● IsQuarantined - Indicates whether a resource of ResourceKind “Overhead” is potentially
conflicting with one or more overhead resources based on IRWIN conflict detection rules.
When submitting resources, use this field to detect if the incident has been flagged as a
potential duplicate. If it has, your system will need to present conflict resolution options to
a user. Quarantined resources will not be visible to any other integrated systems. See
Resource Conflicts section for more details.

● GeneralStatus - Indicates whether the resource is available or unavailable to be ordered.
The dispatch centers responsible for the resource can set the general status. Also, once a
resource is ordered, the general status may be set to “Unavailable” by IRWIN based on
business rules related to the Operational Status.

● OperationalStatus - Describes the status of the resource as they are utilized by an incident.
The dispatch centers through their CAD’s or IROC can set the operational status of
resources once they are on a filled capability request. Reference the Resource Requests
section for more details on the dependencies between creating/updating Capability
Requests and setting the operational status for a resource.

11

Integration Specification – Resource API

● OperationalName - The CURRENT common operational reference to a Resource, the name
of the resource and/or call sign. The IROC application will provide and update the
OperationalName for non-overhead resources (equipment, crews, modules and teams).
IROC may update the OperationalName based on how the resource is currently being
utilized through a filled request.

● Capability table - In order for a resource to be utilized on an incident, they must have at
least one capability assigned to them.

● Text fields do NOT allow characters “>” or “<”, as those values could cause problems when
ingested by other systems. For example “>>” can be interpreted as HTML by other systems,
resulting in an error.

3.2.2 Capability

● IsValid - Indicates if the capability is a valid record for the resource. If false, indicates that the capability
is not and never was valid for the resource.

● IsActive - Indicates if the capability is currently active for the resource. If false, indicates that the
capability was active at one time, but is no longer active for the resource.

● Capacity - The capacity in which the overhead resource is qualified to perform a position - either as a
trainee or fully qualified. This data element can be updated.

● NeededByDateTime - Date/time expressed in epoch format that the resource is needed by. Required
on CapabilityRequest Add.

3.2.3 Reading Resources and Capabilities
Reading resource and capability data is accomplished through the ArcGIS REST Query feature
service layer operation referencing the resource feature layer number (0). This generic read
operation allows for a wide variety of spatial and SQL where clause queries to be executed against
the underlying data, returning an array of matched features. Query will accept IrwinRIDs,
ResourceKind, OperationalStatus or any other search criteria in the form of a where clause, as well
as specify which fields to return.

Documentation for Query can be found at: Documentation | Esri Developer

3.2.3.1 Additional Parameters

As part of the SOI (Server Object Interceptor), the API includes enhancements to the COTS
(Commercial off-the-shelf) Query operation making custom request parameters available:

● Resource Layer
○ includeCapabilities=true (default is false)

■ includeCapabilityType=true (default is true if includeCapabilities=true)
○ includeExperiences=true (default is false)

12

https://developers.arcgis.com/documentation/

Integration Specification – Resource API

○ includeRelationships=true (default is false)
○ includeConflicts=true (default is false)

● Capability Layer
○ includeResource=true (default is false)

● Capability Request Layer
○ includeResource=true (default is false)
○ includeCapability=true (default is false)

■ includeCapabilityType=true (default is true if includeCapability=true)

○ includeRequestTracking=true(default is false)

Including any of the above parameters will enhance the response results by including the
corresponding objects as properties of each result. For example, appending
“includeCapabilities=true” to a Resource query will cause each resource object in the response to
have an additional resource object-level property, “capabilities”, which is an array of Resource
Capability objects associated with that resource.

3.2.4 Resource/Capability Creation

Resources and Capabilities can be created using the ArcGIS REST AddFeatures operation. This
generic create operation allows for individual or batch features to be created against the
underlying data layer. AddFeatures will accept one or more standard feature objects, which
express the Resource(s) the user wishes to create. Depending on the kind of resource being
submitted, it is required to express a minimum number of data elements to successfully create the
resource. Reference the IRWIN Data Mapping Workbook for details regarding required fields, data
types, valid values and validation rules.

All submitted data elements are run against validation in order to enforce data standards. A
successful creation will result in a response indicating success and the resource payload (i.e.,
IrwinRId, and values of auto-calculated data elements) for the integrated system to act on. If the
AddFeatures operation fails validation, an error response object is returned.

In addition, IRWIN will determine if the resource being submitted is potentially in conflict with a
resource that already exists. For non-overhead resources, a conflict will result in a failed request.
For overhead resources, potential conflicting resources relationships will be written to the
ResourceConflicts table and the resource being submitted will be quarantined.

Documentation for AddFeatures can be found at: Documentation | Esri Developer.

3.2.5 Resource Updates

Resources and Capabilities are updated in IRWIN using the ArcGIS REST UpdateFeatures
operation. This generic update operation allows for individual or batch features to be updated
against the underlying data layer. UpdateFeatures will accept one or more standard feature
objects, which express the Resource(s) the user wishes to update.

13

https://developers.arcgis.com/documentation/

Integration Specification – Resource API

Documentation for UpdateFeatures can be found at: Documentation | Esri Developer.

3.2.5.1 Additional Parameters

As part of the SOI, the API includes enhancements to the COTS UpdateFeatures operation making
custom request parameters available. For the resource being updated (such as an engine), then
additional resource values can be automatically updated for children as defined in the
ResourceRelationship table.

● Resource Layer
○ applyToChildren=field1,field2,...fieldN

Including applyToChildren=field1,field2,...fieldN will cause the SOI to update the existing resource
records for each child and apply the same value(s) for the field(s) specified.

Note: To use this custom parameter:

1. the ResourceRelationships MUST exist between the initial resource being updated and its
children.

2. the Resource records MUST exist for the children in the relationship.

3.2.6 Active Resource Table

The ActiveResources read only table contains the active Resources ordered on an Incident and
includes associated data elements from Incident, Capability Requests, Resources, and Capability
Type records.

This enhanced Feature Layer is available to query using the REST API. Some operations will benefit
from consuming this table as opposed to querying each of the individual tables.

3.3 Overhead Resource Transfer/Remove Scenarios

Resources often move from one organization to another. In addition, resources also need to be
removed or no longer work for an agency. The table below describes resource transfer and remove
scenarios and the data changes that need to be made for each.

NOTE: A person should not be transferred if they are currently on assignment. The SOR should not be
set to ‘NONE’ if the OperationalStatus is NOT “Returned from Assignment” or NULL.

Transfer/Remove
Scenarios

ResourceSOR/Capability Organization Fields GeneralStatus

Scenario 1:
REMOVE (release) -
Resource is no
longer valid and has

System of Record sets:
ResourceSOR = ‘NONE’

No change. System of Record sets:

GeneralStatus = ‘Unavailable’

14

https://developers.arcgis.com/documentation/

Integration Specification – Resource API

been set to isValid =
false.

System of Record set
Capability.isActive = false and
Capability.isValid = false for all
of the resource’s capabilities.

Scenario 2:
Resource transfers
to another
organization that is
still managed by the
ResourceSOR.

No change Organization fields updated
to unit where resource is
transferred:

HomeDispatchUnit

HomeUnit

ProviderUnit

ManagerContactInfo

[and any other pertinent
data like jet port, email,
etc.]

No change or updated as
necessary.

Scenario 3:
Resource is released
and could be
transferred to
another organization
that is managed by a
different System of
Record (or could be
managed again by
the same SOR)

Old System of Record set
ResourceSOR to ‘NONE’ and
set all quals to
Capability.isActive = false

New System of Record sets
ResourceSOR from ‘NONE’ to
their Irwin system of record.

New System of Record sets
Cabability.isActive = true for
all valid capabilities (also add
new capabilities if applicable)

Organization fields updated
to unit where resource is
transferred:

HomeDispatchUnit

HomeUnit

ProviderUnit

ManagerContactInfo [and
any other pertinent data
like jet port, email, etc.]

New System of Record
updates GeneralStatus =
‘Available’

3.4 Resource Conflicts

3.4.1 Non-Overhead Resources

For entry of non-overhead resources the following rules will ensure uniqueness. If there is an exact
match found that already exists, the record will not be successfully submitted. See Section 4 for error
codes.

15

Integration Specification – Resource API

● Aircraft: the TailNumber must be unique.

● Equipment: If the VIN is NOT Null the VIN must be unique AND If the SerialNumber is (NOT
NULL) the SerialNumber must be unique.

● Crews, Teams, Modules: The OperationalName plus the HomeDispatchUnit must be unique.

3.4.2 Overhead Resources

For adding or updating overhead resources, the following rules will ensure uniqueness. If there is an
exact match found that already exists, the record will not be successfully submitted (error response).
For potential duplicates that need further inspection, the record will be quarantined. When a resource
is “quarantined”, IRWIN sets the IsQuarantined = 1 (true) and creates a record in the
ResourceConflicts table for each existing record matching a quarantine rule below.

Rules applied when Adding an Overhead Resource
● NameFirst plus NameLast plus NameMiddle plus HomeDispatch plus ProviderUnit plus

BirthMonthDay must be unique to avoid receiving an error.

● If NameFirst plus NameLast plus NameMiddle plus BirthMonthDay match the resource is
quarantined.

● If all but one of the following are the same, the resource is quarantined - NameFirst plus
NameLast plus NameMiddle plus HomeDispatch plus ProviderUnit plus BirthMonthDay the
resource is quarantined.

● If the BirthMonthDay plus the NameLast match the resource is quarantined.

● If the BirthMonthDay plus the NameFirst plus NameMiddle (first letter) match the resource is
quarantined.

Rules applied when Updating an Overhead Resource
● If the BirthMonthDay plus the NameLast match, the resource is quarantined.

3.4.3 Resolving Overhead Conflicts

The CreatedBySystem should present the quarantined resource alongside the parent(s) for resolution. This is
accomplished by querying the ResourceConflicts table for the ChildIrwinRID of the resource in quarantine.
Pertinent information to display to help the user determine the appropriate outcome should include:

● BirthMonthDay
● HomeDispatchUnit, HomeUnit, ProviderUnit, ProviderAgency
● ManagerContactInfo
● NameFirst, NameLast, NameMiddle
● ResourceClearinghouseID (if available)
● ResourceSOR

There are two scenarios for resolving conflict:

16

Integration Specification – Resource API

Scenario 1 - Child Lost (is not a valid resource, resource is the same person as the potential
duplicate)

The CreatedBySystem should:

1) Set the child resource to isValid = False (0)
2) When a quarantined resource is updated from IsValid = 1 (true) to IsValid = 0 (false), IRWIN will

automatically delete any ResourceConflict records where the updated Resource is the child in the
ResourceConflict.

The child’s resulting Resource and ResourceConflicts record should look like:

Resource
IsQuarantined

Resource
IsValid

ResourceConflicts

1 (True) 0 (False) Irwin deletes conflict record related to
parent and child.

Scenario 2 - Both the Parent and the Child Win (both are valid distinct persons)

In this scenario, the child resource is still a different and valid person from the parent resource. The
CreatedBySystem should:

1) Set the child resource to IsQuarantined = 0 (False).
a) NOTE: Do not send any other fields in this update request, only include IsQuarantined.

Including other fields will result in either an error or IsQuarantined not being updated.
This is a known issue.

2) When a resource is updated from IsQuarantined = 1 (true) to IsQuarantined = 0 (false), IRWIN will
automatically delete any ResourceConflict records where the updated Resource is the child in the
ResourceConflict.

Note: IsQuarantined cannot be nulled.

The child’s resulting Incident record should look like:

Resource
IsQuarantined

Resource
IsValid

ResourceConflicts

0 (False) 1 (True) Irwin deletes relationship for
parent/child combination.

17

Integration Specification – Resource API

3.5 Resource Relationships

Resources can be related to one another for purposes of creating daily line-ups and rostering. In order to
establish relationships between a resource(s), it is important to understand the relationship
between the resource feature layer and the related tables pertinent to forming relationships. The
figure below depicts the keys that relate each of the tables. There are 2 types of relationships that
can be leveraged:

● CapabilityTypeRelationship - use this table to populate a lineup with the predefined
configurations of capabilities which are provided by IROC. This table is read-only.

● ResourceRelationships - use this table to establish a connection between a specific resource
(from the resources table) to one or more specific resource capabilities. Once this
relationship is established, updates to the parent can be cascaded to the children using the
custom “applyToChildren” parameter defined in the Resource Updates section.

3.5.1 Deleting Resource Relationships

Resource relationships are deleted using the ArcGIS REST DeleteFeatures operation. The
ResourceRelationship table does NOT have an isValid data element that most other Irwin tables
use for effectively deleting records.

3.6 Resource Requests

The resource request structure focuses on sharing the actual status of a resource and their
capability once ordered for an incident and in what capacity that resource is serving. The

18

Integration Specification – Resource API

main business workflows supported by the IRWIN resource request services for sharing data
include:

● Providing initial attack resource capabilities for an incident.
● Requesting/ordering additional resource capabilities to respond to an incident.
● Filling resource capability requests.
● Tracking the operational status of a resource from mobilization to an incident to

de-mobilization.

The diagram below shows how the capability request table is tied to the incident and
resource feature layers and the capability table.

19

Integration Specification – Resource API

3.6.1 Reading Resource Requests

Reading resource request data is accomplished through the ArcGIS REST Query feature service
layer operation referencing the Capability_Request feature layer number (2). This generic read
operation allows for a wide variety of spatial and SQL where clause queries to be executed against
the underlying data, returning an array of matched features. Query will accept IrwinIDs,
FulfillmentStatus, IrwinCID’s or any other search criteria in the form of a where clause, as well as
specify which fields to return. Depending on the type of information that a system needs returned,
the related tables in the diagram above may need to be joined to the query results by the
indicated keys or use the custom parameters as defined below.

★ When querying CapabilityRequest include IsValid =1 (true) in the where clause.

As part of the SOI (Server Object Interceptor), the API includes enhancements to the COTS
(Commercial off-the-shelf) Query operation making custom request parameters available:

● Resource Layer
○ includeCapabilities=true (default is false)

■ includeCapabilityType=true (default is true if includeCapabilities=true)
○ includeExperiences=true (default is false)
○ includeRelationships=true (default is false)
○ includeConflicts=true (default is false)

● Capability Layer
○ includeResource=true (default is false)

● Capability Request Layer
○ includeResource=true (default is false)
○ includeCapability=true (default is false)

■ includeCapabilityType=true (default is true if includeCapability=true)

○ includeRequestTracking=true(default is false)

3.6.1.1 Query Subordinate requests for requested resource

When requests are created, IROC (the resource ordering system) assigns request id’s (IrocRequestID) to
each capability request record that reflects the parent resource (ie E-1, A-1) and then subordinate
requests to that resource (ie E-1.1, E-1.2, etc). Subordinate requests are given a ParentIrwinCRID value
that identifies the parent request for that subordinate. This value is either populated by IRWIN when
initial attack requests are submitted from a CAD using the “apply to children” parameter or the
ParentIRWINCRID is populated by IROC for rostered requests. To query for a request and all
subordinate requests, use the following logic:

● Query CapabilityRequest - order by IrwinID, IrocRequestID, ParentIrwinCRID, . Within each set
of IrwinID’s you will get all the orders for that incident. Then you can determine the parent
request as those without a “dot” number and the ParentIrwinCRID is null. The subordinates for
each parent would be all records that contain ParentIrwinCRID of the parent request.

3.6.2 Creating and Updating Resource Requests

CapabilityRequests can be created using the ArcGIS REST AddFeatures operation.

20

Integration Specification – Resource API

CapabilityRequests can be updated using the ArcGIS REST UpdateFeatures operation.

CapabilityRequests may be submitted against quarantined incidents but will not be shared with all
integrated systems until conflict is resolved.

CapabilityRequests should not be sent for quarantined incidents older than 24 hours. The CAD
systems will implement this rule. This rule will not be enforced in IRWIN.

The order in which adds and updates are sent when creating and filling capability requests is
important to ensure the updates are successful and that the resource’s experience is properly
documented. The following guidelines should be followed:

The initial CapabilityRequest record requires:
a. Capability type id (IrwinCTID)
b. IrwinID for the incident
c. FulfillmentStatus
d. SelectionArea
e. InclusionsExclusions
f. RequestedCapacity is also required if FulfillmentStatus is not “Filled”

The parameter isIROCManages is being deprecated in V10, and new systems can not develop to
this specification.

1. Setting the isIROCManaged field to true when creating a request offloads updating certain
fields from the CAD to IROC when filling the Capability Request.

a. When isIROCManaged=true
i. IROC updates the IROC Request number
ii. When the ETA time has arrived, IROC will set:

1. Resource Operational Status = ‘At Incident’
2. Resource General Status = ‘Unavailable’
3. Fulfillment Status=’Filled’

b. When isIROCManaged=false
i. IROC updates the IROC Request number
ii. CAD responsible for updating

1. Resource Operational Status = ‘At Incident’
2. Resource General Status = ‘Unavailable’
3. Request Fullfilment Status

2. If the FulfillmentStatus = “Filled” or “Reserved”, the add or update must also include a
capability id (CID) to tie the request to a resource and their qualification. For initial attack
resources, the CAD should also update the mobilization ETD and ETA times when the
request is filled.

3. A resource can be on NO MORE THAN ONE “Filled” request for non-preposition type incidents, and
NO MORE THAN ONE "Filled" request for preposition incidents. Additionally, a resource can be on NO
MORE THAN ONE “Reserved” request for incidents of any type. This allows for a resource to have a

21

Integration Specification – Resource API

filled and/or reserved request on a preposition incident and then also be requested on a
non-preposition incident.

a. Set Resource FulfillmentStatus = “Cancelled”
b. Set isValid = 0 (false)

4. Set a resource’s OperationalStatus to “At Incident” AFTER creating the filled request for
that resource otherwise an error will result.

The parameter isIROCManages is being deprecated in V10, and new systems can not develop to
this specification.

5. To close out a request (Mob then Demob scenario)
a. There are two mechanisms in use for this functionality today based on the

parameter “isIROCManaged”:
i. Mechanism #1 (is isIROCManaged =False)

1. CAD sets the resource’s OperationalStatus to one of the following:
a. Demob En Route, Reassigned (At Incident), Released (At

Incident), Returned From Assignment.
b. Set the “applyToChildren=OperationalStatus, Shape” if

appropriate
2. CAD updates the CapabilityRequest setting:

a. DemobETA = current time + N (value N may vary by CAD)
b. DemobETD to current date/time
c. ETA to current date/time

3. IROC sets internal request status to Released
4. IROC will not generate Experience in this scenario
5. CAD updates Resource GeneralStatus to Available and
6. CAD updates OperationalStatus to Null (Returned From

Assignment?)
7. CAD updates CapabilityRequest setting DemobETA to current time +

N
8. CAD updates FulfillmentStatus to Closed

ii. Mechanism #2 (isIROCManaged =True)
1. CAD updates the CapabilityRequest setting:

a. DemobETA = current time + N (value N may vary by CAD)
b. DemobETD to current date/time

2. IROC will use the DemobETA value to determine the Resource
OperationalStatus as either “Demob En Route” or “Return from
Assignment”

3. IROC will set the GeneralStatus to “Available”
4. IROC updates CapabilityRequest FulfillmentStatus = “Closed”
5. IROC updates Resource OperationalStatus = “Null”

6. To Reassign a Resource within current Dispatch
a. CAD creates a new unfilled CapabilityRequest (B)

i. CAD sets FulfillmentComment field = IrwinCID of the reassigned resource

22

Integration Specification – Resource API

b. IROC updates the original CapabilityRequest (A) setting FulfillmentStatus to
Reassign/Closed (Reassign in IROC maps to Closed in IRWIN)

c. IROC updates the new CapabilityRequest (B) setting IrwinCID = value from
FulfillmentComment and FulfillmentStatus = Filled
i. IROC creates subordinate requests as applicable

d. CAD updates CapabilityRequest (B) with ETA and ETD values

7. To Cancel a request that was entered in error
a. Set Resource FulfillmentStatus = “Cancelled”
b. Set isValid = 0 (false)

3.6.2.1 Additional Parameters

As part of the SOI, the API includes enhancements to the COTS AddFeatures operation making
custom request parameters available.

● includeRequestTracking

A tracking table for when ETA, ETD, DemobETA, and DemobETD are updated on
CapabilityRequests. ModifiedBySystem and ModifiedOnDateTime fields are also logged in this
table. All of these data elements are automatically populated by IRWIN when updates are
made to those fields in the CapabilityRequest table.

Systems can return results from this table while querying for the capability request data
elements at the same time using the parameter includeRequestTracking.

o Resource Capability Request Layer
▪ includeRequestTracking=ETALastModifiedBySystem,ETDLAstModifiedBySyst

em,DemobETALastModifiedBySystem, DemobETDLastModifiedBySystem,
ETALastModifiedOnDateTime,ETDLastModifiedOnDateTime,
DemobETALastModifiedOnDateTime,DemobETDLastModifiedOnDateTime

● applyToChildren

If the request being created is filled with a resource (such as an engine) and that engine has
been rostered, additional requests can be automatically created for the children.

o Resource Capability Request Layer
▪ applyToChildren=FulfillmentStatus,IsValid,SelectionArea,InclusionsExclusions

,IsContractResourceAllowed

Including applyToChildren (for FILLED requests only) will cause the SOI to create a new
capability request record for each child and apply the same value(s) for the field(s)
specified. IRWIN will also add the ParentIrwinCRID to the record for each child capability
request created.

Note: To use this custom parameter, the ResourceRelationships MUST exist between the
initial resource being requested and its children. In addition, the request must be created
with a status of “FILLED”.

23

Integration Specification – Resource API

3.7 Resource Experience

Resource experience is created and updated by IROC as a by-product of the resource request
workflows. Qualification systems can read the experience records to maintain currency for the
resources to which they are the system of record. The diagram below shows the keys that join the
experience for a resource to an incident for querying purposes.

★ Qualification systems should query for experience records where isValid = 1 (true) AND
ExperienceToDate is not null.

3.7.1 Resource Experience Creation Method (as communicated to IRWIN by IROC)

IROC creates and updates Experience records for a Resource based on filled resource requests
once the Resource has departed the Incident. Experience creation is triggered when both IROC’s
(internal) MobEndDate and DemobStartDate have non-null values on a capability request and
DemobStartDate is after MobEndDate. IROC will set the ExperienceToDate = DemobStartDate
and ExperienceFromDate = MobEndDate. If IROC’s MobEndDate is further into the future or
equals DemobStartDate, meaning the resource was not actually at the incident, IROC will not
generate resource experience.

24

Integration Specification – Resource API

4 Error Handling

The IRWIN API returns a variety of indicators and status codes detailing the success or failure of
actions. Upon addFeatures or updateFeatures, a boolean “success” property is returned,
indicating if the action was successful or not. If false, an error property is also returned which lists
the error code (indicating the kind of error) and description (providing the actual error messages).

Additional documentation for error responses can be found at:
https://developers.arcgis.com/documentation/.

4.1 Validation Errors

If the request results in one or more validation errors, the response will include an “error” object
with the “code” property specified as 8004. The “description” property of the error object will be
an array of validation error objects. Each validation error that is relevant will be included as a
separate object with one of the following codes and messages.

JSON Syntax:

{

"objectId": <objectId>, //int, objectId value of the updated/inserted feature

"globalId": <globalId>, //string, string globalId value of updated/inserted feature

"success": <true | false>, //boolean, false if edit was not applied

"error": { //only returned if success is false

"code": <code>, //integer, error code

"description": [//array of validation error objects

{

"error": {

"code": <code>, //integer, error code

"message": <message>, //string, validation error message/description

"conflictObjectId": <conflictObjectId> //integer, only returned if validation
error is a "unique" conflict

}

}

]

}

}

25

https://developers.arcgis.com/documentation/

Integration Specification – Resource API

In the following tables, text highlighted in gray represents example values only; the actual text may
vary based on the input and/or context.

Code Example message What does it mean? How to fix it

101 value (This is wrong!) must be
composed of alphanumeric,

hyphen, or period characters.

The value may only contain
letters, numbers, hyphens

(-), and/or periods (.)

Remove any characters from the
value that are not letters, numerical
digits, hyphens, or periods.

103 value (X) must be an

accepted value ([A|B|C]).

The value must be one of a
defined list (or "domain").

Ensure the value you are passing
matches one of the specified values
in the domain values for this field.
Note that case may be important.

105 Invalid type. Expected number. The value must be a number;
spaces, letters, or other
non-numerical characters are
not allowed. Periods and
hyphens may be allowed if
they are contextually relevant,
such as for floating point or
negative values.

Ensure the value is a number with
no spaces.

value (10) must not exceed 5. The numerical value must be
less than or equal to the
stated maximum.

Lower the value to less than or
equal to the maximum.

106 value (abcdefg) must not

exceed 6 characters.

The value is too long. Shorten the length of the value.

26

Integration Specification – Resource API

107 Invalid type. Expected number. The value must be a number;
spaces, letters, or other
non-numerical characters are
not allowed. Periods and
hyphens may be allowed if
they are contextually relevant,
such as for floating point or
negative values.

Ensure the value is a number with
no spaces.

value (1) must exceed 5. The numerical value must be
more than or equal to the
stated minimum.

Raise the value to more than or
equal to the minimum.

108 value (tooshort) must be

at least 15 characters.

The value is too short. Lengthen the value to be at least
the minimum length; spaces are not
valid padding. Typically this means
left-padding the value with zeroes.

109 value is not nullable. The value cannot be omitted
on addFeatures or nullified on
updateFeatures.

For addFeatures requests, you
must include a non-null value. For
updateFeatures, ensure the value
is not being set to "null".

110 value contains disallowed characters. The value contains characters
that are not allowed for this
field, such as spaces or
special characters.

Check the value to ensure it
contains only characters relevant to
this field data.

111 a value is required for IrwinCAD
systems.

(Systems with IrwinCAD role
only) This value is required on
addFeatures.

Ensure the value is not missing or
null.

112 a value is required. This value is required. Ensure the value is not missing or
null.

27

Integration Specification – Resource API

113 value (XXWRNG) must

begin with a valid state code.

The first two characters of this
string value must be a valid
state abbreviation (or, in
certain cases, "CA" or "MX").

Ensure the first two characters are
a valid NWCG-standard state code
(or "CA" or "MX", if the relevant
data falls within Canada or Mexico
accordingly)

114 value (123) must be type string. The value must be a string,
and cannot be passed as a
JSON-specified type of
boolean, number, array, or
object.

Ensure the value is enclosed by
quotes.

value (3.14) must be type integer. The value must be a whole
number.

Ensure the numerical value is a
whole number with no decimal.

value (wrong) must be type float. The value must be a number. Ensure the value is a number.

value (Sunday, 23 Feb 2019) must be
type epoch

datetime (long integer).

The value must be a valid
datetime value in Unix-time
(or "epoch"-time) format.

Ensure that the value is a datetime
value, expressed as a whole
number of milliseconds after 12:00
am, January 1, 1970. This will be a
13-digit number.

value ([34.01,-117.34]) must

be type geometry.

The value was not recognized
as a correctly formatted JSON
geometry.

Ensure the value is a correctly
formed JSON object, with (at a
minimum) a value for "x" and "y".

value ({"lat":34.01,"lon":-117.34}) must
be a correctly formed geometry object.

The value was not recognized
as a correctly formatted JSON
geometry.

Ensure the value is a correctly
formed JSON object, with (at a
minimum) a value for "x" and "y".

28

Integration Specification – Resource API

900 IrwinID is invalid. The IRWIN API couldn’t find
or parse the specified ID
value. That is, the ID was not
found in the request.

Ensure the IrwinID/

IrwinRID/

IrwinRSID is a valid GUID,
specified as a string value with no
leading/trailing braces.

901-9
04

IrwinID

(069BA152-C519-4502-A560-3F72754F
B862) not found.

The IRWIN API was unable to
find a record in the relevant
table/layer with the specified
ID.

Ensure the IrwinID/

IrwinRID/

IrwinRSID is a valid GUID and
refers to an existing record in the
relevant layer.

905 Error querying for

IrwinID
069BA152-C519-4502-A560-3F72754F
B862: Database error

Depending on the error, this
may indicate a server failure
of some kind.

Check your input data and try
again. If this happens repeatedly,
please report it to the IRWIN
implementation team.

Code Example message What does it mean? How to fix it

300 value
(069BA152-C519-4502-A560-3F7275
4FB862) must be an existing IrwinCID
in ResourceCapability.

The record in a related layer
couldn't be resolved from the
GUID provided.

Ensure the ID

is a valid GUID, specified as a
string value with no leading/trailing
braces, for the relevant related
layer.

Error querying for IrwinCID in
ResourceCapability
(069BA152-C519-4502-A560-3F7275
4FB862): Database error

Depending on the error, this may
indicate a server failure of some
kind.

Check your input data and try
again. Depending on the error, this
may indicate a server failure of
some kind. If this happens
repeatedly, please report it to the
implementation team.

301 value
(069BA152-C519-4502-A560-3F7275
4FB862) must be an existing IrwinID
in Incident.

The value of IrwinID must refer
to an existing incident in the
Incident layer of the Irwin
service.

Ensure the IrwinID

is a valid GUID, specified as a
string value with no leading/trailing
braces, for the Incident layer of the
Irwin service.

29

Integration Specification – Resource API

value
(069BA152-C519-4502-A560-3F7275
4FB862) cannot be used because the
referenced object has IsValid=0.

The ID provided is a valid GUID
and refers to an existing object in
the related layer, but the target
record that it refers to has
IsValid=0 and thus cannot be
used for the attempted request.

Ensure the ID

is a valid GUID, specified as a
string value with no leading/trailing
braces, for the relevant related
layer.

Error querying for IrwinID in Incident
(069BA152-C519-4502-A560-3F7275
4FB862): Database error

Depending on the error, this may
indicate a server failure of some
kind.

Check your input data and try
again. Depending on the error, this
may indicate a server failure of
some kind. If this happens
repeatedly, please report it to the
implementation team.

302 If value is not null, it can only be set to
null.

If value is not null, it can only be
set to null.

Set the value to null or remove the
field from the request.

303 If value is not 'NONE', it can only be
set to 'NONE'.

If value is not set to the value
identified in the message, it can
only be set to that value.

Set the value to the specified value
or remove the field from the
request.

304 Unable to validate whether value is
unique because the value of
'IrwinRID' could not be parsed.

Another field that the validator
depends on couldn’t be read
correctly (in this case, IrwinRID).

Ensure all required fields are
present in the request and conform
to the respective documented
requirements.

value of 1 must be unique for
(IrwinRID) value(s) in
ResourceCapability (conflicts with
IrwinRID
‘069BA152-C519-4502-A560-3F7275
4FB862’).

Although a given reference ID (in
this case, IrwinRID) may exist
multiple times in the given
related layer (in this case,
ResourceCapability), only one of
them may have the specified
field set to the identified unique
value.

Change the value to a value that is
not required to be unique, change
the value of that field in the other
record currently holding the unique
value, or remove the field from the
request.

Note - this validation error
response will additionally
include a property
“conflictObjectId”, set to the
OBJECTID of the existing record
that is causing the conflict.

30

Integration Specification – Resource API

Error querying for IrwinRID in
ResourceCapability: Database error

Depending on the error, this may
indicate a server failure of some
kind.

Check your input data and try
again. Depending on the error, this
may indicate a server failure of
some kind. If this happens
repeatedly, please report it to the
implementation team.

305 Unable to validate whether value is
unique because the value of
'NameMiddle' could not be parsed.

Uniqueness for records within a
given layer may be enforced
based on one or more fields; at
least one of those fields couldn’t
be read correctly.

Ensure all required fields are
present in the request and conform
to the respective documented
requirements.

values (NameFirst, NameLast,
NameMiddle, HomeDispatchUnit,
ProviderUnit, BirthMonthDay) must be
unique in Resource (conflicts with
IrwinRID
‘069BA152-C519-4502-A560-3F7275
4FB862’).

Uniqueness for records within a
given layer may be enforced
based on one or more fields; the
aggregate value of those fields in
the submitted request would
result in a duplicate (non-unique)
record.

Change at least one of the values
identified in the message to ensure
the combination of those fields is
unique.

Note - this validation error
response will additionally
include a property
“conflictObjectId”, set to the
OBJECTID of the existing record
that is causing the conflict.

Error querying for LastName in
Resource: Database error

Depending on the error, this may
indicate a server failure of some
kind.

Check your input data and try
again. Depending on the error, this
may indicate a server failure of
some kind. If this happens
repeatedly, please report it to the
implementation team.

306 Unable to validate whether value is
valid because the value of
'ResourceKind' could not be parsed.

Some properties are only valid
for certain ResourceKinds; the
value of ResourceKind couldn’t
be determined so there is no way
to determine if the specified
property is valid.

Ensure the value of ResourceKind
is included in the request and is
valid.

Unable to validate whether value is
valid because the resource kind could
not be determined(1).

Unable to validate whether value is
valid because the resource kind could
not be determined(2).

31

Integration Specification – Resource API

Unable to validate whether value is
valid because the resource kind could
not be determined(3).

a value is not allowed for resource
kind Overhead.

The property specified is not
valid for the ResourceKind
specified (in this case,
Overhead).

Remove the value from the
request.

307 Unable to validate whether value is
required because the value of
'ResourceKind' could not be parsed.

Some properties are only
required for certain
ResourceKinds; the value of
ResourceKind couldn’t be
determined so there is no way to
determine if the specified
property is required.

Ensure the value of ResourceKind
is included in the request and is
valid.

Unable to validate whether value is
required because the resource kind
could not be determined(1).

Unable to validate whether value is
required because the resource kind
could not be determined(2).

Unable to validate whether value is
required because the resource kind
could not be determined(3).

a value is required for resource kind
Overhead.

The property specified must
have a non-null value for the
ResourceKind specified (in this
case, Overhead).

Ensure the property is included in
the request and has a valid,
non-null value.

308 value must be exactly 17 characters
long.

VINs must be exactly 17
characters long.

Ensure the VIN conforms to the
standard defined in the US CFR.

value cannot contain the letters 'I', 'O',
or 'Q'.

A VIN may not contain any of the
letters “I” (9th letter of the English
alphabet), “O” (15th), or “Q” (17th).

32

https://www.ecfr.gov/cgi-bin/text-idx?SID=18b4d0415b77325b50963d4312e0a382&mc=true&node=pt49.6.565&rgn=div5

Integration Specification – Resource API

Not a valid VIN. The specified VIN does not
conform to the standard defined
in the US CFR.

8 Contingency Plan

Contingency plan documents are stored at
https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information.

9 Document Versions

Date Author Changes

10/26/2023 Eric Neyman Release for V9

02/08/2024 Steven
Bankston

Updated section,3.6.2 Creating and Updating Resource
Requests.

Added data elements to clarify steps needed in process.

8/29/2024 Eric Neyman Updated for V10 changes

33

https://www.ecfr.gov/cgi-bin/text-idx?SID=18b4d0415b77325b50963d4312e0a382&mc=true&node=pt49.6.565&rgn=div5
https://www.wildfire.gov/application/irwin-integrated-reporting-wildfire-information

