
1

Aaron Swartz s A Programmable Web
An Unfinished Work.pdf

Exported from Wikisource on July 13, 2024

2

Formatting guidelines specific to this work may have
already been established. Please check this Index's
discussion page and follow any such conventions.

https://en.wikisource.org/wiki/File:Imbox_content.png
https://en.wikisource.org/wiki/Index_talk:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf

3

Contents

ix
1

1
2

9
3

19
4

25

Foreword
by James
Hendler

Introduction:
A
Programmable
Web

Building
for Users:
Designing
URLs

Building
for
Search
Engines:
Following
REST
Building
for
Choice:
Allowing
Import
and
Export

https://en.wikisource.org/wiki/File:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/11
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/13
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/21
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/31
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/37

4

Title
A Programmable
Web (An Unfinished
Work)

Author Aaron Swartz
Year 2013

Publisher Morgan&Claypool
Publishers

Location U.S.
Source pdf

Progress

Proofread—All
pages of the work
proper are proofread,
but not all are
validated

Transclusion Fully transcluded
Pages (key to Page Status)
Cvr - i ii iii iv v vi vii viii ix x 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49 50
51 52 53 54

5

31
6

41
7

43
8

51

Building
a
Platform:
Providing
APIs
Building
a
Database:
Queries
and
Dumps
Building
for
Freedom:
Open
Data,
Open
Source

Conclusion:
A Semantic
Web?

https://en.wikisource.org/wiki/A_Programmable_Web
https://en.wikisource.org/wiki/Author:Aaron_Hillel_Swartz
https://en.wikisource.org/wiki/File:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf
https://en.wikisource.org/wiki/Category:Index_Proofread
https://en.wikisource.org/wiki/Category:Fully_transcluded
https://en.wikisource.org/wiki/Help:Page_Status
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/1
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/2
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/3
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/4
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/5
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/6
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/7
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/8
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/9
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/10
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/11
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/12
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/13
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/14
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/15
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/16
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/17
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/18
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/19
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/20
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/21
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/22
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/23
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/24
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/25
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/26
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/27
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/28
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/29
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/30
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/31
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/32
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/33
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/34
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/35
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/36
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/37
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/38
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/39
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/40
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/41
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/42
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/43
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/44
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/45
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/46
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/47
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/48
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/49
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/50
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/51
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/52
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/53
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/54
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/55
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/56
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/57
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/58
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/59
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/60
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/61
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/62
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/63
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/64
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/65
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/66
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/43
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/53
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/55
https://en.wikisource.org/wiki/Page:Aaron_Swartz_s_A_Programmable_Web_An_Unfinished_Work.pdf/63

5

Foreword by James Hendler

Editor, Synthesis Lectures on the Semantic Web:
Theory and Technology

In 2009, I invited Aaron Swartz to contribute a "synthesis
lecture"—essentially a short online book—to a new series I
was editing on Web Engineering. Aaron produced a draft of
about 40 pages, which is the document you see here. This
was a "first version" to be extended later. Unfortunately,
and much to my regret, that never happened.

The version produced by Aaron was not intended to be the
finished product. He wrote this relatively quickly, and sent
it to us for comments. I sent him a short set, and later Frank
van Harmelen, who had joined as a coeditor of the series,
sent a longer set. Aaron iterated with us for a bit, but then
went on to other things and hadn't managed to finish.

With Aaron’s death in January, 2013, we decided it would
be good to publish this so people could read, in his own
words, his ideas about programming the Web, his
ambivalence about different aspects of the Semantic Web
technology, some thoughts on Openness, etc.

This document was originally produced in “markdown”
format, a simplified HTML/Wiki format that Aaron co-
designed with John Gruber ca. 2004. We used one of the

6

many free markdown tools available on the Web to turn it
into HTML, and then in turn went from there to Latex to
PDF, to produce this document. This version was also
edited to fix various copyediting errors to improve
readability. An HTML version of the original is available at
http://www.cs.rpi.edu/~hendler/ProgrammableWebSwartz2
009.html.

As a tribute to Aaron, Michael Morgan of Morgan &
Claypool, the publisher of the series, and I have decided to
publish it publicly at no cost. This work is licensed by
Morgan & Claypool Publishers,
http://www.morganclaypool.com, under a CC-BY-SA-NC
license.

Please attribute the work to its author, Aaron Swartz.

Jim Hendler
February 2013

http://www.cs.rpi.edu/~hendler/ProgrammableWebSwartz2009.html
http://www.morganclaypool.com/

7

CHAPTER 1

Introduction: A

Programmable Web

If you are like most people I know (and, since you’re
reading this book, you probably are—at least in this
respect), you use the Web. A lot. In fact, in my own
personal case, the vast majority of my days are spent
reading or scanning web pages—a scroll through my
webmail client to talk with friends and colleagues, a weblog
or two to catch up on the news of the day, a dozen short
articles, a flotilla of Google queries, and the constant turn to
Wikipedia for a stray fact to answer a nagging question.

All fine and good, of course; indeed, nigh indispensable.
And yet, it is sobering to think that little over a decade ago
none of this existed. Email had its own specialized
applications, weblogs had yet to be invented, articles were
found on paper, Google was yet unborn, and Wikipedia not
even a distant twinkle in Larry Sanger’s eye.

And so, it is striking to consider—almost shocking, in fact
—what the world might be like when our software turns to
the Web just as frequently and casually as we do. Today, of

8

course, we can see the faint, future glimmers of such a
world. There is software that phones home to find out if
there’s an update.There is software where part of its content
—the help pages, perhaps, or some kind of catalog—is
streamed over the Web. There is software that sends a copy
of all your work to be stored on the Web. There is software
specially designed to help you navigate a certain kind of
web page. There is software that consists of nothing but a
certain kind of web page. There is software—the so-called
“mashups”—that consists of a web page combining
information from two other web pages. And there is
software that, using “APIs,” treats other web sites as just
another part of the software infrastructure, another function
it can call to get things done.

Our computers are so small and the Web so great and vast
that this last scenario seems like part of an inescapable
trend. Why wouldn’t you depend on other web sites
whenever you could, making their endless information and
bountiful abilities a seamless part of yours? And so, I
suspect, such uses will become increasingly common until,
one day, your computer is as tethered to the Web as you
yourself are now.

It is sometimes suggested that such a future is impossible,
that making a Web that other computers could use is the
fantasy of some (rather unimaginative, I would think) sci-fi
novelist. That it would only happen in a world of lumbering
robots and artificial intelligence and machines that follow

9

you around, barking orders while intermittently
unsuccessfully attempting to persuade you to purchase a
new pair of shoes.

So it is perhaps unsurprising that one of the critics who has
expressed something like this view, Cory Doctorow, is in
fact a rather imaginative sci-fi novelist (amongst much
else). Doctorow’s complaint is expressed in his essay
“Metacrap: Putting the torch to seven straw-men of the
meta-utopia.” [1] It is also reprinted in his book of essays
Content: Selected Essays on Technology, Creativity,
Copyright, and the Future of the Future (2008, Tachyon
Publications) which is likewise available online at
http://craphound.com/content/download/.

Doctorow argues that any system collect accurate
“metadata”—the kind of machine-processable data that will
be needed to make this dream of computers-using-the-Web
come true—will run into seven inescapable problems:
people lie, people are lazy, people are stupid, people don’t
know themselves, schemas aren’t neutral, metrics influence
results, and there’s more than one way to describe
something. Instead, Doctorow proposes that instead of
trying to get people to provide data, we should instead look
at the data they produce incidentally while doing other
things (like how Google looks at the links people make
when they write web pages) and use that instead.

https://craphound.com/content/download/

10

Doctorow is, of course, attacking a strawman. Utopian
fantasies of honest, complete, unbiased data about
everything are obviously impossible. But who was trying
for that anyway? The Web is rarely perfectly honest,
complete, and unbiased—but it’s still pretty damn useful.
There’s no reason making a Web for computers to use can’t
be the same way.

I have to say, however, the idea’s proponents do not escape
culpability for these utopian perceptions. Many of them
have gone around talking about the “Semantic Web” in
which our computers would finally be capable of “machine
understanding.” Such a framing (among other factors) has
attracted refugees from the struggling world of artificial
intelligence, who have taken it as another opportunity to
promote their life’s work.

Instead of the “let’s just build something that works”
attitude that made the Web (and the Internet) such a roaring
success, they brought the formalizing mindset of
mathematicians and the institutional structures of academics
and defense contractors. They formed committees to form
working groups to write drafts of ontologies that carefully
listed (in 100-page Word documents) all possible things in
the universe and the various properties they could have, and
they spent hours in Talmudic debates over whether a
washing machine was a kitchen appliance or a household
cleaning device.

11

With them has come academic research and government
grants and corporate R&D and the whole apparatus of
people and institutions that scream “pipedream.” And
instead of spending time building things, they’ve convinced
people interested in these ideas that the first thing we need
to do is write standards. (To engineers, this is absurd from
the start—standards are things you write after you’ve got
something working, not before!)

And so the “Semantic Web Activity” at the Worldwide Web
Consortium (W3C) has spent its time writing standard upon
standard: the Extensible Markup Language (XML), the
Resource Description Framework (RDF), the Web
Ontology Language (OWL), tools for Gleaning Resource
Descriptions from Dialects of Languages (GRDDL), the
Simple Protocol And RDF Query Language (SPARQL) (as
created by the RDF Data Access Working Group (DAWG)).

Few have received any widespread use and those that have
(XML) are uniformly scourges on the planet, offenses
against hardworking programmers that have pushed out
sensible formats (like JSON) in favor of overly-complicated
hairballs with no basis in reality (I’m not done yet!—more
on this in chapter 5).

Instead of getting existing systems to talk to each other and
writing up the best practices, these self-appointed
guarantors of the Semantic Web have spent their time
creating their own little universe, complete with Semantic

12

Web databases and programming languages. But databases
and programming languages, while far from perfect, are
largely solved problems. People already have their
favorites, which have been tested and hacked to work in all
sorts of unusual environments, and folks are not particularly
inclined to learn a new one, especially for no good reason.
It’s hard enough getting people to share data as it is, harder
to get them to share it in a particular format, and completely
impossible to get them to store it and manage it in a
completely new system.

And yet this is what Semantic Webheads are spending their
time on. It’s as if to get people to use the Web, they started
writing a new operating system that had the Web built-in
right at the core. Sure, we might end up there someday, but
insisting that people do that from the start would have
doomed the Web to obscurity from the beginning.

All of which has led “web engineers” (as this series’ title so
cutely calls them) to tune out and go back to doing real
work, not wanting to waste their time with things that don’t
exist and, in all likelihood, never will. And it’s led many
who have been working on the Semantic Web, in the vain
hope of actually building a world where software can
communicate, to burnout and tune out and find more
productive avenues for their attentions.

For an example, look at Sean B. Palmer. In his influential
piece, “Ditching the Semantic Web?”,[2] he proclaims “It’s

13

not prudent, perhaps even not moral (if that doesn’t sound
too melodramatic), to work on RDF, OWL, SPARQL, RIF,
the broken ideas of distributed trust, CWM, Tabulator,
Dublin Core, FOAF, SIOC, and any of these kinds of
things” and says not only will he “stop working on the
Semantic Web” but “I will, moreover, actively dissuade
anyone from working on the Semantic Web where it
distracts them from working on” more practical projects.

It would be only fair here to point out that I am not exactly
an unbiased observer. For one thing, Sean, like just about
everyone else I cite in the book, is a friend. We met through
working on these things together but since have kept in
touch and share emails about what we’re working on and
are just generally nice to each other. And the same goes for
almost all the other people I cite and criticize.

Moreover, the reason we were working together is that I too
did my time in the Semantic Web salt mines. My first web
application was a collaboratively-written encyclopedia, but
my second, aggregated news headlines from sites around
the Web, led me into a downward spiral that ended with
many years spent on RDF Core Working Groups and an
ultimate decision to get out of the world of computers
altogether.

Obviously, that didn’t work out quite as planned. Jim
Hendler, another friend and one of the AI transplants I’ve
just spend so much time taking a swing at, asked me if I’d

14

write a bit on the subject to kick off a new series of
electronic books he’s putting together. I’ll do just about
anything for a little cash (just kidding; I just wanted to get
published (just kidding; I’ve been published plenty of times
times (just kidding; not that many times (just kidding; I’ve
never been published (just kidding; I have, but I just wanted
more practice (just kidding; I practice plenty (just kidding; I
never practice (just kidding; I just wanted to publish a book
(just kidding; I just wanted to write a book (just kidding;
it’s easy to write a book (just kidding; it’s a death march
(just kidding; it’s not so bad (just kidding; my girlfriend left
me (just kidding; I left her (just kidding, just kidding, just
kidding))))))))))))))) and so here I am again, rehashing all
the old ground and finally getting my chance to complain
about what a mistake all the Semantic Web folks have
made.

Yet, as my little thought experiment above has hopefully
made clear, the programmable web is anything but a pipe
dream—it is today’s reality and tomorrow’s banality. No
software developer will remain content to limit themselves
only to things on the user’s own computer. And no web site
developer will be content to limit their site only to users
who act with it directly.

Just as the interlinking power of the World Wide Web
sucked all available documents into its maw—encouraging
people to digitize them, convert them into HTML, give
them a URL, and put them on the Internet (hell, as we speak

15

Google is even doing this to entire libraries)—the
programmable Web will pull all applications within its
grasp. The benefits that come from being connected are just
too powerful to ultimately resist.

They will, of course, be granted challenges to business
models—as new technologies always are—especially for
those who make their money off of gating up and charging
access to data. But such practices simply aren’t tenable in
the long term, legally or practically (let alone morally).
Under US law, facts aren’t copyrightable (thanks to the
landmark Supreme Court decision in Feist v. Rural
Telephone Service) and databases are just collections of
facts. (Some European countries have special database
rights, but such extensions have been fervently opposed in
the US.)

But even if the law didn’t get in the way, there’s so much
value in sharing data that most data providers will
eventually come around. Sure, providing a website where
people can look things up can be plenty valuable, but it’s
nothing compared to what you can do when you combine
that information with others.

To take an example from my own career, look at the
website OpenSecrets.org. It collects information about
who’s contributing money to US political candidates and
displays nice charts and tables about the industries that have

16

funded the campaigns of presidential candidates and
members of Congress.

Similarly, the website Taxpayer.net provides a wealth of
information about Congressional earmarks—the funding
requests that members of Congress slip into bills, requiring
a couple million dollars be given to someone for a
particular pet project. (The $398 million “Bridge to
Nowhere” being the most famous example.)

Both are fantastic sites and are frequently used by observers
of American politics, to good effect. But imagine how much
better they would be if you put them together—you could
search for major campaign contributors who had received
large earmarks.

Note that this isn’t the kind of “mashup” that can be
achieved with today’s APIs. APIs only let you look at the
data in a particular way, typically the way that the hosting
site looks at it. So with OpenSecrets’ API you can get a list
of the top contributors to a candidate. But this isn’t enough
for the kind of question we’re interested in—you’d need to
compare each earmark against each donor to see if they
match. It requires real access to the data.

Note also that the end result is ultimately in everyone’s best
interest. OpenSecrets.org wants people to find out about the
problematic influence of money in politics. Taxpayer.net
wants to draw attention to this wasteful spending. The

17

public wants to know how money in politics causes
wasteful spending and a site that helps them do so would
further each organization’s goals. But they can only get
there if they’re willing to share their data.

Fortunately for us, the Web was designed with this future in
mind. The protocols that underpin it are not designed
simply to provide pages for human consumption, but also to
easily accommodate the menagerie of spiders, bots, and
scripts that explore its fertile soil. And the original
developers of the Web, the men and women who invented
the tools that made it the life-consuming pastime that it is
today, have long since turned their sights towards making
the Web safe, even inviting, for applications.

Unfortunately, far too few are aware of this fact, leading
many to reinvent—sloppily—the work that they have
already done. (It hasn’t helped that the few who are aware
have spent their time working on the Semantic Web
nonsense that I criticized above.) So we will begin by trying
to understand the architecture of the Web—what it got right
and, occasionally, what it got wrong, but most importantly
why it is the way it is. We will learn how it allows both
users and search engines to co-exist peacefully while
supporting everything from photo-sharing to financial
transactions.

We will continue by considering what it means to build a
program on top of the Web—how to write software that

18

both fairly serves its immediate users as well as the
developers who want to build on top of it. Too often, an
API is bolted on top of an existing application, as an
afterthought or a completely separate piece. But, as we’ll
see, when a web application is designed properly, APIs
naturally grow out of it and require little effort to maintain.

Then we’ll look into what it means for your application to
be not just another tool for people and software to use, but
part of the ecology—a section of the programmable web.
This means exposing your data to be queried and copied
and integrated, even without explicit permission, into the
larger software ecosystem, while protecting users’ freedom.

Finally, we’ll close with a discussion of that much-maligned
phrase, “the Semantic Web,” and try to understand what it
would really mean.

Let’s begin.

1. ↑ Available online at http://www.well.com/˜doctorow/metacrap.htm.
2. ↑ Available online at http://inamidst.com/whits/2008/ditching.

http://www.well.com/%CB%9Cdoctorow/metacrap.htm
http://inamidst.com/whits/2008/ditching

19

From billboards, buses, and boxes they peer out at us like
alien symbols (except hopefully less threatening): URLs are
everywhere. Most obviously, they appear at the top of the
browser window while people are using your website, but
they also appear in a myriad of other contexts: in the status
bar when someone has the mouse over a link, in search
results, in emails, in blogs, read over the phone, written
down on napkins, listed in bibliographies, printed on
business cards and t-shirts and mousepads and bumper
stickers. They’re versatile little symbols.

Furthermore, URLs have to last. Those t-shirts and links
and blogs will not disappear simply because you decided to
reorganize your server, or move to a different operating
system, or got promoted and replaced by a subordinate (or
voted out of office). They will last for years and years to
come, so your URLs must last with them.

Moreover, URLs do not just exist as isolated entities (like
“http://example.org/lunch/bacon.html”). They combine to
form patterns (“bacon.html”, “lettuce.html”,
“tomato.html”). And each of these patterns finds its place in
a larger path of interaction (“/”, “/lunch/”,
“/lunch/bacon.html”).

Because of all this, URLs cannot be some side-effect or
afterthought, as many seem to wish. Designing URLs is the
most important part of building a web application and has

http://example.org/lunch/bacon.html%E2%80%9D

20

to be done first. Encoded in their design are a whole series
of implicit assumptions about what your site is about, how
it is structured, and how it should be used; all important and
largely-unavoidable questions.

Unfortunately, many tools for building web applications try
to hide such questions from you, preventing you from
designing URLs at all. Instead, they present their own
interface to the programmer, from which they generate
URLs by making up random numbers or storing cookies or
worse. (Nowadays, with Ajax and Flash, some don’t
provide URLs at all, making a site hell for anyone who
wants to send something cool they found to their friends.)

And when people who use such software find themselves
having to write a URL on a t-shirt or link to something from
an email, they create a redirect—a special URL who’s only
purpose is to introduce people to the nightmarish
randomnumber system used by their actual website. This
solves their immediate problem of figuring out what to
write on the t-shirt, but it doesn’t solve any of the more
fundamental problems, and it doesn’t make it possible for
everyone else to make their own t-shirts or send out their
own emails.

If your tools don’t let you design your URLs, you need to
get better tools. Nobody would dare do graphic design with
software that didn’t let them change the font or paint with a
brush that could only make squares. Yet some people think

21

it’s perfectly fine to sacrifice control over their URLs, the
most fundamentally important part of your website. It’s not.
Get better tools.[1]

Once you have decent tools, it’s time to start designing.
Let’s start with the biggest constraints first. URLs shouldn’t
change (and if they do change, the old ones should redirect
to the new ones) so they should only contain information
about the page that never changes. This leads to some
obvious requirements.

These were most famously pointed out by the Web’s
inventor, Sir Timothy John Berners-Lee OM KBE FRS
FREng FRSA (b. 8 June 1955, London, England). During a
miraculous Christmas break in 1990 that reminds one of
Einstein’s annus mirabilis,Tim not only invented the URL,
the HTML format, and the HTTP protocol, but also wrote
the first web browser, WYSIWYG web editor, and web
server. (Makes you want to give the guy more Christmas
breaks.) Although, in fact, this is slightly redundant, since
the first web browser (named WorldWideWeb), not only let
you read web pages, but let you write them as well. The
idea was that the Web should be an interactive medium,
with everybody keeping their own notebooks of interesting
things they found and collaborating on documents with
people and posting stuff they’d done or wanted to share.

Editing a web page was as easy as clicking on it—you
could just switch into editing mode and select and correct

22

typos right on the page, just like in a word processor.
(You’d hit save and it would automatically upload them to
the server.) You could create new pages just by opening a
new window and instead of bookmarks, you were expected
to build web pages keeping track of the sites you found
interesting. (The original browser didn’t have a URL bar, in
part to force you to keep track of pages this way.)

It was a brilliant idea, but unfortunately it was written for
the obscure NeXT operating system (which later became
Mac OS X) and as a result few have ever gotten to use it.
Instead, they used the clone created by a team at the
University of Illinois Urbana-Champaign (UIUC), which
never supported editing because programmer Marc
Andreesen was too dumb to figure out how to do page
editing with inline pictures, something Tim Berners-Lee’s
version had no problem with. Marc Andreesen made half a
billion dollars as UIUC’s browser became Netscape while
Berners-Lee continued doing technical support for a team
of physicists in Switzerland. (He later became a Research
Scientist at MIT.)

 Image:

http://www.w3.org/History/1994/WWW/Journals/CACM/s
creensnap2_24c.gif

The result is that we’re only reacquiring these marvelous
features a couple decades later, through things like weblogs
and Wikipedia. And even then, they’re far more limited

http://www.w3.org/History/1994/WWW/Journals/CACM/screensnap2_24c.gif

23

than the wide-reaching interactivity that Berners-Lee
imagined.

But let’s turn away from the past and back to the future. Sir
Tim argued that to protect your URLs into the future, you
needed to follow some basic principles. In his 1998
statement “Cool URIs don’t change”,[2] described as “an
attempt to redirect the energy behind the quest for
coolness... toward usefulness [and] longevity,” he laid them
out:

However, I go on to disagree with Tim’s proposed solution
for generating Cool URIs. He recommends thoroughly date-
based schemes, like
“http://www.w3.org/1998/12/01/chairs”. As far as I’ve
noticed, only the W3C has really thoroughly adopted this
strategy and when I’ve tried it, it’s only led to ugliness and
confusion.

(You may notice that Tim says URI, while I say URL. URL,
the original term, stands for Uniform Resource Locator. It
was developed, along with the Web, to provide a consistent
way for referring to web pages and other Internet resources.
Since then, however, it has been expanded to provide a way
for referring to all sorts of things, many of which are not
web pages, and some of which cannot even be “located” in
any automated sense (e.g., abstract concepts like “Time
magazine”). Thus, the term was changed to URI, Uniform
Resource Identifier, to encompass this wider set. I stick

http://www.w3.org/1998/12/01/chairs%E2%80%9D

24

with the term URL here since it’s more familiar, but we’ll
end up discussing abstract concepts in later chapters.)

First, URLs shouldn’t include technical details of the
software you used to build your website, since that could
change at any moment. Thus, things like “.php” and “.cgi”
are straight out. For similar reasons, you can drop “.html”,
“PHP_SESS_ID” and their ilk. You’ll also want to make
sure that the names of your servers (e.g.,
“www7.example.org” or “plato.example.net”) aren’t seen in
your URLs. Moving from one programming language, one
format, or one server to another is fairly common; there’s
no reason your URLs should depend upon your current
decision.

Second, you’ll want to leave out any facts about the page
that might change. This is just about everything (its author,
its category, who can read it, whether it’s official or a draft,
etc.), so your URLs are really limited to just the essential
concept of a page, the page’s essence. What’s the one thing
that can’t be changed, that makes this page this page?

Third, you’ll want to be really careful about classification.
Many people like to divide their websites up by topic,
putting their very favorite recipes into the ‘/food/‘ directory
and their stories about the trips they take into ‘/travel/‘ and
the stuff they’re reading into ‘/books/‘. But inevitably they
end up having a recipe that requires a trip or a book that’s
about food and they think it belongs in both categories. Or

25

they decide that drink should really be broken out and get
its own section. Or they decide to just reorganize the whole
thing altogether.

Whatever the reason, they end up rearranging their files and
changing their directory structure, breaking all their URLs.
Even if you’re just rearranging the site’s look, it takes a lot
of discipline not to move the actual files around, probably
more than you’re going to have. And setting up redirects for
everything is so difficult that you’re just not going to
bother.

Much better to plan ahead so that the problem never comes
up in the first place, by leaving categories out of the URL
altogether.

So that’s a lot of don’ts, what about some do’s?

Well one easy way to have safe URLs is to just pick
numbers. So, for example, your blogging system might just
assign each post with a sequential ID and give them URLs
like:

 http://posterous.com/p/234
 http://posterous.com/p/235
 http://posterous.com/p/236

Nothing wrong with that. However, if your site is a little
more popular, the IDs can get quite long and confusing:

 http://books.example.org/b/30283833

http://posterous.com/p/234
http://posterous.com/p/235
http://posterous.com/p/236
http://books.example.org/b/30283833

26

In a situation like this, you might want to encode numbers
using base 36 instead of base 10. Base 36 means you get to
use all the letters in addition to just numbers, but only one
case, so there’s no confusion about how to capitalize
numbers. (Imagine someone reading the URL over the
phone. It’s a lot easier to say “gee, five, enn, four” than
“lower-case gee, the number five, upper case enn, the
number four.”)

To be super-careful, you might want to go a step further and
skip any numbers that end up having zero, O, one, L, or I in
them, since those letters can often be confused.

The result is that you have URLs that look like:

 http://books.example.org/b/3j7is

and end up being a lot shorter. While four base 10 digits can
only go up to 9999, in base 36 zzzz is actually 1,679,615.
Not bad.

One problem with numerical identifiers, however, is that
they’re not “optimized” for search engines. Search engines
don’t just look at the content of a page to decide whether
it’s a good result for someone’s search, they also look at the
URL which, because it’s so limited, is given special weight.
But if your URLs are just numbers, they’re unlikely to have
anything that matches people’s search engine queries,
making them less likely to be found in search results. To fix
this, people are appending some text after the number, as in:

http://books.example.org/b/3j7is

27

 http://www.hulu.com/watch/17003/saturday-
night-liveweekend-update-judy-grimes

The text at the end is part of the URL, but it’s not used to
identify the right page. Instead, the system looks only at the
number. Once it gets there, it looks at the current title it has
for the number, sees if it matches the URL, and if it doesn’t,
redirects users to the correct one. That way they can type in:

 http://www.hulu.com/watch/17003/ or even:

 http://www.hulu.com/watch/17003/this-is-where-
i-got-thejoke-above [3]

and still get the right page. This isn’t perfect, since many
users will still think they have to type in the long text
“saturday-night-live-weekend-update-judy-grimes,” but it’s
probably outweighed by the number of additional users who
will find you more easily on search engines. (Ideally, there
would be some way in the URL to indicate to humans that
the remaining text is optional, but I haven’t seen any
conventions here yet. I guess the hope is that they’ll notice
the number and just get the idea.)

(You’ll note that all these URLs are within directories, not
at the top-level. This just feels cleaner to me—I don’t like
imagining the entire site’s files are sprawled across the root
directory randomly; it’s much nicer to think of them stacked
up inside ‘/watch/‘ or ‘/b/‘. But if your main nouns are
subdirectories themselves, as with the user pages on Twitter

http://www.hulu.com/watch/17003/saturday-night-liveweekend-update-judy-grimes
http://www.hulu.com/watch/17003/
http://www.hulu.com/watch/17003/this-is-where-i-got-thejoke-above

28

and Delicious, it might make sense to break this rule. (More
on this in a bit.))

Numbers work well in cases where pages get created
automatically (maybe you’re importing a lot of stuff, or you
generate pages in response to emails or incidentally for
other actions) or their titles tend to change, but in other
cases you might prefer what’s called a slug. A slug is just a
little bit of text that looks good in a URL, like “wrt/dfw” or
“beyond-flash”. When a user creates a page, you have them
create the slug at the same time (perhaps including an auto-
generated one from the title by default), and then you force
them to stick with it (or else make sure to redirect all the old
ones whenever it changes).

On sites like Wikipedia, slugs are basically generated
incidentally. When you include text like “Jackson was
hardly a fan of the late Robert Davidson‘ the site
automatically links you to a new page with the slug
“Robert/Davidson”. Especially with the numerous
conventions about titles Wikipedia has built over the years
(along with the endless back-up redirects), the result is
surprisingly convenient.

You’ll note that all this discussion has basically been about
nouns—the main things that make up your site, whatever
those are (videos, blog posts, books). There are typically
three other types of pages: subpages (which drill down into
some aspect of the nouns), site pages (like about and help

29

and so on), and verbs (which let you do things with the
nouns).

Subpages are some of the easiest, and some of the most
difficult. In the easy cases, you just indicate the subpage by
adding a slash and a slug for the subpage. So, if your page
for Nancy Pelosi is at:

 http://watchdog.net/p/nancy_pelosi

it seems pretty obvious that your page on her finances
should be at:

 http://watchdog.net/p/nancy_pelosi/finances

Sometimes the majority of your site is subpages. So with
Twitter, a user’s page is at:

 http://twitter.com/aaronsw

while their status messages get URLs like:

 http://twitter.com/aaronsw/statuses/918239758

(Notes: The “statuses” bit is redundant and the number way
too long.)

But things get more complicated when your nouns have
more complex relationships. Take Delicious, where users
post links under various tags. How should things be
structured? user/link/tag? tag/user/link?

http://watchdog.net/p/nancy_pelosi
http://watchdog.net/p/nancy_pelosi/finances
https://twitter.com/aaronsw
https://twitter.com/aaronsw/statuses/918239758

30

Delicious, which for a long time used its URL scheme as a
primary navigation interface, is so brilliant at its URL
choices that it should be carefully studied. They decided
that users were the primary object and gave them the whole
space in ‘/‘ (like Twitter). And underneath each user, you
could filter by tags, so you have:

 http://delicious.com/aaronsw (links from me)
 http://delicious.com/aaronsw/video (links from
me tagged “video”)
 http://delicious.com/aaronsw/video+tech (links
from me tagged

“video” and “tech”)

And then they created a special pseudo-user called tag that
lets you see all links with a tag:

 http://delicious.com/tag/tech (all links
tagged “tech”)

(The URLs for links aren’t as smart, but let’s not dwell on
that.) It’s hard to give general rules for how to solve such
inter-linking problems; you basically have to do what “feels
right” for your app. for social sites, like Delicious and
Twitter, this means putting the focus on the users, since
that’s primarily what users care about. But for other apps
that might make less sense.

It’s tempting to just not decide and support all of them. So,
in place of Delicious, you’d have:

http://delicious.com/aaronsw
http://delicious.com/aaronsw/video
http://delicious.com/aaronsw/video+tech
http://delicious.com/tag/tech

31

 http://del.example.org/u/aaronsw (links from
me)
 http://del.example.org/t/tech (links about
tech)
 http://del.example.org/u/aaronsw/t:tech (links
from about tech)
 http://del.example.org/t/tech/u:aaronsw (links
about tech from me)

The problem here is that the last two are duplicates. You
really want to pick one form and stay with it, otherwise you
end up confusing search engines and browser histories and
all the other tools that try to keep track of whether they’ve
already visited a page or not. If you do have multiple ways
of getting to the same page, you should pick one as the
official one and make sure all the others redirect. (In an
extreme case, you’d take the “video+tech” example above
and redirect it to “tech+video”, making the official URL be
the one where the tags are in alphabetical order.)

Next up: site pages. Looking at Twitter and Delicious
basically give away the store above (you mean I can have
“twitter.com/contact” if my username is “contact”?!), you
might wonder where they can possibly put their help and
login pages. One trick might be to reserve a subdirectory
like ‘/meta/‘ and put everything in there. But Delicious and
Twitter seem to get by just by reserving all the important
potential-page-names and putting stuff there. So, as you’d
expect, Twitter’s login page is at:

 http://twitter.com/login

http://del.example.org/u/aaronsw
http://del.example.org/t/tech
http://del.example.org/u/aaronsw/t:tech
http://del.example.org/t/tech/u:aaronsw
https://twitter.com/login

32

And, if you’re not expecting to have a lot of site pages, this
will get you thru. (Be sure to reserve “help” and “about”,
though.)

And, of course, if you’re not giving away the store, you
don’t have any of these problems. So just pick the sensible
URLs for the pages that users come to expect. And, of
course, be sure to follow all the noun-principles above.

That was easy, so we’re left with just verbs. There are two
ways you might imagine verbs working:

 pass the noun to the verb: /share?v=1234

 pass the verb to the noun: /v/1234?m=share

After spending a lot of time experimenting with this, I’m
convinced the latter is the right way. It takes up less of the
“URL-space,” it sorts nicer in people’s address bars, and it
makes it visually clear that you’re doing something to an
object.

It’s tempting to just use subpages, like:

 /v/1234/share

but I prefer the “?m=share” formulation for two reasons:
first, it works even when your nouns already have subpages,
and second, it makes it clear that the page is meant to do
something, not just convey more information. But the
converse is true as well. Don’t do:

33

 /p/nancy_pelosi?m=finances

making it look like the page is supposed to do something
when it really just conveys more information.

Alright, that’s enough about picking URLs. Let’s move on
to actually doing something with them!

1. ↑ If you need a place to start, there’s of course my own toolkit, web.py
(http://webpy.org/) as well as the Python web framework Django
(http://djangoproject.com/).

2. ↑ Available at http://www.w3.org/Provider/Style/URI.
3. ↑ Isn’t interesting how even though we typically read

books as series of pieces of paper stacked from left to
right, we still refer to things that come earlier as
“above” the others (or supra if you want to be all Latin
about it), as if we were all reading the raw scroll of
paper that Kerouac emitted from his typewriter. See,
e.g., http://www.npr.org/templates/story/story.php?
storyId=11709924 for details. Of course, unlike my
typewriter or notebook-bound predecessors, I’m
writing this in a wordprocessor whose simulated form
of up-down perfectly mimics Kerouac’s physical
scroll. Coming full circle, I suppose.

http://webpy.org/
https://djangoproject.com/
http://www.w3.org/Provider/Style/URI
http://www.npr.org/templates/story/story.php?storyId=11709924

34

Let’s talk about vacuum cleaners. It’s an all-too-common
story. You’ve got a nice shiny new apartment, but it doesn’t
stay that way for long. Dust falls on the floor, crumbs roll
off your plate, flotsam, jetsam, and the little pieces from
Jetsons’ toys begin to clutter your path. It’s time to clean.

Sweeping is fun at first—it gives you a little time to get lost
in thought about your web application while you’re doing
an ostensibly-useful repetitive-motion activity—but soon
you grow tired of it. But liberal guilt and those Barbara
Ehrenreich articles you read make you resistant to hiring a
maid. So instead of importing a hard-up girl from a foreign
country to do your housework, you hire a robot.

Now here’s the thing about robots (and some maids, for that
matter): it’s not at all clear to them what is trash and what is
valuable. They (the robots) wander around your house
trying to suck things up, but on their way they might leave
tire-treads on your manuscript, knock over your priceless
vase, or slurp up your collection of antique coins. And
sometimes it gets caught on the pull-cord for the blinds,
causing the robot to go in circles while pulling the shutters
open.

So you take precautions—before you run the robot, you
pick the cords off the floor and move your manuscript to
your desk and take care not to leave your pile of rare coins

35

in the corner. You make sure the place is set up so that the
robot can do its job without doing any real damage.

It’s exactly the same on the Web. (Except without the dust,
crumbs, Jetsons, maids, tire treads, vases, coins, or blinds.)
Robots (largely from search engines, but others come from
spammers, offline readers, and who knows what else) are
always crawling your site, leaving no nook or cranny
unexplored, vacuuming up anything they can find. And
unlike the household variety, you cannot simply unplug
them—you really have to be sure to keep things clean.[1]

Some people think they can just box robots out. “Oh, you
need a login to get in; that’ll keep out the robots.” That’s
what David Heinemeier-Hansson, creator of Rails, said. He
was wrong. Google software that ran on users computers
ended up exploring even pages behind the log-in
requirement, meaning the robots clicked on all the “Delete”
links, meaning robots deleted all the content. (Hansson, for
his part, responded by whining about the injustice of it all.)
Don’t let this happen to you.

Luckily, that genius Tim Berners-Lee (see previous chapter)
anticipated all this and set precautions. You see, when you
visit a website, you don’t just ask the server for the URL,
you also tell it what kind of request you’re making. Here’s a
typical HTTP/1.0 request:

GET /about/ HTTP/1.0

36

The first part (“GET”) is called the method, the second
(‘/about/‘) is the path, and the third (“HTTP/1.0”) is
obviously the version. GET is the method we’re probably
all familiar with—it’s the normal method used whenever
you want to get (GET it?) a page. But there’s another
method as well: POST.

If you think of URLs as little programs sitting inside a
server somewhere, GET can be thought of as just running
the program and getting a copy of its output, whereas POST
is more like sending it a message. Indeed, POST requests,
unlike GET requests, come with a payload. A message is
attached at the bottom, for the URL to do with as it wishes.

It’s intended for requests that actually do something that
messes the order of the universe (or, in the jargon, “changes
state”), instead of just trying to figure out what’s what. So,
for example, reading an old news story is a GET, since
you’re just trying to figure stuff out, but adding to your blog
is a POST, since you’re actually changing the state of your
blog.

(Now, if you want to be a real jerk about it, you can say that
all requests mess with the state of the universe. Every time
you request an old news story, it uses up electricity, and
moves the heads around on disk drives, and adds a line to
the server’s log, and puts a note in your NSA file, and so
on. Which is all true, but pretty obviously not the sort of

37

thing we had in mind, so let’s not mention it again. (Please,
NSA?))

The end result is pretty clear. It’s fine if Google goes and
reads old news stories, but it’s not OK if it goes around
posting to your blog. (Or worse, deleting things from it.)
Which means that reading the news story has to be a GET
and blog deleting has to be a POST.

Actually, that’s not quite true. There are other verbs besides
GET and POST (although those are by far the most
common). There’s GET, HEAD, POST, PUT, DELETE,
CONNECT, OPTIONS, PATCH, PROPFIND,
PROPPATCH, MKCOL, COPY, MOVE, LOCK,
UNLOCK, TRACE (and probably others). GET and POST
we’ve already seen. HEAD is like GET but only requests
the headers or a page and not the actual content. PUT is
there if you want to replace the contents of the page with
something entirely new—TimBL’s original web browser
used PUT whenever you tried to save a change you made to
a page. PATCH is like PUT but only changes part of a page.
DELETE, MOVE, COPY, LOCK, and UNLOCK should be
pretty self-explanatory. CONNECT is used for proxying
and tunneling other stuff. OPTIONS lets you find out what
the server supports. PROPFIND and PROPPATCH are used
for setting properties in the WebDAV protocol. MKCOL is
for making a WebDAV collection. (These probably
shouldn’t have all gotten their own methods...) TRACE

38

asks the server to just repeat back the request it got (it’s
useful for debugging).

But, frankly, GET and POST are the most frequently used,
in no small part because they’re the ones supported by all
Web browsers. GET, of course, is used every time you enter
a URL or click on a link, while POST can be used in some
forms. (Other forms are still GET, since they don’t change
anything.)

Following these rules is called following REST, after the
2000 Ph.D. dissertation of Roy Fielding, coauthor (with
Tim Berners-Lee and some others) of the official HTTP
specification (RFC 2616, if you’re interested). Roy, a big
bear of a man with a penchant for sports, set out to describe
theoretically the various styles (“architectures”) of network-
based applications. Then he describes the interesting hybrid
that the Web adopted, which he terms “Representational
State Transfer” or REST.

While REST is often used to mean something akin to “use
GET and POST correctly,” it’s actually much more
complicated, and more interesting, and we’ll spend a little
time on it just so you can see the different kind of
architectural tradeoffs that those Masters of the Universe
who have to design a system like the Web have to think
about.

https://tools.ietf.org/html/rfc2616

39

The first choice made was that the Web would be a client-
server system. Honestly, the Web is probably this way
because Tim did things this way and Tim did thinks this
way because that’s how everything else on the Internet was
back then. But it’s not impossible to imagine that the Web
could have been more peerto-peer, like some of the file-
sharing services we see today. (After all, the Web is in no
small part just file-sharing.)

The more likely option is, of course, to break away from the
Web altogether, and force people to download special
software to use your application. After all, this is how most
applications worked before the Web (and how many still
work today)—new software, new protocols, new
architectures for every app. There are certainly some good
reasons to do this, but doing so breaks you off from the rest
of the Web community—you can’t be linked to, you can’t
be crawled by Google, you can’t be translated by Babelfish,
and so on. If that’s a choice you want to make, you
probably shouldn’t be reading this book.

The second major choice was that the Web would be
“stateless.” Imagine a network connection as your computer
phoning up HQ and starting a conversation. In a stateful
protocol, these are long conversations—“Hello?” “Hello,
welcome to Amazon. This is Shirley.” “Hi Shirley, how are
you doing?” “Oh, fine, how are you?” “Oh, great. Just
great.” “Glad to hear it. What can I do for you?” “Well, I
was wondering what you had in the Books department.”

40

“Hmm, let me see. Well, it looks like we have over 15
million books. Could you be a bit more specific?” “Well, do
you have any by Dostoevsky?” (etc.). But the Web is
stateless—each connection begins completely anew, with
no prior history.

This has its upsides. For one thing, if you’re in the middle
of looking for a book on Amazon but right as you’re about
to find it you notice the clock and geebus! it’s late, you’re
about to miss your flight! So you slam your laptop shut and
toss it in your bag and dash to your gate and board the plane
and eventually get to your hotel entire days later, there’s
nothing stopping you from reopening your laptop in this
completely different country and picking up your search
right where you left off. All the links will still work, after
all. A stateful conversation, on the other hand, would never
survive a day-long pause or a change of country. (Similarly,
you can send a link to your search to a friend across the
globe and you both can use it without a hitch.)

It has benefits for servers too. Instead of having each client
tie up part of a particular server for as long as their
conversation lasts, stateless conversations get wrapped up
very quickly and can be handled by any old server, since
they don’t need to know any history.

Some bad web apps try to avoid the Web’s stateless nature.
The most common way is thru session cookies. Now
cookies certainly have their uses. Just like when you call

41

your bank on the phone and they ask you for your account
number so they can pull up your file, cookies can allow
servers to build pages customized just for you. There’s
nothing wrong with that.

(Although you have to wonder whether users might not be
better served by the more secure Digest authentication
features built into HTTP, but since just about every
application on the Web uses cookies at this point, that’s
probably a lost cause. There’s some hope for improvement
in HTML5 (the next version of HTML) since they’re– oh,
wait, they’re not fixing this. Hmm, well, I’ll try suggesting
it.)[2]

The real problem comes when you use cookies to create
sessions. For example, imagine if Amazon.com just had one
URL: http://www.amazon.com/. The first time you visited
it’d give you the front page and a session number (let’s say
349382). Then, you’d send call back and say “I’m session
number 349382 and I want to look at books” and it’d send
you back the books page. Then you’d say call back and say
“I’m session number 349382 and I want to search for
Dostoevsky.” And so on.

Crazy as it sounds, a lot of sites work this way (and many
more used to). For many years, the worst offender was
probably a toolkit called WebObjects, which most famously
runs Apple’s Web store. But, after years and years, it seems
WebObjects might have been fixed. Still, new frameworks

https://www.amazon.com/

42

like Arc and Seaside are springing up to take its place. All
do it for the same basic reason: they’re software for
building Web apps that want to hide the Web from you.
They want to make it so that you just write some software
normally and it magically becomes a web app, without you
having to do any of the work of thinking up URLs or
following REST. Well, you may get an application you can
use through a browser out of it, but you won’t get a web
app.

The next major piece of Web architecture is caching. Since
we have this long series of stateless requests, it sure would
be nice if we could cache them. That is, wouldn’t it be great
if every time you hit the back button, your browser didn’t
have to go back to the server and redownload the whole
page? It sure would. That’s why all browsers cache pages—
they keep a copy of them locally and just present that back
to you if you request it again.

But there’s no reason things need to be limited to just
browser caches. ISPs also sometimes run caches. That way,
if one person downloads the hot new movie trailer, the ISP
can keep a copy of it and just serve the same file to all of
their customers. This makes things much faster for the
customers (who aren’t competing with the whole world for
the same files) and much easier on the server operator (who
no longer has to serve quite so many copies). The one
problem is that it does tend to mess up your download

43

statistics a bit, but server operators can decide if they want
to pay that price.

Similarly, servers can run caches. Instead of browsers
visiting the server directly, they hit a server cache
(technically known as a reverse proxy) that checks to see if
it already has a copy of the page and, if so, serves it, but
otherwise asks the real server for it. If you build your web
app to follow REST, you can often make your site much,
much faster just by sticking a nice server cache (like
Polipo) in front of it. But, of course, if you do bad things
like use session cookies and ignore the rules about GET and
POST, the server cache will just screw everything up.
(Notice that only GETs can be cached; you wouldn’t want
to cache the result of something like adding a new blog post
or the next blog post would never get added!)

GET and POST are, of course, part of the next piece of
architecture, which Fielding calls “Uniform Interfaces.”
Every web app works the same basic way: there are a series
of URLs which you perform methods on. The methods
sometimes change the state of the object and the server
always returns the resulting “representation” of the object.

Thus, the name: Representational State Transfer (REST).

1. ↑ Although see http://ftrain.com/robot_exclusion_protocol.html.
2. ↑ http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2008-

October/016742.html.

http://ftrain.com/robot_exclusion_protocol.html
https://lists.whatwg.org/pipermail/whatwg-whatwg.org/2008-October/016742.html

44

Robots and browsers and protocols are fun, sure, but if you
want your site to succeed it ultimate has to appeal to
humans—the real people who build and use all that other
stuff. And even if information doesn’t, humans generally
want to be free. If you don’t believe me, ask a friend to lock
you in their trunk, and then reevaluate your position.

Greedy folks (i.e. businesspeople) tend to be kind of short-
sighted about this. “If I put big metal spikes in front of the
exit,” they think, “my customers will never want to leave!
My customer retention rates will go thru the roof.” They
decide to give a try and they have some big metal spikes
installed in front of the exit. And, being the sober-minded
realist businesspeople like to pretend they are, they measure
customer retention rates before and after the metal spikes.
And, sure enough, it worked—people aren’t leaving. Just
look at those numbers! But what they didn’t measure is that
people also aren’t coming back. After all, nobody wants to
go someplace with spikes on the exits. Think about this next
time you find that pop-up ads increase sell-thru rates.

This is why a site like Amazon is such a cluttered mess of
sell boxes. Amazon’s managers insist that they’re
rigorously hard-headed engineers. The boxes are there
because they sell things and their job is to make money.
Clean, clear, uncluttered pages may appeal to kids in art
school or Apple interns, but here in the real world cash is
king. And like Mark Penn advising Hillary Clinton, if you

45

don’t believe them they’ll pull out the numbers to “prove”
it. Every box, they say, was carefully tested: half the users
were given a page with the new box, half without. And the
users who got the page with the box bought more.

Well, no duh. Obviously more people are going to buy
something if you ask them to, just like more McDonald’s
customers will SuperSize their order when the disaffected
teenager asks them to. But Amazon’s gone way beyond that
—now we’re into the realm of the girl-with-the-headset
pitching us on every third item off the menu. Sure, you may
buy more this time, but after the stomachache hits you’ll
make sure your next outing is to Burger King.

Companies rarely try to measure such effects and even if
they did, it’s not easy. It’s a piece of cake to serve someone
an additional link and seeing if they click on it; keeping
track of whether they come back to the store in the weeks
and months to come is much harder. Worse, the difference
made by any one additional box is subtle, and thus hard to
measure. The real test isn’t whether removing one sell box
gets Amazon more customers, it’s whether switching to a
kindler, gentler layout does. But that would be a radical
change for Amazon—and thus pretty hard to test without
raising hackles and freaking people out. “Well, if you can’t
measure people,” the MBAs say, “you can at least ask
them.” And thus the dreaded “focus group,” whose flaws
can dwarf even the most bogus statistical study. At least
with the clickthrough games you’re measuring what people

46

actually do; with focus groups you find out what people
want you to think they say they do, which is a very different
thing.

For one thing, people are notoriously bad observers of
themselves. For the most part, we don’t know why or how
we do things, so when we’re asked we make up
rationalizations on the spot. This isn’t just carelessness—
it’s how the brain works. To accomplish tasks of any
complexity, we need to make their component parts
automatic—you’d never get to the store if you had to think
about which thigh muscles to move to get your leg in the
right position—and automatic behavior is exactly behavior
we don’t think about (this is why athletes’ memoirs are so
boring.[1]

So not only are you asking people a question they don’t—
can’t—know the answer to, you’re also asking them in a
nice conference room, filled with other people, after giving
them some cash. It doesn’t take much reading in social
psychology to realize this isn’t exactly an ideal situation for
honesty. People are, of course, going to say what they think
you want to hear, and even if you have the most neutral of
moderators asking the questions, they’re going to be able to
make some educated guesses as to what that is.

Which is why watching focus groups is such an infuriating
experience: like a girl pretending to play dumb in a bar,

47

you’re watching people act the way they think people
expect people like them to behave.

But if you can’t measure people and you can’t ask them,
what does that leave? Well, good old-fashioned experience.
As is usually true in life, there’s no shortcut around
incompetence; at some point, you just need genuine ability.
When it comes to pleasing users, this generally has two
parts: First, you need the basic skill of empathy, the ability
to put yourself in a user’s shoes and see things through their
eyes. But for that to work, you also need to know what it’s
like inside a user’s head, and as far as I can tell the best way
to do this is just to spend lots of time with them.

The best usability expert in the world, Matthew Paul
Thomas, spent the first few years of his life doing tech
support in a New Zealand cybercafe. This is the kind of job
you imagine Stalin exiling programmers to, but Thomas
made the best of it. Instead of getting angry at dumb users
for not understanding what a “Taskbar” was, he got pissed
off at the idiots who designed a system that required such
arcane knowledge. And now that he’s in a position to fix
such things, he understands at a deep visceral level what
their flaws are.

I wouldn’t wish to force such an exile on anyone (well, I
suppose there are a couple anonymous UI designers who
might be candidates), but there’s certainly no shortage of
people who already possess a user’s intuition to various

48

degrees. The problem is that no one listens to them. It’s
always so easy to dismiss them as naive or dumb or out-of-
touch. After all, the additional menu bar option you want to
add makes perfect sense to you—how could it really make
things worse?

When a company does focus on their users, it’s a real shock.
Take Zappos, an online shoe store. Zappos is fanatical about
customer service. They quietly upgrade first-time
purchasers to overnight delivery, they write cards and send
flowers when the situation warrants it, and they not only
give complete refunds but pay for shipping the shoes back
as well. It’s the kind of company people rave about. But,
most interestingly for our purposes, if they don’t have the
shoe you want in stock, they try to find you a competitor
that does!

From the short-term perspective, this seems insane: why
would you actually do work to help your customers buy
shoes from someone else? But, in the long term, it’s genius.
Sure, you may make one purchase somewhere else, but not
only will you go back to Zappos for every other shoe
purchase for the rest of your life, you’ll also write long,
glowing blog posts about how awesome Zappos is.

This is one of the secrets of success on the Web: the more
you send people away, the more they come back. The Web
is full of “leaf nodes”—pages that say something
interesting, but really don’t link you anywhere further. And

49

leaf nodes are great—they’re the core of the Web in fact—
but they’re the end of a journey, not the beginning. When
people start their day, or their web browser, they want a
page that will take them to a whole bunch of different sites
and perspectives, not just try to keep them cooped up in one
place. What’s the by-far most popular site on the Internet?
Google Search, a site whose goal is to get you someplace
else as quickly and unobtrusively as possible.

The reason all this stuff about metal spikes and New
Zealand exiles and shoe stores and leaf nodes is relevant to
a book on web apps is because I’m now going to ask you to
do something that seems insane, something that sounds like
it will kill your site. I’m going to ask you to open up your
data. Give it away.

I’ll give you a second to catch your breath.

It’s not as crazy it sounds. Wikipedia, a successful site by
any measure, gives away the store—you can download full
database dumps, including not just every page on
Wikipedia, but every change made to every page, along
with full permission to republish it as you see fit. It doesn’t
seem to have hurt their popularity any.

Obviously, I’m not saying you publish users’ personal
details for everyone to see. It would be crazy for Gmail to
put up a site where you could download every one of their
users’ email. Instead, I’m suggesting you let users get their

50

own data out of your site. People who put their events in
your calendar should be able to export their calendar;
people who got their email thru Gmail should be able to get
it back out again.

Good export isn’t just the right thing to do, it can also be a
strong way to attract users. Folks are uncomfortable about
pouring their whole life into a hosted web application—
they’ve been burned too many times by companies that took
all their data and went bust. Going out of your way to make
sure they can get their stuff out of your site can do a lot to
regain their trust.

While I have a lot to say about formats in this book, the
actual format you use is kind of irrelevant here. The
important thing is that you do it at all. XML, RDF, CSV—
the popular blogging system Movable Type actually just
dumped posts as long text files, and while it was a dreadful
format to work with, it was better than nothing. As long as
you pick something halfway sensible, people will find a
way to make it work.

The exception is if there’s already a standard (de facto or
otherwise) in your field. For example, OPML is pretty
widely accepted as the way to export the list of blogs you
read. If there is, you just have to support the standard.
Sorry. If other software provides a way to important a
certain format, you’re just going to have to bite the bullet
and output in that format. Anything else looks like

51

churlishness and users aren’t going to care about the
technical details.

And, of course, it goes both ways: a great way to attract
users is to provide import functionality yourself. By
supporting import from other products, whether they have
official export features or not, you make it easy for users to
slide into your own version. Even if your competitors don’t
have an official export function, you can still help users out
(and offend your competitors) by scraping data out of their
system—writing custom tools to pull stuff out of their user
interface and into your database.

The end result is the kind of frictionless world savvy users
can only dream of—smoothly gliding from one app to
another, taking advantage of new features without having to
give up your old data. And if the company making it gets
bought and the developers who wrote all the new features
quit and start a competitor, you can pull your data right
back out again and zip over to the new app.

Which means more choice—and isn’t that ultimately best
for everyone?

1. ↑ See D. F. Wallace, “How Tracy Austin Broke My Heart” in Consider
the Lobster (2005).

52

The other week I made one of my rare excursions from my
plushly-appointed bed and attended a local party. There I
met a man who made a website for entering and visualizing
data. I asked him whether he had an API, since it seemed so
useful for such a data-intensive site. He didn’t, he said; it
would be too much work to maintain both a normal
application and an API.

I tell you this story because the fellow at the party was
wrong, but probably in the same way that you are wrong,
and I don’t want you to feel bad. If even welldressed young
startup founders at exclusive Williamsburg salons make this
mistake, it’s no grave sin.

See, the mistake is, that if you design your website
following the principles in this book, the API isn’t a
separate thing from your normal website, but a natural
extension of it. All the principles we’ve talked about—
smart URLs, GET and POST, etc.—apply equally well to
web sites or APIs. The only difference is that instead of
returning HTML, you’ll want to return JSON instead.

JSON (pronounced like “Jason”), for the uninitiated, is a
simple format for exchanging basic pieces of data between
software. Originally based on JavaScript but quickly
adopted by nearly every major language, it makes it easy to
share data over the Web.

53

Wait!, you may cry, I thought XML was for sharing data on
the Web. Sadly, you have been misled by a sinister and
harmful public relations campaign. XML is probably just
about the worst format for sharing data. Here’s why:

Modern programming languages have largely standardized
on the same basic components of internal data structures:
integers, strings, lists, hashes, etc. JSON recognizes this and
makes it easy to share these data structures. Want to share
the number 5? Just write ’5;. The string “foo” is just “foo”.
A list of the two of them is simply “[5, “foo”]”—and so on.

This is easy for humans to write and read, but even more
importantly, it’s automatic for computers to write and read.
In most languages you don’t even need to think about the
fact that you’re using JSON: you just ask your JSON library
to serialize a list and it does it. Read in a JSON file and you
it’s just like your program’s getting a normal data structure.

XML, on the other hand, supports none of this. Instead, it
thinks in terms of elements with character data and
programming instructions and attributes, all of which are
strings. Publishing data as XML requires figuring out how
to shoehorn your internal data into a particular format, then
making sure you do all of your quoting properly. Parsing
XML is even worse.

54

The main reason XML is so bad at sharing data is because it
was never designed to do that in the first place. It was a
format for marking up textual documents; annotating
writing with formatting instructions and metadata of various
sorts, ala HTML. This is why it does things like distinguish
between character data and attribute data—attribute data is
stuff that isn’t part of the actual text, ala:

 > I’m looking forward to a <font
color="green">
 successful demonstration.

The word “green” is an annotation, not part of the text, so it
goes in an attribute. All of this goes out the window when
you start talking about data:

 > <person age="5">

 > <name>Robert Booker</name>

 > </person>

Why is “age” an attribute while “name” is an element? It’s
completely arbitrary, because the distinction makes no
sense.

Alright, so XML has a few more features that nobody
needs. What’s the harm in that? Well, it’s also missing a
whole bunch of features that you do need—by default,
XML has no support for even the most basic concepts like
“integer;” it’s all strings. And adding it requires XML

55

Schema, a specification so mind-numbingly complex that it
actually locks up my browser when I try to open it.

But the costs of such complexity aren’t simply more work
for developers—they really come in the form of bugs,
especially security holes. As security expert Dan Bernstein
observes, two of the biggest sources of security holes are
complexity (“Security holes can’t show up in features that
don’t exist”) and parsing (“The parser often has bugs... The
quoter often has bugs... Only on rare joyous occasions does
it happen that the parser and the quoter both misinterpret
the interface in the same way.”).[1]

XML combines the worst of both worlds: it is an incredibly
complex system of parsing. Not surprisingly, XML has
been responsible for hundreds of security holes.[2]

So aside from being simpler, easier, more featureful, safer,
and faster than XML, what does JSON have to offer? Well,
it has one killer feature that’s guaranteed its place atop the
format wars: because it’s based on JavaScript, it has a deep
compatibility with web browsers.

You’ve probably heard about AJAX, a technique that uses
the XmlHttpRequest function in modern web browsers to
allow web pages to initiate their own HTTP requests to get
more data. But, for security reasons, XmlHttpRequest is
only permitted to request pages on the same domain as the
web page it initiates from. That is, if your page is at

56

http://www.example.net/foo.html it can request things like
http://www.example.net/info.xml but not
http://whitehouse.gov/data/dump.xml.

For APIs, this is kind of a disaster—the whole point of
opening up your data on the web is so that other sites can
use it. If you’re the only people who can access it, why go
to the trouble?

Luckily, there’s one exception: JavaScript. A webpage can
embed an HTML ‘<script>‘ tag that points to any random
site on the Internet. Even better, JavaScript code can
arbitrarily add these script tags to the page. The browser
then goes and fetches the page and tries to process it.

Now with regular JSON that wouldn’t be too useful—the
browser would download a list or an object or something
and wouldn’t know what to do with it. So instead of just
returning the JSON, it returns the JSON wrapped in a
function call:

 > myCallback([5, ‘‘foo"]);

Then you just have the function “myCallback” do whatever
it was you wanted to do with the data.

Of course, if you’re doing lots of requests you’ll want to
keep them all separate—they can’t all call myCallback. So
you support a callback parameter that lets you pick the
function name. So a URL like

http://www.example.net/foo.html
http://www.example.net/info.xml
https://whitehouse.gov/data/dump.xml

57

http://www.example.net/info.json?callback=foo would
return:

 > foo([5, ‘‘foo’’]);

The whole technique is known as JSONP and, naturally, it’s
automated by all the major JSON libraries so you don’t
have to worry about any of these details.

Alright, so now that we have a pile of JSON, where do we
put it. The answer, of course, is the same place as your
HTML. Going back to an older example, let’s say we have
some information about a book at:

http://books.example.org/b/3j7is

Where does the JSON go? At the very same place!

You see, HTTP has a nifty feature called Content
Negotiation that allows for the same URL to return different
formats depending on who’s requesting things. The
classical example of content negotiation is the transition
from GIF images to the newer PNG image format. Some
older versions of Internet Explorer didn’t support PNG;
servers could use Content Negotiation to send them older
GIF images instead.

The way it works is that every time you make an HTTP
request (like a GET), the client sends along a series of

http://www.example.net/info.json?callback=foo
http://books.example.org/b/3j7is

58

Accept headers saying what formats it likes. Here’s a
typical example:

 > Accept: text/html; q=1.0, text/*; q=0.8,
image/gif;
 q=0.6, image/jpeg; q=0.6, image/*; q=0.5,
/; q=0.1

This says the browser prefers HTML, then takes text, then
GIFs and JPEGs, then any other image, then anything else.

But for APIs we don’t need to do anything so complicated.
We can just have our API clients send:

 > Accept: application/json

and have the server keep an eye out for that and return the
JSON version if it sees it. Otherwise, it serves the HTML as
usual.

Of course, you’ll probably want to provide an option for
people who can’t easily do Content Negotiation. So it’s
traditional to let:

http://books.example.org/b/3j7is.html force the server to
return HTML while

 http://books.example.org/b/3j7is.json

always returns JSON. (And then you could have:

http://books.example.org/b/3j7is.html
http://books.example.org/b/3j7is.json

59

 http://books.example.org/b/3j7is.json?
callback=myCallback

to support JSONP.)

Alright, let’s get concrete. What might one of these JSON
pages look like? Let’s stick with our book example for a
moment. You could imagine a book page looking
something like:

 > {

 > ’id’: ’3j7is’,

 > ’title’: ’The ABC book’,

 > ’by_statement’: ’designed and cut on
wood,

 > by C. B. Falls.’,

 > ’pagination’: ’˜cite{bib30} p. incl.
col. illus.’,

 > ’description’: “An all-time favorite
and a classic in its field, this big and beautiful
ABC book by distinguished artist C. B. Falls has
been making new friends with delighted children
for over forty years.

Mr. Falls designed the book for his little three-year-old
daughter who likes a big book with lots of pictures. The
drawings are cut on wood blocks and printed from fourcolor
plates, and the artist has personally superintended the

http://books.example.org/b/3j7is.json?callback=myCallback

60

reproduction of them. The imagination of a child or grown-
up is left free to capture by its own thrill of recognition the
familiar in a new-old medium where color has not obscured
the outline nor played too many tricks with nature.,”

 > ’publisher’: ’Doubleday, Page &
company’,

 > ’authors’: [

 > {’id’: ’OL115179A’, ’name’: ’C. B.
Falls’} >],

 > }

And if your site let people update book pages, you could
imagine supporting PUT requests on this URI that allowed
people to submit an updated version of the JSON object.
You’d parse it and then execute the update.

Or, if you just let people comments on books, you could let
them POST simple JSON data to the same URI that
comments are normally posted to.

In fact, if your really wanted, you could just let them POST
form data and parse it the same way as you would input
from web browsers. Then you could let them know success
or failure via HTTP error codes—a 500 error would let
them know it failed, while a 303 See Other redirect to the
page itself would let them know they succeeded. When they

61

followed the redirect and grabbed the page, it too could
content negotiate to JSON.

Alright, now it’s time to talk about a touchy subject. I’ve
been holding off on this, but at some point it becomes
unavoidable. Yes, I’m afraid it’s time to talk about RDF.

You see, all this JSON stuff is great for writing little scripts
on clients that talk to other scripts on servers, but it leaves
something to be desired when working at Web scale. It’s
hard to imagine, for example, building particularly useful
tools that work across different JSON APIs, the way web
browsers work across all different kinds of HTML pages.
Each JSON API has its own internal representations and
conventions and protocols, which means you need to write
special code to deal with each different one.

That’s where RDF comes in. The idea behind it is simple:
what if we had a format that did to data what HTML did to
documents—provide a single, consistent representation for
them that supports the hypertextual nature of the Web. That
probably makes no sense, so let’s look at some examples.

RDF documents are quite simple—they’re made up of
“triples,” simple sentences with three parts: a subject, a verb
(called a predicate), and an object. Let’s take a bit of our
example from before, namely that the book with ID 3j7is
has the title “The ABC book”—in RDF, the subject would

62

be “3j7is”, the verb “title” and the object the string “The
ABC book”.

Only RDF is meant to work at webscale, so instead of
fuzzy-wuzzy terms like “title”, everything’s a URI. As in: >
<http://books.example.org/b/3j7is#it>

http://www.w3.org/1999/02/22-rdf-syntax-ns#label

‘‘The ABC book’’ .

(Those ‘#’ signs are there to distinguish the fact that we’re
talking about the concept described by a web page, rather
than the web page itself.)

Of course, typing all those URLs out each time gets old
fast, so we tend to abbreviate them:

 > @prefix rdfs: <http://www.w3.org/1999/02

 > /22-rdf-syntax-ns#>
.

 > <http://books.example.org/b/3j7is#it>
rdfs:label

 > ‘‘The ABC book’’.

Here’s a rough rendering of the above JSON in RDF:

 > @prefix :
<http://books.example.org/api/schema#> .

http://books.example.org/b/3j7is#it
http://www.w3.org/1999/02/22-rdf-syntax-ns#label
http://www.w3.org/1999/02
http://books.example.org/b/3j7is#it
http://books.example.org/api/schema

63

 >

 > <http://books.example.org/b/3j7is#it>

 > :title ’The ABC book’;

 > :by_statement ’designed and cut on wood,

 > by C. B. Falls.’;

 > :pagination: ’˜cite{bib30} p. incl. col.
illus.’;

 > :description “An all-time favorite and a
classic in its field, this big and beautiful ABC
book by distinguished artist C. B. Falls has been
making new friends with delighted children for
over forty years.

Mr. Falls designed the book for his little three-year-old
daughter who likes a big book with lots of pictures. The
drawings are cut on wood blocks and printed from fourcolor
plates, and the artist has personally superintended the
reproduction of them. The imagination of a child or grown-
up is left free to capture by its own thrill of recognition the
familiar in a new-old medium where color has not obscured
the outline nor played too many tricks with nature.;”

 > :publisher ’Doubleday, Page & company’;

 > :author
<http://openlibrary.org/a/OL115179A#it> .

 >

http://books.example.org/b/3j7is#it
http://openlibrary.org/a/OL115179A#it

64

 > <http://openlibrary.org/a/OL115179A#it>

 > :name ‘‘C. B. Falls’’ .

Aside from consistently using URIs, RDF has some pretty
nice features. For one thing, something you want to do a lot
with data is combine it, and RDF makes that very easy. To
combine two RDF documents, you just concatenate them—
it’s just a list of facts; two lists of facts together makes one
long list of facts. It’s not quite as simple with JSON, let
alone XML.

Another nice feature of RDF is that it makes it easy to map
between formats. Converting between two JSON formats
typically requires code, but with RDF you can just publish
another RDF document that explains the mapping, like:

 > rdfs:label = :title .

That way software that knows about “rdfs:label” know that
they can use “:title” properties the same way.

RDF does have these many nice features, but it does have
one big downside: it’s nowhere near as easy to use as
JSON. Like XML, it has its own data model, which means
writing special code to move between its way of viewing
the world and yours. There are some tools and techniques to
mitigate this (like my own rdftramp, [3] which tries to make
RDF look more like normal Python objects) but it’s still a
serious problem.

http://openlibrary.org/a/OL115179A#it

65

The RDF world has tried to address it by writing RDF
replacements for all the existing tools of the software world:
RDF databases, RDF programming languages, RDF query
systems, RDF browsers, RDF reasoning engines, and so on.
If you want, there’s a whole world of RDF you can dive
into.

Ultimately, however, I fear this isn’t a very promising
strategy—it’s going to be hard to create replacements for all
these things which are as good or better than the original,
and even if you do, people will still have sentimental
attachments to the others.

So at this point, I would still categorize RDF as an
aspiration. It would be nice as a universal publishing format
—there’s a lot that cold be done with it—but for day-to-day
work, JSON is much better.

That said, RDF is, of course, far, far preferable to XML.

1. ↑ http://cr.yp.to/qmail/guarantee.html.
2. ↑ http://cve.mitre.org/.
3. ↑ http://www.aaronsw.com/2002/rdftramp/.

http://cr.yp.to/qmail/guarantee.html
http://cve.mitre.org/
http://www.aaronsw.com/2002/rdftramp/

66

APIs are nice and all, but they’re fairly limiting: they only
give you the answers to questions you already know how to
ask. Want to find out more about book 3j7is? Sure, it’ll tell
you. But want to know which books published recently
share an author with a book published over a hundred years
ago? That’s a little more complicated.

But, luckily, not impossible. It seems ridiculous to come up
with your own API that could answer any sort of question
like this. But remember those RDF query languages we
were making fun of in the last chapter? This turns out to be
just the sort of thing they’re perfect at.

The official RDF query language is called SPARQL
(SPARQL Protocol And RDF Query Language—
pronounced “sparkle”). If you’re familiar with SQL, the
standard database query language, SPARQL will look
similar, only with RDF stuck in all the right places. Here’s
how you express our previous question in SPARQL:

 > PREFIX :
<http://books.example.org/api/schema#>

 > SELECT ?booknew, ?bookold

 > WHERE {

 > ?booknew :author ?author .

 > ?booknew :publication_year ?yearnew .

http://books.example.org/api/schema

67

 > FILTER (?yearnew >= 2008)

 > ?bookold :author ?author .

 > ?bookold :publication_year ?yearold .

 > FILTER (?yearold <= 1908)

 > }

There’s a lot there, so let’s go through is slowly. First we
just declare the prefixes for our URIs, as usual. This is just
to save us some typing. Then we say that we want the
values “?booknew” and “?bookold” returned for us. In
SPARQL, anything beginning with ‘?’ is a placeholder that
the query engine will try to find something to fit into.

The “WHERE” clause puts constraints on what can fit in
those placeholders. “?booknew” has to have an author and a
publication year and that publication year has to be equal to
or larger than 2008. “?bookold” also has to have an author
and a publication year—and furthermore, its author has to
be the same as “?booknew”’s author. But its publication
year has to be equal or less than 1908.

Now because SPARQL is designed to work at web-scale,
you don’t have to just keep this query at home. Instead, you
can point it at another server’s search system, called a
SPARQL endpoint. You may not have a lot of information
about books, but books.example.org probably does—you
can have it search for things that match your query.

68

To do so, you just take the query we generated above and
stick into a properly formatted URL. And—boom!—back
comes your list of answers.

Now another neat thing about SPARQL is that, done right,
it can spread these queries across multiple SPARQL
endpoints. So, for example, we can imagine writing a query
for books whose authors were Jewish. The information
about books and authors we can get from the bookserver,
while Wikipedia (whose RDF version is called DBPedia)
can tell us about people’s religion. Of course, figuring out
how to structure these queries in such a way that they don’t
take forever is an ongoing research project.

In the meantime, we can at least help those who can help
themselves to our data, by providing bulk dumps. The
theory here is simple: there are lots of queries and merges
and visualizations people will want to do with your data
that are going to be impractical to do through any sort of
API, even one as fancy as SPARQL. So you might as well
just give them a full copy of the data set.

And the practice is even simpler: just take the JSON you
generate for each item on your site and put it in one big file.

You may want to compress it, since it’ll probably be quite
large.

69

Our story starts with a paper jam. It was 1980 and the
Artificial Intelligence Lab at MIT had received an elegant
new printer from Xerox. The printer, however, had an
unfortunate tendency to jam, causing print jobs to pile up
and nothing to get printed until someone happened to notice
and fix the jam.

For Richard Stallman, one of the programmers at the AI
Lab, this wasn’t such a big deal. With their previous printer,
Stallman had simply changed the printer driver to detect
whether the printer was jammed and, if it was, to notify
anyone who had sent it a print job. “If you got that message,
you couldn’t assume somebody else would fix it,” Stallman
later recalled. “You had to go to the printer. A minute or
two after the printer got in trouble, the two or three people
who got messages arrive to fix the machine. Of those two or
three people, one of them, at least, would usually know how
to fix the problem.”

But the Xerox printer was different: Xerox hadn’t provided
the lab with the source code to their printer drivers. There
was no way for Stallman to add this new functionality to the
driver. When Stallman asked Xerox for the code, they
refused to provide it, insisting that it was an important trade
secret for their business. And when Stallman found a
student at Carnegie Mellon who had been given access to
the software, that student also refused to provide a copy,
saying he’d signed a contract with Xerox not to share it.

70

Stallman was outraged. Computer software was supposed to
be a tool to serve people; that’s why he and his labmates
spent their time writing software. And yet, through a
combination of greed and legal restrictions, people were
forced to suffer because they were prevented from
improving these tools.

Stallman wanted to ensure no one else would be forced to
suffer in this way; he wanted to build a computer system
based around principles of freedom. In 1984 he quit his job
and announced the GNU project.

Stallman later clarified that free software was software that
guaranteed users four freedoms:

0. The freedom to run the program, for any purpose.

1. The freedom to study how the program works, and adapt
it to your needs. (Source code is a requirement for this.)

2. The freedom to redistribute copies so you can help your
neighbor.

3. The freedom to improve the program, and release your
improvements to the public, so that the whole community
benefits.

(Again, source code is a requirement for this.) “I consider
that the golden rule requires that if I like a program I must
share it with other people who like it. I cannot in good

71

conscience sign a nondisclosure agreement or a software
license agreement. So that I can continue to use computers
without violating my principles, I have decided to put
together a sufficient body of free software so that I will be
able to get along without any software that is not free.”

Stallman codified these freedoms in the GNU General
Public License or GPL. If you modify a piece of software
that is licensed under the GPL and redistribute it, the license
requires that you also redistribute the source code at no
extra charge and allow everyone who receives a copy to do
likewise.

Since 1984, the GNU operating system (whose most
popular flavor is GNU/Linux) has been built and released
under the GPL. A 2007 study found that 13% of servers and
1% of desktops were sold running GNU/Linux. And anyone
can download the entire operating system for free off the
Internet.

The success of GNU/Linux has led to a larger free software
movement as well as the “open source” movement, which
releases software and its source code under copyright
licenses that provide some of the software freedoms.

The Mozilla Firefox browser, for example, is open source
and currently makes up around 15% of market. Large
portions of the Mac OS X operating system are also open

72

source, including WebKit, the core of Safari, the Mac OS X
web browser.

The open source and free software movements have now
built free alternatives for just about every major type of
computer application, from word processing to video
games. And for a time it seemed like Stallman’s dream had
come true: one could truly continue to use computers
without having laws restrict one’s freedom—it was possible
“to get along without any software that is not free.”

Meanwhile,Tim Berners-Lee, an Englishman living in
France who worked at a physics lab in Switzerland, was
frustrated with how difficult it was for physicists to share
documents. And so, in 1989, he came up with the World
Wide Web, developed the standards that made it work, and
built the first web browser and web server.

The power of the browser was its flexibility (or, in law
professor Jonathan Zittrain’s phrase, its “generative
nature”). Just as a general-purpose computer allowed you to
run any program, from a music player to a graphing
calculator, the web browser let you view any kind of
document. A book, a physics paper, or photos of cats with
funny captions—the web browser doesn’t care; it displays
whatever the server provides it with.

73

This seems like a trivial point now, but it was a vast change
from other networked software at the time. Email programs,
for example, are designed simply to display email—they
have an enormously specialized interface for composing
emails, finding emails, seeing who an email is from and to,
and placing emails in different folders. The same was true
for discussion software, chat software, and other pieces of
software that communicated over the network.

The Web was different: it did not specialize in any
particular type of content, but let you share whatever you
like.

This lack of specialization in the Web browser allowed
people to move this specialization to the Web server. The
traditional Web server simply served up static documents
that someone had previously written. But it was quickly
clear that there was no reason the server had to be so
constrained.

Instead of simply serving up previously-composed
documents, the server could compose new documents “on-
the-fly” as they were requested. Thus, instead of simply
having a document which listed what restaurants have
tables available, a web server could be instructed to query
the different restaurants, learn their availability, and
construct a page from the results.

74

And users, instead of passively requesting different
prewritten documents, could submit requests to the server
and actually begin to interact with it. Thus, they could ask
the server to reserve one of the tables and send their name
and phone number along with that request.

The result was that the humble web browser quickly began
to overtake all the other “specialized” applications. Instead
of having a special program just for reading email, people
read their email over the Web. Similarly, discussion groups,
chat rooms, and other forms of social interaction have
moved inside the Web browser.

But software developers quickly discovered that, for social
creatures like us humans, everything has a component of
social interaction. For example, titling and categorizing the
photos you take would seem like an obviously solitary
activity. But sites like Flickr demonstrate that people love to
discuss and categorize photos of their friends, or even
strangers, and that people, all things considered, would
prefer to organize their photos in a program that exposes
them to other people.

The result is the recent “Web 2.0” phenomenon, in which
just about every piece of computing is moved onto the Web
and made social in some way. For photos and videos, there
is Flickr and YouTube. For news, there are sites like Digg
and Reddit where you can submit, edit, and vote on news
stories. Calendars, todo lists, even music collections and

75

word processors are all being made into dynamic social web
applications.

Pundits now discuss a not-too-distant future of “dumb
clients” and “cloud computing” where the other
applications on the computer disappear and all that is left is
the web browser. And for people who use kiosk computers
or Internet cafes, that future is already here.

For some, this is an exciting prospect. But for those, like
Stallman, concerned with issues of software freedom, it is
frightening. Even in the dark days of the proprietary printer
driver, Stallman still had control over the computer which
drove the printer, even if he did not have the source code to
modify it. But with a Web 2.0 application, you don’t have
even that. The computer running your software is locked
away in some distant server farm. You can only
communicate with it through your web browser.

Now this does provide some flexibility. Web browsers can
be programmed to block ads or extract content. Plugins like
Zotero and Greasemonkey let users add new functionality
to existing sites by intercepting and modifying documents
as they come back from the Web server.

But this is a rather pale notion of freedom, like saying that
moviegoers have control over the films they watch because
they can hold pictures up in front of the screen as they
watch.

76

Another option, of course, is providing APIs. Thus, instead
of having to manually click the “buy” button on an Amazon
page to buy a new set of razors, with an Amazon API you
can have a program automatically purchase the razors for
you every month.

This is undoubtedly useful, but again, a rather pale notion
of freedom compared to the four freedoms that free
software provides. If Amazon was truly free, you wouldn’t
just be able to write programs to automate your usage of the
application, you’d be able to change how the application
actually works.

The obvious solution to this challenge is simply to release
the software on the Web server under the GPL or some
other free software license. Then anyone could download a
copy and modify it to their heart’s content. And a new
version of the GPL has been released, AGPLv3, which
requires that people who use its software in web
applications make their software available to the
application’s users under its free terms.

But only a completely asocial web application consists
purely of software. The vast majority of them are
interesting because they give you access to data contributed
by other users as well. For example, the software that lets
people edit web pages is just about the least interesting
thing about Wikipedia. The reason the site is so popular is

77

because so many people have put their accumulated
knowledge into that software.

Wikipedia has addressed this by going one step further—
not only is the source code free, the data is too. Anyone can
download a copy of the Wikipedia database (excluding
users personal information) and start up their own copy of
Wikipedia based on it. And then they can modify their copy
of Wikipedia’s software to work however they please.

It’s beautiful in theory, but in practice, of course, nobody
does this. Even if your version of Wikipedia was full of
fantastic new features, it would still be nearly impossible to
get anyone to use it. People use Wikipedia because that’s
where all the other people are; it’s practically impossible to
get everyone to switch.

For Wikipedia, the problem is somewhat ameliorated by
having some pseudodemocratic control over the site. So
Wikipedia is run by a board elected by (a tiny subset) of its
users and the board has nominal control over the software
and modifications that get made to it. But this is still a far
cry from the freedom GNU/Linux users have in the non-
networked world. Running for office, getting elected, then
pushing your patches through a change-resistant
bureaucracy is a lot more difficult than modifying some
source code files on your computer and restarting.

78

And so, the hard-core partisans of software freedom
propose that we will see the pendulum once again swing
away from centralized server computing and back to a
world where we all run applications on our local machines.
Only this time, instead of being applications that don’t use
the network or only talk to a distant server, they will be
peer-to-peer applications, seeking out other users and
interacting with them directly.

Some great strides have been made in building peer-to-peer
software, in no small part because of the vast amount of
interest in using the technology to share music without
getting caught by enforcers of the law. But, especially
compared to Web 2.0 server technology, peer-to-peer is still
in its infancy. Writing a social application so that its peer-
to-peer is about a thousand times harder than writing the
same program as a web app.

Still, peer-to-peer software, if we could make it work,
would seem to give the best of both worlds: the freedom to
modify how a program functions on our local computers as
well as the ability to share and collaborate with others
across the Internet. And so, for those who care about
freedom (as well as those who care about sharing music),
this seems like an important avenue for further research.

In the meantime, even if, like the question of how to query
across many large SPARQL databases, the problems of web

79

application freedom are unsolved, you can still do get
started. The Open Knowledge Foundation, a group
promoting freely shared databases, has proposed an Open
Software Service Definition.[1] The definition essentially
codifies the principles we discussed above:

1. Make your code available as free or open source software

2. Make your data available as Open Knowledge

For free/open source software, there’s the official lists of
the Open Source Initiative and Free Software Foundation to
tell whether your license is sufficiently free and open.
Examples include the Expat/BSD license, the GPL, etc. The
Open Knowledge Foundation similarly lists a series of
licenses including some Creative Commons licenses, the
GNU Free Documentation License, and so on.

That’s the legal details, but the technical ones are just as
simple: provide a source code repository for all your code
and SQL dumps for all your data.

Of course, this leaves a lot of open questions. What about
private data, for example? My own feeling is that people
should at least be allowed to download their own data and
any data they can access through the Web interface—e.g.
the data about your friends on Facebook.

80

And there’s lots of room for experimenting in building sites
that promote more Democratic control. Maybe you can try
some things and tell me about them and they’ll make them
into the second edition of this book.

1. ↑ http://opendefinition.org/ossd.

http://opendefinition.org/ossd

81

C H A P T E R 8

Conclusion: A Semantic Web?

Well, we've been through a lot together, you and I. We've
built up an application from its humble URLs to its high-
falutin' notions of democracy. Along the way, we've made
its world safe for robots, query systems, researchers, and
Richard Stallman. But how do we get from this kind of
website to the grand vision of the Semantic Web we've
heard so much about?

Let's start by realizing that just being on the Web is an
amazing thing. URLs provide a unified addressing scheme
for any document—a pretty miraculous thing. Imagine
trying to explain to folks of yesteryear about these
incredible words which you could give to anyone and they
could take it home, punch it into a box they have on their
desk, and get just the article, picture, or video you meant.
To a generation whose idea of document retrieval is driving
to the local library, filling out some forms, and waiting a
few weeks while they tried to make sense of your
subscription and hunt it down, this is a pretty serious
change.

82

But REST took it even further. By making the documents
accessible by search engines through a standard protocol,
you no longer even need to know the right URL for the
thing you want. Just type a few choice words into Google
and boom! back comes just the thing you wanted in a
quarter of a second.

Of course it's not just Google; REST makes possible an
interconnected tapestry that supports everything from web
browsers to web editors to intelligent translating
intermediary proxies.

A hard act to follow. But then came the ability to get not
just documents back from these far-off servers, but data. By
importing and exporting raw data, we made it possible to
switch software programs, providing a somewhat-free
market of competition among products, creating massive
consumer surplus. Go us!

But we didn't stop there. Just letting users take their data
home with them is weak brew compared to sharing it with
the wider world. (Picture a wide world of people at home
with their weak data brew.) Which is why the Web invented
APIs, letting us share the data with everyone who could
think of a use for it.

Now we're not just a simple website, pushing pages to the
browser and providing a "See also:" like list of other pages
one can visit. We're actually exchanging the data itself from

83

application to application, making possible a new world of
mashups and intelligent applications.

This is an entirely new notion of the tapestry—a tapestry of
data instead of a tapestry of documents. Documents can't
really be merged and integrated and queried; they serve
mostly as isolated instances to be viewed and reviewed. But
data are protean, able to shift into whatever shape best suits
your needs.

But as our needs grow more varied, we need better ways to
get at the data that will best serve them. Which is where our
queries and dumps come in. No longer are we hampered by
only being able to ask the questions a site's programmers
have expected and accounted for; now we can ask whatever
questions we like, or do processing that can't even be put in
the form of a question at all. Combining these dumps from
different data sources, the possibilities are endless.

But where do we go from here?

Obviously the first step is to take the large dumps we've all
made and load them into one big database. And, of course,
we've started to see people do that, from research projects
to commercial companies like Metaweb's Freebase.
Freebase is an enormous collaborative Web-editable RDF-
like database, prepopulated with data extracted from
Wikipedia and numerous other sources and supplemented
with the contributions of various users. Freebase is still

84

quite small, but their aims are ambitious—creating a
database that combines numerous different sources and
providing it as a backend to people who want to build more
intelligent applications.

Ideally, of course, intelligent applications won't be
dependent on a single commercial site, like Freebase, but
will merge and combine knowledge from various sites
across the Web, crawling and trawling for more useful
information and deciding which bits of it to trust.

Already we're seeing things like this in research projects.
One of the most exciting Semantic Web tools is a program
called cwm, hacked together between (or during) meetings
by Sir Tim Berners-Lee himself. Cwm (pronounced coom)
is one of the most amazing programs I've seen; it's a
veritable data swiss-army knife, all built on RDF.

Of course it does all the basics—reading and writing RDF
files of various formats, combining multiple files, printing
all the results out in a pretty format. Naturally, it can also
search through the resulting data to answer your questions
in much the same way SPARQL does.

But cwm goes a step further. It doesn’t just search through
data; it thinks about it. cwm can follow logical rules; take
this one for example:

{ ?x a :Man } => { ?x :mortality :mortal } .

85

(If something is a man, then it’s mortal.) Feed this into
cwm, along with:

:Socrates a :Man .

And it will logically deduce that Socrates is mortal. Such
rulesets obviously have all sorts of uses, from logical parlor
games to actual programming. But one obvious use is
providing conversions between different RDF formats.
Imagine two schemas: “joe:”, which has “small”,
“medium”, and “large” and “starbucks:” which has “short”,
“tall”, “grande”, and “venti”. Now we can just write a few
rules to convert between them:

{ ?x joe:size joe:small } <=> { ?x starbucks:size
starbucks:tall } .

{ ?x joe:size joe:medium } <=> { ?x starbucks:size
starbucks:grande } .

{ ?x joe:size joe:large } <=> { ?x starbucks:size
starbucks:venti } .

Feed these rules into cwm, along with the data in one
format, and cwm will “think” about it and spit out data in
the other format.

But cwm can do much more than just basic logical
inference. It also has a wide variety of built-ins, that can do

86

everything from mathematical processing to advanced
cryptography. With them, and some clever rules, you can
even build entire programs using cwm.

Incidentally, none of this is new—nearly all this stuff was
written in 2001.

cwm is also smart enough to go onto the Web and find more
rules like these, crawling through web pages for more bits
of RDF to make it smarter. Following links and URLs and
getting more data, it can surf the Web for data in the same
way a bored teenager surfs the Web for fun.

If you’re interested in giving this process a spin for
yourself, you can try Tim’s latest project: the Tabulator. It’s
a little add-on to your web browser that lets it see RDF
documents in addition to regular web pages. Suddenly
documents aren't just a list of boring tags or text, but a
pathway of clickable links you can follow to your heart's
content. (And, with later versions, you can even edit some
of the fields.)

One can imagine tools like cwm and Tabulator sitting
behind the applications we use every day, enhancing them
with knowledge drawn from the wider Web.

For that's the real idea behind the Semantic Web: letting
software use the vast collective genius embedded in its
published pages. Think of all the places software uses APIs

87

or databases: your spellchecker queries a website to find the
definition of a word, your addressbook does a search to see
if your friends are online, your calendar downloads a page
to keep you posted on upcoming events. Now, imagine
these programs weren't limited to one particular site, but
could draw on the intelligence of the Internet at large.

Your spellchecker can suggest related or alternate words, or
just keep up to date with the latest slang. Your address book
can tell you where your friends are right now and what
they've been up to lately. Your calendar can keep an eye out
for events you might be interested in.

It's easy to make fun of these kinds of visions. My father,
upon seeing such demos, always used to ask, "But why does
your toaster need to know about stock prices?" And
perhaps, ultimately, they're not worth all the effort. But the
Semantic Web is based on bet, a bet that giving the world
tools to easily collaborate and communicate will lead to
possibilities so wonderful we can scarcely even imagine
them right now.

Sure, it sounds a little bit crazy. But it paid off the last time
they made that gamble: we ended up with a little thing
called the World Wide Web. Let's see if they can do it
again.

88

89

About this digital edition
This e-book comes from the online library Wikisource. This
multilingual digital library, built by volunteers, is
committed to developing a free accessible collection of
publications of every kind: novels, poems, magazines,
letters...

We distribute our books for free, starting from works not
copyrighted or published under a free license. You are free
to use our e-books for any purpose (including commercial
exploitation), under the terms of the Creative Commons
Attribution-ShareAlike 4.0 Unported license or, at your
choice, those of the GNU FDL.

Wikisource is constantly looking for new members. During
the transcription and proofreading of this book, it's possible
that we made some errors. You can report them at this page.

The following users contributed to this book:

Erick Soares3
Kathleen.wright5
Einstein95
EncycloPetey
ShakespeareFan00
Billinghurst
Beeswaxcandle

https://en.wikisource.org/wiki/Main_Page
https://www.creativecommons.org/licenses/by-sa/3.0
https://www.gnu.org/copyleft/fdl.html
https://en.wikisource.org/wiki/Wikisource:Scriptorium

90

Renepick
File Upload Bot (Magnus Manske)

	Title page
	Aaron Swartz s A Programmable Web An Unfinished Work.pdf
	Foreword by James Hendler
	Introduction: A Programmable Web
	Building for Users: Designing URLs
	Building for Search Engines: Following REST
	Building for Choice: Allowing Import and Export
	Building a Platform: Providing APIs
	Building a Database: Queries and Dumps
	Building for Freedom: Open Data, Open Source
	Conclusion: A Semantic Web?
	About

