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Online Appendix

Derivation of Beliefs — p0(s0, q) and p
S(p)

We first discuss how equation (5), the probability that an agent with a credit history of zero

length is the safe type, is derived.

Recall that in each period a unit mass of entrepreneurs is born; a fraction s0 of them are of

the safe type and 1−s0 risky. In addition, there are entrepreneurs who were born in previous

generations, but likewise have no credit history — these are risky agents who failed in all

projects since they were born, and had each of these failures forgotten (and also did not die).

The total mass of such entrepreneurs is (1−s0)(1−πer(p0))δq+(1−s0)(1−πer(p0))
2δ2q2+ · · · ,

where recall that πer(p0) = er(p0)πh + (1 − er(p0))πl denotes the probability of success with

equilibrium effort strategy er(p0) when p = p0. Thus, at any point in time, the total mass

of risky entrepreneurs with no credit history is (1 − s0)
1

1−(1−πer(p0))δq
, and so:

p0(s0, q) =
s0

s0 + (1 − s0)
1

(1−(1−πer(p0))δq)

= s0

[

1 − (1 − πer(p0))δq

1 − s0(1 − πer(p0))δq

]

,

which is the expression in (5).

The derivation of pS(p) is analogous. For a unit mass of entrepreneurs with credit score

p at the beginning of some period, there is a mass p of safe entrepreneurs, a fraction δ of

them survive into the next period and (if financed) will have credit score pS(p). Similarly,

there is a mass 1 − p of risky entrepreneurs, a fraction δπer(p) succeed at their projects and

survive into the next period, also ending with the same score pS(p). But in addition there

are again risky entrepreneurs from previous generations, who at the beginning of the period

had a credit score pS(p), their project failed but the failure was forgotten. The total mass

of these additional risky entrepreneurs, relative to the unit mass of entrepreneurs with score
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p, is (1 − p)δπer(p)

[

(1 − πer(pS(p)))δq + (1 − πer(pS(p)))
2δ2q2 + · · ·

]

.56 Therefore:

pS(p) =
δp

δp + (1 − p)δπer(p) + (1 − p)δπer(p)

[

(1 − πer(pS(p)))δq + (1 − πer(pS(p)))2δ2q2 + · · ·
]

=
p

p + (1 − p)
πer(p)

1−(1−π
er(pS(p)))δq

,

as in (6).

Proofs of Claims 1-5

Claim 1: A solution ph ∈ (0, 1) to (A.6) always exists.

Since p̂S(p) and rzp(p, 1) are both continuous for all p ∈ (0, 1), v̂r(p) is also continuous.

As p → 1−, rzp(p, 1) → 1 and p̂S(p) → 1, and so v̂r(p) →
πh(R−1)−c

1−β̃(πh+(1−πh)q)
. And since

c < (R−1)(1−β̃q)

1−β̃(πl+(1−πl)q)
in this region, for p close to 1 we have

cπl

πh − πl
< v̂r(p)(1 − β̃q)

Conversely, as p → 0+ it is immediate to see that (since p̂S(p) → 0 and rzp(p, 1) → 1/πh),

v̂r(p) → πh(R−1/πh)−c

1−β̃(πh+(1−πh)q)
. Then since c > (R−1/πh)(1−β̃q)

1−β̃(πl+(1−πl)q)
in this region, for p close to 0 we have

cπl

πh − πl
> v̂r(p)(1 − β̃q)

Thus by the continuity v̂r(·), there must be a solution ph ∈ (0, 1) to (A.6); moreover, by

the monotonicity of v̂r(·) this solution is unique.

Claim 2: There exists a lowest value pm ≤ ph for which there is a solution er(p) to (A.9)

for all p ∈ [pm, ph], with er(p) increasing in p. Moreover, there is only a single period of

mixing along the equilibrium path.

Recall that we defined p̃S(p, e) to be the posterior following a success, when the risky

entrepreneurs exert effort e at p, and follow the equilibrium path for p′ > p. We now denote

the inverse of this map by
(

p̃S
)

−1
(p′, e); that is, if p =

(

p̃S
)

−1
(p′, e), then p̃S(p, e) = p′.

56The expression follows from the fact that every entrepreneur with credit score pS(p) must previously
have had a credit score p, succeeded once, and then failed one or more times (having this failure forgotten
each time).
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Let p∗∗ = ph and p∗ ≡
(

p̃S
)

−1
(p∗∗, er(p∗∗)) be the inverse of p∗∗ = ph when the equilibrium

effort er(p∗∗) = 1 is exerted at both p∗ and p∗∗. It is clear from (6) that this implies that

p∗ < p∗∗ = ph. Also, recall that we have already demonstrated that vr(p) = v̂r(p) for p ≥ ph,

and hence is monotonic for p ≥ p∗∗. Note finally that (p∗∗, er(p∗∗)) solves (A.9).

For each p ∈ [p∗, p∗∗), define er(p) to be be the maximal value of e that solves (A.9),

subject to the constraint that e ≤ er(p∗∗);57 If there is no solution to (A.9) (subject to this

constraint) for some p ∈ [p∗, p∗∗], take pm to be the lowest value of p for which a solution

exists. (We know that e = er(p∗∗) = er(ph) = 1 solves (A.9) at p∗∗ = ph, so this is well-

defined.) Let then vr(p) = ṽr(p, er(p)).

We now show that er(p) is monotonic in p. In particular, whenever (p, e) solves (A.9) with

e ≤ er(p∗∗), for all p′ ∈ (p, p∗∗) there exists a solution (p′, e′) to (A.9), with e′ ∈ (e, er(p∗∗)].

To see this, first note that ṽr(p′, e)(1 − β̃q) > cπl

πh−πl
; the reason is that rzp(p

′, e) < rzp(p, e)

and also vr(p̃S(p′, e)) ≥ vr(p̃S(p, e)) (the latter follows from the monotonicity of vr(·) for

p ≥ p∗∗). Conversely, we have ṽr(p′, er(p∗∗))(1 − β̃q) < ṽr(p∗∗, er(p∗∗))(1 − β̃q) = cπl

πh−πl
. The

result then follows by the continuity of ṽr(p′, ·) when we take e = er(p). Also note that vr(·)

is constant in the mixing region, and so (weakly) monotonic above p∗ (or above pm if there

was such a minimal value).

If a minimal value pm > p∗ exists, then we are done. If not, we iterate the argument.

That is, set p∗∗ equal to the value of p∗ at the previous iteration and p∗ =
(

p̃S
)

−1
(p∗∗, er(p∗∗)).

We then apply the same argument as above to establish that for any p ∈ [p∗, p∗∗) for which

there is a solution e to (A.9) with e ≤ er(p∗∗), for all p′ ∈ (p, p∗∗] there exists a solution

e′ ∈ (e, er(p∗∗)).

Finally, we show that there is only a single period of mixing along the equilibrium path,

and so we must have pm ≥
(

p̃S
)

−1
(ph, 0).

Suppose there were more than one period of mixing, beginning at some p < ph. That is,

we mix at both p and pS(p), with pS(p) ≤ ph and pS(pS(p)) ≥ ph. Recall that (A.9) implies

that vr(p) = vr(pS(p)) = vr(ph).

Now, vr(p) ≡ πer(p)(R − rzp(p)) − c · er(p) + πer(p)β̃vr(pS(p)) + (1 − πer(p))β̃qvr(p).

Also, vr(pS(p)) ≡ πer(pS(p))(R− rzp(p
S(p))− c · er(pS(p)) + πer(pS(p))β̃vr(pS(pS(p))) + (1−

πer(pS(p)))β̃qvr(pS(p)).

Now, we have vr(pS(pS(p))) ≥ vr(ph). Also, rzp(p) > rzp(p
S(p)) by the monotonicity

of effort in the mixing region, established above. This implies that vr(pS(p)) > vr(p), a

contradiction. Thus there can be only a single period of mixing along the equilibrium path.

57This constraint does not bind in the first step of the induction, since we have p∗∗ = ph and so er(p∗∗) = 1.
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So we can take pm to be the lowest value of p for which we can solve (A.9) subject to

this constraint.

Claim 3: The contract rzp(p, 0) satisfies the low-effort IC constraint for p ∈ [pNF, pm).

We proceed by induction.

• First consider p ∈

[

max[pNF,
(

p̃S
)

−1
(pm, er(pm))], pm

)

, where recall that
(

p̃S
)

−1
(p′, e) de-

notes the preimage of p′ under the map p̃S(p, e). Also recall that in the proof of part b-ii.

of Proposition 1 ṽr(p, e) was defined to be the utility a risky agent would receive if the

effort exerted at p were e, and the same as on the equilibrium path for all p′ > p.

Intuitively, if low effort were not incentive compatible in this region, that would contradict

the construction of pm as minimal. To see this more formally, suppose it were not true, i.e.,

ṽr(p, 0)(1 − β̃q) > cπl

πh−πl
. Now, by the monotonicity of ṽr(p, e) and p̃S(p, e) in p, we also

know that we have ṽr(p, er(pm))(1− β̃q) < cπl

πh−πl
(since this held with equality at pm). In

addition, we have demonstrated in proving Claim 2 that v(p′) is monotonic and continuous

for p′ ≥ pm. Thus ṽr(p, e) must be continuous in e, and so this would imply that there

must be a solution e′ ∈ (0, er(pm)) to (A.9) at p, which contradicts the construction of pm

as minimal.

So we conclude that er(p) = 0 for p ∈

[

pNF,
(

p̃S
)

−1
(pm, er(pm))], pm

)

, and thus vr(p) =

ṽr(p, 0) in this interval. By the monotonicity of rzp(p, 0) and ṽr(·, 0), we can also conclude

that v(p) is monotonic for p ≥ max[pNF,
(

p̃S
)

−1
(pm, 0)].

• If max[pNF,
(

p̃S
)

−1
(pm, er(pm))] = pNF, then we are done. Otherwise, we need to iterate

the argument. Recall that we have already demonstrated that low effort is incentive

compatible at p′ = max[pNF,
(

p̃S
)

−1
(pm, er(pm))] and that vr(p) is monotonic for p ≥ p′.

We conclude the proof by showing that if low effort is incentive compatible at some p′

and that vr(p) is monotonic for p ≥ p′, then low effort is also incentive compatible for

p ≥
(

p̃S
)

−1
(p′, 0) and also vr(p) is monotonic for p ≥

(

p̃S
)

−1
(p′, 0).

Now, pS(p) = p̃S(p, 0) is increasing in p, and also pS(p) ≥ p′ when p ≥
(

p̃S
)

−1
(p′, 0),

thus from the monotonicity of vr(·) we have vr(pS(p)) < vr(pS(p′)). Also, rzp(p, 0) is

monotonic in p. These then imply that ṽr(p, 0) < vr(p′) and so low effort must also be

incentive compatible at p; thus vr(p) = ṽr(p, 0). The desired monotonicity of vr(p) for

p ≥
(

p̃S
)

−1
(p′, 0) follows immediately.

We can then iterate the same argument as above, and continue doing so until reaching

pNF.
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Claim 4: When δq < 1−πh

1−πl
, the equilibrium constructed in Proposition 1 is such that the

risky entrepreneurs’ effort er(p) is higher, at any p, than at any other symmetric sequential

MPE.

First note that this is immediate for region c., since the equilibrium of Proposition 1

implements high effort for all p > 0. As far as region a., for the values of c in this region

it is not hard to show that only low effort can be incentive compatible. So we can restrict

attention to region b.

Let v, pS(p), er etc. denote the value function, updating, effort, etc. for the equilibrium

of Proposition 1, and let v̄, p̄S(p), ēr etc. denote the same for another MPE.

Note that it is immediate that er(p) ≥ ēr(p) for all p ≥ ph, as the equilibrium of Propo-

sition 1 implements high effort in this region. Also, since the equilibrium of Proposition 1

is characterized by (the minimal) break-even interest rates, we have vr(p) ≥ v̄r(p) in this

region as well.

Now, suppose the result does not hold, and we can implement higher effort at the other

MPE, at some p̃, i.e., ēr(p̃) > er(p̃). We will show that this contradicts the construction of

the equilibrium of Proposition 1. Now, if there is more than one such value of p̃ for which

higher equilibrium is supported in the alternative equilibrium, we choose p̃ such that, for all

successor nodes of p̃ along the equilibrium path of the other MPE, effort is (weakly) higher

in the equilibrium of Proposition 1: ēr(p̄S(p̃)) ≤ er(p̄S(p̃)) and so on for all successor nodes

of p̃ in the other equilibrium. This can be done because p̄S(p̃) > p̃ by the condition on δq.

We show now that if higher effort can be supported at p̃ in the other equilibrium, this

implies that effort level e′ ≥ ēr(p̃) > er(p̃) is incentive compatible at p when we follow the

equilibrium path of Proposition 1 at all successor nodes. To see why, note that if we adopted

the effort level ēr(p̃) at p̃ and then followed the equilibrium of Proposition 1 at all successor

nodes, we would obtain utility ṽ ≥ v̄r(p̃) at p̃. The reason is, first, that the equilibrium

of Proposition 1 is characterized by interest rates satisfying the zero-profit condition, and

second, that we have taken p̃ to be the highest point along the equilibrium path of the other

equilibrium for which effort is higher.

To see why this implies that higher effort e′ is incentive compatible, observe that if

ēr(p̃) = 1 then it is immediate that high effort is also incentive compatible at p̃ when

we follow the equilibrium path of Proposition 1 at all successor nodes. Alternatively, if

ēr(p̃) ∈ (0, 1), while the incentive compatibility condition (A.9) may not hold with equality

when effort level e′ is exerted and we then follow the equilibrium path of Proposition 1 (since

ṽ might be too high), a continuity argument similar to that in Claim 2 can be used to show
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that it is possible to find some e′ > ēr(p̃) which is incentive compatible. In either case, we

can find e′ > er(p̃) which is incentive compatible at p̃.

To demonstrate that this contradicts the construction of the equilibrium of Proposition 1,

and thereby conclude the proof, we must also verify whether this higher effort level e′ satisfies

the constraint e′′r(p∗∗), for p∗∗ ≥ p̃ constructed as in the proof of Claim 2.58

Suppose it does. Then we have contradicted the construction of the equilibrium of Propo-

sition 1 and, in particular, the construction of er(p̃) as maximizing effort subject to the

constraint that er(p̃) ≤ er(p∗∗) (see Claim 2).

If, in contrast, e′ > er(p∗∗) (i.e., the constraint binds), we show in what follows that

we can apply a similar argument to that given above to establish that higher effort can be

implemented at p∗∗ (following the equilibrium of Proposition 1 at all successor nodes). This

can be done because the monotonicity of vr(p) and the fact that interest rates are decreasing

in p imply that incentives are (weakly) stronger for higher values of p. In particular, if effort

e′r(p∗∗) is incentive compatible at p̃, then a (weakly) higher effort is also incentive compatible

at p∗∗ > p̃. Demonstrating that a higher level of effort can be implemented at p∗∗ would

again contradict the construction of the equilibrium of Proposition 1. And if the constraint

also binds at p∗∗, we iterate forwards again and apply then the same argument as above to

the upper bound associated with the new value of p∗∗. We continue iterating forwards as

needed; this iteration must eventually stop (at the latest when we reach (pS)−1(ph, 1), as

there the effort choice was unconstrained).

Claim 5: W (s0, q) ≥ W(s0, q).

First consider the case p0(s0, q) < pl. From (5) it is clear that since the other equilibrium

implements lower effort at any p, we must have p̄0(s0, q) ≤ p0(s0, q). Thus from Corollary 2

there can be no financing in either equilibrium and so W (s0, q) = W(s0, q).

Next, when p0(s0, q) ≥ pl, total surplus can be defined as follows:

W(s0, q) = W
s(s0) + W

r(s0),

where W s(s0) = s0(R−1)

1−β̃
and W r(s0) = (1 − s0)w

r(p0(s0, q)), for wr(·) defined recursively:

wr(p) ≡
[

πe(p)R − 1 − c · er(p)
]

+ πe(p)β̃wr(pS(p))+ (1 − πe(p))qβ̃wr(p).59 We can similarly

define W(s0), W
s
(s0),W

r
(s0), and wr(p) for the other equilibrium.

58While Claim 2 focuses on the mixing region, this condition also holds in the high-effort and low-effort
regions.

59Here πe(p) ≡ πher(p)+π l(1−er(p)) is the risky entrepreneurs’ success probability given the equilibrium
effort level at p, and similarly πe(p) for the other equilibrium.
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It is immediate that W s(s0) ≥ W
s
(s0). So we will restrict attention in what follows to

establishing the same result for W r(s0).

Suppose first that there is financing for all p > p0(s0, q) in both equilibria. Now, it

follows that since the equilibrium of Proposition 1 implements high effort for p ≥ ph, we

have wr(p) ≥ w̄r(p). Also note that wr(p) is constant above ph. So if p0(s0, q) ≥ ph, it is

then immediate that W r(s0) ≥ W
r
(s0), since from (5) we know that p0(s, 0) ≥ p̄0(s0, q).

60

Otherwise, we proceed by induction.

Consider next p ∈ [pm, ph). We know from Claim 4 that er(p) ≥ ēr(p), which also implies

that p̄S(p) ≥ pS(p) ≥ ph, and thus that wr(p̄S(p)) ≥ wr(p̄S(p)). Also note that wr(p′) > 0

for p′ ≥ ph. So

wr(p) =

(

πē(p)R − 1 − cēr(p)
)

+ πē(p)β̃wr(p̄S(p))

1 − (1 − πē(p))β̃q

≤

(

πē(p)R − 1 − cēr(p)
)

+ πē(p)β̃wr(p̄S(p))

1 − (1 − πē(p))β̃q

≤

(

πe(p)R − 1 − cer(p)
)

+ πe(p)β̃wr(p̄S(p))

1 − (1 − πe(p))β̃q
,

where the final inequality follows because ēr(p) ≤ er(p) ≤ 1.61 If we now replace wr(p̄S(p))

with wr(pS(p)) in the right-hand side of the inequality, this cannot decrease its value, since

we showed that wr(p′) is constant for p′ ≥ ph (and p̄S(p) ≥ pS(p)). This then demonstrates

that wr(p) ≥ w̄r(p) for p ∈ [pm, ph). Another consequence of this is that wr(p) is weakly

increasing for p ≥ pm.

Next, observe that for lower values of p; p ∈ [pl, pm), from Claim 4 we know that both

equilibria implement low effort in this region, and so wr(p) ≥ w̄r(p). This again also im-

plies that wr(p) is weakly increasing. Then since p0(s0, q) ≥ p̄(s0, q), we can conclude that

W r(s0) ≥ W
r
(s0).

If the other equilibrium implements exclusion for p ≥ pl, it is not hard to extend the

argument above, once we note that financing generates positive social surplus in every period

(since the lenders make zero profits, on average).

60Since p0(s, 0) is decreasing in the effort exerted in the initial period, and this effort cannot be higher in
the other equilibrium.

61The reason is that increasing from ēr(p) to er(p) raises the probability of success (and hence continuing
rather than staying at the same score). Since the agent exerts high effort at p̄S(p), this then increases welfare
generated by the risky agents.
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