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Recent advances in chip manufacturing technologies have enabled computer architects

to integrate an increasing number of processor cores and other heterogeneous components

on a System-on-Chip (SoC). Network-on-Chip (NoC) is a promising solution and is widely

employed by multicore architectures to cater to their communication requirements. The

increased usage of NoC and its distributed nature across the chip have made it a focal point of

potential security attacks. Trustworthy NoC architectures need to maximize security without

violating design constraints. Moreover, the security solutions should be applicable for diverse

technologies such as electrical, optical and wireless NoCs.

This dissertation focuses on developing lightweight security countermeasures that can

provide the desired communication security and privacy with a tolerable impact on area,

power and performance. Specifically, my research makes fundamental contributions in three

major areas: (1) accurate modeling and optimization of NoC-based SoCs, (2) development of

design-for-security solutions for on-chip communication, and (3) runtime monitoring to detect

security threats. I propose several lightweight security countermeasures including incremental

cryptography, trust-aware routing, anonymous routing and anomaly detection to address a wide

variety of attacks such as eavesdropping, spoofing, packet tampering, and denial-of-service.

My work proposes a reconfigurable NoC security architecture as well as novel NoC security

solutions utilizing machine learning. Experimental results demonstrate that the proposed

approaches can lead to trustworthy on-chip communication in resource-constrained SoCs.
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CHAPTER 1
INTRODUCTION

We are living in the era of Internet-of-Things (IoT), an era in which the number of

connected smart computing devices exceeds the human population. Various reports suggest

that we can expect over 50 billion devices to be deployed and mutually connected by 2025 [1],

compared to about 500 million in 2003 [2]. In the past, computing devices like phones with

a few custom applications represented the boundary of our imagination. Today, we are

developing solutions ranging from smartwatches, smart cars, smart homes, all the way to

smart cities. System-on-Chip (SoC) designs are at the heart of these computing devices, which

range from simple IoT devices in smart homes to complex navigation systems in airplanes. As

applications grow increasingly complex, so do the complexities of the SoCs. For example, a

typical automotive SoC may include 100-200 diverse Intellectual Property (IP) blocks designed

by multiple vendors. The ITRS (International Technology Roadmap for Semiconductors)

2015 roadmap projected that the increased demand for information processing will drive a

30-fold increase in the number of cores by 2029 [3]. Indeed, one of the most recent many-core

processor architectures, Intel “Knights Landing” (KNL), features 64-72 Atom cores and 144

vector processing units [4]. The Intel Xeon Phi processor family, which implements the KNL

architecture, is often integrated into workstations to serve machine learning applications. The

256-core CPU - MPPA2, launched by Kalray Corporation [5], is used in many data centers to

speed up data processing.

The increasing number of cores demands the use of a scalable on-chip interconnection

architecture, which is also known as Network-on-Chip (NoC). As shown in Figure 1-1, a typical

SoC utilizes NoC to communicate between multiple IP cores including processor, memory,

controllers, converters, input/output devices, peripherals, etc. NoC IPs are used in a wide

variety of market segments such as mobile phones, tablets, automotive and general purpose

processing leading to an exponential growth in NoC IP usage. A survey done by Gartner

Inc. has revealed that NoC IP sales of Sonics, a privately-held Silicon Valley IP provider that
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specializes in NoC and power-management technologies, is ranked number 7 in terms of design

IP revenue with a profit growth of 44.8% compared to 2013 [6]. Therefore, it is evident that

the NoC has become an increasingly important component in modern SoC designs.

Figure 1-1. An example System-on-Chip (SoC) with Network-on-Chip (NoC) based
communication fabric to interact with a wide variety of third-party Intellectual
Property (IP) cores.

The drastic increase in SoC complexity has led to a significant increase in SoC design

and validation complexity. Reusable hardware IP based SoC design has emerged as a pervasive

design practice in the industry to dramatically reduce design and verification cost while

meeting aggressive time-to-market constraints. Figure 1-2 shows the supply chain of a

specific commercial SoC [7]. Growing reliance on these pre-verified hardware IPs, often

gathered from untrusted third-party vendors, severely affects the security and trustworthiness

of SoC computing platforms. These third-party IPs may come with deliberate malicious

implants to incorporate undesired functionality (e.g. hardware Trojan), undocumented

test/debug interfaces working as hidden backdoors, or other integrity issues. Based on

Common Vulnerability Exposure estimates, if hardware-level vulnerabilities are removed, the

overall system vulnerability will reduce by 43% [8, 9].

The security of emerging SoCs is becoming an increasingly important design concern.

Beyond the traditional attacks from software on connected devices, attacks originating from or

assisted by malicious components in hardware are becoming more common. For example, Quo

Vadis Labs has reported backdoors in electronic chips that are used in weapon control systems

and nuclear power plants [10], which can allow these chips to be compromised remotely. The

well-publicized “Spectre” [11] and “Meltdown” [12] attacks highlight how sensitive data can
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Figure 1-2. Supply chain of a commercial router SoC with components from multiple
third-party companies across the globe.

be stolen from threads executing on multicore processors. It is widely acknowledged that all

algorithmically secure cryptographic primitives and protocols rely on a hardware root-of-trust

that is resilient to attacks to deliver the expected protections when implemented in software.

Clearly, hardware platforms are at an elevated risk for security compromises in today’s world.

In order to enable hardware-root-of-trust, we have to ensure that an SoC is trustworthy

by ensuring security of computation, communication as well as storage. While the existing

efforts have shown promising results in providing computation and storage related security

solutions [7], there is limited effort in ensuring on-chip communication security. The ubiquity

of devices using NoC-based SoCs has made NoC a focal point for security attacks as well as

countermeasures. Therefore, in order to secure the cyberspace, it is vital to protect the NoC

from potential security threats as well as leverage the advantages given by NoC to minimize

security vulnerabilities of other system components.

A fundamental problem of NoC-based SoCs is ensuring security while preserving

non-functional requirements such as performance, power and area. Due to the resource

constrained nature of embedded and IoT devices, it may not be possible to implement

traditional security measures such as encrypting text with the AES cipher and using SHA
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hash functions. Thus, it is evident that considering security alone will not provide conclusive

results. A more holistic approach is required that considers security among other non-functional

requirements. In this dissertation, three main aspects of NoC-based SoCs are considered:

(1) accurate modeling and optimization of NoC-based SoCs, (2) development of lightweight

design-for-security solutions for on-chip communication, and (3) runtime monitoring to detect

security threats.

This chapter is organized as follows. Section 1.1 provides an overview of NoC architectures.

Section 1.2 describes the NoC security landscape. Section 1.3 highlights my research

contributions. Finally, Section 1.4 outlines the organization of the dissertation.

1.1 Overview of Network-on-Chip (NoC) Architectures

Consider a designer who is responsible for designing the road network of a large city.

Roads should be laid out giving easy access to all the offices, schools, houses, parks, etc. If

all of the most common places are situated close to each other, it is inevitable that the roads

in that area will get congested and other areas will be relatively empty. The designer should

make sure that such instances do not occur and the traffic is uniformly distributed as much as

possible. Alternatively, the roads should have more lanes and parking lots in such congested

areas to cater to the requirement. In addition to accessibility and traffic distribution, the

architect should also consider intersections, traffic lights, priority lanes, and potential detours

due to occasional road maintenance. Moreover, self driving cars and drones that deliver various

items might come into picture in the future as well. Analogous to this, the designer of an SoC

faces a similar set of challenges when designing the communication infrastructure connecting

all the cores.

The early SoCs employed bus and crossbar based architectures. Traditional bus

architecture has dedicated point-to-point connections, with one wire dedicated to each

component. When the number of cores in an SoC is low, buses are cost effective and simple to

implement. Buses have been successfully implemented in many complex architectures. ARM’s

AMBA (Advanced Micro-controller Bus Architecture) bus [13] and IBM’s CoreConnect [14] are
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two popular examples. Figure 1-3 shows an overview of the ARM AMBA bus architecture [13].

Buses do not classify activities depending on their characteristics. For example, the general

classification as transaction, transport and physical layer behavior are not distinguished by

buses. This is one of the main reasons why they cannot adapt to changes in architecture

or make use of advances in silicon process technology. Due to increasing SoC complexity

coupled with increasing number of cores, buses often become the performance bottleneck in

complex SoCs. This coupled with other drawbacks, such as non-scalability, increased power

consumption, non-reusability, variable wire delay, and increased verification cost, motivated

researchers to search for alternative solutions.

Figure 1-3. Overview of the ARM AMBA bus architecture.

The inspiration for network-on-chip (NoC) came from traditional networking solutions,

more specifically, the Internet. The NoC, a miniature version of the wide area network with

routers, packets and links, was proposed as the solution for on-chip communication [15, 16].

The new paradigm described a way of communicating between IPs including features such as

routing protocols, flow control, switching, arbitration and buffering. With increased scalability,

resource reuse, improved performance and reduced costs, NoC became the solution for the

complex SoCs that required a scalable interconnection architecture. The remainder of this

section covers various aspects of NoC architectures.

1.1.1 Network-on-Chip Architecture and Communication Protocol

Figure 1-4 shows an example NoC interconnection architecture consisting of several

processing elements connected together via routers and regular sized wires (links). A

processing element can be any component such as a microprocessor, an ASIC (application
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specific integrated circuit), or an intellectual property block that performs a dedicated task as

shown in Figure 1-1. Without loss of generality, in this dissertation, we call processing elements

as IPs. IPs are connected to the routers via a network interface (NI). We call the combination

of an IP, an NI and a router as a “node” in the NoC. It can be observed that words node and

“tile” are used interchangeably in existing literature to refer to NoC components connected to

one router [4, 17].

Figure 1-4. Example of an NoC connecting 16 IPs.

NoC interconnection architecture uses a packet-based communication approach. A

request or response that goes to a cache or to off-chip memory is divided into packets, and

subsequently to “flits”, and injected to the network. A flit is the smallest unit of flow control

in an NoC. A packet may consist of one or more flits. For example, assume S is a processor

IP whereas node D is connected to an off-chip memory interface (memory controller). When

a load instruction is executed at S, it first checks the private cache located in the same node

and if it is a cache miss, the required data has to be fetched from the memory. Therefore,

a memory fetch request message is created and sent on the appropriate virtual network to

the NI. The network interface then converts it into network packets according to the packet

format, fliticizes the packets and sends the flits into the network via the local router. The

network is then responsible to route the flits to the destination, D. Flits are routed either along

the same path or different paths depending on the routing protocol. The NI at D creates the

packet from the received flits and forwards the request to D, which then initiates the memory

23



fetch request. The response message from the memory that contains the data block follows

a similar process. Similarly, all IPs integrated in the SoC leverage the resources provided by

the NoC to communicate with each other. Figure 1-5 shows an overview of this process.

Figure 1-6 shows the format of a memory request packet and a response data packet used in

the gem5 architectural simulator [18].

Figure 1-5. Overview of a NoC traversal.

A Memory request packet.

B Response data packet from memory.

Figure 1-6. NoC control (memory request) and data (response data) packet formats used in
the gem5 simulator.

Previous works have proposed several NoC architectures such as Nostrum [19],

SOCBUS [20], Proteo [21], Xpipes [22], Æthereal [23], etc. based on different requirements.

The choice of the parameters in the architecture depends on the design requirements such

as performance/power/area budgets, reliability, quality-of-service guarantees, scalability

and implementation cost. Some of the existing NoC architectures have been surveyed in

literature [24, 25]. NoC architecture design needs to consider two important factors - network

topology and routing protocol. The next two subsections describe these aspects in detail.

1.1.1.1 Network topology

The topology defines the physical organization of IPs, routers and links of an interconnect.

The organization in Figure 1-4 shows a mesh topology. Crossbar, point-to-point, tree, 3-D
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mesh are few other commonly used topologies. Figure 1-7 shows some examples of them.

The topology is chosen depending on the cost and performance requirements of an SoC.

The topology directly impacts the communication latency when two IPs are communicating,

since it affects the number of links and routers a flit has to traverse through to reach a given

destination. A major trade-off when deciding the topology for a given requirement is between

connectivity and cost. Higher connectivity (e.g., point-to-point) allows increased performance,

but has higher area and power overhead. The 2-D mesh is the most common topology in NoC

designs [4, 17]. Each link in a mesh has the same length leading to ease of design, and the

area occupied by the mesh grows linearly with the number of nodes.

1.1.1.2 Router and routing protocol

The routers comprise of input buffers that accept packets from the local IP via the NI or

from other routers connected to it. For example, in the mesh topology, except for the routers

in the border, each router is connected to the local IP and four other routers. Based on the

addresses in the packet header and the routing protocol, the crossbar switch routes data from

the input buffers to the appropriate output port. Buffers are allocated for virtual channels

which helps avoid deadlock. The switch allocator handles input port arbitration for output

ports [26].

The routing protocol defines the path a flit should take in a given topology. Routing

protocols can be broadly classified as deterministic and adaptive. In deterministic routing, each

packet traversing from S to D follows the same path. X-Y routing is one common example

of deterministic routing. In X-Y routing, packets use X-directional links first, before using

Y-directional links [27]. An example including three paths taken by X-Y routing in a mesh NoC

is shown in Figure 1-7. Adaptive routing takes network states such as congestion, security, and

reliability into account, and sends the flits through different paths based on the current state of

the network [28].
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Figure 1-7. NoC topologies and an example of X-Y routing in a mesh NoC.

1.1.2 Emerging NoC Technologies

When NoC was first introduced, the focus was on electrical (copper) wires connecting

NoC components together, referred to as “electrical NoC”. However, recent advancements have

demanded exploration of alternatives. With the advancement of manufacturing technologies,

the computational power of IPs have increased significantly. As a result, the communication

between SoC components have become the bottleneck. Irrespective of the architectural

optimizations, electrical NoC exhibits inherent limitations due to the physical characteristics of

electrical wires [29].

• The resistance of wires, and as a result, the resistance of NoC, is increasing significantly
under combined effects of enhanced grain boundary scattering, surface scattering, and
the presence of a highly resistive diffusion barrier layer [30, 31].

• Electrical NoC can contribute a significant portion of the on-chip capacitance. In some
cases, about 70% of the total capacitance [32].

• The electrical NoC is a major source of power dissipation due to the above two factors.

Therefore, it is becoming increasingly difficult for electrical NoC to keep up with the

delay, power, bandwidth, reliability and delay uncertainty requirements of state-of-the-art

SoC architectures [33, 34]. These challenges can only intensify in future giga and tera-scale

architectures. In fact, the International Technology Roadmap for Semiconductors (ITRS) has

mentioned optical and wireless based on-chip interconnect innovation to be key to addressing

these challenges [35].
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Recent years has seen the introduction of emerging NoC technologies such as “wireless

NoC” [36] and “optical NoC” [37]. While the focus of this dissertation is on security attacks

and countermeasures in electrical NoCs, a majority of these security solutions are also

applicable for wireless and optical NoCs. This is primarily due to the fact that they have

inherent similarities in terms of network topology and routing protocols. For example, both

electrical and optical NoCs represent similar topologies using wired connectivity. Similarly,

wireless NoC always use one-hop routing, while optical and electrical NoCs utilize one-hop

or muti-hop communication depending on the source and destination. Figure 1-8 shows

an overview of how different NoC technologies can be used to connect heterogeneous SoC

components. In the rest of the disseration, we use the word NoC to refer to electrical NoC

unless otherwise specified as Wireless NoC or Optical NoC.

1.1.2.1 Wireless NoC

Wireless NoC was proposed as a solution to the latency experienced by electrical NoCs,

which are based on metal interconnects and multi-hop communication. Wireless NoC

integrates on-chip antennas and suitable transceivers that enable communication between

two IPs without a wired medium. Silicon integrated antennas communicating using the

millimeter wave range is shown to be a viable technology for on-chip communication [36].

1.1.2.2 Optical NoC

On the other hand, optical NoC, also known as photonic NoC, uses photo emitters, optical

wave guides and transceivers for communication [38]. The major advantage over electrical NoC

is that it is possible to physically intersect light beams with minimal crosstalk. This enables

simplified routing and together with other properties, optical NoC can achieve bandwidths in

the range of Gbps.

1.2 Security Landscape in NoC Based System-on-Chip

The widespread adaptation of NoCs has made it a focal point for security attacks as

well as countermeasures. There is a growing interest in the industry to use the NoC to

secure the SoC as evident from NoC-Lock [39] and FlexNoC resilience package [40]. On
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Figure 1-8. NoC enables communication between IPs. The network interface (NI), router (R)
and links can be implemented using optical, wireless or electrical communication
technologies.

the other hand, the NoC itself can be a threat when different IP blocks come from different

vendors. A compromised NoC IP can corrupt data, degrade performance or even steal sensitive

information. NoC security is crucial for three related reasons: i) NoC has access to all system

data, ii) NoC spans across the entire SoC, and iii) NoC elements are repetitive in a way that

any modification can be easily replicated. In the following subsections, we discuss how SoCs

can become vulnerable to security threats (Section 1.2.1), why securing NoC based SoCs has

become a hard problem (Section 1.2.2) and different threat models in existing literature related

to NoC security (Section 1.2.3).

1.2.1 Security Vulnerabilities in SoCs

SoC complexity and tight time-to-market deadlines have shifted the in-house SoC

manufacturing process to a global supply chain. SoC manufacturers outsource parts of the

manufacturing process to third-party IP vendors. This globally distributed mechanism of

design, validation and fabrication of IPs can lead to security vulnerabilities. Adversaries

have the ability to implant malicious hardware/software components in the IPs. Existing

literature has discussed three forms of vulnerabilities: (i) malicious implants, (ii) backdoor

using test/debug interfaces, and (iii) unintentional vulnerabilities [41]. An adversary can

utilize the malicious implants (hardware Trojans) to cause malfunction or facilitate information

leakage [7]. An adversary can also exploit legitimate test and debug interfaces as a backdoor

for information leakage [10]. Many security vulnerabilities can be created unintentionally by
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design automation/computer-aided design (CAD) tools or by designers’ mistakes [42]. These

vulnerabilities can lead to untrusted (potentially malicious) IPs.

Attacks based on malicious implants, such as hardware Trojans, rely on Trojans being

integrated in the SoC without being detected at the post-silicon verification stage or during

runtime [7]. Hardware Trojans can be inserted into the design in several places such as by

an untrusted CAD tool or designer or at the foundry via reverse engineering [43]. Even if all

the IPs are tested before integration, hardware Trojans can still go undetected because of

the complexity of designs with billions of transistors which make physical inspection or 100%

coverage in design verification/validation a costly or even impossible target [44]. Furthermore,

Trojans can mask their behavior as transient errors and can be activated only when a specific

condition or a combination of conditions are satisfied [45]. A smart attacker can carefully

craft the Trojan activation method so that it becomes difficult to detect. Previous work has

discussed external/internal Trojan activation modes [44], software-hardware coalition [46] and

triggers based on time, input sequence, traffic pattern, and even thermal conditions [45].

The usage of third party NoC IPs has grown rapidly over the years. Due to the widespread

use of NoC IPs, outsourcing NoC IP fabrication has become a common practise. iSuppli,

an independent market research firm, has concluded from their research that the FlexNoC

on-chip interconnection architecture [40] is used by four out of the top five Chinese fabless

semiconductor OEM (original equipment manufacturer) companies [47]. This has led to

Arteris, the company that developed FlexNoC, achieve a sales growth of 1002% over a three

year time period through IP licensing [48]. Therefore, there is ample opportunity for adversaries

to attack the SoC through malicious implants in NoC IPs. Furthermore, due to the complexity

of the design, NoC IPs are ideal candidates to insert hardware Trojans [49].

1.2.2 Unique Challenges in Securing NoC-based SoCs

The general problem of securing the interconnect has been well studied in the computer

networks domain and other related areas [50–52]. However, implementation of security features

introduce area, power and performance overhead. While computer networks domain can allow
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for complex security countermeasures, the resource constrained nature of embedded and IoT

devices pose additional unique challenges as outlined below.

1.2.2.1 Conflicting requirements

While enabling communication between IPs, NoCs need to satisfy a wide variety of

requirements including security, privacy, energy efficiency, domain-specific requirements and

real-time constraints. It is difficult to satisfy conflicting requirements such as security and

energy efficiency. For example, it may not be possible to implement traditional security

measures such as encrypting text with the AES cipher and using SHA hash functions in

resource-constrained IoT devices. Similarly, security and domain-specific requirements may

not be compatible. For example, in an automotive network, when a potential security breach

is detected, pausing all systems to check the malfunction is not an option since the car is

moving, and stopping it abruptly can lead to catastrophic consequences. Thus, there is a need

for innovative solutions to secure NoCs with lightweight security mechanisms customized for

application domains.

1.2.2.2 Increased complexity

The complexity of SoC designs have made exhaustive security validation an impossible

task. Most IPs come as black boxes from vendors that do not reveal design details in order

to maintain the competitive advantage in a niche market. As a result, the complete design is

not visible to verification engineers. Modern verification tools often try to detect missing or

erroneous functionality whereas security vulnerabilities can be hidden in dormant functions in

large and complex designs that gets triggered only by a specific set of inputs as discussed in

Section 1.2.1. Therefore, it is not feasible to capture all security vulnerabilities using security

validation tools during design time.

1.2.2.3 Diverse technologies

While electrical communication is widely used in designing NoC based SoCs, emerging

NoCs can also support chip-scale photonics (optical NoC) as well as wireless communication

(wireless NoC) as shown in Figure 1-8. Security solutions for NoCs thus need to not only
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address security over electrical wires, but also consider the emerging challenges from data

transfers over photonic waveguides and wireless channels. While broadcast may be preferred

for wireless NoCs, optical and electrical NoCs need to consider a wide variety of network

topologies as well.

1.2.3 Threat Models

The intention of a hardware Trojan can vary from design to design. Commonly discussed

threats include information leakage, denial-of-service and data corruption. A recent occurrence

of a hardware Trojan spying on data, raised concerns across top US companies and authorities

including Apple, Amazon and CIA [53]. In this section, we provide an overview of five classes

of attacks on NoC based SoCs (Figure 1-9).

Figure 1-9. Five classes of security attacks discussed in existing literature.

These classes of attacks have been well studied in the computer networks domain and

other related areas. However, implementation of security features introduce area, power and

performance overhead. While computer networks domain can allow for complex security

countermeasures, the resource constrained nature of embedded and IoT devices pose additional

unique challenges as outlined above. To address this issue, in this dissertation, I present

lightweight security countermeasures that can provide the desired security with tolerable impact

on area, power and performance. In the remainder of this section, I provide an overview of

attacks explored in NoC based SoCs (Chapter 2 will provide a detailed discussion on related

efforts).

1.2.3.1 Eavesdropping attacks

Eavesdropping attack, also known as snooping/sniffing, refers to an attacker passively

listening to on-chip communication in an attempt to steal sensitive information. The intention

of the attacker is to leak information over long time periods without being detected. Recent
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occurrences of hardware security breaches where hard-to-detect hardware components, that

were not a part of the original design, integrated into the original design leaking information

have attracted more attention to eavesdropping attacks [53].

1.2.3.2 Spoofing and data integrity attacks

SoC relies on the integrity of data communicated through the NoC for correct execution

of tasks. If a malicious agent corrupts data intentionally, it can lead to erroneous execution

of programs as well as system failures. On the other hand, spoofing is the act of disguising a

communication from an unknown source as being from a known (trusted) source. Therefore,

a malicious agent pretending to be a trusted source can inject new packets to the network

causing system to malfunction. Spoofing can be used to bypass memory access protection

by impersonating a core that has permission to read from (or write in) prohibited regions to

steal sensitive information or disrupt execution. Spoofing may also be leveraged to respond to

legitimate requests with wrong information to cause system failure. Spoofing can be achieved

by an attacker replacing the source address of a packet by an address of a trusted IP.

1.2.3.3 Denial-of-service attacks

Denial-of-service (DoS) in a network is an attack that prevents legitimate users from

accessing services and information. The most common example is an attacker flooding a

network with information. When a user is trying to access a website, the request is sent to

that web server to view the page. The server has a certain bandwidth and can only serve a

limited number of requests at a time. If the attacker overloads the server with requests, it will

not be able to process the user’s legitimate request. This is “denial of service”. In the context

of an NoC, several threat models have been explored. In general, DoS in NoC based SoCs are

attacks that overwhelm the network resources in an attempt to cause performance degradation,

real-time guarantee violations and reduction of battery lifetime.

1.2.3.4 Buffer overflow and memory extraction attacks

The goal of a buffer overflow attack is to alter the function of a privileged program so

that the attacker can gain access and execute his own code. A program with high privileges
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(root programs) typically become the target of buffer overflow attacks. To accomplish this,

the adversary has to insert malicious code and make the program execute it. “Code injection”

is the first step to accomplish this where the malicious code is inserted into the privileged

program’s address space. This can be achieved by providing a string as input to the program

which will be stored in the program buffer. The string will contain some root level instructions

which the adversary wants the program to execute [54]. Then, the adversary creates an

overflow in the program buffer to alter states of the program. For example, it can alter a

return address of a function so that the program will jump to that location and start executing

the malicious code [55]. This can be accomplished when buffers have weak or no bound

checking. Buffer overflow attacks can also be used to read privileged memory locations from

the address space. In an NoC context, the threat gets aggravated due to memory spaces being

shared between multiple cores.

1.2.3.5 Side channel attacks

Side channel attacks exploit non-functional behavior such as time, power, electromagnetic

radiation, heat and acoustic waveforms to attack a secure system [56]. The switching behavior

of the CMOS (complementary metal oxide semiconductor) transistors can be analyzed to infer

the underlying circuit functionality. Therefore, even a flawless implementation of a security

mechanism can be vulnerable against side channel attacks. For example, Zhen et al. presented

a method to implement a timing attack on Nvidia Kepler K40 GPU and successfully recovered

the complete 128-bit AES encryption key [57]. In contrast, a paper published in 2012 showed

that a brute-force attack on AES using a super computer can take 149 trillion years [58]. Even

though computing resources have significantly improved since then, a brute-force attack on

AES-128 is still not possible. Possibility of side channel attacks escalated, since in a realistic

scenario, more constraints are imposed on the system such as performance and power. Even

for systems with theoretically proven security bounds, revealing the secrets through these

non-functional physical properties is a likely scenario.
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1.3 Research Contributions

My research proposes novel techniques to address the security challenges in the following

three broad categories.

1. Design-for-Security: I have proposed a set of security solutions that integrate security
mechanisms to the chip during design time to mitigate threats rather than trying to
detect attacks during runtime.

2. Runtime Monitoring: In addition to the attacks that can be mitigated by design-for-security
solutions, runtime threat detection and localization techniques are required to further
neutralize other threats.

3. Modeling and Evaluation: I have developed accurate models of commercial SoCs in
architecture simulators to enable exploration of optimization opportunities as well as
realistic evaluation of lightweight security countermeasures.

In other words, I propose to add security at two stages of the design cycle. The first set of

proposed approaches would try to create design-for-security solutions that would make it hard

or impossible for attackers to install malicious implants. The next step would be to perform

runtime monitoring in case the first layer of defense was not enough or an attacker exploited

specific runtime vulnerabilities.

Figure 1-10 outlines the major research contributions of the dissertation. The research

listed in the left branch focuses on accurate modelling of commercial SoCs in architecture

simulators and exploring potential optimization opportunities that will enable the exploration

and evaluation of lightweight security countermeasures. The middle branch lists research

focused on developing lightweight design for security solutions for NoC security. The right

branch contains research that outlines runtime monitoring solutions to detect threats during

SoC operation. The remainder of this section provides a brief overview of my contributions.

• Accurately modeling of NoC architectures: The NoC performance and power
consumption depend critically on the traffic load. The network traffic itself is a function
of not only the application, but also the cache coherence protocol, and memory
controller/directory locations. To accurately measure the impact of any security
mechanism or optimization technique, it is important to capture the traffic behavior
accurately, and model them in architecture simulators. This dissertation shows that using
unrealistic models in a widely used multiprocessor simulator produce misleading power
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and performance predictions, whereas accurate modeling of NoC traffic behavior can
produce results comparable with hardware platforms.

• NoC-aware cache reconfiguration and exploration: Dynamic cache reconfiguration
(DCR) is an effective technique to optimize energy consumption in many-core
architectures. While early work on DCR has shown promising energy saving opportunities,
prior techniques are not suitable for NoC based SoCs since they do not consider the
interactions and tight coupling between memory, caches and NoC traffic. In this
dissertation, I propose an efficient cache reconfiguration framework in NoC based SoCs.
My approach can reduce energy consumption significantly and the proposed machine
learning based exploration framework can reduce the exploration time by an order of
magnitude with negligible loss in accuracy.

• Incremental cryptography for NoC communication: On-chip communication
has to be obfuscated and checked for integrity to ensure that malicious IPs do not
eavesdrop/tamper with communication between IPs while meeting the desired power
and performance targets (including real-time constraints). Traditional encryption (AES)
and authentication (message authentication based on complex hash functions) schemes
can incur significant performance and energy overhead, and as a result, may not be
suitable in many scenarios. Therefore, it is crucial to develop a lightweight security
architecture that can provide the desired security with acceptable overhead. In this
dissertation, I propose a lightweight encryption scheme that leverages on the unique
traffic characteristics of NoC. My approach uses the similarity between consecutive
packets and uses an encryption scheme based on incremental encryption.

• Lightweight encryption and anonymous routing: While AEAD (Authenticated
Encryption with Associated Data) schemes can protect sensitive data from eavesdroppers
while ensuring the integrity of packets, the header fields, which are referred to as
“associated data” is sent as plaintext. Attackers can use this header information to
identify packets from the same information flow and launch more complex attacks
such as linear and differential cryptanalysis to recover the plaintext from the encrypted
portion. If the header field is encrypted, the intermediate routers have to decrypt headers
to learn the next hop of the packet, which can lead to unacceptable performance and
energy overhead. I propose a lightweight anonymous routing scheme that provides
anonymity of source and destination as well as privacy of sensitive data in the packet.
My approach uses a secret sharing based encryption scheme which allows us to eliminate
traditional key-based encryption during packet transfer leading to better performance and
energy efficiency.

• Runtime detection & localization of DoS attacks: Distributed denial-of-Service
(DDoS) is an attack that is caused by one or more malicious IPs (MIPs) flooding the
network with unnecessary packets causing significant performance degradation through
NoC congestion. In this dissertation, I propose a lightweight and real-time DDoS attack
detection mechanism. Once a potential attack has been flagged, my approach is also
capable of localizing the MIPs using latency data gathered by NoC components. My
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approach is capable of timely attack detection and localization while incurring minor area
and power overhead.

• Trust-aware routing in the presence of malicious IPs: Even though authentication
schemes can ensure data integrity, a MIP integrated on the NoC can tamper packets
leading to performance and energy penalties. Continuous tampering can even lead to
DoS attacks. While message authentication code (MAC)-based authentication schemes
can detect tampering, if packets do not traverse through the MIPs, tampering can be
avoided altogether. I develop a trust evaluation scheme where IPs can develop trust
about neighbouring routers and decide which routing path will minimize the risk of
getting a packet tampered. Trust values are effectively propagated to build local and
global trust about the NoC components. My approach leads to less tampered packets,
less retransmissions and as a result, improved performance and energy efficiency.

• Reconfigurable network-on-chip security architecture: In the early days, the
IoT and embedded devices were intended for a single or very few use cases. The
requirements and working conditions were well defined and predictable. Therefore, it was
easy to make design choices to fit the requirements. In comparison to that, the devices
manufactured today are intended to serve general purpose applications that are diverse
and sometimes, not yet defined. Therefore, it is not possible to statically optimize the
devices to fit each use case. In this dissertation, I plan on exploring a reconfigurable
security architecture for NoC based SoCs that can be dynamically reconfigured depending
on use-case scenarios. My approach seamlessly integrates several security primitives and
proposes a mechanism to choose between them during runtime.

• Digital watermarking for detecting malicious IPs: Hardware security breaches
due to third-party vendors aiming at industrial espionage have recently raised many
concerns. Such eavesdropping attacks have been discussed in an NoC context as well. In
particular, in an eavesdropping attack, a Trojan infected router copies packets transferred
through the NoC and re-routes the duplicated packets to an accompanying malicious
application running on another IP in an attempt to extract confidential information.
While authenticated encryption can thwart such attacks, it incurs unacceptable overhead
in resource-constrained SoCs. In this dissertation, I propose a lightweight alternative
defense based on digital watermarking techniques. I develop theoretical models to
provide security guarantees and validate them with experimental results. My approach
can significantly outperform state-of-the-art methods.

• Securing NoC using machine learning: Machine learning (ML) techniques have
proven to be effective at addressing security vulnerabilities. While computer networks
domain has effectively utilized ML to secure networks, the intersection of ML and NoC
security has never been explored before. In this dissertation, I propose an ML-based
DoS attack detection framework that trains ML models during design time and uses
the trained models to classify network traffic behavior as attack or normal execution.
I extensively evaluate ML models and features that can be extracted/engineered from
NoC traffic to provide high accuracy in DoS attack detection. My approach is capable
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of adapting to several use cases with unpredictable NoC traffic patterns and detecting
attacks with high accuracy.

Figure 1-10. Dissertation Outline

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 surveys existing work

related to NoC security. Chapter 3 presents the simulator model for accurately capturing

NoC characteristics. Chapter 4 explores energy optimization opportunities using the accurate

NoC model. Chapter 5 proposes a lightweight encryption mechanism based on incremental

encryption. Chapter 6 illustrates an anonymous routing and encryption mechanism that

leverages on secret sharing. Chapter 7 presents a real-time DoS attack detection and

localization mechanism when MIPs launch DoS attacks on critical NoC components. Chapter 8

presents an effective trust-aware routing among NoC components to avoid MIPs. Chapter 9

presents a reconfigurable security framework that combines several security primitives and

allows a choice between them depending on the security requirements. Chapter 10 presents

a lightweight defense for eavesdropping attacks based on digital watermarking. Chapter 11

presents a machine learning based framework for detecting DoS attacks. Finally, Chapter 12

outlines future research directions and concludes this dissertation.
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CHAPTER 2
RELATED WORK

Ever since the introduction of Network-on-chip (NoC) about two decades ago, researchers

and industry have carried out research and development in several directions. In this chapter,

I outline prior work related to NoC security. First, I outline previous work related to NoC

traffic (Section 2.1) and SoC energy (Section 2.2) optimizations in an attempt to highlight the

importance of NoC optimization for resource-constrained SoCs. In the subsequent five sections

(Section 2.3 - Section 2.7), I present previous research efforts related to the five classes of

security attacks on NoC-based SoCs introduced in Section 1.2.3.

2.1 NoC Traffic Optimization

Prior work on NoC traffic exploration and optimization motivates the need for better

memory and processor placement to reduce contention and latency. Early work in this

area suggests that the efficient distribution of memory traffic to provide quality-of-service

guarantees [59]. Abts et al. [60] tackle the problem of optimum memory controller (MC)

placement where m cores need to be placed with n MCs. The placement is decided by

examining the variation in latency experienced by cores to access each MC. “Diamond”

placement is found to be the best for an 8x8 mesh with 16 MCs, while further improvements

are achieved by introducing a class-based deterministic routing algorithm. Xu et al. [61]

leverage this idea to find an optimal placement for the same configuration. The minimum

number of MCs and their placement required to achieve a given performance goal was explored

by taking Intel SCC [62] as a case study [63]. Once the number of MCs are decided and

placed, it creates opportunity for optimization by dynamically mapping workload data to

appropriate MCs [64].

The effect of modeling the main memory access through the directory was discussed

by Duraisamy et al. [65]. They explore the traffic patterns of two-level MESI directory

protocol and AMD’s Hammer-based HyperTransport (HT) [66] protocol to design an efficient

multicast aware wireless NoC. Ros et al. analyzed area and traffic trade-offs associated with
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cache coherence protocols [67]. To optimize power and performance, Schuchhardt et al. [68]

proposed a method to place directories closer to their shared data and thereby eliminating

many network traversals. Other coherence traffic-based optimization techniques include

coherence protocol deactivation for private block accesses to reduce directory accesses [69],

and a bloom filter mechanism for tagless coherence directory [70].

None of the prior efforts rigorously explore the affinity between IPs, MC and directory in

a system running directory-based cache coherence and optimization with different cluster and

memory modes. Hence, my proposed model in Chapter 3 is vital and crucial for emerging NoCs

with wireless [65], optical [71] and 3D networks [72].

2.2 Energy Optimization of Many-core Architectures

Reconfigurable cache architectures have been extensively studied utilizing techniques,

such as way shutdown, way management, cache partitioning and resizing [73–76]. Settle et

al. [77] introduced a reconfigurable cache architecture specific for CMPs. These architectures

were used to explore cache reconfiguration techniques in several orthogonal directions ranging

from single core [78], multi core [79, 80], realtime [81], and embedded [82] systems. Cache

partitioning (CP) techniques are mainly focused on improving performance of many-core

systems [83, 84]. Beckmann et al. proposed JIGSAW, a cache organization method that

addresses scalability and interference issues of shared caches. However, their work only

discussed reconfiguration in L2 cache. As shown in [82] and [80], reconfiguring L1 would

change the L2 traffic and therefore, requires simultaneous L1 and L2 reconfiguration. The

existing L1/L2 reconfiguration methods are primarily based on static and/or dynamic analysis

[81, 82]. These methods explore various configurations and decide which one to use depending

on application characteristics. If application characteristics are known a priori, static analysis

is beneficial since dynamic analysis can pose significant overhead and lead to unpredictable

performance impact. However, dynamic analysis of a limited set of configurations is the only

option when static profiling is not feasible. The above approaches can lead to unrealistic results
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in NoC-based many-core architectures since they do not consider the energy impact of NoC

traffic during exploration.

Studies on NoC traffic exploration proves the fact that NoC traffic largely affects the

CMP PnP statistics [85]. Several studies were carried out in efficient distribution of memory

traffic to provide quality-of-service guarantees [59], optimum memory controller placement [61]

and task scheduling [68]. Combining the effects of NoC communication to overall energy

consumption, Chen et al. proposed to dynamically turn on and off L2 cache banks to save

energy in optical NoCs which has silicon-photonic links [86]. However, there has been limited

effort on SoC energy optimization considering the NoC energy component and its variations

due to other optimization techniques such as DCR/CP.

One of the major concerns in static and dynamic analysis of possible cache configurations

is the exploration time. The exploration space grows significantly with the number of tunable

cache parameters and levels of cache (L1, L2 etc.). In order to reduce the exploration

complexity, heuristic-based approaches [78, 87] consider only a small set of potential

configurations based on specific observations (such as independence or priority of specific

parameters). While these approaches can reduce the exploration time, the quality of results

can be far from the optimal. The approach presented in Chapter 4 utilizes machine learning

to drastically reduce the exploration time with minor (acceptable) loss in the quality of

results. My work provides a coherent framework that enables the exploration of optimum

cache configurations in NoC-based many-core CMPs while addressing the exploration space

complexity by a machine learning based static profiling technique.

2.3 Eavesdropping Attacks

As discussed in Chapter 1, IPs integrated on the same SoC use the NoC to communicate

between each other using message passing as well as shared memory. Therefore, eavesdropping

on the NoC allows an attacker to extract secret information without relying on memory access

(either through on-chip cache or off-chip memory) or hacking into individual IPs. Bus based

communication (e.g., broadcast in wireless NoCs) is inherently vulnerable to eavesdropping
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attacks. Existing literature on NoC security has explored several variations of the eavesdropping

attack.

One commonly explored threat model is where the malicious NoC IP colludes with an

accompanying malicious application running on an another IP to launch an eavesdropping

attack. I have described this threat model in detail in Chapter 10. It includes a Trojan-infected

router copying packets passing through it and sending the duplicated packets to another IP

running a malicious application in an attempt to steal confidential information. This threat

model has been extensively used to study eavesdropping attacks specially since the attack is

hard to detect [46, 88–91]. Trojans can also directly eavesdrop on the NoC communication

without relying on re-routing duplicated packets to an accomplice application. This can be

facilitated by external I/O pins attached to the NoC [92]. However, NoCs are generally more

resistant against bus-probing attacks compared to the traditional bus-based architectures.

Similar to the malicious router and application colluding to launch the attack, a Trojan

infected network interface and an application can work together to launch an eavesdropping

attack [49]. In the threat model presented in [49], the hardware Trojan embedded in the NI

can tamper with the flits in the circular flit queue, which is used to store flits before sending

them to the corresponding router. When a flit is sent to the router, it waits in the queue until

the next flit overwrites it. The Trojan keeps track of such outstanding flits, modifies the header

flit with a new destination address and updates the header pointer so that it gets re-sent to the

router. The duplicated flits are received by the malicious application. The area overhead of the

Trojan is shown to be 1.3% [49].

Common countermeasures against eavesdropping attacks include packet encryption,

authentication, additional validation checks during NoC traversal and information obfuscation.

Encryption ensures that the plaintext of the secure information is not leaked and authentication

detects any tampering with the packet including header information []. Several prior studies

have tried to develop lightweight encryption and authentication schemes for on-chip data

communication. Ancajas et al. [46] proposed a simple XoR cipher together with a packet
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certification technique that calculates a tag and validates at the receiver. A configurable

packet validation and authentication scheme was proposed by merging two robust error

detection schemes, namely algebraic manipulation detection and cyclic redundancy check,

in [91]. Intel’s TinyCrypt - a cryptographic library with a small footprint is built for constrained

IoT devices [93]. It provides basic functionality to build a secure system with very little

overhead. It gives SHA-256 hash functions, message authentication, a psuedo-random number

generator which can run using minimal memory, digital signatures, and encryption. It also

has the basic cryptographic building blocks such as entropy sources, key exchange and the

ability to create nonces and challenges. I have discussed encryption and authentication in

detail and proposed new defense mechanisms in Chapters 5, 10 and 6. The duplicated packets

in router-application combination as well as NI-application combination can be detected

by additional validation checks. In [49], the authors implemented a snooping invalidator

module (SIM) at the NI output queue to discard duplicate packets. On the other hand,

information obfuscation can make the attack harder to initiate. For example, hiding the

source and destination information of NoC packets can ensure that the malicious agents in

the NoC are unable to select the target application to eavesdrop. Onion routing, a well known

mechanism in the computer networks domain, can hide the origin and target of a network

packet [94]. However, implementing such complex security mechanisms is not feasible in

resource-constrained SoCs. Several previous studies tried to propose lightweight solutions that

are compatible with the NoC context [46, 95].

2.4 Spoofing and Data Integrity Attacks

Spoofing and data integrity attacks intentially corrupt data transferred on the NoC to

cause malfunction. Sepúlveda et al. presented “MalNoC”, a Trojan infected NoC that can

perform multiple attacks on NoC packets [90]. The infected MalNoC router copies packets

arriving at a router, replaces the packet data with the content in a malicious register, modifies

source and/or destination address in the header to the desired IP, and injects it back into the

NoC. A control register within the router controls the Trojan operation. A similar threat model
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that discussed eavesdropping, DoS and illegal packet forwarding, all of which utilized packet

corruption at a router was presented in Section [88]. Kumar et al. [89] discussed a Trojan that

corrupts flits arriving at the input buffers of a router.

Trojans can also be inserted in links to corrupt NoC packets. To avoid being detected, the

Trojans change only the header flits causing deadlock, livelock and packet loss situations [96].

Even if hardware Trojans are not present, bit flipping can happen when packets are transferred

through the links due to other reasons. Error correction codes are used to correct such bit

flips. The Trojan in the link attempts to mask its malicious behavior as an error rather than

a security attack to avoid being detected. The authors have explored the impact of Trojans

embedded in different links (boundary links versus center links) in a 5× 5 Mesh NoC [96].

Authenticated encryption schemes provide data confidentiality through encryption and

data integrity through authentication [90, 97, 98]. If the authentication tag is calculated

using the entire packet (header as well as payload), any packet corruption can be detected

at the receiver’s side when the packet is validated using authentication. Hussain et al. [88]

argued that since the Trojan is rarely activated to avoid detection, authenticating each packet

can lead to reduction in energy efficiency. In their work, they proposed an efficient Trojan

detection design where the authentication gets activated only when the hardware Trojan has

been triggered in the system. A combination of security modules placed at the IPs as well as at

the routers provided attack detection as well as Trojan localization capabilities [88].

Error correcting codes (ECC) are widely used in the telecommunications domain [99].

ECCs have been used in NoCs to correct bit errors due to particle strikes, crosstalk and

spurious voltage fluctuation in NoCs. Yu et al. introduced a method to detect Trojan induced

errors using ECCs in [96]. Their method consisted of two main components. i) Link reshuffling:

to avoid the Trojan from affecting the same bit in an attempt to create deadlocks/livelocks,

the odd and even bits are switched in the retransmitted flit in case of an error detected by the

ECC. This is effective for scenarios where the Trojan is triggered by specific flits. If the Trojan

gets activated by a certain input, reshuffling the bits during the retransmission can make the
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Trojan inactive again. ii) Link isolation: an algorithm to isolate links that are suspected to

have Trojans. Trojans that are triggered by external signals can remain active for a long time.

In such cases, wire isolation is used to reduce the number of retransmissions.

2.5 Denial of Service Attacks

Several threat models related to DoS attacks have been studied in prior work. One

common threat model is where malicious IPs manipulating the availability of on-chip resources

by flooding the NoC with packets. The performance of an SoC can heavily depend on few

components. For example, a memory intensive application is likely to send many requests

to memory controllers, and as a result, routers connected to them will experience heavy

traffic. If a malicious IP targets the same node, the SoC performance will suffer significant

degradation [85, 100–102]. This is known as a flooding-type DoS attack. We discuss flooding

type of DoS attacks in detail in Chapters 7 and 11.

Continuous corruption of packets can also lead to a DoS attack [89, 103]. In [89],

hardware Trojans tamper flits arriving at the input buffer of a router causing performance

degradation. Performance degradation is caused by dropped packets, wastage of NoC resources

such as buffer space, response delays and retransmissions. Boraten et al. [104] discussed a

similar threat model where hardware Trojans influenced resource allocations and corrupted data

to degrade performance. The same authors further explored possible DoS attacks in [105].

Compared to router-based packet corruption, they discussed a Trojan that performs deep

packet inspection on links and inject faults when the target is identified. The injected faults

trigger re-transmissions from the error correcting mechanism. Therefore, repeated injection of

faults causes repeated re-transmission to starve network resources and create deadlocks capable

of rendering single application to full chip failures.

Rajesh et al. [106] discussed a threat model where the packets are unfairly treated at the

router to cause a DoS attack. The malicious NoC IP, once integrated on the SoC, picks a

victim IP that is an important SoC component and manipulates the traffic flow to/from the

victim IP. The traffic flow is manipulated by denying fair access to the allocator and arbiter
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units in the router. The allocator is responsible for granting flits access to the crossbar. DoS

is achieved by the allocator delaying packets to/from the victim IP. At the arbiter, the Trojan

infected router gives least priority to the flits that have the victim IP as the source/destination.

Both these scenarios lead to flits to/from one IP getting significantly delayed.

To address these different threat models, researchers proposed several solutions. As a

countermeasure to denial-of-service through packet corruption, Kumar et al. proposed a bit

shuffling method that makes flits less sensitive to the attack [89]. The authors proposed to

shuffle the critical bit fields of the flits among themselves and others so that the Trojan is

attacking on randomly shuffled data and not on the critical fields within the packets such

as flit indication bits, source and destination addresses. While fuzzing can make the attack

difficult, it does not guarantee prevention. Furthermore, the attack is not detected, and as

a result, future attacks are not prevented either. Boraten et al.’s work was motivated by

this, where they coupled switch-to-switch scrambling, inverting, shuffling and flit reordering

with a heuristic-based fault detection model [105]. Their solution addresses the challenge of

differentiating fault injections from transient and permanent faults. Another technique that

exhibits similar defense characteristics as fuzzing - partitioning, tries to reduce interference of

communication between different applications/packet types. As a result, overwhelming the

NoC with DoS attacks becomes difficult [107].

Monitoring the traffic flow to detect abnormalities is another common defense against

DoS attacks. Rajesh et al. [106] proposed a defense against their traffic flow manipulation

threat model that is based on identifying the latency elongation of packets caused by the DoS

attack. Their method relied on injecting additional packets to the network and observing their

latencies. SoC firmware then examines the latencies of the injected packets. If two packets

are injected at the same time and traverse paths with significant overlap, they are expected to

exhibit comparable latencies. If not, it will be flagged as a potential threat. Similar methods

that profiled normal behavior of traffic during design time and monitored NoC traffic to detect

deviations from normal behavior were proposed in [101, 108]. Exploring another orthogonal
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direction, work in [102–104, 109] proposed additional formal verification and runtime checks

integrated in to the NoC to prevent and detect DoS attacks.

2.6 Buffer Overflow and Memory Extraction Attacks

Similar to the buffer overflow attacks in the computer networks domain, execution of

malicious code can launch a buffer overflow attack in NoC-based SoCs. If a malicious IP writes

on the stack and modifies the return address of a function to point at the malicious code, the

malicious code will be executed. Return address modification in the stack is done by writing

more data to a buffer located on the stack than what is actually allocated for that buffer. This

is known as “smashing the stack” [110]. Even if the stack memory is made non-executable, or

kept separate, it is possible to overwrite both the return address as well as the saved registers.

Work done in [55] explored this threat model. Buffer overflow attacks pose a significant threat

in NoC-based SoCs where the memory is shared among multiple cores.

Kapoor et al. in their work considered some IPs on the SoC to contain confidential

information (secure/trusted IP cores) and some untrusted IPs which can potentially carry

hardware Trojans (non-secure/untrusted IP cores) [97]. The information inside secure IP

cores should be protected from non-secure IP cores. Since all IPs are integrated on the same

NoC, non-secure cores can communicate with secure cores. Non-secure cores can try to install

Trojans in the secure cores and try to extract information. The confidential information in

registers in the secure cores such as cryptographic keys, configuration register information

and other secure data can be compromised in such an attack [97]. This threat model of

non-secure IP cores trying to access secure-IP cores has been used in several other work as

well [98, 101, 111–113].

Lukovic et al. proposed two methods to counter buffer overflow attacks. The first method

focused on protecting the processing cores by embedding additional security in the network

interface (NI) [55]. In their work, a data protection unit, which is similar to a firewall sits on

the NI attached to the shared memory block. It secures the memory by filtering unauthorized

memory access requests. A stack protection unit (SPU) is developed which protects the
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stack from attacks that targets the return addresses. The SPU is developed as a part of

the processor protection system which combines software and hardware units that replicate

return addresses stored in the stack and protects it against code injection attacks. These

countermeasures also stopped the attack from getting propagated to other parts of the

NoC. Their second method extends the solutions proposed in [55] to a hierarchical security

architecture [114]. The authors introduced four levels of security working at system level,

NoC cluster level, per core, and in a layer specific to the attack (e.g., code injection). Similar

to software protection mechanisms and the data protection unit in [55], many existing work

provide access control by monitoring the incoming request [101, 111, 112]. For example, Saeed

et al. introduced a method to mitigate buffer overflow attacks in an NoC based shared memory

architecture by deploying an ID and address verification unit (IAV) [112]. This minimizes the

threats caused by malicious IPs in the NoC because the IAV verifies each incoming packet by

its ID and address.

Adding an extra layer of security to access authorization, commercial products such

as Sonic SMART Interconnect [39] and ARM TrustZone [115] divide memory blocks into

different protection regions and isolate secure and normal execution environments from

each other. If the non-secure cores access secure cores, requests are validated by access

authorization techniques [97, 98]. It is possible that security zones have to be modified due

to task migration, new applications starting and ending. Therefore, security zones have to be

created, modified and eliminated during runtime. Sepúlveda et al. [116] achieved this by using

a partitioning method that used a lightweight Diffie-Hellman key-exchange protocol. The same

authors proposed a method to create dynamic firewalls at the network interface to monitor and

filter the NoC traffic [117]. The dynamic firewalls create “elastic security zones” by wrapping

a desired set of components in a 3D NoC according to a trust policy. Porquet et al. [118]

presented a method to co-host several secure applications running in parallel using the same

shared memory space. Secure hardware implemented at the NI of the NoC enables secure and

flexible partitioning of the shared memory space between multiple applications. Their approach
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is similar to the operation of a virtualization hypervisor that protects code, data, exclusive

peripheral device usage, etc., when multiple virtual machines are running on the same host

machine [119].

2.7 Side Channel Attacks

Due to the difference in computation requirements, secure systems often take different

times to perform different operations. By carefully measuring these time differences, it is

possible to extract secret information from vulnerable systems. Reinbrecht et al. demonstrated

a practical “Prime+Probe” timing attack on an NoC based SoC [120]. The target of their

attack was the communication between an ARM Cortex-A9 core and a shared cache memory.

Other studies carried out on timing attacks also used similar concepts on timing analysis of

network traffic for attacks [121–124]. The threat model in [121] included four cores. Two of

which are carrying out a secure communication and the other two, which lies on the secure

communication path will be infected by the adversary. The two infected cores inject traffic to

the network. Adversary is then able to observe latencies of maliciously injected traffic to infer

information about timing, frequency and volume of the secure communication.

Wang et al. [124] in their work showed that the number of ones in the RSA [125] key

can be inferred with a timing side channel attack on NoC, which can then be used to infer

the entire key. A major part of the RSA algorithm is to do the modulo multiplication of two

large (1024 or 2048-bit) numbers. The modulo multiplication is shown to be vulnerable to

timing side channel attacks [126], mainly because the algorithm examines each bit in the RSA

key and multiplies only if it is one. Wang et al’s attack is based on observing the additional

network traffic caused due to multiplications [124]. Similar to recovering the RSA key through

timing attacks, existing work used the AES cipher as case studies as well. In 2010, Bogdanov

et al. [127] proposed a differential cache collision attack on embedded systems. While their

work did not consider an NoC based setup, in 2018, Reinbrecht et al. [128] showed that

combining their previous work on NoC timing attacks [123] with Bogdanov et al’s cache

collision attack [127] can significantly enhance the AES key recovery effort.
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Measuring the power consumption will give information about the process that is

occurring inside the system. For example, if the processor is performing a simple addition

versus executing an encryption instruction (Intel chips come with “AESENC” instruction

that performs one round of AES encryption on a given plaintext), observing their power

consumption can give reasonable information to differentiate the two operations. Similarly,

many data encryption standard (DES) implementations have visible differences within

permutations and shifts which can be utilized to break the security scheme [129]. Differential

power analysis is a powerful attack technique based not only on power observations, but

also on statistical analysis and noise filtering methods to gain more information about the

underlying security scheme [130].

In addition to timing and power, existing work has explored thermal side channels. Similar

to power, the SoC thermal characteristics are highly correlated to the SoC operation. Guo et

al. [131] discussed two main thermal characteristics:

1. Spatial distribution: by observing the heatmap, attackers can identify active cores in the
SoC.

2. Temporal variation: different instructions have different thermal profiles when executed.
The temperature trace over time allows attackers to infer the executed instructions with
a certain probability.

As a countermeasure to the “Prime+Probe” attack, the authors proposed “Gossip

NoC” [120, 123] - a two stage security mechanism which first detects the attack and then

protects the SoC. The detection process monitors the bandwidth and sends an alert message

in case of a potential security breach. The protection mechanism gets triggered by this

alert message which then alters the routing protocols to route packets avoiding the sensitive

path that contains the malicious IP. The same route randomization concept was used as a

mitigation technique in [121, 122]. Sepúlveda combined random arbitration with adaptive

routing to dynamically allocate NoC resources, and as a result, minimized interference between

secure packets and packets injected by the attacker [132].
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As a solution to the thermal side channel attacks discussed in [131], the authors

presented a task mapping scheme that minimized the thermal information leakage. In their

work, a mathematical model was developed to quantify the security cost corresponding

to a certain application mapping. A greedy optimization algorithm was then used to map

application threads to cores such that the leakage is minimized. The optimization algorithm

is implemented in the operating system and it receives SoC status from a hardware monitor.

The security cost is then calculated according to the model for each core and a new application

mapping is generated if required.

To avoid timing side channel attacks similar to the one introduced in [124], the same

authors proposed to partition network traffic based on its security level. The basic idea is to

make sure packets from applications running on secure IPs do not interfere with the packets

from applications running on non-secure IPs. As a result, the communication latency and

throughput of non-secure applications become independent of the dynamic behavior of secure

application traffic. An obvious way to achieve this goal is to statically partition NoC resources

(link bandwidth, buffers, etc.) spatially or temporally. However, it can lead to sub-optimal

results causing performance degradation. Wang et al. introduce a priority-based arbitration

technique for resources such as the router crossbar along with static allocation of virtual

channels [124]. A similar principal was used in the “Secure Enhanced Router” architecture

proposed by Sepúlveda et al. [133]. In their work, the router architecture included a shared

buffer space and the number of virtual channels per input port was decided during runtime

according to communication and security requirements. Similar to [124], the goal was to make

the non-secure traffic flow oblivious of the secure traffic flow.

2.8 Summary

In this chapter, I have surveyed security vulnerabilities and defenses in NoC based SoCs. I

have considered existing literature covering state-of-the-art attacks and defense mechanisms.

The literature contains a significant amount of work related to on-chip network security. In
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particular, I have discussed the research efforts under five classes of attacks highlighting their

threat models and respective countermeasures.
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CHAPTER 3
ACCURATE MODELING OF NOC ARCHITECTURES

The network-on-chip (NoC) performance and power consumption depend critically

on the traffic load. The network traffic itself is a function of not only the application that

causes packet injection on the NoC, but also the cache coherence protocol, and memory

controller/directory locations. As discussed in Chapter 1, security has to be considered in

the context of other non-functional requirements such as performance, power and area. To

accurately measure the impact of any security mechanism or optimization technique, it is

important to capture the traffic behavior accurately, and model them in architecture simulators.

When modeling NoC behavior in architecture simulators, the following requirements should be

satisfied.

• Availability of a NoC model that accurately captures NoC traffic behavior and
corresponding performance, power and area statistics.

• Adequate visibility to NoC packets and NoC components to debug and measure the
efficacy of security countermeasures at different abstraction levels.

In this chapter, I present an overview of how NoC has been utilized in commercial

system-on-chips (SoC) together with their optimization techniques. I show that using

unrealistic models in a widely used multiprocessor simulator produce misleading power and

performance predictions. I introduce accurate models to capture the traffic behavior, which are

comparable with results from hardware platforms.

The rest of the chapter is organized as follows. Section 3.1 provides a background on

related concepts. Section 3.2 introduces Intel Knights Landing architecture including the

memory and cluster modes. Section 3.3 presents the NoC modeling and exploration framework.

Section 3.4 presents the experimental results. Finally, Section 3.5 summarizes the chapter.

3.1 Background

To facilitate memory transactions, modern chip multiprocessor (CMP) architectures

comprise of a low-latency NoC that interconnects the cores with each other and a suite

of integrated memory controllers (MC), which provide interfaces to multi-channel DRAM
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(MCDRAM) and main memory (DDR) [17, 134, 135]. The memory hierarchy of CMPs

commonly employ directory-based cache coherence protocols and multiple levels of cache. The

first and second level caches (L1 and L2) are collocated with each core, while the last level

cache (LLC) and tag directory are distributed throughout the chip, as illustrated in Figure 3-1.

An L2 miss triggers a request to the directory that keeps track of the corresponding memory

address. In case of a hit, the data is returned from (or written to) the LLC slice collocated

with the directory. Otherwise, the request is forwarded to one of the MCs. Due to pin

limitations and packaging constraints, the number of MCs is much less than the cores.

For example, Intel Xeon Phi has 8 MCs interfacing MCDRAM and two MCs interfacing

DRAM, while the system has 72 cores [4]. Similarly, AMD Opteron 6386 SE has 16 cores

with 1 MC and 4 memory channels. Therefore, LLC-Memory communication exhibits a

many-to-few communication pattern while Core-LLC communication is many-to-many. In other

words, memory traffic is likely to introduce “hotspots”, whereas Core-LLC traffic is relatively

uniform. As a result, these hotspots and poor design choices can cause significant performance

degradation [60].

Figure 3-1. Representative illustration of a many-core CMP.

As an example, Intel Xeon Phi processor provides different cluster modes that define

the affinity of directories to specific MCs due to the importance of LLC/directory to memory
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traffic. In addition, the MCDRAM can be used as a cache, an extension to DDR or in a hybrid

setup, giving three memory mode options. Each of these choices lead to a different NoC traffic

pattern as a function of the workload. Analyzing the power consumption and performance

impact of cluster and memory modes is important for two reasons. First, it enables us to use

the existing platforms optimally. Second, it can help in making better architectural choices.

This analysis is not feasible on existing hardware platforms, since the traffic between the

cores and memory is not observable. Furthermore, there are no public simulators capable of

performing this exploration. For example, gem5 [18], which is one of the most widely used

architecture simulators, assumes that there is an interface from each tile to the main memory.

Consequently, the memory access latency is modeled, but the actual traffic from LLC/directory

to memory is not captured. This makes the default gem5 model unsuitable for cluster and

memory mode exploration.

We propose a methodology for analyzing the impact of cluster and memory mode choices

on the NoC traffic. We demonstrate that congestion on the NoC links affects not only the

communication latency, but also power consumption and application execution time. We also

show that any exploration that involves LLC/directory to memory traffic requires a simulation

framework that models the cache coherence protocols accurately. We demonstrate both

qualitatively and quantitatively that neglecting the LLC/memory traffic, as it is done in gem5,

gives highly optimistic results in terms of the network load, latency and power consumption.

We also show that this inaccuracy can lead to misleading conclusions in terms of optimal

MC placement. Then, we describe how the LLC/directory to memory traffic, originating

from directory-based cache coherence, can be modeled in architectural simulators. Using the

corrected gem5 model, we evaluate the power consumption and performance impact of several

cluster modes and memory modes which configure the directory-MC affinity. Our modified

gem5 architecture enables the exploration of NoC optimization and security countermeasures

proposed in subsequent chapters.
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3.2 Memory and Cluster Modes in Modern CMPs

Knights Landing (KNL) is the codename for the second generation Xeon-Phi processor

introduced by Intel which targets highly parallel workloads [4]. An overview of the KNL

architecture is shown in Figure 3-2. It has 36 tiles arranged in a Mesh interconnect. It

supports two types of memory - (i) multi-channel DRAM (MCDRAM) which is a 16 gigabyte

high-bandwidth memory, and (ii) double data rate (DDR) memory which has a capacity of

384 gigabytes with less bandwidth. The architecture gives the option of configuring these two

memories in several configurations which are called memory modes.

Figure 3-2. Overview of the KNL architecture.

3.2.1 Memory Modes in Xeon-Phi Architecture

Xeon-Phi architectures have a high-bandwidth MCDRAM memory and a larger

low-bandwidth DDR memory [4]. These two memory types - MCDRAM and DDR memory, can

be configured at boot time from the BIOS in different ways, as illustrated in Figure 3-3.

• Flat Mode: In the flat mode, both the MCDRAM and DDR memory are mapped
in the same system address space. This mode is ideal for applications with data that
can be separated into categories of a larger, low-bandwidth region, and a smaller,
high-bandwidth region.

• Cache Mode: In the cache mode, MCDRAM acts as a last level cache which is placed
in between the DDR memory and L2 cache. The cache is direct mapped with a cache
line size of 64-bytes. All memory requests first go to the MCDRAM for a cache memory
lookup, if there is a cache miss, they are sent to the DDR memory.
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• Hybrid Mode: In the hybrid mode, part of MCDRAM (half or quarter) is used in cache
mode while the rest is used as flat mode memory. The DDR memory will be served
by the cache portion. This works well for a variety of applications that take advantage
of storing frequently accessed data in flat memory while also benefiting from regular
caching.

Figure 3-3. Three memory modes in Xeon-Phi architectures.

3.2.2 Cluster Modes in Xeon-Phi Architecture

The mesh interconnect in KNL supports three cluster modes, which have significant

impact on the NoC traffic behavior [4]. Similar to memory modes, cluster modes can also be

selected from BIOS during boot time.

• All-to-all mode: In this mode, there is no affinity between the PE, MC and directory.
That is, a memory request can go from any directory to any MC. As a result, this mode
does not exploit locality, unlike the other two cluster modes.

• Quadrant mode: In the quadrant mode, the chip is divided into four quadrants. There
is an affinity between the directories and MC in the same quadrant. However, there is no
affinity between the processing element (PE) and directory, i.e, a processor can send the
memory request to any directory, but the directory will always forward that request to an
MC on the same quadrant.

• Sub-NUMA mode: This mode takes one more step forward by enforcing affinity
between all three components - PE, MC and directory. A request from a PE lands on a
directory on the same quadrant, and the directory can forward that request to an MC on
the same quadrant.

The optimal combination of memory and cluster modes depends on the application

characteristics and, largely affects the power and performance statistics. Applications whose

threads and memory footprint fit to a single quadrant can take advantage of the strong locality
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of quadrant and sub-NUMA modes. However, highly parallel applications with a large number

of threads and memory footprint may benefit from all-to-all and flat memory modes.

Figure 3-4 illustrates the traffic flow of these memory and cluster modes using examples.

The quadrant and sub-NUMA clustering modes improve the locality of memory traffic. For

instance, Figure 3-4D illustrates the quadrant mode in KNL [4]. The initial request from a core

can go to any directory (1). However, each directory is associated with the MCs within the

same quadrant. The memory request marked with (2) can go to integrated MC on the right

side or to MCDRAM controllers at the upper right corner. This affinity helps in localizing the

directory-memory traffic, which in turn improves memory access latency.

B Example of L2 miss in flat
memory mode and all-to-all
cluster mode: (1) L2 cache miss.
Memory request injected on
the network to check the tag
directory, (2) request forwarded
to any memory controller after
miss in tag directory, (3) data
read from memory and sent to
the requester.

C Example of L2 and MCDRAM
miss in cache memory mode and
all-to-all cluster mode: (1) L2
cache miss. Memory request
injected on the network to check
the tag directory, (2) request
forwarded to MCDRAM which
acts as a cache after miss in tag
directory, (3) request forwarded to
memory after miss in MCDRAM,
(4) data read from memory and
sent to the requester.

D Example of L2 miss in flat
memory mode and quadrant
cluster mode: (1) L2 cache miss.
Memory request injected on the
network to check the tag direc-
tory, (2) request forwarded to
memory controller on the same
quadrant, (3) data read from
memory and sent to the requester.

Figure 3-4. Traffic models in flat and cache memory modes and all-to-all and quadrant cluster
modes in KNL architecture

3.3 Accurate Modeling of LLC/Directory to Memory Communication

In this section, we first describe how the transactions between core, LLC/directory and

memory occur in modern CMPs. Then, we contrast it to the assumption made by gem5 and
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highlight the consequences. Next, we present an accurate NoC modeling and implementation

of cluster and memory modes in gem5. Finally, we demonstrate that our framework is vital to

accurately model and explore modern CMPs.

3.3.1 Memory Controller Placement in CMPs

Due to pin limitations and package constraints, it is unrealistic to attach a memory

controller to each core in a CMP. For example, Intel Core i7-900 processor has only one

MC, and 27.3% of its total pins are dedicated to the MC [136]. Similarly, the Tilera Tile64

processor integrates 64 cores in an 8x8 mesh with four on-chip MCs [17]. This results in a

core to MC ratio of 16:1. The total number of cores and memory controllers in several modern

CMPs are summarized in Table 3-1.

Table 3-1. Comparison of cores and number of MCs in modern many-core CMPs.
Processor No. of Cores No. of Memory Controllers
Intel Xeon Phi 7210 [137] 64 8 MCDRAM & 2 DDR4
Tilera Tile64 [17] 64 4 DDR2 in 16 ports
Intel Xeon 8160M 24 2 DDR4, 6 channels
AMD Opteron 6386 SE 16 1 DDR3, 4 channels

Several studies have shown that relative placement of cores and MCs plays an important

role in network traffic distribution [60, 61]. This impact is more significant in topologies, such

as 2D Mesh, which do not have edge symmetry. Thus, it is evident that connecting MCs

to every tile gives a highly optimistic estimate of the realistic scenario. Moreover, a large

fraction of traffic in a CMP originates not from actual data transfers, but from communication

between cores to maintain data coherence [68]. As soon as the directory component comes

into play, the traffic distribution is not the same as processor to processor traffic or processor

to memory traffic. Therefore, the affinity between the cores, directories and MCs affect the

performance of architectures that employ a distributed directory-based cache coherence

algorithm. Consequently, it is crucial to accurately account for the communication flow

between the cores, tag directories and memory controllers.
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Arguably, the most widely used architectural simulator - gem5 [18] makes an unrealistic

assumption that there is an interface to main memory from every tile of the NoC. This

eliminates the exploration of affinity between directory and MC. Furthermore, the effects of

memory modes cannot be captured in the current gem5 setup.

3.3.2 LLC/Directory to Memory Communication in CMPs

A miss in the local cache triggers a sequence of transactions in many-core architectures

with distributed directories, as demonstrated Figure 3-5a.

The order of these transactions are as follows:

1. The request is forwarded to the directory controller which contains the memory address
information,

2. If data is not available in any of the caches, the request is forwarded to an MC,

3. The data is retrieved from the memory,

4. The MC forwards the data to the requester.

The last two steps are significant, since they introduce many-to-few communication

pattern due to the smaller number of MCs, as summarized in Table 3-1. As a result, they not

only increase the number of packets in flight, but also lead to hotspots which contribute to

increased latency.

Figure 3-5. Life cycle of a memory request and resulting transactions in real distributed
directory systems and in the gem5 simulator.
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3.3.3 Unrealistic Assumptions in gem5 Traffic Model

gem5 is one of the most popular many-core architecture simulators [18]. Instead of

following these steps given in Section 3.3.2, it models the memory accesses directly from the

directory (home node) itself, as illustrated in Figure 3-5b. The first step is the same as shown

in Figure 3-5a. That is, the request goes from the core to the tag directory responsible for the

corresponding memory address. If there is an LLC miss, the data needs to be fetched from

the memory, as expected. However, the memory access is modeled within the home directory

(2), without explicitly modeling the traffic from the directory to memory controller. In other

words, each “directory controller” implies both a directory (i.e. state) and an MC [18]. The

model accounts for the delay to main memory, but it does not have a separate MC node in

the NoC. Therefore, the NoC traffic to and from the memory controllers is not modeled. In

contrast, the data is forwarded directly from the directory to the requester (3). Comparing the

two scenarios, we can see that step 2 in Figure 3-5a does not exist in the current gem5 model.

Moreover, the data (step 3) is sent from the directory, not from the MC as in the realistic

model.

Impact on NoC Traffic: The modeling choice in Figure 3-5b essentially establishes a

virtual link between the tag directory and memory controllers. Therefore, the request and data

packets to and from MCs are completely missed in this simulation model. This affects not

only the communication latency of a given transaction but also the utilization of the links and

routers on the path. Consequently, the latency of “all the NoC traffic” that goes through those

routers will be lower in simulation than their actual values. Hence, this will result in optimistic

performance estimates.

3.3.4 Modeling and Exploration of Intel Xeon-Phi Architecture

An accurate NoC simulation model should explicitly capture PE to directory, directory to

memory and memory to PE traffic.

Mapping Addresses to Memory Controllers: Since all the cores share the MCs, we

need a mechanism to allocate different address ranges to the available MCs. To achieve this,
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the physical address of a memory location is mapped to an MC according to the function

shown in Listing 3.1. It allocates a certain set of bits from the address to select the MC by

defining the range of bits from “small” to “big” and dividing the addresses uniformly among

MCs. In this formulation, addr is the address to map, small is calculated as (numa_high_bit

- num_memories_bits + 1), and big is numa_high_bit. Here, “numa_high_bit” and

“num_memories_bits” are calculated depending on the number of MCs. These expressions

enable an even distribution of memory addresses among the MCs, which is similar to the

decisions in a modern CMP [138].

Listing 3.1. Address hashing function used to map an address to a memory controller
Addr b i t S e l e c t ( Addr addr , unsigned i n t sma l l , unsigned i n t b i g ){

a s s e r t ( b i g >= s m a l l ) ;

i f ( b i g >= ADDRESS_WIDTH−1){

return ( addr >> s m a l l ) ;

} e l s e {

Addr mask = ~(( Addr )~0 << ( b i g +1)) ;

Addr p a r t i a l = ( addr & mask ) ;

return ( p a r t i a l >> s m a l l ) ;

}

}

Simulation Framework: We employ a cycle-accurate full-system simulator - gem5 [18]

and “GARNET2.0” [139] interconnection network model. The default gem5 model is modified

to include separate MCs and to model PE to PE, PE to directory, directory to memory as well

as memory to PE traffic. The gem5 implementation handles the traffic flow through coherence

protocols. In a distributed cache coherence protocol, in case of a cache miss, the request is

forwarded to the coherence protocol controller. It makes the necessary state transitions and

pushes the message in the appropriate virtual network to the network interface. The network

interface then converts the message into network packets and sends them to the network via
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the connected router. The network then routes the flits to the destination node using X-Y

deterministic routing protocol. When the home directory receives the packet, it checks its state

machine to see if another cache shares that data. If yes, it forwards the packet to the owner

and then to the requestor (PE) and if not, it initiates a memory fetch depending on which

memory and cluster modes are being used.

If it is all-to-all and flat mode, addresses are uniformly distributed across MCDRAM and

DDR memory spaces. Which MCDRAM/DDR memory controller to forward to is decided

using the function in Listing 3.1. If it is quadrant and flat mode, only MCs in that quadrant

are considered as candidates for forwarding the memory requests. In all-to-all and cache

mode, MCDRAM space is treated as a last-level cache. Therefore, the request is sent to an

MCDRAM controller for a cache lookup. If it is a miss, the memory request is again forwarded

to the appropriate MC (selected using Listing 3.1 without considering MCDRAM controllers),

and memory fetch request is placed through there. Once the requested data is fetched from

either the DDR or MCDRAM memories, it is forwarded back to the PE after making the

necessary coherence transitions.

We explicitly differentiate the behavior of MCDRAM memory in cache and flat modes. In

cache mode, MCDRAM cache modules are instantiated and can be accessed only through the

designated MCDRAM controller locations. In flat mode, this cache module is not used, and an

MC similar to the MCs interfacing DDR memory is connected to the designated nodes.

We emphasize that without our modification of the gem5 model, it is not possible to

explore the power consumption and performance impact of different cluster and memory

modes. The next section highlights two important aspects of our exploration framework. Our

proposed NoC model is realistic since the power and performance numbers are comparable

with the results from the Xeon-Phi hardware board. Moreover, our framework can be used to

accurately model and explore a wide variety of current and future NoC architectures.
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3.4 Experiments

3.4.1 Experimental Setup

Architecture Model: In our studies, we use the Intel Xeon Phi 7210 platform [137]

and model the same on gem5 [18]. It mainly targets high performance computing and other

parallel computing segments. The architecture offers high memory bandwidth and massive

parallelism options which enables it to run memory and processor intensive workloads with high

throughput.

A 64-core CMP is modeled with gem5 using a mesh topology. Each tile is composed of

a core that runs at 2 GHz, private L1 cache, tag directory and a router. Each cache is split

into data and instruction caches with 16kB capacity each. GARNET2.0 [139], which leverages

the routing infrastructure provided by ruby memory system, models a router with a crossbar

switch, switch allocation, virtual circuit selection and 4 input buffers giving a 3-cycle pipeline.

Each router is connected to four other routers with internal links and to an L1 cache and a

directory controller through individual network interfaces via external links. The complete set

of simulation parameters are summarized in Table 3-2.

NoC Power Model: Since dynamic power consumption of an NoC is a function of the

traffic flow, we need to use an energy model that captures the changes in the traffic flow. We

use the model in [140] to estimate the power consumption. According to the energy model,

there are two main contributors to NoC power;

1. Number of packets injected into the network - this is directly related to the number of
cache misses in L1 and L2 caches, and in cache memory mode, misses in MCDRAMs.

2. Average hops traversed by packets - depends on the relative placement of PE, MCs and
directories. The affinity between these components which are configured using the cluster
modes also contributes to the number of hops.

We feed the output statistics from gem5 to the McPAT power modeling framework [141].

Power consumption of other components - caches, processor, off-chip memory and directories,

are estimated using the energy models in McPAT.
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Benchmarks: We use benchmarks from SPLASH-2 [142] and MiBench [143] benchmark

suites to run on gem5.

3.4.2 Parameters Used to Model KNL

The number of cores in gem5 must be a power of 2. We have 32 tiles with cores similar

to KNL. However, each tile contains a single core unlike KNL, since gem5 does not support

tiles with two cores. To match the number of cores, we deactivate one core in each tile in

our Xeon-Phi platform. We also place the MCs to match the KNL architecture shown in

Figure 3-4. Moreover, we set the core frequency to 1.4 GHz when comparing the simulation

results against the hardware measurements to match our Xeon-Phi platform frequency. The

parameters used in implementing KNL are summarized in Table 3-2.

Table 3-2. System configuration parameters used in our simulations.
Parameter Class Parameter Value
Processor Configuration Number of cores 64

Core frequency 2 GHz
Instruction set architecture x86

Memory System
Configuration

L1 cache private, separate instruction
and data cache. Each 16kB
in size.

Cache coherence distributed directory-based
protocol

Memory size 4GB DDR
Access latency 300 cycles

Interconnection Network
Configuration

Topology 8x8 Mesh (formed by rings in
rows and columns)

Routing scheme X-Y deterministic
Router 4 port, 4 input buffer router

with 3 cycle pipeline delay
Link latency 1 cycle

Parameters that change
when implementing KNL

Number of cores 32 (in 32 tiles each with one
core)

Core frequency 1.4 GHz
L1 cache private, separate instruction

and data cache. Each 32kB
in size.

MCDRAM shared, direct mapped cache
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3.4.3 Network Traffic Analysis of Realistic and Unrealistic Models

To compare the effects of realistic (proposed approach) and unrealistic (default gem5)

models, we observe the buffer utilization at each router as shown in Figure 3-6. Figure

3-6A shows a 4x4 mesh where the MCs are connected to each directory which is the default

implementation of gem5. Traffic is uniform except for the tile 0 where the PE resides (tile

numbers are as shown in Figure 3-1). Figure 3-6B shows a realistic scenario where every other

parameter is kept the same, but MCs are connected to boundary routers. This does not display

the uniform traffic distribution as shown in Figure 3-6A. Traffic patterns show hotspot columns

due to MC placement which increases latency and saturates the throughput. The 4x4 mesh

and MC placement configurations used in Figure 3-6 are for illustration only. Experiments are

carried out using the parameters mentioned under section 3.4.1.

A MCs modeled at each tile

B MCs modeled only at places marked in blue.

Figure 3-6. Buffer utilization in routers when RADIX benchmark running on core 0.

As a result of this congestion and more packets being sent through the network, the

realistic model shows a 54.9% more network flit latency on average across FFT, FMM, RADIX

and LU benchmarks compared to the unrealistic model with a similar topology. A comparison
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of network latency, NoC power usage and execution times with different benchmarks is

shown in Figure 3-7. As stated before, the default gem5 model does not permit cluster mode

exploration as MCs are collocated with directories at every tile. Even then, if the default model

is used for exploration, the results in Figure 3-7 show that it gives highly optimistic results for

NoC latencies and power.

A Normalized network latency

B Normalized NoC power usage

C Normalized execution time

Figure 3-7. Power and performance comparison for different models.

3.4.4 Traffic Variation with Different Cache Coherence Protocols

Another factor that effects the NoC traffic behavior is the cache coherence protocol

[144]. The default gem5 NoC implementation already captured these variations as it correctly

implemented the PE to directory affinity. We explored the effects of different cache coherence
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protocols - (1) MI, (2) MESI Two-Level, (3) MOESI CMP Directory, (4) MOESI Hammer

[18]. Figure 3-8 shows traffic variation with different cache coherence protocols when RADIX

benchmark is running on a 4x4 Mesh NoC. Figure 3-8A, show buffer utilization at each router

when MI cache coherence protocol is used with the default gem5 implementation, which

assumes a memory interface at each tile. Similar to the observation of Figure 3-6A, the traffic

shows a uniform gradient across the routers without any congestion. Figures 3-8B shows

the same results with our modified implementation. We observe that the patterns remain

consistent across cache coherence protocols. As evident from Figure 3-8C & 3-8D, Figure 3-8E

& 3-8F and Figure 3-8G & 3-8H pairs, this observation remains the same across other 3 cache

coherence protocols as well. Therefore, the observations made in Section 3.4.3 hold irrespective

of the cache coherence protocol. This is expected as our modification only affects the affinity

between directory and MC. With increased sharing in cache coherence protocols, the traffic in

NoC increases. But, the hotspot locations and the traffic distribution remain the same.

3.4.5 Network Latency Comparison for Different MC Placements

Xu et al. explored network traffic behavior with different MC placements (Column 0/7,

Column 2/5, Diamond, Slash and Optimal) and concluded that the “Optimal” was best for

similar benchmarks [61]. Figure 3-9 shows network flit latency when realistic MC placement

configurations in [61] as well as gem5 default (unrealistic) model are tested across different

benchmarks. As further evidence for the highly optimistic nature of the default gem5 model,

we can see that the latency is significantly less when compared to realistic MC placement

models.

In contrast to the conclusion in [61], “Optimal” is no longer the best placement, when

the directory-based coherence is introduced. The results not only depend on MC placement,

but also on PE placement and coherence protocol. Considering only the realistic placements

described in [61], Column 2/5 configuration turns out to be the best by 9.0% compared to the

worst configuration (Slash) when running BASICMATH. Column 2/5 also beats “Optimal”

by 5.3% on average across all benchmarks. The traffic congestion caused by adjacent MCs in
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A MI B MI

C MESI Two Level D MESI Two Level

E MOESI CMP Dir. F MOESI CMP Dir.

G MOESI Hammer H MOESI Hammer

Figure 3-8. Buffer utilization in routers when RADIX benchmark is running on a 4x4 Mesh with
different cache coherence protocols.

Column 2/5 configuration is compensated by the reduced hop counts, since it gives smallest

average hop count.

3.4.6 Exploration of Memory and Cluster Modes and Validation with Results from
the KNL Hardware Platform

As seen from results in Figure 3-9, the affinity between the PE, MC and directory plays a

major role in network traffic behavior. To explore this further, we experimented with different

cluster and memory modes available in the KNL architecture and validated the simulation

results with Intel Xeon Phi 7210 platform. The results for both all-to-all and quadrant cluster

modes as well as flat and cache memory modes are shown in Figure 3-10. Compared to

all-to-all flat mode, all-to-all cache mode gives the highest benefit with 18.62% less execution
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Figure 3-9. Normalized network latency with different MC placements.

time on average across all benchmarks. That is an average speedup of 1.23. The average

speedup of quadrant flat mode over all-to-all flat is small (1.013). This is mainly because

the benchmarks do not stress the platform too much and memory access latency hinders the

savings of network flit latency. These observations are in agreement with the Intel Xeon Phi

results [4], which further justifies the accuracy of our approach. Clearly, it is not possible to

perform these memory and cluster mode explorations without the proposed NoC modeling

framework.

Figure 3-10. Normalized execution times with KNL architecture modeled in gem5.

3.5 Summary

In this chapter, I explored how the network traffic behaves when directory-based cache

coherence is introduced. The change in traffic behavior is not captured in the widely used

gem5 simulator and thus it can lead to unrealistic conclusions. This chapter made three

important contributions. First, I observed that the gem5 model is faulty as it models an MC

at every tile, thus eliminating coherence traffic and also not practical due to pin limitations.
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Next, I implemented an accurate and realistic model to explore MC placement in an 8x8 mesh

with 16 MCs. The results showed that the previous conclusions made without considering

coherence traffic are no longer valid. My studies showed that optimization methods should

not only consider MC placements, but also PE placement and coherence protocol to come

to realistic conclusions. Finally, experimental results demonstrated that the affinity between

MC and directory controller can be manipulated with different cluster and memory modes

such as quadrant, all-to-all, flat and cache modes introduced in Intel’s KNL architecture

to achieve better performance and power results. My proposed exploration framework is

vital for emerging NoCs with wireless, optical and 3D networks. Furthermore, the modified

gem5 architecture enables the exploration of NoC optimization and security countermeasures

proposed in subsequent chapters.
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CHAPTER 4
NOC-AWARE CACHE RECONFIGURATION AND EXPLORATION

Since security countermeasures can introduce overhead to network-on-chip (NoC) based

system-on-chips (SoC), exploration of performance, power and area optimization opportunities

is of utmost importance. Therefore, before discussing security attacks and countermeasures, in

this chapter, I focus on improving the performance and energy efficiency of NoC-based SoCs.

While existing research has addressed NoC optimization in several directions, I point out an

important missing piece in NoC-based SoC optimization that has not been explored before.

Dynamic cache reconfiguration (DCR) has been well studied as an effective cache energy

optimization technique [73, 81]. DCR allows runtime tuning of the cache parameters (e.g.,

cache size, associativity and line size) after deciding when and how to configure them using

optimization algorithms. This enables the chip multiprocessor (CMP) to optimize energy

consumption while maintaining the application’s quality of service (QoS) standards. Dynamic

tuning of multi-level caches is challenging since the exploration space is prohibitively large.

Even with a small number of tunable cache parameters, the exploration space can grow

exponentially making it impractical to do a simulation-based exhaustive exploration [78].

Several heuristics were proposed to reduce the exploration space by utilizing the independence

between various cache parameters [78, 87]. Unfortunately, these approaches suffer from

accuracy and inconsistency across different architectures. Previous works on DCR have not

considered NoC traffic when calculating the overall system energy. Therefore, they are not

suitable for making accurate architectural decisions. In this chapter, I present an exploration

framework that is developed considering the complete memory hierarchy and NoC traffic. In

order to explore the prohibitively large design space effectively, I propose and analyze a machine

learning (ML) algorithm which predicts runtime and energy of applications with different cache

configurations. This enables us to significantly reduce the exploration time, while maintaining

the accuracy within an acceptable range.

In this chapter, I focus on the following four main areas.
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1. DCR-CP-NoC co-optimization: Since DCR in level 1 (L1) cache and cache
partitioning (CP) in shared level 2 (L2) are closely coupled, we explore DCR and CP
together in an NoC based many-core architecture and compare it to previous studies on
two-level cache configuration in bus-based architectures.

2. Efficient static profiling: We propose a machine learning algorithm to reduce the
overall static profiling time compared to the exhaustive method by an order of magnitude
with minor impact on energy savings. Results are compared with exhaustive as well as
heuristic-based approaches.

3. Dynamic programming based optimization: We propose a dynamic programming
(DP) based algorithm to find optimal L1 cache configurations for each application and
L2 partition factors for each core. Effective utilization of DP allows this exploration to
run with linear time complexity with respect to the number of cores.

4. Extensive evaluation: We accurately model the NoC traffic flow and energy
consumption. Then, we evaluate our approach by running 14 benchmarks on a realistic
Intel Xeon Phi configuration with 32 tiles [4] using the gem5 full-system simulator [18].

The remainder of the chapter is organized as follows. Section 4.1 presents some

background information required to understand my approach. Section 4.2 motivates the

need for this work. Section 4.3 describes the exploration framework. Section 4.4 presents the

experimental results. Finally, Section 4.5 summarizes the chapter.

4.1 Background

In a typical CMP architecture, L1 caches are private for each core, whereas the L2 cache

is shared across all cores. Such an arrangement introduces dependencies between the L1 and

L2 caches as the configuration of one can affect the cache accesses of the other, and vice

versa [82]. Therefore, DCR techniques are commonly used to optimize L1 caches. Similarly, CP

improves performance by eliminating the inter-task interference on a shared cache [80]. Hence,

it is employed to judiciously divide portions of L2 cache to each core.

Figure 4-1 shows a standard NoC-based many-core architecture with a shared L2 cache,

private instruction (IL1) and data (DL1) caches. Both L1 and L2 caches are reconfigurable.

L1 cache configuration can be changed by changing its capacity, line size and associativity.

L2 cache is partitioned among all the cores and the partitions are decided depending on the

application requirements.
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Figure 4-1. Many-core architecture with private instruction (IL1) and data (DL1) caches as
well as shared L2 cache.

The cache architecture used in our work contains four separate banks operating as four

separate ways. Figure 4-2 shows cache configurability of L1 caches with an illustrative example.

If the base cache size is 4kB, we have four 1kB banks [145] (Figure 4-2a). Cache associativity

can be reconfigured by concatenating neighboring ways (Figure 4-2b). To change cache sizes,

gated Vdd is used to shutdown banks causing the effective cache size to shrink. A 4kB cache

can have 4-way, 2-way and 1-way (direct mapped) associativity. However, if the cache size is

reduced to 2kB, it can only have 2-way and 1-way associativity because a 4-way associativity

will mean shutting down or concatenating half of the bank/way and that is not supported in

the architecture (Figure 4-2c). Line size can be changed by changing the number of unit length

blocks fetched during each cache access (Figure 4-2d).

This reconfigurable cache architecture has very little overhead and requires simple

hardware changes [73]. Runtime re-configuration of L1 cache is done by using special

configuration registers. The configuration registers inform the cache tuner which is a

lightweight process implemented on hardware, to concatenate ways to change associativity.

Similarly, the configuration registers can be configured to shut down ways causing the cache

size to change. It is important to note that our contribution is an efficient technique that

determines which cache configuration should be used for a given application. As explained in

related work and following sections, run-time configuration of caches is a well studied problem
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Figure 4-2. Cache configurability of a 4kB cache arranged as 4 banks.

and our architecture proposes to use existing mechanisms to tune the cache once an optimum

configuration is found.

For the shared L2 cache, we use a way-based partitioning method that differs from

traditional LRU replacement policy that implicitly partitions cache sets based on demand [77].

Figure 4-1 depicts a cache set with 8-way associativity which can be partitioned in the

granularity of ways. Each core will access only the group of ways assigned to it in all the

cache sets. LRU replacement is enforced in each individual group by maintaining a separate

set of “age bits”. Way-based partitioning is useful for exploiting energy efficiency. Number of
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ways assigned to a core is referred to as the core’s “partition factor. Core 1 in Figure 4-1 for

example has an L2 partition factor of two. In our study we use static cache partitioning. In

other words, each core’s L2 partition factor is constant throughout system execution and is

predetermined. Since L1 DCR has a major impact on L2 CP, the exploration framework should

support tuning of all possible parameters simultaneously [78]. For example, the number of L2

accesses is dependent on the number of L1 misses. Also, the miss penalty of the L1 cache is

dependent on the configuration of the L2 cache.

4.2 Motivation

4.2.1 Impact of DCR on Power and Performance

As an illustrative example, we ran FFT benchmark from the SPLASH-2 benchmark suite

on an architecture model similar to Intel Knights Landing (KNL) introduced in Chapter 3,

and recorded energy and runtime values for two DL1 configurations - 32K_2W_32B1 and

8K_1W_32B [146]. IL1 configuration is the same for both executions. As shown in Figure 4-3,

they give different runtime and energy values. If the performance of the system is not critical,

using the configuration that gives the least energy consumption (8K_1W_32B) should be

selected. If the performance target is to execute the application in 4ms, we can observe in

Figure 4-3C that 8K_1W_32B does not meet the requirement. In that case, 32K_2W_32B

should be selected which meets the desired performance even though it consumes more energy.

In reality, the number of possible cache configurations is much larger than two. For

example, Section 4.3.3 shows that there are 504 valid cache configurations in our specific

exploration framework. When NoC power consumption is considered, the energy optimization

problem becomes even more complex.

1 In this chapter, we show cache configurations using three parameters. For example,
32K_2W_32B represents a cache with 32kB cache capacity, 2-way set associativity and 32
byte line size
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B Energy Consumption C Runtime

Figure 4-3. Energy consumption and runtime of two cache configurations running FFT.

With NoC being the most preferred interconnection technology in modern CMPs, it is

imperative to account for the NoC while exploring the cache configurations. As shown in

Figure 4-4, power consumption of the NoC portion of CMP is a function of the application

executed, L1 and L2 configurations. We observe that with increased L1 cache size, NoC power

consumption decreases. This is expected because increasing L1 cache size causes less L1 misses

and as a result, fewer packets being injected to the network. From the NoC power model

illustrated in Section 4.3.2, we can see that decreasing number of packets on the network

decreases the NoC power. NoC power is shown in this figure instead of energy for comparisons

across applications by eliminating the performance factor. In this study, both the applications

are running on exactly the same CMP model.

Figure 4-5 illustrates NoC energy consumption as a percentage of total energy. NoC

energy, core energy and energy contribution from other components (last level cache, memory,

etc.) are shown for comparison. As expected, the NoC energy consumption decreases with

increasing cache size and associativity. More precisely, NoC energy consumption percentage

reduces by more than half from 22% to 10% when DL1 cache size is doubled. This is expected

since the number of requests going to off-chip memory is reduced. It further reduces to 3%

with further increase in DL1 size and IL1 associativity. A fixed line size of 64B and a fixed

partition factor of 2 are used for all three experiments. Irrespective of the choice of partition

factor, our results show that NoC is an important contributor to overall energy consumption.
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B FFT C RADIX

Figure 4-4. NoC dynamic power consumption with different DL1 configurations and L2
partition factors. IL1 cache is fixed at 32K_2W_64B.

Figure 4-5. Core and NoC energy as a percentage of total CMP energy consumption.

Given the above observations, it is evident that ignoring the energy contribution from NoC

when exploring L1 DCR and L2 CP trade-offs in an NoC based many-core architectures can

lead to misleading conclusions. Therefore, it is important to model NoC traffic as well as its

energy accurately.

4.2.2 Impact of Memory Modes in KNL Architecture

To further emphasize the importance of cache reconfiguration exploration in many-core

architectures, we ran some experiments on Intel Xeon Phi 7210 hardware platform which

implements the KNL architecture [137]. The selection between different memory modes is

essentially a cache reconfiguration as the total amount of memory is fixed and it is divided

among shared cache and main memory to fit the application characteristics. The two extreme
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configurations out of all the possibilities are Flat and Cache modes since Cache mode allocates

all 16GB of MCDRAM memory as cache and Flat mode allocates it as main memory. Since

the Hybrid configurations fall in the middle, we ran tests using these extreme configurations to

illustrate their effects on application runtime.

Figure 4-6 shows execution time of 6 complex benchmarks running on KNL Flat and

Cache modes. All these applications show benefits in the Cache mode. Yet, the percentage

speedup varies drastically between a minimum of 2.3% for LINPACK benchmark to a maximum

of 77.1% for LBS3D. This behavior is expected when executed on Xeon Phi hardware board

since the Cache mode is able to exploit the memory access patterns in LBS3D benchmark,

and as a result, provided significant performance improvement compared to Flat mode. On the

other hand, Cache mode is slightly better than Flat mode in case of LINPACK memory access

patterns. It is important to note that the execution time for each application is normalized

with respect to the execution time in Flat mode. Therefore, the comparison shows how much

Cache mode will benefit over Flat mode for a given application.

Figure 4-6. Execution time variation in Cache vs Flat memory modes in Intel Xeon Phi 7210
processor.

This proves that state-of-the-art CMPs support different cache configurations and as a

result, application power and performance can vary drastically. However, instead of the limited

number of possible cache configurations introduced in the KNL architecture, it is beneficial

to have more tunable cache parameters so that more optimization opportunities are available.

This has not been possible due to the lack of simulation frameworks that capture all the

significant components in a CMP including NoC, caches and main memory. The simulation

78



framework should be accompanied by an efficient cache reconfiguration framework which

selects the best cache configuration for a given application.

4.2.3 Design Space of Possible Cache Configurations

Even though having more tunable cache parameters gives more optimization opportunities,

it can cause the number of possible cache configurations (design space) to grow exponentially.

This makes it infeasible to run all possible cache configurations exhaustively and come to

a conclusion on the best cache configuration for a given application. The existing solutions

for this as explained in Chapter 2, suffer from loss of accuracy and inconsistency across

architectures. Therefore, we propose a machine learning based approach that achieves high

accuracy and drastically reduces the exhaustive exploration time. We provide a detailed

calculation for the motivation of our approach in Section 4.3.3.1 after we have defined the

terminology used in this chapter in section 4.3.1.

4.3 Efficient Cache-NoC-Memory Co-Exploration

Figure 4-7 shows an overview of our cache reconfiguration framework. It consists of two

parts: (i) static profiling of application programs, and (ii) runtime (dynamic) inter-application

cache reconfiguration. The static profiling is used to determine the most profitable cache

configuration for a given application under various design constraints. This is done by reducing

the exploration space using a machine learning based approach (Section 4.3.3) and running a

dynamic programming based optimization algorithm to find the optimum cache configurations

(Section 4.3.4 and Section 4.3.5). An optimum cache configuration table is created at

this stage - each row of the table contains the most profitable cache configuration for an

application. When an application starts execution, the cache tuner changes the cache based

on the configuration stored in the table at runtime. This cache tuning is possible according

to the reconfigurable cache architecture described in Section 4.1. The goal of this chapter

is to develop a framework that efficiently constructs the optimum cache configuration table.

Using the configurations in the table to tune the cache during runtime is beyond the scope of
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this chapter. Runtime configuration is a well studied problem and existing mechanisms can be

applied to deal with it.

This section is organized as follows. We first provide the problem formulation (Section

4.3.1) followed by the power/energy models (Section 4.3.2). The next three subsections

describe the three important steps in our static profiling framework: (i) machine learning based

static profiling (Section 4.3.3), (ii) dynamic programming based per-core optimization (Section

4.3.4), and (iii) optimization across all cores (Section 4.3.5).

Figure 4-7. Overview and main steps in our proposed approach.

4.3.1 Problem Formulation

We model the many-core system with the following parameters and convert the

exploration into a minimization problem.

• The CMP consists of n cores. The set of all cores is denoted by P : {p1, p2, ..., pn}.

• Each core consists of private IL1 and DL1 caches. Each private cache can be configured
into r different configurations as explained in Section 4.1. Set of all cache configurations
are - C : {c1, c2, ..., cr}.

• The L2 cache, which is shared among all n cores, is α-way associative with way-based
partitioning support.

• m independent applications T : {τ1, τ2, ..., τm} are executed on the CMP model without
violating quality of service (QoS) requirements quantified by a “Performance Target”
D. In a given application mix, each application can finish at different times, but there
is a common soft deadline by which all applications should be completed. Violations
of this performance target deteriorate the QoS. The illustrative example in Section 4.2
introduces the usage of D. How to select D for a given application set is described in
more detail in Section 4.4.2.
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The assumption of a common soft deadline for an application set, which is represented by the

performance target, is made to generate results that are comparable with existing approaches.

In many classes of embedded systems, the tasks can be divided into multiple sets of tasks,

where the priority as well as the deadline is same for the tasks in each set. In other words, the

priority as well as the deadline will be different for tasks in two different sets. In the extreme,

each set may contain only one task, thereby, enabling individual deadlines for each task. Our

approach is applicable for tasks with individual deadlines without any changes to the proposed

algorithm.

The goal of our optimization algorithm is to find a reconfiguration scheme R for IL1 and

DL1 and a partition scheme Π for the L2 cache such that the assigned applications run with

minimal energy E without violating QoS standards where;

E = Ecores + Ecaches + Enoc + Ememory + Edirectories (4-1)

The inputs to the proposed algorithm are as follows:

• Set of all possible L1 cache configuration schemes R which assigns a cache configuration
to each IL1 and DL1 cache for each application - R : T→ CI , CD.

• Set of all possible L2 cache partitioning schemes Π : {w1, w2, ..., wn} which assigns wk

ways to core k.

• An application mapping scheme M: T → P which maps the m applications to the
available cores. The application mapping is beyond the scope of this chapter and M is
assumed to be available. Here, δk denotes the number of applications mapped to core k.

Let τk,i denote the ith application running on core k. Similarly, ϵk,i(cI , cD, wk) is the

total CMP energy consumption for τk,i with cI , cD as IL1 and DL1 cache configurations,

respectively, and wk partition factor. In other words, ϵk,i(cI , cD, wk) denotes the energy

contribution to total energy E from τi. Here, tk,i(cI , cD, wk) represents the time spent by τk,i

with the said cache configurations. Then, the optimization problem can be expressed as the

minimization of:

E =
n∑

k=1

δk∑
i=1

ϵk,i(cI , cD, wk) (4-2)
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subject to:

max
k=1..n

(

δk∑
i=1

tk,i(cI , cD, wk)) ≤ D (4-3)

n∑
k=1

wk = α;wk ≥ 1, ∀k ∈ [1, n] (4-4)

As shown in Equations (4-1) and (4-2), E consists of energy consumption in cores,

caches, NoC, off-chip memory and directories. The constraint in Equation (4-3) guarantees

that all applications will meet the required QoS standards quantified by the performance target

D whereas Equation (4-4) verifies that the partitioning scheme is valid.

4.3.2 Cache Coherent Traffic Flow and Energy Models

This section describes the traffic flow and energy model used in the NoC and Cache of our

architecture model.

4.3.2.1 NoC traffic and energy model

Since dynamic power consumption of an NoC is a function of the traffic flow, we need to

model a realistic traffic flow and use an energy model that captures the changes in the traffic

flow. For this purpose, we model the traffic flow of Cache memory mode in KNL architecture.

An example is shown in Figure 4-8 to illustrate the traffic behavior of a memory request in

Cache mode. When multiple cores are active and send many packets to the network, their

contention for resources is captured by the model presented in [147]. We used the same model

in our experiments that includes a credit-based flow control mechanism, buffers, arbiters, etc.

to capture packet behavior accurately.

In a typical mesh network where a router is connected to each processing element, energy

consumption for sending one bit of data from a source tile (ts) to a destination tile (td) can be

calculated using the Manhattan distance between them [148]. The “bit energy metric” defined

by Ye et al. [149] defines the dynamic part of the communication energy as

Ebit = EF + EL + EB (4-5)
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Figure 4-8. Traffic model in Cache memory mode in KNL architecture in case of an L1 and
MCDRAM miss.

where EF , EL and EB represent the energy consumption per bit by the switch fabric, link

and buffer, respectively. If Vi represents the supply voltage for tile i and bit energy values are

measured at VDD, the energy needed to transmit one bit through P tiles can be abstracted

by [140];

Ets,td
bit =

∑
i∈P

(EF (i) + EL(i) + EB(i)) ·
V 2
i

V 2
DD

(4-6)

The links connecting the routers consume power because of their switching activity (toggle

between logic 0 and logic 1). Power consumption in a traditional router with four pipeline

stages (routing computation, virtual channel allocation, switch allocation and switch traversal)

is a combination of power consumed in buffers, arbiter, allocator and crossbar switch. This is

captured by EB and EF .

Assuming that the architecture is fixed, the energy model in Equation 4-6 shows two main

contributors to NoC power:

1. Number of packets injected to the network - this is directly related to the number of
cache misses in L1 and L2 caches.

2. Average hops traversed by packets - depends on the placement of NoC components such
as memory controllers, home directories and last level cache.
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This NoC energy model was adopted from the work done by Ogras et al. [135] and it is

validated with both simulations and real hardware data.

4.3.2.2 Cache energy model

The total energy consumption of cache (Ecache) is not only the energy consumed by

the cache memory (Earray), but also the energy consumed by the memory addressing

path (Eaddress_path) and the I/O path (EI/O_path) [150]. Therefore, the total cache energy

consumption can be calculated as;

Ecache = Earray + Eaddress_path + EI/O_path (4-7)

Eaddress_path is determined by the switching activity of the address bus. The tag and data

memory arrays usually dominate the total cache energy consumption Earray. The energy model

used in our approach is based on dynamic logic where bit lines are pre-charged on every access.

Therefore, the energy consumed by the tag and data arrays will be determined by the number

of accesses. The I/O path includes I/O pads as well as address and data buses connected to it.

Out of these components, the switching activity of the I/O pads usually dominate that energy

component (EI/O_path). Therefore, the three main components of Ecache can be computed as

follows;

Earray = α · tag_access+ β · blk_access (4-8)

Eaddress_path = γ · bsr_addr_bus (4-9)

EI/O_path = δ · bsr_addr_pad+ ϵ · bsr_data_pad (4-10)

where;

tag_access - access rates of bit-lines in cache tag arrays

blk_access - access rates of bit-lines in cache block arrays

bsr_addr_bus - bit switching rates of address bus

bsr_addr_pad - bit switching rates of address pads

bsr_data_pad - bit switching rates of data pads
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α, β, δ, γ, ϵ - constants depending on VLSI implementation.

This model is similar to the cache energy model implemented in the widely used McPAT

simulator and has been verified with hardware data [151]. We used the default energy models

available in the McPAT simulator for other components in the SoC.

4.3.3 Efficient Static Profiling Using Machine Learning

We need a profile table including the runtime and energy consumption of each application

when running with all valid cache configurations to give as input to the optimization algorithm

(second and third steps of Algorithm 2).

4.3.3.1 Design space of possible cache configurations

According to the reconfigurable cache architecture described in Section 4.1, both IL1 and

DL1 have 6(= 3 + 2 + 1) possible configurations each. When two possible line sizes are used

(64B and 32B), changing IL1 and DL1 at the same time, it gives 72(= 6 × 6 × 2) candidates

for IL1 and DL1. It is in-feasible to profile application with all possible L1 reconfiguration

schemes R, all possible L2 partition schemes Π, for the whole application set T and all

possible application mappings schemes M [82].

As a solution for this, Wang et al. [78] proposed to reduce the exploration time

significantly based on the following observations:

• All the applications in Table 4-3 are independent with no inter-application data
sharing. An application can always start and complete on the assigned core without
any migrations happening during runtime.

• The L1 cache is private for each core and the configuration of L1 in one core doesn’t
have any effect on the other core’s configuration as there are no multi-threaded
applications that map to two cores in our application set.

• With L2 partitioning, each application uses an independent portion of the shared cache
which makes it a logical private cache.

With the applications and all the caches being independent, we can profile each

application as it was running on a uni-processor with a wi-way associative L2 cache with

the capacity equal to wi

w
× original cache size. In this case, the total number of simulations

required would be |R| × (α − 1) · m. Thus, it takes 72 × 7 × 14 = 7056 simulations for
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14 application. Even after this reduction, the simulations take approximately one month to

complete. Since the number of simulations can grow exponentially with the number of tunable

cache parameters and applications, this exhaustive exploration becomes in-feasible, when the

design space becomes arbitrarily large. As a solution, we propose a machine learning based

approach which runs only few simulations and uses that as training data to tune a neural

network model which then predicts the rest of the profile table. With this method, time

required to build the full profile table would be much lower. Table 4-1 shows profile table

entries for five L1 cache configurations (out of 72 possible configurations) created by machine

learning.

Table 4-1. A portion of the profile table generated from the machine learning algorithm for
“stringsearch” benchmark.

4.3.3.2 Algorithm

First, a portion of the profile table entries are filled up by simulating an application on

different configurations. Next, several models are trained with the collected data, and the

model with least error is selected. If the error is within a threshold, then we predict the rest

of the profile table entries using that model. Otherwise, we collect additional training data by

running more simulations, and repeat the procedure until the error threshold criteria is satisfied.

Algorithm 1 describes our machine learning based approach. Here, Xall denotes the set of

all possible configurations for an application. Xsim is the set of configurations on which we

already simulated the application and have the corresponding table entries Ysim. The remaining

configurations are in Xpred and needs to be predicted. It is evident that Xall = Xsim +Xpred.

Initially, all the table entries are empty. Thus, Xpred = Xall and Xsim = ∅ [line 2-3]. In the

subsequent iterations, some of the configurations (Xsel) are randomly selected from Xpred

for simulation [line 6]. After simulating with Xsel configurations, Ysel entries are put into the
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profile table. Consequently, Xsel configurations are removed from Xpred and added to Xsim

[line 7-9]. Size of Xsel determines the number of simulations carried out in each iteration.

Next, we train multiple models with the filled table entries Ysim and their configurations Xsim.

For model building purpose, these entries and configurations are divided into three groups -

training (Xtrain, Ytrain), cross-validation (Xcv, Ycv) and testing (Xtest, Ytest) [line 10-11]. This

essentially means that Xsim = Xtrain +Xcv +Xtest and Ysim = Ytrain + Ycv + Ytest. Training

set is used for training the model. Cross-validation is used for hyper-parameter tuning such

as learning rate or regularization parameter. Test set is used for determining the prediction

accuracy of models. A standard split is used in our experiments - 70% for training, 15% for

cross-validation, and 15% for testing. These models are further tuned by parameter sweeping

[line 13-19]. In our experiments, we trained a shallow neural network, and changed the number

of nodes in the hidden layer during the parameter sweep. If the prediction error is larger than

the error threshold ϵ, we collect more simulation data and repeat the model building procedure.

Alternatively, if error is within the threshold, then the model is used for predicting the rest of

the profile table. Input to the model will be the configuration set Xpred and output will be the

predicted energy and runtime values (Ŷpred) [line 24]. Full profile table is built by combining

predicted data Ŷpred and simulated data Ysim [line 25].

To calculate the error threshold, Normalized Root Mean Square Error (NRMSE) is used

(Equation 4-11). Using NRMSE is advantageous, since it is a relative measurement. So the

same threshold can be used for all applications.

NRMSE = 100% ∗
√
MSE/Ȳ (4-11)

where, MSE is the mean squared error and Ȳ is the average value. NRMSE is measured

over the test data set, Ytest and Ŷtest while calculating the threshold. As experimental results

demonstrate, our machine learning framework can give a speedup of 7.76 times when the error

threshold is set at 5%.

87



Algorithm 1 Profile table generation using machine learning
1: for each application do ▷ Model Building
2: Xpred = Xall

3: Xsim = ∅
4: min_error =∞
5: while Xpred! = ∅ and min_error > ϵ do
6: Xsel = randomSample(Xpred)
7: Xpred = Xpred −Xsel

8: Xsim = Xsim +Xsel

9: Ysel = simulate(Xsel)
10: [Xtrain, Xcv, Xtest] = distribute(Xsel)
11: [Ytrain, Ycv, Ytest] = distribute(Ysel)
12: for each regression algorithm do
13: for each param do ▷ Parameter sweep
14: model = train(Xtrain, Ytrain, Xcv, Ycv, param)
15: Ŷtest = predict(Xtest,model)
16: error = nrmse(Ytest, Ŷtest)
17: if error < min_error then
18: min_error = error
19: sel_model = model
20: end if
21: end for
22: end for
23: end while
24: Ŷpred = predict(Xpred, sel_model) ▷ Profile table entry prediction
25: Yall = Ysim + Ŷpred

26: end for

4.3.4 Per-Core Optimization

We tackle the optimization problem in two steps. First we find the optimum L1 cache

configuration for each core and then optimize across all cores to find the best L2 partition

scheme. This subsection illustrates optimizing each core with best L1 cache configuration.

Since static partitioning is used, applications running on one core will have the same partition

factor - wk. Thus, we find best R under different L2 partition factors. Mathematically, the

goal is to find L1 configuration R to minimize Ek(wk) =
∑δk

i=1 ϵk,i(cI , cD, wk) constrained by∑δk
i=1 tk,i(cI , cD, wk) ≤ D, with k and wk fixed ∀k ∈ [1, n] and ∀wk ∈ [1, α− 1].

To find minimum energy consumption, this can be discretized to simplify the problem and

we use a dynamic programming (DP) algorithm on that. Let ϵmin
k (wk) =

∑δk
i=1min{ϵk,i(cI , cD, wk)}
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and ϵmax
k (wk) =

∑δk
i=1max{ϵk,i(cI , cD, wk)} denote minimum and maximum possible

energy on core k. Thus, the energy consumption Ek(wk) of core k is bounded by these min

and max values. Let ΦE
i be the current solution for the first i applications where E is the

cumulative energy consumption achieving best runtime. Runtime T [i][E] for ΦE
i is stored in

a two-dimensional table T and the solution for ΦE
i is updated whenever the runtime can be

improved. The recursive formula used in our DP approach is shown in Figure 4-9.

Figure 4-9. Recursive formula for dynamic programming

The final optimal energy consumption E∗
k(wk) is found by;

E∗
k(wk) = min{Ek | T [δk][Ek] ≤ D} (4-12)

At the end of the DP algorithm, Equation 4-12 provides the solution for core k with partition

factor wk, which has minimum energy consumption with QoS constraints satisfied.

4.3.5 Optimizing the Entire CMP

Now that we have the optimal energy E∗
k(wk) calculated for a given partition factor wk

on core k, we combine the solutions across all cores to find the minimum total CMP energy

consumption E∗ within all partition schemes Π as;

E∗ = min{
n∑

k=1

E∗
k(wk)}, ∀{w1, w2, ..., wn} ∈ Π (4-13)

Our approach across all the steps starting from building the profile table is summarized in

Algorithm 2. Optimizing for each core to find best L1 configuration is shown in step 2. At

each iteration (lines 2 to 25), all discretized energy values (ϵ) and L1 cache configurations

for current application τk,i are examined. The recursive DP algorithm given in Figure 4-9

is included in lines 4 to 22 in two parts - initially for the first application and then from

application 2 to δk.

89



Time complexity for step 2 is O(n · α · δk · |R| · (ϵmax− ϵmin)/qt), where ϵmax− ϵmin is the

energy range and qt is discretization interval. We have used a constant qt in the DP algorithm

throughout our exploration. Step 3 iterates through all valid Π to find the final solution with

time complexity O(n · |Π|). Since cache parameters are constant for the given architecture

model, time complexity for both step 2 and step 3 is linear with respect to n.

When calculating the exact runtime without neglecting the constant factors, it is

important to note that |Π| depends on the constraint in Equation 4. Therefore, this becomes

the classic “stars and bars” problem in combinatorics. A theorem in combinatorics states that

for any pair of positive integers n and k, the number of k-tuples of positive integers whose

sum is n, is equal to the number of (k − 1)-element subsets of a set with n − 1 elements.

Therefore, according to our notation, |Π| =
(
α−1
n−1

)
. However, this calculation is not required

since in reality, the number of ways (α) is as small as 8 or 16 (8-way or 16-way). Given that n

represents the number of active cores, If n is greater than α, the cache partitions will have to

be shared among cores. If n is less than or equal to α, |Π| would be small (e.g., if α = 16 and

n = 12, |Π| = 1365). Therefore, this calculation can be done in constant or linear time for

most of the scenarios.

4.4 Experiments

4.4.1 Experimental Setup

We used a cycle-accurate full-system simulator - gem5 [152] and “GARNET2.0” [147]

NoC model that is integrated with gem5, to model the multi-core architecture. Our goal was

to model a realistic architecture that included reconfigurable L1, L2 caches, and an accurate

NoC traffic model. Our previous work modeled the KNL architecture on the gem5 simulator by

modifying the default gem5 source to capture the behavior of Memory and Cluster modes in

KNL [153]. There are other multi-core architectures such as Tilera TILE64 [154] and Kalray’s

MPPA-256 [155], which allows for predictable data transfers and composition of memory

accesses. However, we did our experiments on the gem5 KNL model since we had validated the
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Algorithm 2 Selection of optimal cache configurations
1: Run Algorithm 1 ▷ 1st step: Building profile table (Section 4.3.3)
2: for k = 1 to n do ▷ 2nd step: Optimize on each core (Section 4.3.4)
3: for wk = 1 to α− 1 do
4: for ϵ = ϵmin

k (wk) to ϵmax
k (wk) do

5: for cI , cD ∈ C do
6: if ϵk,1(cI , cD, wk) == ϵ then
7: if tk,1(cI , cD, wk) < T [1][ϵ] then
8: T [1][ϵ] = tk,1(cI , cD, wk)
9: end if

10: end if
11: end for
12: end for
13: for i = 2 to δk do
14: for ϵ = ϵmin

k (wk) to ϵmax
k (wk) do

15: for cI , cD ∈ C do
16: ϵ′ = ϵ− ϵk,i(cI , cD, wk)
17: if T [i− 1][ϵ′] + tk,i(cI , cD, wk)<T [i][ϵ] then
18: T [i][ϵ]=T [i− 1][ϵ′] + tk,i(cI , cD, wk)
19: end if
20: end for
21: end for
22: end for
23: E∗

k(wk) = min{ϵk |T [δk][ϵk] ≤ D}
24: end for
25: end for
26: for all Πj = {w1, w2, ..., wn} ∈ Π do ▷ 3rd step: Optimize across all cores (Section 4.3.5)
27: E∗

j =
∑n

k=1 E
∗
k(wk)

28: E∗ = min(E∗, E∗
j )

29: end for
30: return E∗

gem5 simulator model with results from real hardware (Intel Xeon Phi 7210 hardware board) in

our previous work [153].

However, the full KNL implementation is quite complex to be modeled on gem5. For

example, gem5 does not support tiles with 2 cores. Hence, there is one core in each tile in

our experiments. This mimics the scenario where one core in each tile is switched off in the

hardware board. Furthermore, KNL runs AVX512 instructions whereas our gem5 KNL model

runs X86 instructions. Cache sizes were chosen such that the applications we used get a
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realistic hit percentage of around 95% in L1 cache. If we used a larger cache size, the L1

hit rate would be 100%, and any discussion about cache reconfiguration will be meaningless.

Modeling the entire KNL architecture in a simulator is beyond the scope of this chapter. Our

goal was to model a realistic NoC traffic model. Even though the absolute values are not

the same, the relative advantages/disadvantages of reconfiguration are accurately captured

as shown in our previous work as well [153]. The core contributions of this chapter - cache

reconfiguration mechanism and machine learning-based exploration space reduction remains

intact irrespective of the architecture.

The complete set of simulation parameters are summarized in Table 4-2. Power results

were obtained by feeding the gem5 output statistics to McPAT power modeling framework

[151].

Table 4-2. System configuration parameters.
Parameter Class Parameter Value
Processor Configuration Number of cores 32

Core frequency 1.4 GHz
Instruction set architecture x86

Memory System
Configuration

L1 cache private, reconfigurable,
separate instruction and data
cache. Each 32kB in size.

L2 Cache reconfigurable, shared cache.
512kB in size.

Cache coherence MESI Two-Level
directory-based cache
coherence protocol

Memory Size 4GB DDR
Interconnection Network
Configuration

Topology 8x4 Mesh

Routing scheme X-Y deterministic
Router 4 port, 4 input buffer router

with 3 cycle pipeline delay
Link latency 1 cycle

To evaluate the effectiveness of our approach, we use 14 benchmarks selected from

MiBench [156] - bitcnts, crc, dijkstra, patricia, qsort, sha, stringsearch and SPLASH-2 [146]

- FFT, Radix, Lu, FMM, Cholesky, Water-Nsquared, Barnes benchmark suites. In order to
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make the size of MiBench benchmarks comparable with SPLASH-2, we use reduced (but well

verified) input sets. Table 4-3 lists the application sets which are combinations of the selected

benchmarks used in our experiments. We choose 3 application sets where each core contains 2

benchmarks, 2 application sets where each core contains 3 benchmarks and 1 application set

where each core contains 4 benchmarks.

Out of the 32 cores in the 8x4 Mesh interconnect, we chose 16 cores just for experimental

purposes. Simulation time can be prohibitive with larger number of cores. This is evident

from the results in Figure 4-14. Besides being practical, this core configuration enables us

to mimic that about 50% of the cores from a chip will be typically utilized at a given time.

As mentioned in Section 4.3.1, mapping of applications to cores is beyond the scope of this

chapter and the application mapping is assumed to be given as an input. The task mapping

problem in soft real-time system has been studied before [157]. For our experimental results,

to get the application mapping, we ran each application with the base cache configuration and

grouped them so that the total execution time for each set of applications is comparable. We

cannot get the execution time to be exactly the same since it depends on cache configuration.

However, the intent is to have a fair comparison and therefore not pair up a task with quick

execution time with a task with very long execution time. This was done to make sure

behaviors such as NoC congestion will be captured throughout application runtime. Otherwise,

if most cores finish their tasks and only some are running, the experiments will give results that

do not capture traffic congestion in NoC. If a task is parallelized, it can be viewed as multiple

tasks and mapping can be performed (a smart mapping algorithm is likely to map them to the

cores in a cluster). The performance target D is set in a way that there is a feasible L1 cache

assignment for every partition factor in every core. In other words, all possible L2 partition

schemes can be used.

4.4.2 Performance Target Selection

Equation (4-3) gives the performance target as a measure of providing the expected

QoS for the application sets. Figure 4-10 shows the optimal energy consumption variation
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Table 4-3. Application sets from the MiBench and SPLASH-2 benchmarks.
Application Set Cores 1, 2, 3, 4 Cores 5, 6, 7, 8 Cores 9, 10, 11,

12
Cores 13, 14,
15, 16

Set 1 stringsearch, sha FFT, Barnes stringsearch, Lu sha, FFT
Set 2 crc, Barnes Radix, Lu Cholesky, sha qsort, FMM
Set 3 bitcnts,

stringsearch
FMM,
Water-Nsquared

Barnes, Lu Cholesky, sha

Set 4 Radix, Lu, FFT crc,sha,stringsearchqsort, Barnes,
Water-Nsquared

bitcnts, FMM,
stringsearch

Set 5 patricia,
Water-Nsquared,
Barnes

dijkstra, bitcnts,
qsort

Cholesky, Radix,
crc

patricia, sha, Lu

Set 6 Lu, stringsearch,
FFT, patricia

Water-Nsquared,
FMM, qsort,
dijkstra

FFT, Cholesky,
dijkstra, sha

crc, Radix,
qsort, bitcnts

as a function of the performance target D for application set 1 in Table 4-3. We swept the

target from 8100ms to 8600ms. When the target is shorter than 8180ms, there was no

feasible solution. As the target was increased, it converged to the optimal which was 5324 mJ .

Therefore, it is clear that the performance target will affect the best possible energy calculated

by our approach. In our experiments, we selected the target such that each core can converge

to an optimal energy under the base configuration. In this example, the selected target was

8400ms.

Figure 4-10. Energy consumption variation with performance target. A relaxed target leads to
more energy savings.

4.4.3 Accuracy of Profile Tables Built with Machine Learning
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Section 4.3.3 describes our machine learning algorithm for building the profile table with

less number of simulations. Figure 4-11 shows the total amount of training data required

for all benchmarks over different error thresholds. Here, training data is expressed as a

percentage value. This is the ratio of profile table entries filled using simulations and total

number of profile table entries, for all 14 benchmarks. Error threshold is expressed using

NRMSE. As expected, the more training data we use, lower the error threshold is. Error is

less than 6% even with only 10% of training data. This essentially means approximately

an order-of-magnitude speedup in profile table generation time compared to exhaustive

simulations. Figure 4-12 provides the training data requirement for each benchmark. We

can see that some benchmarks require a lot of training data for accurate predictions (e.g.,

Barnes, Lu, dijkstra etc.), while some benchmarks need much less (e.g., bitcnts, sha etc.). This

observation forms the basis of using error threshold instead of fixing training data percentage.

Error threshold based approach allows more simulation time for benchmarks that require more

training data to be accurate.

Figure 4-11. Average training data required with varying error threshold for all benchmarks.

To evaluate our approach, we compare results of the predicted profile tables with profile

tables obtained from exhaustive and heuristic-based approaches. Figure 4-13 compares the

accuracy of the following 3 strategies that can be used to build the profile table by showing the

optimal energy consumption;

• Exhaustive: All cache configurations explored exhaustively. This acts as the reference
which gives the global optimal solution.
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Figure 4-12. Required training data for different error thresholds.

• Our approach (ML): Configurations selected keeping the error threshold at 5% as
training data and Algorithm 1 used for predicting.

• Heuristic [78]: Cache configurations selected using ICT heuristic (configurations where
DL1 and IL1 are the same) proposed by Wang et al..

Algorithm 2 uses these profile tables to get the optimum cache configurations while

maintaining QoS standards. Those values are then normalized to the energy consumption

of the base cache configuration. As discussed in Section 4.4.1, our reconfigurable L1 cache has

a base size of 32kB and a shared 512kB L2 cache. We observe in Figure 4-13 that compared

to the base configuration, the profile table built with the exhaustive approach can achieve

18.49% energy savings on average across all application sets. The energy savings provided

by our approach (ML) is very accurate (within 0.95% on average). It achieves the highest

performance in set 1 with an error of only 0.2%, whereas heuristic gives an error of 6.9%.

Heuristic-based approach gives relatively worse results as it populates only a portion of the

profile table based on ICT. Therefore, it is likely that the optimum configuration found by

exhaustive exploration is not in the profile table at all. In contrast, our approach uses the

training data to predict the whole table and therefore, depending on the accuracy of the

prediction, converges closer to the optimal.

The runtime of these approaches are shown in Figure 4-14. It takes 36.73 days to

complete the exhaustive exploration using the modified gem5 simulator on an unparallelized

setup. Heuristic selects 16.67% of the total exploration space and hence, shows a speedup

of six times. In contrast, our approach selects only 12.86% of the total exploration space
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Figure 4-13. Energy consumption observed compared to the Base cache configuration across all
profile table generation techniques.

as training data and takes 5 minutes to tune the neural network model which results in

an effective speedup of 7.76 times. The time taken to train the ML algorithm is negligible

compared to the profiling time. Therefore, we obtain higher accuracy while consuming less

time compared to the heuristic approach.

Figure 4-14. Times taken for different static profiling approaches.

Our machine learning approach populates the whole profile table unlike the heuristic

method which populates less than 10% of it. This allows us to estimate energy consumption

for all possible cache configurations, and as a result, leads to better energy savings.

Specifically, our approach provides up to 7% (3% on average) improvement in energy efficiency

while being 1.29 times faster compared to heuristic method. Most importantly, our approach is

7.76 times faster compared to the exhaustive method and still provides close to optimal energy

savings (on average deviation of 0.05%).

4.5 Summary

This chapter explored cache configuration optimization in an NoC based many-core

architecture and addressed the issue of large exploration space in DCR. The proposed approach
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significantly reduces the exhaustive exploration time by employing a machine learning based

approach. This approach selects only a few configurations and trains a neural network model

which then predicts the rest of the profile table. The proposed DCR algorithm then finds the

optimum L1 configuration for each core and optimum partition factor for the shared L2 cache.

The results showed an average energy savings of 18.49% compared to the base configuration

across all application sets. The ML predictions gave accurate (less than 1% error) energy

savings compared to the exhaustive method with a 7.76 times speedup which proves to

be better than previously proposed heuristic-based methods both in terms of accuracy and

speedup. Overall, my approach provides an order-of-magnitude reduction in exploration effort

with negligible impact on accuracy.
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CHAPTER 5
INCREMENTAL CRYPTOGRAPHY FOR NOC COMMUNICATION

Protecting communications between IPs, which involve asset propagation, is a major

challenge and requires additional hardware implementing security such as on-chip encryption

and authentication units. However, implementation of security features introduce area, power

and performance overhead. Security engineers have to take into account these non-functional

and real-time constraints while designing secure architectures to address various threats [95].

Therefore, it is crucial to develop a lightweight security architecture that can provide the

desired security with tolerable impact on area, power and performance.

In this chapter, I propose a lightweight encryption scheme based on “incremental

encryption” that can provide confidentiality to NoC packets. My solution takes advantage

of the unique characteristics of NoC traffic, and as a result, it has the ability to construct

a “lighter-weight” encryption scheme without compromising the security. Incremental

cryptography has been explored in areas such as software virus protection [158] and code

obfuscation [159]. To the best of my knowledge, my approach is the first attempt to utilize

incremental encryption to implement a lightweight and secure NoC architecture. The goal

of using incremental encryption is to design cryptographic algorithms that can reduce the

effort of encryption/decryption by reusing the previously encrypted/decrypted memory fetch

requests/responses rather than re-computing them from the scratch. In my framework,

data is encrypted at the NI of each secure IP core. The NI is chosen to accommodate the

encryption framework so that each packet can be secured before injecting into the NoC. Prior

research on NoC security have proposed similar architectures where the security framework was

implemented at the NI [90, 101]. Our major contributions of this chapter are as follows:

• I show that consecutive NoC packets that contain memory fetch requests/responses
differ only by a few bits while communicating between IP cores and memory controllers
in an SoC.

• I propose a lightweight encryption scheme based on incremental cryptography that
exploits the unique NoC traffic characteristics observed above.
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• I show that my solution is resilient against existing NoC attacks, and it significantly
improves the performance compared to state-of-the-art NoC encryption methods.

The rest of the chapter is organized as follows. Section 5.1 introduces some of the key

concepts I have in this chapter. Section 5.2 motivates the need for my work. Section 5.3

describes my approach for lightweight encryption. Section 5.4 presents the experimental

results. Finally, Section 5.5 summarizes the chapter.

5.1 Background

In this section, I first provide a brief overview of concepts used in this chapter.

5.1.1 Symmetric Encryption Schemes

A symmetric encryption scheme S = (K, E ,D) consists of three algorithms defined as

follows:

• The key generation algorithm is written as K ← K. This denotes the execution of the
randomized key generation algorithm K and storing the return string as K where β is
the length of the key.

• The encryption algorithm E produces the ciphertext C ∈ {0, 1}l by taking the key K and
a plaintext M ∈ {0, 1}l as inputs, where l is the length of the plaintext. This is denoted
by C ← EK(M).

• Similarly, the decryption algorithm D denoted by M ← DK(C), takes a key K and a
ciphertext C ∈ {0, 1}l and returns the corresponding M ∈ {0, 1}l.

5.1.2 Block Ciphers

A block cipher typically acts as the fundamental building block of the encryption algorithm

(E). Formally, it is a function (E) that takes a β-bit key (K) and an n-bit plaintext (m) and

outputs an n-bit long ciphertext (c). The values of β and n depend on the design and are

fixed for a given block cipher. For every c ∈ {0, 1}n, there is exactly one m ∈ {0, 1}n such

that EK(m) = c. Accordingly, EK has an inverse block cipher denoted by E−1
K such that

E−1
K (EK(m)) = m and EK(E

−1
K (c)) = c for all m, c ∈ {0, 1}n.

When using block ciphers to encrypt long messages, the plaintext (M) of a given length

l is divided into b substrings (mq) where each substring is n(= l
b
) bits long and n is called

the block size. Block ciphers are used in operation modes where one or more block ciphers
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Figure 5-1. A block cipher-based encryption scheme using counter mode.

work together to encrypt n-bit blocks and concatenate the outputs at the end to create the

ciphertext of l bits. Figure 5-1 shows the “counter mode” (CM) which is a popular operation

mode. CM also uses an initialization vector (IV) which is concatenated with a d-bit value

counter (e.g., if d = 4, {1}d = 0001) before inputting to the block cipher. This is done

to create domain separation by giving per message and per block variability. The decryption

process is shown in Algorithm 3. In fact, the decryption process is the inverse of the encryption

scheme shown in Figure 5-1.

Algorithm 3 Decryption process of Counter Mode
1: Input: ciphertext to decrypt C
2: Output: plaintext corresponding to the ciphertext M
3: procedure DK

4: for all q = 1, ..., b do
5: rq ← EK(IV ||{q}d)
6: mq ← rq ⊕ cq
7: end for
8: M ← m1 ∥m2 ∥ ... ∥mb

9: return M
10: end procedure

5.1.3 Incremental Cryptography Overview

Consider a scenario that involves encrypting sensitive files/documents. Once a file is

encrypted initially, there may be minor changes in the original file. In such a scenario, if typical

encryption is used, the previous encrypted file will be discarded and a new encryption will be

performed on the modified file. However, since these changes are very small in comparison to
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the size of the file, encrypting the entire file again is clearly inefficient. Incremental encryption

can give significant advantages in such a setup [160]. Updating an obfuscated code to

accommodate patches and video transmission of images when there are minor changes between

frames, are two similar scenarios [159]. Incremental encryption allows to find the cryptographic

transformation of a modified input not from scratch, but as a function of the encrypted version

of the input from which the modified input was derived. When the changes are small, the

incremental method gives considerable improvements in efficiency.

5.2 Motivation

The IPs use the capabilities given by the NoC to communicate with each other and to

request/store data from/in memory. The packets injected into the network can be classified

into two main categories - (1) control packets and (2) data packets. For example, a cache miss

at an IP will cause a control packet to be injected into the network requesting for that data

from the memory. The memory controller, upon receiving the request will reply back with a

data packet containing the cache block corresponding to the requested address. The formats

of these packets are shown in Figure 5-2. The NI divides the packet into flits (“fliticization”)

before injecting into the network. Flits are the basic building blocks of information transfer

between routers. Sensitive data of each flit is encrypted by the NI and injected into the

network through the local router. Encryption process of a packet consumes time as each block

has to be encrypted and concatenated to create the encrypted packet. Depending on the

parameters used for the block cipher (block size, key size, number of encryption rounds, etc.),

the time complexity of the process differs. If each packet is encrypted independently, it takes

z × T time to encrypt all of them, where z is the number of packets and T is the average time

needed to encrypt one packet.

As discussed in Section 5.1, the idea of incremental encryption is to develop a scheme

where the time taken to encrypt an incoming packet should not be dependent on the packet

size, but rather on the amount of modifications done compared to the previous packet. To

explore how to use this idea in the context of NoC, we profiled the number of bit changes
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Figure 5-2. Packet formats for control and data packets. Blue shows header (H) which is sent
as plaintext. Red shows the payload (P) with sensitive data encrypted.

between consecutive packets generated by a particular IP. Figure 5-3 shows the number of

bit differences as a percentage of memory fetch requests (control packets) when running five

benchmarks (FFT, FMM, LU, RADIX, OCEAN) from the SPLASH-2 benchmark suite on

the gem5 full-system simulator [152]. More details about the experimental setup is given in

Section 5.4.1. Out of the 64 bits of data to be encrypted, according to the default gem5

packet size, the maximum number of bit difference between consecutive packets was 13 bits

in all benchmarks. On average, 30% of the packets differed by only one bit. This is expected

since an application running on a core most likely accesses memory locations within the same

memory page which differs by only a few bits.

Figure 5-3. Number of bit differences between consecutive memory fetch requests in
SPLASH-2 benchmarks.
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Since encryption is done in blocks, we profiled this data assuming a block size of 16

bits [161]. In this case, up to 16 consecutive bit differences can be considered for each block,

and the maximum number of blocks for 64 bits of secure data is 4. The results showed that

on average, 80% of the packets differ by only one block and the other 20% differ by two

blocks for the benchmarks we used. Similar to memory fetch requests, we profiled the response

memory data packets as well. Since the response contains a whole cache block consisting of

data modified by calculations, we don’t observe the same optimization opportunity shown by

memory fetch requests. However, it still shows that 15% of consecutive packets are identical.

These observations show that the encryption process can be significantly optimized using

incremental encryption.

5.3 Incremental Encryption

This section describes our incremental encryption scheme in detail. First, we give an

illustrative example to demonstrate the merit of exploiting unique traffic characteristics using

incremental encryption. Then we elaborate the major components in our framework.

Illustrative example: Figure 5-4 shows an example on how incremental encryption can

improve the performance of an NoC. It shows the encryption process of three consecutive

NoC packets (each with 16 bits) using two methods (i) traditional encryption, (ii) incremental

encryption. In traditional encryption, both packets are encrypted sequentially using the two

8-bit block ciphers. In incremental encryption, each packet is compared with the previous

packet and only the different blocks are encrypted. Identical blocks are filled with zeros and

header bits are added to indicate the changed blocks. The decryption process uses previously

received packets and header information to reconstruct the new packets. Only the first packet

has to be fully encrypted since there is no prior packet for comparison. This example shows a

speedup of 1.43 times. However, when many packets are encrypted, the time spent to encrypt

the first packet becomes negligible and as a result, we observe a significant performance

improvement as shown in Section 5.4.2. A detailed description of the methodology is given in

the next three subsections.
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Figure 5-4. Illustrative example of using incremental encryption.

5.3.1 Overview

Figure 5-5 shows an overview of our proposed NoC security framework. It consists of two

main components: (i) incremental crypto engine, and (ii) encryption scheme which includes

the block ciphers. Each packet sent from an IP core has two main parts: (i) packet header (H)

which is sent as plaintext across the network, and (ii) payload (P) which should be encrypted

before sending to the network. Both header and payload are sent to the incremental crypto

engine to start the incremental encryption process. We consider the payload to be divided into

b blocks. For example, the 64-bit payload of a control packet will contain four 16-bit blocks

(b = 4) numbered 1 through 4 starting from the least significant byte. Our encryption scheme

uses block ciphers arranged in counter mode [162]. A detailed explanation of parameters used

in our experiments is given in Section 5.4.1.

Algorithm 4 describes our incremental encryption process. When a packet is sent

from the IP core, the incremental crypto engine first identifies which blocks are different

compared to the previous packet (line 6). This is done by comparing with the previous packet
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Figure 5-5. Overview of the proposed security framework.

payload (Pi−1) which is stored in a register inside the NI. In our model, only two packets are

required to be stored for the two different packet types (control and data) at the sender’s

end. Similarly, the receiver’s side also stores the most recent packet for each packet type. In

addition to that, the key (K) and initialization vector (IV ) for the encryption scheme are also

stored by both sender and receiver IPs. Once block differences are computed, it is then sent to

the encryption scheme which encrypts only the different blocks (line 7). The final ciphertext is

derived from the encrypted blocks and block comparison results (line 8). Additional header bits

are also computed in this step to be used by the decryption process. Finally, the header and

encrypted payload are concatenated to create the final packet and injected into the network

(line 9). At the destination node, the inverse process takes place. It also stores the previous

packet for each packet type, and therefore, can construct the next packet using the stored

packet and the incoming packet data. Since we store the previous packets in special registers,

we don’t have to encrypt/decrypt the full packet. We send only the changed blocks and the

receiver replaces the changed blocks with its modifications to construct the new packet.

The remainder of this section elaborates the major components of our NoC security

framework. Section 5.3.2 explains the compareBlocks function which is implemented

in the incremental crypto engine. Section 5.3.3 presents our encryption scheme E and

constructCipherText function in Algorithm 6 and Algorithm 7, respectively.

5.3.2 Incremental Crypto Engine

The operation of the incremental crypto engine is outlined in Algorithm 5. The payload

(Pi) sent from the IP core is compared with the previous payload of that type (Pi−1) to
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Algorithm 4 Encryption process
1: Inputs: current packet packeti, previous payload Pi−1, key K, initialization vector IV
2: Output: encrypted packet consisting of header Hi and encrypted payload Ci

3: procedure encryptPackets
4: Pi ← packeti.payload
5: Hi ← packeti.header
6: Mi, δi ← compareBlocks(Pi, Pi−1)
7: C ′ ← E(IV,K,Mi)
8: Ci ← constructCipherText(C ′, δi)
9: return Hi ∥ Ci

10: end procedure

identify the blocks that are different (Mi). This can be implemented with a simple XOR

operation in hardware (line 4). Once the bitwise differences are obtained, we split the payload

into blocks (line 5) to see which blocks are different (lines 6-9). Only different blocks are sent

for encryption. The incremental crypto engine also sends the different block numbers (δi) to

build the complete ciphertext as well as to set the header bits indicating the different blocks to

be used by the decryption algorithm.

Algorithm 5 Finding block-wise packet differences
1: Inputs: current payload Pi, previous payload Pi−1

2: Output: different blocks Mi, different block indices δi
3: procedure compareBlocks
4: bitDiff ← Pi ⊕ Pi−1

5: B[1], ..., B[k]← split(bitDiff, blockSize)
6: for all x = 1, ..., size(B) do
7: if B[x] > 0 then
8: Mi.append(B[x])
9: δi[x] = 1

10: end if
11: end for
12: return Mi, δi
13: end procedure

5.3.3 Encryption Scheme

We use the counter mode for encryption which uses an initialization vector (IV), a key

and the message to be encrypted as inputs and produces the ciphertext. The IV ∥ {q}d string,

which is the standard format of the input nonce to counter mode, is used to give per message
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and per block variability. In our framework, it is calculated using the sequence number of the

packet (let seqj be the sequence number of packet Pj), a counter, and the IV as IV ∥ seqj ∥ q

to identify different blocks. The block cipher ID (q ∈ {1, 2, 3, 4}) changes with each block

cipher and the sequence number seqj varies from packet to packet. As discussed before, the

performance improvement is gained by encrypting multiple blocks in parallel. For example, if

two consecutive control packets have differences in two blocks each, we can achieve twice the

speedup by encrypting both at the same time compared to the traditional (non-incremental)

approach where all four block ciphers will be used to encrypt each packet. Algorithm 6 shows

the major steps of the encryption scheme.

Algorithm 6 Encrypt selected blocks
1: Inputs: initialization vector IV , key K, different blocks Mi

2: Output: encrypted blocks C ′

3: procedure E
4: for all q = 1, ..., 4 do
5: seqj ← getSequenceNumber(Pj)
6: rq ← EK(IV ∥ seqj ∥ q)
7: C ′.append(rq ⊕Mi[q])
8: end for
9: return C ′

10: end procedure

C ′ is stored in a buffer. The final ciphertext is constructed using δi and C ′ as shown in

Algorithm 7. Algorithm 7 takes the encrypted value from the buffer for the changed blocks

(lines 5-6) and appends n (block size) zeros to identical blocks compared to the previous

packet (lines 7-8). It ensures the construction of the same packet size, and as a result, every

other functionality from fliticization to NoC traversal remains the same.

To ensure the secure implementation of our approach, the generation and management of

keys and nonces needs to be addressed. Many previous studies have addressed this problem in

several ways [163, 164].
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Algorithm 7 Construct the encrypted payload
1: Inputs: encrypted blocks C ′, different block indices δi
2: Output: Encrypted payload Ci

3: procedure constructCipherText
4: for all x = 1, ..., size(δ) do
5: if δi[x] > 0 then
6: Ci.append(C

′[x])
7: else
8: Ci.append({0}n)
9: end if

10: end for
11: return Ci

12: end procedure

5.4 Experiments

In this section, we first describe the experimental setup used to evaluate our approach.

Then, results are presented to show the performance gain achieved through incremental

encryption by comparing it with traditional encryption. Next, we discuss the security of the

proposed framework and associated overhead.

5.4.1 Experimental Setup

We validated our framework using five benchmarks chosen from the SPLASH-2

benchmark suite. Traffic traces were generated by the cycle-accurate full-system simulator

- gem5 [152]. The 4 × 4 Mesh NoC was built on top of “GARNET2.0” model that is

integrated with gem5 [147]. We modified the network interface (NI) to simulate the proposed

security framework. We selected the following options to simulate architectural choices in a

resource-constrained NoC.

Packet format: For control and data packet formats, we used the default GARNET2.0

implementations which allocates 128 bits for a flit. This value results in control messages

fitting in 1 flit, and data packets, in 5 flits. Out of the 128 bits, 64 bits are allocated for

the payload (address) in a control packet and data packets have a payload of 576 bits

(64-bit address and 512-bit data). This motivated the use of 16-bit blocks to evaluate the

performance of our proposed incremental encryption scheme.
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Block cipher: We use an ultra-lightweight block cipher - “Hummingbird-2” as the block

cipher of our encryption scheme [161]. Hummingbird-2 was chosen in our experiments mainly

because it is lightweight and also, with the block size being 16, other encryption schemes can

be broken using brute-force attacks in such small block sizes. However, it has been shown

in [161] that Hummingbird-2 is resilient against attacks that try to recover the plaintext from

ciphertext. It uses a 128-bit key and a 128-bit internal state which provides adequate security

for on-chip communication. Considering the payload and block sizes, we used four block

ciphers in counter mode for our encryption scheme. Each block cipher is assumed to take

20 cycles to encrypt a 16-bit block and each comparison of two-bit strings incurs a 1-cycle

delay [161]. Our framework is flexible to accommodate different packet formats, packet sizes

and block ciphers depending on the design requirements. For example, if a certain architecture

requires 128-bit blocks, AES can be used while keeping our incremental encryption approach

intact.

5.4.2 Performance Evaluation

We present the performance improvement achieved by our approach in two steps: (i)

time taken for encryption (Figure 5-6) and (ii) execution time (Figure 5-7). We measured

the cycles spent for encryption alone (encryption time) and total cycles executed to run

the benchmark (execution time) including encryption time, using our approach as well as

traditional encryption. Figure 5-6 shows the encryption time comparison. Our approach

improves the performance of encryption by 57% (30% on average) compared to the traditional

encryption schemes. The locality in data and the differences in operand values affect the

number of changed blocks between consecutive packets. This is reflected in the encryption

time. For example, if an application is doing an image processing operation on an image stored

in memory, accessing pixel data stored in consecutive memory locations provides an opportunity

for performance gain using our approach.

We also compare the total execution time using traditional encryption as well as

incremental encryption. Figure 5-7 presents these results. When the overall system including
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Figure 5-6. Encryption time comparison using traditional encryption and incremental
encryption.

CPU cycles, memory load/store delays and delays traversing the NoC is considered, the total

execution time improves upto 10% (5% on average). Benchmarks that have significant NoC

traversals such as RADIX and OCEAN show higher performance improvement (10%).

Figure 5-7. Execution time comparison using traditional encryption and incremental encryption.

5.4.3 Security Analysis

When discussing the security of our approach, three main components have to be

considered: (i) incremental encryption, (ii) encryption scheme that uses counter mode, and (iii)

block cipher.

Incremental encryption: Due to the inherent characteristics of incremental encryption,

our approach reveals the amount of differences between consecutive packets. Studies on

incremental encryption have shown that even though hiding the amount of differences is

not possible, it is possible to hide “everything else” by using secure block ciphers and secure

operation modes [158]. Attacks on incremental encryption using this vulnerability relies

on the adversary having many capabilities in addition to the ones defined in the threat

model. When using incremental encryption to encrypt documents undergoing frequent, small

modifications as explained in Section 5.1, it is reasonable to assume that the adversary not
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only has availability to the previously encrypted versions of documents but is also able to

modify documents and obtain encrypted versions of the modified ones. This attack model

allows the adversary to launch chosen plaintext attacks [158]. Discussing security of our

approach for known plaintext, chosen plaintext and chosen ciphertext attacks are irrelevant in

our design since the adversary does not have access to an oracle that implements the design,

nor access to known plaintext/ciphertext pairs. In other words, as long as the block cipher and

operation mode is secure, incremental encryption doesn’t allow recovering of plaintext from the

ciphertext. The same argument has been proven to hold true in previous work on incremental

encryption [158, 165].

Counter mode encryption: Using our approach, each block is treated independently

while encrypting, and blocks belonging to multiple packets can be encrypted in parallel. In such

a setup, using the same IV ∥ {q}d string with the same key K can cause the “two time pad”

situation. This is solved by setting the string to IV ∥ seqj ∥ q as shown in Algorithm 6. It gives

per message and per block variability and ensures that the value is a nonce. Our proposed

usage of counter mode adheres to the security recommendations outlined in [162].

Block cipher: As discussed above, the security of the proposed framework depends

on the security of the block cipher. The security of the block cipher used in our framework,

Hummingbird-2, has been discussed extensively in [161]. The first version of the Hummingbird

scheme was shown to be insecure [166] and Hummingbird-2 was developed to address the

security flaws. After thousands of hours of cryptanalysis, no significant flaws or sub-exhaustive

attacks against Hummingbird-2 have been found [161]. Hummingbird-2 approach has been

shown to be resilient against birthday attacks on the initialization, differential cryptanalisys,

linear cryptanalisys and algebraic attacks. Zhang et al. presented a related-key chosen-IV

attack against Hummingbird-2 that recovered the 128-bit secret key [167]. However, the

attack requires 228 pairs of plaintext to recover the first 4 bits of the key adding up to a data

complexity of O(232.6) [167]. As discussed before, launching such chosen plaintext attacks is

not possible in the NoC setting. A brute force key recovery takes 2128 attempts which is not
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computationally feasible according to modern computing standards as well as for computing

power in the foreseeable future.

Our proposed approach allows easy plug-and-play of security primitives. Any block

size/key size/block cipher can be combined with our proposed incremental encryption

approach. Note that stronger security comes at the expense of performance. Therefore,

security parameters can be decided depending on the desired security and performance

requirements.

5.4.4 Overhead Analysis

We implemented our proposed incremental encryption approach using Verilog to show

the area overhead in comparison with the original Hummingbird-2 implementation. Our

implementation is capable of assigning blocks to idle block ciphers and encrypting up to four

payloads in parallel. Merger and scheduler units were implemented to ensure the correctness of

final encrypted/decrypted payloads. We conducted our experiments using the Synopsys Design

Compiler with 90nm Synopsis library (saed90nm). Based on our results, our proposed approach

introduces less than 2% overall area overhead with respect to the entire NoC. When only the

encryption unit is considered, the overhead is 15%. This overhead is caused due to components

responsible for buffering and scheduling of modified blocks to idle block cipher units as well as

computations related to the construction of the final result. Therefore, our proposed encryption

approach has a negligible area overhead and it can be efficiently implemented as a lightweight

security mechanism for NoCs. While there is a minor increase in power overhead due to the

additional components, there is no penalty on overall energy consumption due to the reduction

in execution time.

5.5 Summary

In this chapter, I proposed a lightweight security mechanism that improves the performance

of traditional encryption schemes used in NoC while incurring negligible area and power

overhead. The security framework consists of an encryption/decryption scheme that provides

secure communication on the NoC. I used incremental encryption to achieve performance
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improvement by utilizing the unique traffic characteristics of packets observed in an NoC. I

validated the framework in terms of security to prove that the performance gain is not achieved

at the expense of security. Experimental results showed a performance improvement of up to

57% (30% on average) in encryption and authentication time and up to 10% (5% on average)

in total execution time compared to traditional encryption while introducing less than 2%

overall area overhead.

114



CHAPTER 6
LIGHTWEIGHT ENCRYPTION AND ANONYMOUS ROUTING

Attacks on NoC communication has become more and more complex over the years.

Previous efforts have developed countermeasures against stealing information [90], snooping

attacks [168], and even causing performance degradation by launching denial-of-service (DoS)

attacks [85, 105]. In this chapter, I present a countermeasure for MIPs operating under the

following architecture and threat models.

Threat Model: Figure 6-1 shows an SoC with heterogeneous IPs integrated on a Mesh

NoC. The two nodes marked as S (source) and D (destination) are trusted IPs communicating

with each other. MIPs integrated on the SoC (nodes shown in red) have the following three

capabilities when packets pass through their routers: (1) They can steal information if data

is sent as plaintext. (2) If data is encrypted and header information is kept as plaintext, they

can gather packets generated from the same source and intended to the same destination

and launch complex attacks such as linear/differential cryptanalysis. (3) When multiple MIPs

are present on the same NoC, they can share information and trace messages. Security of

interconnected components was explored under a similar threat model in [90, 169].

Figure 6-1. Overview of a typical SoC architecture with IPs integrated in a Mesh NoC.

It is not feasible to utilize traditional security methods (encryption, authentication, etc.)

in resource-constrained embedded devices. Previous work on lightweight encryption proposed

smaller block and key sizes, less rounds of encryption and other hardware optimizations [97].

Irrespective of the optimizations, these methods still have complex computations that take

several cycles. In this chapter, I propose a “Lightweight Encryption and Anonymous Routing
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protocol for NoCs” (LEARN) that requires only few addition and multiplication operations

for encryption. I am able to eliminate the traditional encryption method consisting of ciphers

and keys entirely by using the secret sharing approach proposed by Shamir [170] without

compromising the security guarantees. Furthermore, my framework supports anonymous

routing such that an intermediate node can neither detect the origin nor the destination of a

packet.

The remainder of this chapter is organized as follows. Section 6.1 introduces some

concepts used in this chapter. Section 6.2 motivates the need for my work. Section 6.3

describes the lightweight encryption and anonymous routing protocol. Section 6.4 presents

the experimental results. Section 6.5 discusses possible further enhancements to my approach.

Finally, Section 6.6 summarizes the chapter.

6.1 Background

This section introduces some of the key concepts used in our proposed framework.

6.1.1 Secret Sharing with Polynomial Interpolation

Shamir’s secret sharing [170] is based on a property of “Lagrange polynomials” known as

the (k, n) threshold. It specifies that a certain secret M can be broken into n parts and M

can only be recovered if at least k (k ≤ n) parts are retrieved. The knowledge of less than k

parts leave M completely unknown. Lagrange polynomials meet this property with k = n. A

Lagrange polynomial is comprised of some k points (x0, y0), ..., (xk−1, yk−1) where xi ̸= xj

(0 ≤ i, j ≤ k − 1). A unique polynomial of degree k − 1 can be calculated from these points:

L(x) =
k−1∑
j=0

lj(x) · yj, (6-1)

where

lj(x) =
k−1∏

i=0,i ̸=j

x− xi

xj − xi

(6-2)

Any attempt to reconstruct the polynomial with less than k or incorrect points will give the

incorrect polynomial with the wrong coefficients and/or wrong degree.
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L(x) forms the interpolated Lagrange polynomial, and lj(x) is the Lagrange basis

polynomial. In order to a share a secret using this method, a random polynomial of degree

k−1 is chosen. It takes the form of L(x) = a0+a1x+a2x
2+ ...+ak−1x

k−1. The shared secret

M should be set as a0 = M , and all the other coefficients are chosen randomly. Then a simple

calculation at x = 0 would yield the secret (M = L(0)). In this case, k points on the curve are

chosen at random and distributed together with their respective lj(0) values - the Lagrangian

coefficients. To retrieve M , all the parties should share their portions of the secrets. Once all

of the k points and lj(0) coefficients are combined, then the secret can be computed as:

M =
k−1∑
j=0

lj(0) · yj, (6-3)

This method makes it easier to compute M without having to recalculate each lj(x).

6.1.2 Anonymous Communication using Onion Routing

Onion routing is widely used in the domain of computer networks when routing has

to be done while keeping the sender anonymous. Each message is encrypted several times

(layers of encryption) analogous to layers of an onion. Each intermediate router from source to

destination (called onion routers) “peels” a single layer of encryption revealing the next hop.

The final layer is decrypted and message is read at the destination. The identity of the sender

is preserved since each intermediate router only knows the preceding and the following routers.

The overhead of onion routing comes from the fact that the sender has to do several rounds of

encryption before sending the packet to the network and each intermediate router has to do a

decryption before forwarding it to the next hop. While this can be done in computer networks,

adopting this in resource-constrained NoCs leads to unacceptable performance overhead as

illustrated in Section 6.2.

6.2 Motivation

Security and performance is always a trade-off in resource-constrained systems. While

computer networks with potentially unlimited resources can accommodate very strong security

techniques such as AES encryption and onion routing, utilizing them in resource-constrained
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NoCs can lead to unacceptable overhead. To evaluate this impact, we ran FFT, RADIX

(RDX), FMM and LU benchmarks from the SPLASH-2 benchmark suite [142] on an 8 × 8

Mesh NoC-based SoC with 64 IPs using the gem5 simulator [18] considering three scenarios:

• No-Security: NoC does not implement encryption or anonymous routing.

• Enc-only: NoC secures data by encrypting before sending into the network. However, it
does not support anonymous routing.

• Enc-and-AR: Data encryption as well as anonymous routing achieved by onion routing.

We assumed a 12-cycle delay for encryption/decryption when simulating Enc-only and

Enc-and-AR according to the evaluations in [98]. More details about the experimental setup

is given in Section 6.4.1. Results are shown in Figure 6-2. The values are normalized to

the scenario that consumes the most time. Enc-only shows 42% (40% on average) increase

in NoC delay (total NoC traversal delay for all packets) and 9% (7% on average) increase

in execution time compared to the No-Security implementation. Enc-and-AR gives worse

results with 83% (81% on average) increase in NoC delay leading to a 41% (33% on average)

increase in execution time when compared with No-Security. In other words, Enc-and-AR leads

to approximately 1.5X performance degradation. When security is considered, No-Security

leaves the data totally vulnerable to attackers, Enc-only secures the data by encryption and

Enc-and-AR provides an additional layer of security with anonymous routing. The overhead of

Enc-only is caused by the complex mathematical operations, and the number of cycles required

to encrypt each packet. Onion routing used in Enc-and-AR aggravates this by requiring several

rounds of encryption before injecting the packet into the network as well as decryption at

each hop (router). Added security has less impact on execution time compared to NoC delay

since execution time also includes the time for instruction execution and memory operations in

addition to NoC delay. In many embedded systems, it would be unacceptable to have security

at the cost of 1.5X performance degradation. It would be ideal if the security provided by

Enc-and-AR can be achieved while maintaining performance comparable to No-security. Our
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approach tries to achieve this goal by introducing a lightweight encryption and anonymous

routing protocol as described in the next section.

B NoC delay

C Execution time

Figure 6-2. NoC delay and execution time comparison across different levels of security.

6.3 Lightweight Encryption and Anonymous Routing Protocol

This section describes our proposed approach - Lightweight Encryption and Anonymous

Routing protocol for NoCs (LEARN). By utilizing secret sharing based on polynomial

interpolation [170], LEARN negates the need for complex cryptographic operations to encrypt

messages. A forwarding node would only have to compute the low overhead addition and

multiplication operations to hide the contents of the message. As the message passes through

the forwarding path, its appearance is changed at each node, which makes the message’s

content and route safe from eavesdropping attackers as well as internal ones. The following

sections describe our approach in detail. First, we provide an overview of our framework in

Section 6.3.1. Next, Section 6.3.2 and Section 6.3.3 describe the two major components of our

proposed routing protocol (route discovery and data transfer). Finally, Section 6.3.4 outlines

how to efficiently manage relevant parameters during anonymous routing.
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Figure 6-3. Overview of our proposed framework (LEARN)

6.3.1 Overview

LEARN has two main phases as shown in Figure 6-3. When an IP wants to communicate

with another IP, it first completes the “Route Discovery” phase. The route discovery phase

sends a packet and discovers the route, distributes the parameters among participants. Then

the “Data Transfer” phase transfers the message securely and anonymously. The route

discovery phase includes a three-way handshake between the sender and the destination nodes.

The handshake uses 3 out of the 4 main types of packets sent over the network with the fourth

type being used in the second phase. The four main packet types are:

1. RI (Route Initiate) - flooded packet from sender S to destination D to initialize the
conversation.

2. RA (Route Accept) - packet sent from D to accept new connection with S.

3. RC (Route Confirmation) - sent from S to distribute configuration parameters with
intermediate nodes.

4. DT (Data) - the data packet from S to D that is routed anonymously through the NoC.

Algorithm 1 outlines the major steps of LEARN. During the three-way handshake,

a route between S and D is discovered. Each router along the routing path is assigned

with few parameters that are used when transferring data - (i) random nonces to represent

preceding and following routers (line 2), and (ii) a point in a random polynomial together

with its Lagrangian coefficient (line 3). This marks the end of the first phase which enables

the second phase - “Data Transfer”. The second phase uses the parameters assigned to

each router to forward the original message through the route anonymously while hiding its

contents. Anonymous routing is achieved by using the random nonces which act as virtual
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circuit numbers (VCN). When transferring data packets, the intermediate routers will only

see the VCNs corresponding to the preceding router and the following router which reveals

no information about the source or the destination (line 7). Encryption is achieved using

the points in the random polynomial and their corresponding Lagrangian coefficients. Each

router along the path changes the contents of the message in such a way that only the final

destination will be able to retrieve the entire message (line 6).

Algorithm 8 Major steps of LEARN
Phase I - Route Discovery

1: for all r ∈ routers do
2: r ← υi, υj ▷ nonces to identify VCNs
3: r ← (xk, yk, bk) ▷ a point in a random polynomial
4: end for

Phase II - Data Transfer
5: while r ̸= destination do
6: m← F(m, (xk, yk, bk)) ▷ modify message
7: r ← getNextHop(υi, υj) ▷ get next hop
8: end while

LEARN improves performance by replacing complex cryptographic operations with

addition/multiplication operations that consume significantly less time during the data

transfer phase. The overhead occurs during the first phase (route discovery) that requires

cryptographic operations. However, this is performed only a constant number of times (once

per communication session). Since the route discovery phase happens only once in the

beginning of a communication session, the cost for route discovery gets amortized over time.

This leads to significant performance improvement.

Note that the route discovered at the route discovery stage will remain the same for the

lifetime of the task. In case of context switching and/or task migration, the first phase will

be repeated before transferring data. Each IP in the SoC that uses the NoC to communicate

with other IPs follows the same procedure. The next two sections describe these two phases in

detail. A list of notations used to illustrate the idea is listed in Table 6-1. The superscript “i”

is used to indicate that the parameter is changed for each packet of a given packet type.
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Table 6-1. Notations used to illustrate LEARN
Notation Description
OPK

(i)
S one-time public key (OPK) used by the

source to uniquely identify an RA packet
OSK

(i)
S private key corresponding to OPK

(i)
S

ρ random number generated by the source
PKD the global public key of the destination
SKD the private key corresponding to PKD

TPK
(i)
A temporary public key of node A

TSK
(i)
A the private key corresponding to TPK

(i)
A

KS−A symmetric key shared between S and A
υA randomly generated nonce by node A
bi Lagrangian coefficient of a given point

(xi, yi)
EK(M) a message M encrypted using the key K

6.3.2 Route Discovery

The route discovery phase performs a three-way handshake between the sender S and

destination D. This includes broadcasting the first packet - RI from S with the destination

D, getting a response (RA) from D acknowledging the reception of RI, and finally, sending

RC with the parameters required to implement polynomial interpolation based secret sharing.

Figure 6-4 shows an illustrative example of parameters (using only four nodes) shared and

stored during the handshake.

The initial route initiate packet (RI) takes the form:

{RI ∥OPK
(i)
S ∥ EPKD

(OPK
(i)
S ∥ ρ) ∥ TPK

(i)
S }

The first part of the message indicates the type of packet being sent, RI in this case.

OPK
(i)
S refers to the one-time public key associated with the sender node. This public key

together with its corresponding private key OSK
(i)
S change with each new conversation or RI.

This change allows for a particular conversation to be uniquely identified by these keys, which

are saved in its route request table. ρ is a randomly generated number by the sender that is

concatenated with the OPK
(i)
S and then encrypted with the destination node’s public key

PKD as a global trapdoor [171]. Since PKD is used to encrypt, only the destination is able
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Figure 6-4. Steps of the three-way handshake and the status of parameters at the end of the
process.

to open the trapdoor using SKD. Then the TPK
(i)
S is attached to show the temporary key of

the forwarding node, which is initially the sender. The temporary keys are also implemented as

one-time trapdoors to ensure security.

The next node, r1, to receive the RI messages goes through a few basic steps. Firstly, it

checks for the OPK
(i)
S in its key mapping table, which would indicate a duplicated message.

Any duplicates are discarded at this step. Next, r1 will attempt to decrypt the message and

retrieve ρ. Success would indicate that r1 was the intended recipient D. If not, r1 replaces

TPK
(i)
S with its own temporary public key TPK

(i)
r1 and broadcasts:

{RI ∥OPK
(i)
S ∥ EPKD

(OPK
(i)
S ∥ ρ) ∥ TPK

(i)
r1 }
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r1 also logs OPK
(i)
S and TPK

(i)
S from the received message and TSK

(i)
r1 corresponding to

TPK
(i)
r1 in its key mapping table. This information is used later when an RA message is

received from D.

D will eventually receive the RI message and will decrypt using SKD. This will allow D

to retrieve OPK
(i)
S and ρ from EPKD

(OPK
(i)
S ∥ ρ). Then to verify that the RI has not been

tampered with, D will compare the plaintext OPK
(i)
S and the now decrypted OPK

(i)
S . If they

are different, the RI is simply discarded. Otherwise, D sends a RA (route accept) message:

{RA ∥ E
TPK

(i)
r2
(E

OPK
(i)
S
(ρ ∥ υD ∥KS−D))} (6-4)

RA, like RI in the previous message, is there to indicate message type. D generates a random

nonce, υD, to serve as a VCN and a randomly selected key KS−D to act as a symmetric key

between S and D. D stores υD and KS−D in its key mapping table. It also makes an entry

in its routing table indexed by υD, the VCN. The concatenation of ρ, υD, and KS−D is then

encrypted with the OPK
(i)
S , so that only S can access that information. Then the message is

encrypted again by TPK
(i)
r2 , r2’s temporary public key, with r2 being the node that delivered

RI to D.

Once r2 receives the RA, it decrypts it using its temporary private key, TSK(i)
r2 , and

follows the same steps as D. It generates its own nonce, υr2, and shared symmetric key,

KS−r2, to be shared with S. Both the nonce and symmetric key are then concatenated to the

RA message and encrypted by S’s public key, OPK
(i)
S , so that only S can retrieve that data.

This adds another layer of encrypted content to the message for S to decrypt using OSK
(i)
S .

Similar to D, r2 also stores υr2 and KS−r2 in its key mapping table and routing table. It then

finds the temporary public key for the previous node in the path from its key mapping table -

TPK
(i)
r1 and encrypts the message. The message sent out by r2 looks like:

{RA ∥ E
TPK

(i)
r1
(E

OPK
(i)
S
(E

OPK
(i)
S
(ρ ∥ υD ∥ KS−D) ∥ υr2 ∥ KS−r2))} (6-5)
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This process is repeated at each node along the path until the RA packet makes it way

back to S. The entire message at that point is encrypted with TPK
(i)
S , which is stripped away

using TSK
(i)
S . Then S can “peel” each layer of the encrypted message by OSK

(i)
S to retrieved

all the VCNs, shared symmetric keys, and also, ρ. ρ is used to authenticate that the entire

message came from the correct destination and was not changed during the journey.

Once S completes authentication of the received RA packet, it randomly generates k + 1

points (x0, y0), (x1, y1), ..., (xk, yk) on a k degree polynomial L(x) as shown in Figure 6-5.

k + 1 is the number of nodes in the path from S to D. S then uses these points to calculate

the Lagrangian coefficients, b0, b1, ..., bk, using:

bj =
k∏

i=0,i ̸=j

xi

xi − xj

(6-6)

Using the generated data, S constructs a route confirmation (RC) packet:

{RC ∥ υr1 ∥ EKS−r1
(x1 ∥ y1 ∥ b1 ∥ υr2 ∥ EKS−r2

(x2 ∥ y2 ∥ b2 ∥ υD ∥ EKS−D
(x3 ∥ y3 ∥ b3)))}

(6-7)

Similar to the case in RA and RI, RC in the packet refers to the packet type. The rest of the

message is layered much like the previous RA packet. Each layer contains the υ∗ for each node

concatenated with secret information that is encrypted with the shared key KS−∗, where *

corresponds to r1, r2 or D in our example (Figure 6-4). The (υ∗, KS−∗) pair was generated by

each node during the RA packet transfer phase and the values were stored in the key mapping

tables as well as entries indexed by the VCNs created in the routing table. Therefore, each

node can decrypt one layer, store incoming and outgoing VCNs together with the secret, and

pass it on to the next node to do the same. For example, r1 receiving the packet can observe

that the incoming VCN is υr1. It then decrypts the first layer using the symmetric key KS−r1,

that is already stored in the key mapping table, and recovers the secret (x1, y1, b1) as well as

the outgoing VCN υr2. It then updates the entry indexed by υr1 in its routing table with the
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secret tuple and the outgoing VCN. Similarly, each router from S to D can build its routing

table.

Figure 6-5. Lagrangian polynomials L(x) and L′(x) together with the selected points.

6.3.3 Data Transfer

The path set up can now be used to transfer messages from S to D anonymously.

For each conversation, k + 1 points were generated on a random curve L(x) chosen by S.

During the last step of the route discovery phase (RC packet), S kept (x0, y0, b0) for itself and

distributed each node on the discovered path a different point, (xi, yi) (where 1 ≤ i ≤ k),

with the corresponding Lagrangian coefficient bi. If S wants to send the message M to D, S

has to generate a new k degree polynomial L′(x) which is defined by the k points distributed

to nodes except for (x0, y0), i.e., points (xi, yi) where (1 ≤ i ≤ k) and a new point (0,M).

This makes L′(0) = M with M as the secret message, according to the explanation in

Section 6.1.1. S then changes its own point (x0, y0) to (x0, y
′
0) where y′0 = L′(x0), making

sure the point retained by S is also on the curve L’(x) as shown in Figure 6-5. It is important

to note that every coefficient bi, and every point distributed to nodes along the route remain

unchanged. For this scenario, considering Equation 6-3, we can derive:

M = y′0b0 +
k∑

i=1

bi · yi (6-8)
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To transfer a secret message, M , from S to D anonymously, S constructs data transfer (DT )

packet with the form:

{DT ∥ υr1 ∥ y′0b0} (6-9)

DT , like every other packet, has an indicator of packet type at the front of the packet - DT .

υr1 is the VCN of the next node. y′0b0 is the portion of the message M that is constructed by

S. Once r1 receives the DT packet, it adds its own portion of the message, y1b1, to y′0b0. It

also uses its routing table to find the VCN of the next node and replaces the incoming VCN by

the outgoing VCN in the DT packet. Therefore, the message received by r2 has the form:

{DT ∥ υr2 ∥ y′0b0 + y1b1} (6-10)

Next, r2 repeats the same process and forwards the packet:

{DT ∥ υD ∥ y′0b0 + y1b1 + y2b2} (6-11)

to D. Eventually, D will be able to retrieve the secret message, M = y′0b0 + y1b1 + y2b2 + y3b3

by adding the last portion y3b3 constructed using the part of the secret D shared. Using this

method, neither an intermediate node nor an eavesdropper in the middle will be able to see

the full message since the message M is incomplete at every intermediate node and is fully

constructed only at the destination D.

6.3.4 Parameter Management

To ensure the efficient implementation of LEARN, an important aspect needs to be

addressed - the generation and management of keys and nonces. Many previous studies have

addressed this problem in several ways. One such example is the work done by Lebiednik et

al. [163]. In their work, a separate IP called the key distribution center (KDC) handles the

distribution of keys. Each node in the network negotiates a new key with the KDC using a

pre-shared portion of memory that is known by only the KDC and the corresponding node. The

node then communicates with the KDC using this unique key whenever it wants to obtain a

new key. The KDC can then allocate keys depending on whether it is symmetric/asymmetric
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encryption, and inform other nodes as required. The key request can delay the communication.

But once keys are established, it can be used for many times depending on the length of the

encrypted packet before refreshing to prevent linear distinguishing attacks. In our approach,

the keys are only used during the route discovery phase, and the discovered route will remain

the same for the lifetime of the task unless context switching or task migration happens.

Therefore, key refreshing will rarely happen and the cost for the initial key agreement as well as

the route discovery phase will be amortized.

6.4 Experiments

This section presents results to evaluate the efficiency of our approach (LEARN). We first

describe the experimental setup. Next, we compare the performance of LEARN with traditional

encryption and anonymous routing protocols introduced in Section 6.2. Finally, we discuss the

area overhead and security aspects of LEARN.

6.4.1 Experimental Setup

Extending the results presented in Figure 6-2, LEARN was tested on an 8 × 8 Mesh

NoC-based SoC with 64 IPs using the gem5 cycle-accurate full-system simulator [18]. The NoC

was built using the “GARNET2.0” model that is integrated with gem5 [139, 153]. The route

discovery phase of our approach relies on the RI,RA, and RC packets traversing along the

same path to distribute the keys and nonces. Therefore, the topology requires bidirectional

links connecting the routers. While we experimented on a Mesh NoC, there are many other

NoC topologies that can adopt LEARN where all links are bidirectional as evidenced by

academic research [139] as well as commercial SoCs [4].

Each encryption/decryption is modelled with a 12-cycle delay [98]. Computations related

to generating the random polynomial and deciding the k points is assumed to consume 200

cycles. To accurately capture congestion, the NoC was modeled with 3-stage (buffer write,

route compute + virtual channel allocation + switch allocation, and link traversal) pipelined

routers with wormhole switching and 4 virtual channel buffers at each input port. Each link
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was assumed to consume one cycle to transmit packets between neighboring routers. The

delays were chosen to be consistent with the delays of components in the gem5 simulator.

We used the default gem5 and Garnet2.0 configurations for packet sizes, virtual channels

and flow control. In addition to the four main types of packets described in Section 6.3.1,

the DT packets can be further divided into two categories as control and data packets. For

example, in case of a cache miss, a memory request packet (control packet) is injected into

the NoC and the memory response packet (data packet) consists of the data block from

the memory. The address portion of a control DT packet consists of 64 bits. In the data

DT packet, in addition to the 64-bit address, 512 bits are reserved for the data block. A

credit-based, virtual channel flow control was used in the architecture. Each data VC and

control VC was allocated buffer depths of 4 and 1, respectively.

LEARN was tested using 6 real benchmarks (FFT, RADIX, FMM, LU, OCEAN,

CHOLESKY) from the SPLASH-2 benchmark suite and 6 synthetic traffic patterns: uniform

random (URD), tornado (TRD), bit complement (BCT), bit reverse (BRS), bit rotation

(BRT), transpose (TPS). Out of the 64 cores, 16 IPs were chosen at random and each one of

them instantiated an instance of the task. The packets injected into the NoC when running

the real benchmarks were the memory requests/responses. We used 8 memory controllers that

provide the interface to off-chip memory which were placed on the boundary of the SoC. This

memory controller placement adheres to commercial SoC architectures such as Intel’s Knights

Landing (KNL) [4]. An example to illustrate the IP placement is shown in Figure 6-6.

When running real benchmarks, the packets get injected to the NoC when there are

private cache misses and the frequency of that happening depends on the characteristics of

the benchmark. When running synthetic traffic patterns, packets were injected into the NoC

at the rate of 0.01 packets/node/cycle. For synthetic traffic patterns, the destinations of

injected packets were selected based on the traffic pattern. For example, uniform random

selected the destination from the remaining IPs with equal probability whereas bit complement,

complemented the bits of the source address to get the destination address, etc.. The choices
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made in the experimental setup were motivated by the architecture/threat model and the

behavior of the gem5 simulator. However, LEARN can be used with any other NoC topology

and task/memory controller placement.

Figure 6-6. 8× 8 Mesh NoC architecture used to generate results including trusted nodes
running the tasks and communicating with memory controllers while untrusted
nodes can potentially have malicious IPs.

6.4.2 Performance Evaluation

Figure 6-7 shows performance improvement LEARN can gain when running real

benchmarks. We compare the results from LEARN against the three scenarios considered in

Figure 6-2. Compared to the No-Security scenario, LEARN consumes 30% more time (28% on

average) for NoC traversals (NoC delay) and that results in only 5% (4% on average) increase

in total execution time. Compared to Enc-and-AR which also implements encryption and

anonymous routing, LEARN improves NoC delay by 76% (74% on average) and total execution

time by 37% (30% on average). We can observe from the results that the performance

of LEARN is even better than Enc-Only, which provides encryption without anonymous

routing. Overall, LEARN can provide encryption and anonymous routing consuming only 4%

performance overhead compared to the NoC that does not implement any security features.

The same experiments were carried out using synthetic traffic traces, and results are

shown in Figure 6-8. Since synthetic traffic patterns only simulate NoC traffic and do not

include instruction execution and memory operations, only NoC delay is shown in the figure.

Compared to Enc-and-AR, LEARN improves performance by 76% (72% on average).
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B NoC delay

C Execution time

Figure 6-7. NoC delay and execution time comparison across different security levels using real
benchmarks.

Figure 6-8. NoC delay comparison across different levels of security when running synthetic
traffic patterns.

The performance improvement of LEARN comes from the fact that once the path has

been set up for the communication between any two IPs, the overhead caused to securely

communicate between the two IPs (data transfer phase) while preserving route anonymity

is much less. The notable overhead occurs at the route discovery phase due to complex

cryptographic operations. The intermediate nodes encrypt/decrypt packets to exchange

parameters securely. Yet, these complex cryptographic operations are performed only a

constant number of times. Majority of the work is done at the source which selects points to
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be distributed among intermediate nodes after constructing a curve, calculates the Lagrangian

coefficients of the selected points, and performs several rounds of encryption/decryption during

the three-way handshake. Once the routing path is setup, packets can be forwarded from one

router to the other by a simple table look-up. No per-hop encryption and decryption is required

to preserve anonymity. The security of a message is ensured by changing the original message

at each node using a few addition and multiplication operations which incur significantly fewer

extra delays. Since the route discovery phase happens only once during the lifetime of a task

unless context switching and/or task migration happens, and there is only a limited number of

communications going on between IPs in an SoC, the cost during the route discovery phase

gets amortized over time. When running real benchmarks, we observed a packet ratio of

1:1:1:6325 on average for RI : RA : RC : DT , respectively. For synthetic traffic patterns, the

same ratio was observed to be 1:1:1:1964. This leads to a significant performance improvement

compared to the traditional methods of encryption and anonymous routing.

6.4.3 Area Overhead of the Key Mapping Table

The key mapping table is an extra table compared to No-Security approach used to

implement our anonymous routing protocol. The key mapping table adds a row for each

session. Therefore, the size of the key mapping table is linearly proportional to the number

of sessions. If at design time, it is decided to have a fixed size for the key mapping table, it

is possible for the key mapping table at a router to be full after adding sessions, and in that

case, new sessions cannot be added through that router. Therefore, the size has to be decided

according to the communication requirements.

The maximum number of communication pairs in an 8 × 8 Mesh is
(
64
2

)
× 2 = 4032

(assuming two-way communication between any pair out of the 64 nodes). Depending on

the address mapping, only some node pairs (out of all the possible node pairs) communicate.

Our simulations consisted of 256 unique node pairs. In the worst case, if we assume each

communication session has one common router, the key mapping table should be 256 ×

row_size big. If each entry in the key mapping table is 128 bits, the total size becomes 20kB.
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However, in reality, not all communication sessions overlap. It is also important to note that

except for the Session ID in the key mapping table, the other entries can be overwritten once

route discovery phase is complete. Therefore, it is possible to allocate a fixed size key mapping

table during design time and yet keep the area overhead low.

6.4.4 Security Analysis

In this section, we discuss the security and privacy of messages transferred on the NoC

using LEARN.

Security of messages: The security of messages is preserved by the (k, n) threshold

property of Lagrangian polynomials discussed in Section 6.1.1. Therefore, unless an

intermediate node can gather all points distributed among the routers in the routing path

together with their Lagrangian coefficients, the original message cannot be recovered. Our

threat model states that the source and destination are trusted IPs, and also, only some of

the IPs are untrusted. Therefore, all routers along the routing path will never be compromised

at the same time. The threat comes from malicious IPs sitting on the routing path and

eavesdropping to extract security critical information. LEARN ensures that intermediate nodes

that can be malicious, cannot recover the original message during the data transfer phase

by changing the message at each hop. The complete message can only be constructed at

the destination. During route discovery phase, each packet is encrypted such that only the

intended recipient can decrypt it. The key and nonce exchange is also secured according to the

mechanism proposed in Section 6.3.4. Therefore, LEARN ensures that no intermediate M3PIP

can gather enough data to recover the plaintext from messages.

Anonymity of nodes in the network: LEARN preserves the anonymity of nodes in

the network during all of its operational phases. When the source sends the initial RI packet

to initiate the three-way handshake, it doesn’t use the identity of the destination. Instead, the

source uses the global public key of the destination (PKD) and sends a broadcast message

on the network. When the RI packet propagates through the network, each intermediate

node saves a temporary public key of its predecessor. This temporary public key is then
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used to encrypt data when propagating the RA packet so that unicast messages can be

sent to preceding nodes without using their identities. Random nonces and symmetric keys

are assigned to each node during the RA packet propagation which in turn is used by the

RC packet to distribute points and Lagrangian coefficients to each node. Data transfer is

done by looking up the routing table that consists of the nonces representing incoming and

outgoing VCNs. Therefore, the identities of the nodes are not revealed at any point during

communication.

Anonymity of routes taken by packets: In addition to preserving the anonymity of

nodes, LEARN also ensures that the path taken by each packet is anonymous. Anonymity of

the routing path is ensured by two main characteristics. (i) The message is changed at each

hop. Therefore, even if there are two M3PIPs on the same routing path, information exchange

among the two M3PIPs will not help in identifying whether the same message was passed

through both of them. The same message appears as two completely different messages when

passing through two different nodes. (ii) The routing table contains only the preceding and

following nodes along the routing path. An M3PIP compromising a router will only reveal

information about the next hop and the preceding hop. Therefore, the routing paths of all

packets remain anonymous.

6.5 Discussion

In this section, we discuss possible alternatives to our design choices from both design

overhead and security perspectives. Most importantly, we discuss security solutions to defend

against attacks when an attacker is aware of our security mechanism.

6.5.1 Feasibility of a Separate Service NoC

Modern SoCs use multiple physical NoCs to carry different types of packets [4, 17]. The

KNL architecture used in Intel Xeon-Phi processor family uses four parallel NoCs [4]. The

Tilera TILE64 architecture uses five Mesh NoCs, each used to transfer packets belonging to

a certain packet type such as main memory, communication with I/O devices, and user-level

scalar operand and stream communication between tiles [17]. The decision to implement
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separate physical NoCs is dependent on the performance versus area trade-off. If only one

physical NoC is used to carry all types of packets, the packets must contain header fields such

as RI,RA,RC,DT to distinguish between different types. The buffer space is shared between

different packet types. The SoC performance can deteriorate significantly due to these factors

coupled with the increasing number of IPs in an SoC. On the other hand, contrary to intuition,

due to the advancements in chip fabrication processes, additional wiring between nodes incur

minimal overhead as long as the wires stay on-chip. Furthermore, when wiring bandwidth and

on-chip buffer capacity is compared, the more expensive and scarce commodity is the on-chip

buffer area. If different packet types are carried on NoC using virtual channels and buffer space

is shared [113], the increased buffer spaces and logic complexity to implement virtual channels

becomes comparable to another physical NoC. A comprehensive analysis of having virtual

channels versus several physical NoCs is given in [172].

It is possible to use two physical NoCs - one for data (DT ) packet transfers and the other

to carry packets related to the handshake (RI,RA,RC). However, in our setup, the potential

performance improvement from a separate service NoC was not enough to justify the area

and power overhead. We envision that our security mechanism to be a part of a suite of NoC

security countermeasures that can address other threat models such as denial-of-service, buffer

overflow, etc. The service NoC will be effective in such a scenario where more service type

packets (e.g., DoS attack detection related packets [85]) are transferred through the NoC.

6.5.2 Obfuscating the Added Secret

An attacker who is aware of our security mechanism can try to infer a communication

path by observing the incoming and outgoing packets at a router.

Since each intermediate node adds a constant value (yibi) to the received DT packet,

the difference between incoming and outgoing DT packets at each node will be the same

for a given virtual circuit. For this attack to take place, two consecutive routers have to be

infected by attackers and they have to collaborate. Alternatively, a Trojan in a router has to

have the ability to observe both incoming and outgoing packets at the router. While these
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are strong security assumptions, it is important to address this loophole. In this Section, we

propose a countermeasure against such an attack. Even in the presence of such an attack,

the secret message cannot be inferred since the complete message is only constructed at the

destination and according to our threat model, we assume that the source and destination IPs

are trustworthy.

This can be solved by changing the shared secret at each node for each message.

However, generating and distributing secrets for each node per message can incur significant

performance overhead. Therefore, we propose a solution based on each node updating its own

secret. According to Equation 6-6, to derive a new Lagrangian coefficient bi, the x coordinates

should be changed. The source can easily do it for each message by changing both x0 and y0

when a new message needs to be sent. In other words, rather than changing the point (x0,y0)

to (x0,y′0), it should be changed to (x′
0,y′0). However, the new x′

0 now has to be sent to each

intermediate node for them to be able to calculate the new secrets using:

b′j = bj ·
x′
0

x′
0 − xj

· x0 − xj

x0

(6-12)

We want to avoid such communications for performance as well as security concerns. An

alternative is to use a function F(x0, δ) that can derive the next x-coordinate starting from the

initial x0.

x′
0 = F(x0, δ) (6-13)

where F(x0, δ) can be a simple incremental function such as F(x0, δ) = x + δ. δ can be

a constant. To increase security, δ can be picked using a psuedo-random number generator

(PRNG) seeded with the same value at each iteration. Using such a method will change

the shared secrets at each iteration and that will remove correlation between incoming and

outgoing packets at a node.

6.5.3 Hiding the Number of Layers

Another potential vulnerability introduced by our approach is that attackers who are aware

of our protocol, can infer how far they are from the source and destination based on the size of
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the RA and RC packets. However, except for the corner case where the source/destination

are at the edge of a certain topology, there can be more than one choice for potential

source/destination candidates. In our experiments, we use the Mesh topology in which

from the perspective of any node, there can be more than one node that is at distance d away.

However, the attacker can reduce the set of possible source/destination candidates for a given

communication stream. Therefore, depending on the security requirements, this vulnerability

can be addressed using the mechanism proposed in this section.

After receiving the RI Packet, when the RA packet is initiated at D, D generates m

⟨nonce, key⟩ pairs (⟨υ1
D, K

1
S−D⟩, ⟨υ2

D, K
2
S−D⟩, ..., ⟨υm

D , K
m
S−D⟩) and adds m layers to the packet.

As a result, the RA packet sent from D to r2 takes the form:

{RA ∥E
TPK

(i)
r2
(E

OPK
(i)
S
(...E

OPK
(i)
S
(E

OPK
(i)
S
(ρ ∥υ1

D ∥K1
S−D) ∥υ2

D ∥K2
S−D)... ∥υm

D ∥Km
S−D))}

D stores the ⟨nonce, key⟩ pairs in its key mapping table. When S receives the RA packet,

S cannot distinguish whether the m pairs were generated from multiple nodes or one node.

Therefore, when the RC packet is generated at S, instead of generating k + 1 points

(corresponding to the number of nodes in the path), the number of generated points depends

on the number of ⟨nonce, key⟩ pairs received. During RC packet transfer, each intermediate

node along the routing path stores points (VCNs and secrets) corresponding to the nonces

stored in the key mapping table. As a result, nodes can receive multiple secrets which can then

be used during the data transfer phase. Depending on the required level of security, m can vary

and also, each intermediate node can add multiple layers to the RA packet.

This method hides the correlation between the number of nodes and the length of the

routing path, and therefore, eliminates the said vulnerability. However, this increases the

performance penalty. Therefore, the number of extra layers should be decided after considering

the security-performance trade-off.
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6.6 Summary

Security and privacy are paramount considerations during electronic communication.

Unfortunately, we cannot implement well-known security solutions from computer networks on

resource constrained SoCs in embedded systems and IoT devices. Specifically, these security

solutions can lead to unacceptable performance overhead. In this chapter, I proposed a

lightweight encryption and anonymous routing protocol that addresses the classical trade-off

between security and performance. My approach uses a secret sharing based mechanism

to securely transfer data in an NoC based SoC. Packets are changed at each hop and the

complete packet is constructed only at the destination. Therefore, an eavesdropper along

the routing path is unable to recover the plaintext of the intended message. Data is secured

using only a few addition and multiplication operations which allows us to eliminate complex

cryptographic operations that cause significant performance overhead. My anonymous routing

protocol achieves superior performance compared to traditional anonymous routing methods

such as onion routing by eliminating the need for per-hop decryption. Experimental results

demonstrated that implementation of existing security solutions on NoC can introduce

significant (1.5X) performance degradation, whereas my approach can provide the desired

security requirements with minor (4%) impact on performance.
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CHAPTER 7
RUNTIME DETECTION AND LOCALIZATION OF DOS ATTACKS

With the increased popularity of IoT and embedded devices, SoCs are used in well-defined

and time-critical systems. These systems can be one of the main targets of Denial-of-Service

(DoS) attacks due to their real-time requirements with task deadlines. Early detection of

DoS attacks in such systems is crucial as increased latency in packet transmission can lead to

real-time violations and other consequences. Importance of NoC security has led to many prior

efforts to mitigate DoS attacks in an NoC such as traffic monitoring [101, 106] and formal

verification-based methods [104]. Other real-time traffic monitoring mechanisms have also

been discussed in non-NoC domains [173]. However, none of the existing techniques explored

a lightweight and real-time mechanism to detect potential DoS attacks as well as localize the

malicious source(s) in an NoC setup.

As outlined in Section 7.1, it is a major challenge to detect and localize a malicious IP

in real-time. The problem is more challenging in the presence of multiple malicious IPs, and

it gets further aggravated when multiple attackers help each other to mount the Distributed

DoS (DDoS) attack. In this chapter, I propose an efficient method that focuses on detecting

changes in the communication behavior in real-time to identify DDoS attacks. It is a common

practice to encrypt critical data in an NoC packet and leave only few fields as plain text [93].

This motivated my approach to monitor communication patterns without analyzing the

encrypted contents of the packets. In this chapter, I propose a real-time and lightweight DDoS

attack detection and localization technique for NoC-based SoCs.

Major contributions of this chapter can be summarized as follows;

1. I propose a real-time and lightweight DDoS attack detection technique for NoC-based
SoCs. The routers store statically profiled traffic behavior and monitor packets in the
NoC to detect any violations in real-time.

2. We have developed a lightweight approach to localize the M3PIP(s) in real-time once an
attack is detected.
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3. We have evaluated the effectiveness of our approach against different NoC topologies
using both real benchmarks and synthetic traffic patterns considering DoS attacks
originating from a single malicious IP as well as from multiple malicious IPs.

4. To further evaluate the applicability of our approach, we use an architecture model
similar to one of the commercially available SoCs - Intel’s KNL architecture [174].

The remainder of the chapter is organized as follows. Section 7.1 discusses the threat

model and communication model used in my framework. Section 7.2 describes the real-time

attack detection and localization methodology. Section 7.3 presents the experimental results.

Section 7.4 presents the case study using KNL. Section 7.5 discusses the applicability and

limitations of the proposed approach. Finally, Section 7.6 summarizes the chapter.

7.1 System and Threat Models

7.1.1 Threat Model

Previous works have explored two main types of DDoS attacks on NoCs [175] - (i) MIPs

flooding the network with useless packets frequently to waste bandwidth and cause a higher

communication latency causing saturation, and (ii) draining attack which makes the system

execute high-power tasks and causes fast draining of battery. An illustrative example is shown

in Figure 7-1 to demonstrate the first type of DDoS attack. As a result of the injected traffic

from the malicious IPs to the victim IP (this can be a critical NoC component such as a

memory controller), routers in that area of the NoC get congested and responses experience

severe delays.

A practical example of a draining attack was shown in [176]. A malware known as a

worm spread through Bluetooth and multimedia messaging services (MMS) and infected the

recipient’s mobile phone. The code is crafted in such a way that it sends continuous requests

to the Bluetooth module for paging and to scan for devices. Power consumption in the infected

phone was increased up to 500% compared to the idle state causing significant degradation of

battery lifetime. There are instances of draining attacks where even though the computation

overhead increases, the communication traffic does not increase. Such attacks cannot be
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detected using a security mechanism implemented at the NoC, and therefore, are beyond the

scope of this chapter.

Figure 7-1. Example DDoS attack from malicious IPs to a victim IP in an NoC setup with
Mesh topology.

Our threat model is generic, it does not make any assumption about the placement

or the number of malicious IPs or victim IPs. Figure 7-2 shows four illustrative examples

of malicious/victim IP placements that can lead to different communication patterns.

Figure 7-2(a) shows a scenario involving one malicious IP and one victim IP. The other

three examples represent scenarios where the packets injected from the malicious IPs to victim

IPs are routed through paths that (b) partially overlap, (c) completely overlap and (d) form a

loop. Our proposed approach is capable of both detecting and localizing all the malicious IPs

in all these scenarios.

Figure 7-2. Different scenarios of malicious and victim IP placement.
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7.1.2 Communication Model

Since each packet injected in the NoC goes through at least one router, we identify it to

be an ideal NoC component for traffic monitoring. The router also has visibility to the packet

header information related to routing. Packet arrivals at a router can be viewed as “events”

and captured using arrival curves [177]. We denote the set of all packets passing through

router r during a program execution as a “packet stream” Pr. Figure 7-3 shows two packet

streams within a specific time interval [1, 17]. The stream Pr (blue) shows packet arrivals

in normal operation and P̃r (red) depicts a compromised stream with more arrivals within

the same time interval. The packet count Npr [ta, tb) gives the number of packets arriving

at router r within the half-closed interval [ta, tb). Equation 7-1 formally defines this using

Npr(ta) and Npr(tb) - maximum number of packet arrivals up to time ta and tb, respectively.

∀ta, tb ∈ R+, ta < tb, n ∈ N :

Npr [ta, tb) = Npr(tb)−Npr(ta) (7-1)

Unlike [173] that monitors message streams at ECUs in a bus-based automotive architecture,

our model is designed to monitor packets at routers of NoC-based SoC architectures.

Figure 7-3. Example of two event traces. Six blue event arrivals represent an excerpt of a
regular packet stream Pr and nine red event arrivals represent a compromised
packet stream P̃r.

7.2 Real-Time Attack Detection and Localization

Figure 7-4 shows the overview of our proposed security framework to detect and localize

DoS attacks originating from one or more MIPs. The first stage (upper part of the figure)

illustrates the DDoS attack detection phase while the second stage (lower part of the figure)
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represents the localization of MIPs. During the detection phase, the network traffic is statically

analyzed and communication patterns are parameterized during design time to obtain the

upper bound of “packet arrival curves” (PAC) at each router and “destination packet latency

curves” (DLC) at each IP. The PACs are then used to detect violations of communication

bounds in real-time. Once a router flags a violation, the IP attached to that router (local

IP) takes responsibility of diagnosis. It looks at its corresponding DLC and identifies packets

with abnormal latencies. Using the source addresses of those delayed packets, the local

IP communicates with routers along that routing path to get their congestion information

to localize the MIPs. The remainder of this section is organized as follows. The first two

sections describe parameterization of PAC and DLC. Section 7.2.3 elaborates the real-time

DDoS attack detection mechanism implemented at each router. Section 7.2.4 describes the

localization of MIPs.

Figure 7-4. Overview of our proposed framework.

7.2.1 Determination of Arrival Curve Bounds

To determine the PAC bounds, we statically profile the packet arrivals and build the upper

PAC bound (λu
pr(∆)) at each router. For this purpose, we need to find the maximum number

of packets arriving at a router within an arbitrary time interval ∆(= tb − ta). This is done by
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sliding a window of length ∆ across the packet stream Pr and recording the maximum number

of packets as formally defined in Equation 7-2.

λu
pr(∆) = max

t≥0
{NPr(t+∆)−NPr(t)} (7-2)

Repeating this for several fixed ∆, constructs the upper PAC bound. These bounds are

represented as step functions. A lower PAC bound can also be constructed by recording the

minimum number of packets within the sliding window. However, we exclude it from our

discussion since in a DoS attack, we are only concerned about violating the upper bound. An

example PAC bound and two PACs corresponding to the packet streams in Figure 7-3 are

shown in Figure 7-5. During normal execution, the PACs should fall within the shaded area.

Figure 7-5. Graph showing upper (λu
pr(∆)) bound of PACs (green line with green markers) and

the normal operational area shaded in green.

While NoCs in general-purpose SoCs may exhibit dynamic and unpredictable packet

transmissions, for vast majority of embedded and IoT systems, the variations in applications as

well as usage scenarios (inputs) are either well-defined or predictable. Therefore, the network

traffic is expected to follow a specific trend for a given SoC. SoCs in such systems allow the

reliable construction of PAC bounds during design time. To get a more accurate model, it is

necessary to consider delays that can occur due to NoC congestion, task preemption, changes

of execution times and other delays. To capture this, we consider the packet streams to be

periodic with jitter. The jitter corresponds to the variations of delays. Equation 7-3 represents

the upper PAC bound for a packet stream Pr with maximum possible jitter jPr and period
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τPr [178].

∀τPr , jPr ∈ R+,∆ > 0 : λu
pr(∆) =

⌈
∆+ jPr

τPr

⌉
(7-3)

The equation captures the shift of the upper PAC bound because of the maximum possible

jitter jPr relative to a nominal period τPr . This method of modeling upper PAC bounds is

validated by the studies in modular performance analysis (MPA) that uses real-time calculus

(RTC) as the mathematical basis. MPA is widely used to analyze the best and worst case

behavior of real-time systems. Capturing packet arrivals as event streams allows the packet

arrivals to be abstracted from the time domain and represented in the interval domain

(Figure 7-5) with almost negligible loss in accuracy [178]. The same model is used in the

MATLAB RTC toolbox [179].

7.2.2 Determination of Destination Latency Curves

Similar to the PACs recorded at each router, each destination IP records a DLC. An

example DLC in normal operation is shown in Figure 7-6A. The graph shows the latency

against hop count for each packet arriving at a destination IP Di. The distribution of latencies

for each hop count is stored as a normal distribution, which can be represented by its mean

and variance. Mean and variance of latency distribution at destination Di for hop count k are

denoted by µi,k and σi,k, respectively. In our example (Figure 7-6A), µi,4 is 31 cycles and σi,4

is 2. During the static profiling stage, upon reception of a packet, the recipient IP extracts the

timestamp and hop count from the packet header, and plots the travel time (from the source

to the recipient IP) against the number of hops. The mean and variance are derived after all

the packets have been received. The illustrative example considered one malicious IP four hops

away from the victim IP launching the DoS attack. No other IP is communicating with the

victim IP in a path that overlaps with the congested path. Therefore, the increased delay is

observed only at hop count 4. In general, when multiple IPs send packets with destination Di,

and the paths overlap with the congested path, the increased delay will be reflected in several

hop counts in the DLC. We did not show this scenario for the ease of illustration. However,

such overlapping paths are considered in our experiments.
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A Normal operation B Attack scenario

Figure 7-6. Destination packet latency curves at an IP. The large variation in latency at hop
count 4 in Figure 7-6(b) compared to Figure 7-6(a), contributes to identifying the
malicious IP.

7.2.3 Real-time Detection of DoS Attacks

Detecting an attack in a real-time system requires monitoring of each message stream

continuously in order to react to malicious activity as soon as possible. For example, each

router should observe the packet arrivals and check whether the pre-defined PAC bound is

violated. The attack scenario can be formalized as follows;

∃t ∈ R+ : λu
pr(∆) < max

t≥0
{NP̃r

(t+∆)−NP̃r
(t)} (7-4)

An obvious way to detect violations with the upper bound would be to construct the PAC

and check if it violates the bound as shown in Figure 7-5. However, to construct the PAC,

the entire packet stream should be observed. In other words, all packet arrivals at a router

during the application execution should be recorded to construct the PAC. While it is feasible

during upper PAC bound construction at design time, it doesn’t lead to a real-time solution.

Therefore, we need an efficient method to detect PAC bound violations during runtime.

To facilitate runtime detection of PAC bound violations, we use the “leaky bucket”

algorithm, which considers packet arrivals and the history of packet streams and gives a

real-time solution [180]. Once λu
pr(∆) is parameterized, the algorithm checks the number of

packet arrivals within all time intervals for violations. Algorithm 9 outlines the leaky bucket
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approach where θr,s denotes the minimum time interval between consecutive packets in a

staircase function s at router r, and ωr,s represents the burst capacity or maximum number of

packets within interval length zero. λu
pr(∆), which is modeled as a staircase function can be

represented by n tuples - (θr,s, ωr,s), s ∈ {1, n} sorted in ascending order with respect to ωr,s.

This assumes that each PAC can be approximated by a minimum on a set of periodic staircase

functions [181].

Algorithm 9 Detecting compromised packet streams
1: Input: (θr,s,ωr,s) tuples containing parameterized PAC bound at router r.
2: for s ∈ {1, n} do
3: TIMERr,s = θr,s
4: COUNTERr,s = ωr,s

5: end for
6: if packetReceived = TRUE then
7: for s ∈ {1, n} do
8: if COUNTERr,s = ωr,s then
9: TIMERr,s = θr,s

10: end if
11: COUNTERr,s = COUNTERr,s − 1
12: if COUNTERr,s < 0 then
13: attacked(r) = TRUE
14: end if
15: end for
16: end if
17: for s ∈ {1, n} do
18: if timeoutOccured(TIMERr,s) = TRUE then
19: COUNTERr,s = min(COUNTERr,s + 1, ωr,s)
20: TIMERr,s = θr,s
21: end if
22: end for

Lines 2-5 initializes the timers (TIMERr,s) to θr,s and packet counters at time zero

(COUNTERr,s) to corresponding initial packet numbers ωr,s, for each staircase function

and packet stream Pr. The DDoS attack detection process (lines 6-16) basically checks

whether the initial packet limits (COUNTERr,s) have been violated. Upon reception of a

packet (line 6), the counters are decremented (line 11), and if it falls below zero, a potential

attack is flagged (line 13). If the received packet is the first within that time interval (line
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8), the corresponding timer is restarted (line 9). This is done to ensure that the violation of

PAC upper bound can be captured and visualized by aligning the first packet arrival to the

beginning of the PAC bound. When the timer expires, values are changed to match the next

time interval (lines 18-21). As demonstrated in Section 7.3, the algorithm allows real-time

detection of DDoS attacks under our threat model. Another important observation described

in Section 7.3.4.1 drastically reduces the complexity of the algorithm allowing a lightweight

implementation. The leaky bucket algorithm is originally proposed to check the runtime

conformity of event arrivals in the context of network calculus. Its correctness is proven

by [182].

7.2.4 Real-time Localization of Malicious IPs

Figure 7-6B shows an example DLC during an attack scenario, where all IPs are injecting

packets exactly the same way as shown in Figure 7-6A except for one MIP, which injects a lot

of packets to a node attached to a memory controller. Those two nodes are 4-hops apart in

the Mesh topology. This makes the latency for 4-hop packets drastically higher than usual.

For every hop count, we maintain the traffic distribution as a normal distribution using µi,k

and σi,k. Once a potential threat is detected at a router, it sends a signal to the local IP. The

local IP then looks at its DLC and checks if any of the curves have packets that took more

than µi,k + 1.96σi,k time (95% confidence level). One simple solution is to examine source

addresses of those packets and conclude that the source with most number of packets violating

the threshold is the MIP. However, this simple solution may lead to many false positives. As

each IP is distributed and examines the latency curve independently, the IP found using this

method may or may not be a real MIP (attacker). Therefore, we call it a “candidate MIP”.

To illustrate the difference between an attacker and a candidate MIP, we first examine

four scenarios with only one attacker as shown in Figure 7-7. In these scenarios, the attacker

A is sending heavy traffic to a victim IP V , and as a result, local IP D is experiencing large

latency for packets from source S. The first three examples in Figure 7-7 show examples where

candidate MIP S is not the real attacker A. Since a large anomalous latency is triggered by
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the congestion in the network, the only conclusion obtained by the local IP from its DLC is

that at least part of the path from candidate MIP to local IP is congested. We call the path

from attacker A to victim V as the “congested path”.

Figure 7-7. Four scenarios of the relative positions of local IP (D), attacker IP (A), victim IP
(V ), and the candidate MIP (S) as found by D.

In Figure 7-7(a) and Figure 7-7(c), the false positives of the candidate MIP S can be

removed with global information of congested paths, by checking the congestion status of

path from S to its first hop. It is certain that S is not the attacker when this path is not

congested. However, we cannot tell whether S is the attacker when the path of S is congested.

For example, the routers of Figures 7-7(b) and 7-7(d) are both congested, but S is not the

attacker in 7-7(b).

Things get much worse when multiple attackers are present. If we look at the example in

Figure 7-8, the path from candidate MIP S to local IP D is part of all paths along which three

different attackers are sending packets to different victims. We define the “congested graph”

as the set of all congested paths and all the routers in the paths. Since each hop connecting

two routers consists of two separate uni-directional links, a congested graph is a bi-directional

graph as shown in Figure 7-8. In order to detect attackers and avoid false positives, one simple

solution would be building the entire congested graph by exchanging information from all the

other routers and analyzing the graph to detect the actual MIPs. However, it would add a lot

of burden on the already congested paths.

To overcome the bottlenecks, we propose a distributed and lightweight protocol

implemented on the routers to detect the attackers. The event handler for each router for
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Figure 7-8. Congested graph of three attackers.

MIP localization is shown in Algorithm 10. The description of the steps of our complete

protocol are shown below:

1. The router R detects an ongoing attack and sends a signal to the local IP (line 4). In
Figure 7-7, both D and V will send a signal to their local IPs.

2. The local IP D looks at its DLC and responds to its router with a diagnostic message
< S,D > indicating the address of the candidate MIP S and destination D. The local
router then forwards the packet towards S.

3. Each port in each router maintains a three-state flag to identify the attacker. The flag is
0, 1 and 2 to denote the attacker is undefined, local IP or others, respectively. When a
diagnostic message < S,D > comes in, R checks if the candidate MIP S is the local IP.
If yes and its flag is not set yet, it will set the flag to be 1 (line 9). If S is not the local
IP, it first finds out its neighbor N which sits in the path from S to R. If the one-hop
path from N to R is congested, it sends the message to N (line 16) and sets the flag to
2, to indicate other IP as a potential attacker (line 17). Except for these two scenarios,
the received message is a false positive and no action is taken (line 11 and 18), which
will be explained in our examples. Note that the flag cannot decrease except for the
reset signal which sets it to undefined (line 2). Therefore, if a diagnostic message already
mentioned that other IPs may be the potential attackers, a new diagnostic message from
the same port claiming that the local IP is the attacker will be ignored.

4. Each router maintains a timer. The timer starts as soon as any one of the router ports
receive a diagnostic message. A pre-defined timeout period is used by each router. If the
flag of any port is 1 after timeout, it broadcasts a message alerting that its local IP (line
23) is the attacker. Finally, a reset signal is triggered (line 24).

First, we will show that our approach works when a DoS attack is originating from only

one MIP in the NoC. Later, we will describe how the proposed approach works in the presence

of multiple MIPs mounting a DDoS attack.
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7.2.4.1 DoS attack by a single MIP

We use Figure 7-7(b) to illustrate how our approach will localize the attacker when a DoS

is caused by a single MIP. The router of S will receive two messages, one from the router of

D saying that its local IP is a candidate MIP, and the other from the router of V saying that

A is a candidate MIP, i.e., < S,D > and < A, V >. Depending on the arrival time of these

two messages, there are two scenarios. (a) < S,D > comes first. It will change the flag of

the corresponding port to 1 to denote that the local IP is the potential attacker. Then, S will

receive < A, V > through the same port. In this example, A is also the neighbor N . As the

one-hop path from A to S is congested, the flag will be set to 2, denoting that the attacker

is some other IP. (b) < A, V > comes first. It will change the flag of the corresponding port

to 2 to denote that the other IP is the potential attacker. Then, S will receive < S,D >

through the same port. As the flag is already set to 2, the received message is a false positive

(line 11). When timeout occurs, nothing happens at the router of S. However, the router of A

receives only the message from V indicating that its local IP is the potential attacker and its

flag remains 1 when timeout occurs. A broadcast is sent indicating that A is the attacker.

For the case in Figure 7-7(a), A will receive a message from D indicating that S is a

candidate MIP. However, when A checks the congestion status of the one-hop path from S

to A, it will find out that the path is not congested. Therefore, the message is a false positive

(line 18), and A will not change its flag. In other words, the flag of A will be set to 1 after

receiving the message from V , and will not be changed by the message from D to S. After

timeout, A will be identified as the attacker.

7.2.4.2 DDoS attack by multiple MIPs

Before giving an illustrative example of how our approach will localize attacks by multiple

malicious IPs, we formally prove the correctness of our approach by proving the following

theorem.

Theorem 7.1. If the congested graph contains no loops, Algorithm 10 can localize at least

one attacker.
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Algorithm 10 Event handler for router R
1: upon event RESET:
2: R.flag[pi] = 0 for all ports pi
3: upon event attacked == TRUE:
4: send a signal to local IP
5: upon receiving a diagnostic message ⟨S,D⟩ from port pi:
6: start TIMEOUT if all R.flag == 0
7: if S is local IP then
8: if flag[pi] == 0 then
9: flag[pi] = 1 ▷ local IP is the MIP

10: end if
11: if flag[pi] == 2 then ▷ false positive, do nothing
12: end if
13: else ▷ S is not local IP
14: Let N be the neighbor of R that sits in the path from S to R
15: if path from N to R is congested then
16: sends a diagnostic message ⟨S,D⟩ to N indicating that S is a candidate attacker
17: flag[pi] = 2 ▷ other IP is the MIP
18: else ▷ false positive, do nothing
19: end if
20: end if
21: upon event TIMEOUT:
22: if any flag in R.flag is 1 then
23: broadcasting that its local IP is the attacker
24: RESET
25: end if

Proof. We merge multiple diagnostic messages with the same destination as one message and

ignore all false positive messages detected in line 11 and line 18 of Algorithm 10. We define

message φi as a diagnostic message which points out that Ai is a candidate MIP. Consider

the port of any attacker Ai that receives message φi. Such a port always exists in a DDoS

attack scenario due to the fact that victim Vi will send a message φi to Ai saying that Ai is a

candidate MIP. If φi is the only message received from this port, our algorithm can declare Ai

as an attacker.

Our algorithm fails only when all routers connected to the attackers have flags set to

either 0 or 2 in each of their ports as illustrated in Algorithm 10. This can only happen

when each port that receives a diagnostic message, receives another diagnostic message
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which causes the flag to be set to 2. Assume that a port in router of Ai receives messages

MSi = {φi, φj, ...}. It will digest the message φi and send out the remaining ones. We

will construct a diagnostic message path in the following way. First, we add Ai to the path.

Then, we select any message from MSi other than φi, e.g., φj. Next, we follow the diagnostic

message path from Ai to Aj, and add all routers to the path. By the same process, we select

one message other than φj from MSj, e.g., φk. Next, we follow the path from Aj to Ak.

We can do this one by one since for every message set MSu at attacker Au, there is at least

one message other than φu to select from. Therefore, the constructed diagnostic message

path contains an infinite number of attackers, as shown in Figure 7-9. The infinite number

of attackers implies that this path contains repeated attackers. Without loss of generality, we

can assume that Ak = Ai. Since Ai cannot be sending out diagnostic messages MSi through

the same port that receives MSi, the diagnostic path must form a loop. It is easy to see that

diagnostic paths are the reverse of congested paths. As a result, there exists a loop in the

congested graph, which contradicts the assumption made. Hence, Theorem 1 is proven.

Figure 7-9. An example of a diagnostic message path constructed by following the flow of a
diagnostic message in each attacker.

Thus, there always exists a port of the router connected to attacker Ai which receives

only one diagnostic message φi given that there are no loops. This is a sufficient condition to

detect Ai using Algorithm 10. Using our approach for localizing multiple malicious IPs gives

rise to three cases that behave differently depending on how the MIPs are placed.

1. Case 1: If the congested paths do not overlap, all MIPs will be localized in one iteration
using the process outlined above. This is the best case scenario for our approach and
localizes MIPs in minimum time.

2. Case 2: If at least two paths overlap, it will need more than one iteration to localize
all MIPs. To explain this scenario, an illustrative example is shown in Figure 7-10.
Figure 7-10(a) shows the placement of the four MIPs (A1, A2, A3, A4) attacking the
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victim IP (V ). Once the attack is detected, in the first iteration, A1, A3 and A4 are
detected as shown in Figure 7-10(b). Due to the nature of our approach, A2 is not
marked as an attacker. This is caused by two diagnostic messages going in the paths
V → A2 and V → A3. The router of A2 will receive a message from the router of V
saying that its local IP is a candidate MIP. It will change the flag of the corresponding
port to 1 to denote that A2 is the potential attacker. A2 will receive another message
from the router of V through the same port saying that A3 is a candidate MIP. In
this example, A3 is also the neighbor of A2. As the one-hop path from A3 to A2 is
congested, the flag will be set to 2, denoting that the attacker is some other IP. When
timeout occurs, nothing happens at the router of A2. However, the router of A3 receives
only the message from V indicating that its local IP is the potential attacker and its
flag remains 1 when timeout occurs. Therefore, A3 is detected as an attacker whereas
A2 is not. In the case of A1 and A4, there is no overlap of congested paths and the
two attackers are detected without any false negatives. Once the system resumes with
only A2 being malicious, the attacker will be detected and localized in the second
iteration (Figure 7-10(c)). This case consumes more time since an additional detection
phase is required to localize all MIPs. The number of iterations will depend on how
many overlapped paths can be resolved at each iteration. In the worst case (where all
congested paths can overlap and each iteration will resolve one path), the number of
iterations will equal to the number of MIPs. However, our approach is guaranteed to
localize all MIPs.

Figure 7-10. Illustrative example to show how our detection and localization framework
works.

3. Case 3: The proof of Theorem 1 had the assumption that the congested graph contains
no loops. Therefore, using our approach as it is, will not lead to localizing all MIPs if the
congested graph forms a loop as shown in Figure 7-11. One solution is that any router
in the congested loop can randomly “stop working” and resume after a short while. By
breaking the loop, our approach will detect attackers with the new congested graph. The
router “stopping work” can be triggered by the system observing that a DDoS attack is
going on (during the detection phase), but no MIPs being localized.

In summary, our approach will detect one or more MIPs at each iteration depending on

whether congested paths overlap. After detecting attackers(s) in the congested graph, their
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Figure 7-11. How three attackers can cooperate and construct a loop in the congested graph
and how to localize attackers in such a scenario.

local router(s) can remove the attacker by dropping all its packets. Then, the process will be

repeated with a new congested graph if more attackers exist. Our approach continues to find

more attackers until either all attackers have been found, or the congested graph forms a loop,

which can be handled using the method outlined above (Case 3).

It is easy to see that the extra work for the router is minimal in our protocol because all

computations are localized. It only needs to check the congestion status of connected paths

(one hop away), and compute the flag which has two bits for each port. Our protocol relies

on the victim to pinpoint the correct attackers and the other routers to remove false positives.

The timeout should be large enough for the victim to send messages to all the routers in the

path of the attack. In practice, it can be the maximum communication latency between any

two routers. The total time from detection to localization is the latency for packet traversal

from the victim to attackers plus the timeout. Therefore, the time complexity for localization is

linear in the worst case with respect to the number of IPs. It is important to note that most of

the time, the diagnostic message path is the reverse of the congested path, and therefore, it is

not congested.

7.3 Experiments

We have explored DoS attacks caused by a single MIP as well as multiple MIPs using the

architecture shown in Figure 7-12. In Section 7.4, we evaluate the efficiency of our approach in

an architecture model similar to one of the commercially available SoCs [4].
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7.3.1 Experimental Setup

Our approach was evaluated by modeling an NoC-based SoC using the cycle-accurate

full-system simulator - gem5 [18]. The interconnection network (NoC) was built on top

of the “GARNET2.0” model that is integrated with gem5 [139]. The default gem5 source

was modified to include the detection and localization algorithms. We experimented using

several synthetic traffic patterns (uniform_random, tornado, bit_complement, bit_reverse,

bit_rotation, neighbor, shuffle, transpose), topologies (Point2Point (16 IPs), Ring (8 IPs),

Mesh4×4, Mesh8×8) and XY routing protocol to illustrate the efficiency of our approach

across different NoC parameters. A total of 40 traffic traces were collected using the simulator

by varying the traffic pattern and topology. Synthetic traffic patterns were only tested using

one MIP in the SoC launching the DoS attack and an application instance running in 50% of

the available IPs. These traffic traces act as test cases for our algorithms. The placement of

the MIP, victim IP and IP(s) running the traffic pattern were chosen at random for the 40 test

cases.

Our approach was also evaluated using real traffic patterns based on 5 benchmarks

(FFT, RADIX, OCEAN, LU, FMM) from the SPLASH-2 benchmark suite [142] in Mesh

4×4 topology. Traffic traces from real traffic patterns were used to test both single-source

DoS attacks as well as multiple-source DDoS attacks. The attack was launched at a node

connected to a memory controller. Relative placements of the MIP and victim IP used to

test the single-source DoS attack were the same as for the synthetic traces running on Mesh

4×4 topology (test case IDs 1 through 5 in Figure 7-14). For the DDoS attack involving

multiple MIPs, we ran tests using the same set of benchmarks and topology with the victim

and MIP placements as shown in Figure 7-12. The placement captures both Case 1 and Case

2 discussed in Section 7.2.4.2. Each node with a non-malicious IP ran an instance of the

benchmark while the four nodes in the four corners were connected to memory controllers. The

jitter for all applications was calculated using the method proposed in [183].
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Figure 7-12. MIP and victim IP placement when running tests with real benchmarks on a 4x4
Mesh NoC.

7.3.2 Efficiency of Real-time DoS Attack Detection

Before showing results of our experimental evaluation, we will first give an illustrative

example to show how the parameters associated with the leaky bucket algorithm (Algorithm 9)

is calculated and used in attack detection.

An important observation allows us to reduce the number of parameters required to

model the PACs, and as a result, implement a lightweight scheme with much less overhead.

The model in Equation 7-3 is derived using the fact that the packet streams are periodic with

jitter. As proposed in [173] and [184], for message streams with such arrival characteristics,

the PACs can be parameterized by using only worst case jitter jPr , period τPr and an additional

parameter ϵr which denotes the packet counter decrement amount. The relationship between

these parameters are derived in [181] as shown in Equation 7-5.

θr = greatest_common_divisor(τPr , τPr − jPr) (7-5a)

ωr = 2× ϵr −
τPr − jPr

θr
(7-5b)

ϵr =
τPr

θr
(7-5c)
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To use these parameters, the only changes to Algorithm 9 are at line 11 (COUNTERr,s =

COUNTERr,s − ϵr) and one tuple per packet stream instead of n tuples (s ∈ {1}). The

illustrative example is based on this observation.

Illustrative Example: Consider the example packet streams shown in Figure 7-3. Assume

that the packet steam Pr has a period τPr = 3µs and jitter jPr = 1.5µs. During an attack

scenario, this stream is changed to stream P̃r with τP̃r
= 2µs and no jitter. Using these values

in Equation 7-5 will give θr = 1.5µs, ωr = 3 and ϵr = 2, which are the parameters used in

the leaky bucket algorithm. Therefore, COUNTERr,s is initialized with 3 (line 4, line 19) and

decremented by 2 at each message arrival (line 11). TIMERr,s is initialized to 1.5µs (line 3,

line 20). Using these values and running the detection algorithm during the attack scenario will

lead to a detection time of 4µs. Figure 7-13 shows the values of the parameters changing with

each packet arrival and timeout leading to the detection of the attack at t = 4µs.

Figure 7-13. Illustrative example of parameter changes in the leaky bucket algorithm with
packet arrivals and timeouts.

The experimental evaluation follows the same process as the illustrative example using

the experimental setup described in Section 7.3.1. Figure 7-14 shows the detection time

across different topologies for synthetic traffic traces in the presence of one MIP. The 40 test

cases are divided into different topologies, 10 each. The packet stream periods are selected

at random to be between 2 and 6 microseconds. Attack periods are set to a random value

between 10% and 80% of the packet stream period. The detection time is approximately twice
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the attack period in all topologies. This is expected according to Algorithm 9 and consistent

with the observations in [173].

In addition to the time taken by the leaky bucket approach, the detection time

also depends on the topology. For example, attack detection in Point2Point topology

(Figure 7-14(a)), where every node is one hop away, requires less time to detect compared

to Mesh8×8 (Figure 7-14(d)) where some nodes can be multiple hops away. The topology

mainly affects attack localization time due to the number of hops from detector to attacker.

But for detection, topology plays a relatively minor role since the routers are connected to

each IP and detection mechanism neither takes into account the source nor the destination

of packets. The routers only look at how many packets arrived in a given time interval. It

is also important to note that any router in the congested path can detect the attack, not

only the router connected to the victim IP. A combination of these reasons have led to the

topology playing a relatively minor role in attack detection time. These results confirm that the

proposed approach can detect DoS attacks in real-time.

Results for DDoS attack detection in the presence of multiple attacking MIPs are shown

in Figure 7-15 and Figure 7-16. For all of these experiments, packet stream period is fixed

at 2.5µs and attack period is set to 1.5µs. Figure 7-15 shows detection time variation in the

presence of different number of IPs across benchmarks. The time to detect an ongoing attack

in the multiple MIP scenario is typically less than the single MIP scenario. When more IPs

are malicious, the detection time shows a decreasing trend. This is expected since multiple

attackers flood the NoC faster and cause PAC bound violations quicker. To compare detection

time with packet stream period and attack period, we have shown the detection time variation

in the presence of four MIPs across benchmarks in Figure 7-16.

7.3.3 Efficiency of Real-time DoS Attack Localization

We measured the efficiency of attack localization by measuring the time it takes from

detecting the attack to localizing the malicious IPs. According to our protocol, this is mainly

dominated by the latency for packet traversal from victim to attacker (V2AL) as well as the
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B Point2Point

C Ring

D Mesh 4× 4

E Mesh 8× 8

Figure 7-14. Attack detection time for different topologies when running synthetic traffic
patterns with the presence of one MIP.
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Figure 7-15. Attack detection time when running real benchmarks with the presence of
different number of MIPs.

Figure 7-16. Attack detection time when running real benchmarks with the presence of four
MIPs.

timeout (TOUT) described in Section 7.2.4. Figure 7-17 shows these statistics using the

same set of synthetic traffic patterns for the single MIP scenario. The experimental setup

for the localization results corresponds to the experimental results for the detection results

in Figure 7-14. Unlike the detection phase, since the localization time depends heavily on

the time it takes for the diagnostic packets to traverse from the IPs connected to the routers

that flagged the attack to the potentially malicious IPs, the localization time varies for each

topology. For example, in a Point2Point topology, localization needs diagnostic message

to travel only one hop, whereas a Mesh8x8 topology may require multiple hops. Therefore,

localization is faster in Point2Point compared to Mesh8x8 as shown in Figure 7-17. The

localization time is less compared to detection time because the localization process completes
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once the small number of diagnostic packets reach all the potentially malicious IPs, whereas

detection requires many packets before violating a PAC bound during runtime.

Figure 7-17. Attack localization time for synthetic traffic patterns in the presence of one MIP.

Results for DDoS attack localization in the presence of multiple MIPs when running

real benchmarks is shown in Figure 7-18. Similar to the experiments done for DDoS attack

detection efficiency, localization results are shown for one, two, three and four MIPs attacking

the victim IP at the same time. The time is measured as the time it takes since launching the

attack, until the localization of all MIPs. Once the first iteration of localization and detection

is complete, the attack has to be detected again before starting the localization procedure.

Therefore, the y-axis shows detection as well as localization time. For clarity of the graph,

unlike in Figure 7-17, we have shown total localization time for each iteration rather than

dividing the localization time as V2AL and TOUT. For both one and two MIP scenarios, only

one iteration of detection and localization is required. When the third MIP is added, the two

congested paths from victim to second MIP and from victim third MIP overlap. Therefore,

only the first and third MIPs are localized during the first iteration leaving the second MIP to

be detected during the second iteration. Similarly, in the four MIP scenario, first, third and

fourth MIPs are localized during the first iteration and the second MIP, during the second

iteration. This is consistent with our discussion presented in Section 7.2.4.2. The results show

that both detection and localization can be achieved in real-time. If a system requires only

detection, the architecture of our framework allows easy decoupling of the two steps.
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Figure 7-18. Attack localization time when running real benchmarks with the presence of
different number of MIPs.

7.3.4 Overhead Analysis

The overhead is caused by the additional hardware that is required to implement the

DoS attack detection and localization processes. The detection process requires additional

hardware components and memory implemented at each router to monitor packet arrivals

as well as store the parameterized curves. The localization process uses DLCs stored at IPs

and the communication protocol implemented at the routers. Figure 7-19 shows an overview

of how our security components are integrated into the NoC components. The observation

made in Section 7.3.1 allows us to reduce the number of parameters required to model the

PACs, and as a result, reduces the additional memory requirement and improves performance.

The following sections evaluate the power, performance and area overhead of the optimized

algorithms.

7.3.4.1 Performance overhead

In our work, we used the 5-stage router pipeline (buffer write, virtual channel allocation,

switch allocation, switch traversal and link traversal) implemented in gem5. The computations

related to the leaky bucket algorithm can be carried out in parallel to these pipeline stages

once separate hardware is implemented. Therefore, no additional performance penalty for

DDoS attack detection.
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Figure 7-19. Block diagram of NoC architecture showing additional hardware required to
implement our security protocol in red.

During the localization phase, the diagnostic messages do not lead to additional

congestion for two reasons. (1) As shown in Algorithm 10, the diagnostic message is

transmitted along the reverse direction of the congested path. Since routers utilize two

separate uni-directional links, the diagnostic messages are not sent along the congested path.

(2) While it is unlikely, it is possible for multiple MIPs to carefully select multiple victims to

construct a congested path in both directions. Even in this scenario, the number of diagnostic

messages is negligible. This is because when an attack is flagged by the detection mechanism,

diagnostic messages are sent to the source IPs which have violated the DLC threshold. Since

the number of such source IPs can be at most the number of IPs communicating with the

node that detected the attack, the performance impact by diagnostic messages is negligible.

7.3.4.2 Hardware overhead

We consider overhead due to modifications in the router, packet header as well as local

IPs, as outlined below.

Router: The proposed leaky bucket algorithm is lightweight and can be efficiently

implemented with just three parameters per PAC bound as discussed above. The localization

protocol requires two-bit flags at each port resulting in 10 bits of memory per router in Mesh

topology. To evaluate the area and power overhead of adding the distributed DoS attack

detection and localization mechanism at each router, we modified the RTL of an open-source
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NoC Router [185]. The design is synthesized with the 180nm GSCLib Library from Cadence

using the Synopsys Design Compiler. It gave us area and power overhead of 6% and 4%,

respectively, compared to the default router.

Packet Header: In a typical packet header, the header flit contains basic fields such as

source, destination addresses and the physical address of the (memory) request. Some cache

coherence protocols include special fields such as flags and timestamps in the header. If the

header carries only the basic fields, the space required by these fields are much less compared

to the wide bit widths of a typical NoC link. Therefore, most of the available flit header space

goes unused [186]. We used some of these bits to carry the timestamp to calculate latency.

This eliminates the overhead of additional flits, making better utilization of bits that were

being wasted. If the available header bit space is not sufficient, adding an extra “monitor tail

flit” is an easily implementable alternative [186]. In most NoC protocols, the packet header

has a hop count or time-to-live field. Otherwise, it can be derived from the source, destination

addresses and routing protocol details.

Local IP: The DLPs are stored and processed by IPs connected to each node of an

NoC. Since the IPs have much more resources than any other NoC component, the proposed

lightweight approach has negligible power and performance overhead. We store µi,k + 1.96σi,k

as a 4-byte integer for each hop count. Therefore, the entire DLP at each IP can be stored

using 1 ×m parameters where m is the maximum number of hops between any two IPs in the

NoC. It gives a total memory space of just 1×m× 4 bytes.

Our evaluations demonstrate that the area, power and performance overhead introduced

by our approach is negligible.

7.4 Case Study with Intel KNL Architecture

In the previous section, we have applied our approach using a regular 4x4 Mesh

architecture (Figure 7-12). In order to demonstrate the applicability of our approach across

NoC architectures, in this section, we evaluate the efficiency of our approach in an architecture

model similar to one of the commercially available SoCs - Intel’s KNL architecture [4] that
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was introduced in Section 3.2. We model the architecture on gem5 according to the validated

simulator model discussed in Chapter 3 and show results for both DDoS attack detection and

localization. Our goal is to simulate the NoC traffic behavior in a realistic architecture and

evaluate how our security framework performs in it.

Figure 7-20. Overview of the KNL architecture together with an example of MCDRAM miss in
Cache memory mode and All-to-all cluster mode.

In this model, 32 tiles connect on a Mesh NoC. Each tile is composed of a core that runs

at 1.4 GHz, private L1 cache, tag directory and a router. Each cache is split into data and

instruction caches with 16kB capacity each. The complete set of simulation parameters are

summarized in Table 7-1. The memory controllers are placed to match the architecture shown

in Figure 7-20. We made few modeling choices that deviates from the actual KNL hardware

due to the following reasons;

• 32 tiles are used instead of the 36 in KNL since the number of cores in gem5 must be a
power of 2. This can be considered as a use-case where the KNL hardware has switched
off cores in four of its tiles.
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Table 7-1. System configuration parameters used when modelling KNL on gem5 simulator.
Parameter Class Parameter Value
Processor Configuration Number of cores 32

Core frequency 1.4 GHz
Instruction set architecture x86

Memory System
Configuration

L1 cache private, separate instruction
and data cache. Each 16kB
in size.

Cache coherence distributed directory-based
protocol

Memory size 4GB DDR
MCDRAM shared, direct mapped cache
Access latency 300 cycles

Interconnection Network
Configuration

Topology 8x4 Mesh

Routing scheme X-Y deterministic
Router 4 port, 4 input buffer router

with 5 cycle pipeline delay
Link latency 1 cycle

• The cache sizes we used are less compared to the actual KNL hardware numbers. This
was done to get 95% hit rate in L1 cache, which is usually the hit rate when running
embedded applications for the benchmarks we used. If we used a larger cache size, the
L1 hit rate would be 100%, and NoC optimization will not affect cache performance.

• KNL runs AVX512 instructions whereas the gem5 model runs X86. gem5 is yet to
support AVX512 instructions.

• Each tile in KNL consists of two cores. Our detection mechanism is capable of detecting
DDoS attacks irrespective of whether one or both cores in a tile are active. However, the
localization method can only pinpoint which tile is malicious. Since detection as well as
localization happens at the router level, it is not possible to pinpoint the malicious core
in a tile if both cores are active. Therefore, in our experimental setup, we assumed that
one core per tile is active simulating 50% utilization.

Therefore, our gem5 model is a simplified version of the real KNL hardware. However, our

previous work has validated the model and related performance and energy results to show that

it accurately captures relative advantages/disadvantages of using different memory and cluster

modes [153]. To evaluate our security framework, out of the memory and cluster modes, we

model the cache memory mode and all-to-all cluster mode. The traffic flow when applications

are running is defined by these modes. Figure 7-20 shows an example traffic flow.
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We ran the same real traffic patterns (benchmarks) we used in Section 7.3.1. To mimic

the highly parallel workloads executable by the KNL architecture, we utilized 50% of the total

available cores when running each application by running an instance of the benchmarks in

each active core. The DDR address space was used uniformly for each benchmark. Attackers

were modeled and placed randomly in 25% of the tiles that doesn’t have an application

instance. The DDoS attack was launched at the memory controller that experienced highest

traffic during normal operation. Given that our model has 32 cores, 16 of them ran instances

of the benchmark and 4 of the non-active cores injected packets directed at the memory

controller to simulate the behavior of malicious IPs launching a DDoS attack. The packet

stream period and attack period were selected as explained in Section 7.3.2. Figure 7-21 shows

the placement of the four MIPs, cores running the benchmarks (active cores) and the victim IP

when running the RADIX benchmark. The victim IP depends on the benchmark since it is the

IP connected to the memory controller experiencing highest traffic during normal operation.

Figure 7-21. 4× 8 Mesh NoC architecture used to simulate DoS attacks in an architecture
similar to KNL.

Similar to the experimental results presented in Section 7.3.1, the DDoS attack detection

results are shown in Figure 7-22 and Figure 7-23. Figure 7-22 shows detection time variation

across benchmarks and number of MIPs. A zoomed-in version of the four MIP scenario is

shown in Figure 7-23. Attack localization results are shown in Figure 7-24. Until the fourth

MIP is added, there are no overlapping congested paths. Therefore, the MIPs are localized

using only one iteration. Once the fourth MIP is added, the first, third and fourth MIPs are
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localized during the first iteration and a second iteration is required to localize the second MIP.

This is reflected in localization time in Figure 7-24. From these as well as the previous results

we notice that our detection and localization framework gives real-time results across different

topologies and architectures.

Figure 7-22. Attack detection time when running real benchmarks on an architecture similar to
KNL with the presence of different number of MIPs.

Figure 7-23. Attack detection time when running real benchmarks on an architecture similar to
KNL with the presence of four MIPs.

7.5 Discussion

Our proposed approach is designed for DDoS attack detection and localization,

and therefore, it is not suitable to capture other forms of security violations such as

eavesdropping, snooping and buffer overflow. Specific security attacks would require

other security countermeasures which are not covered in this chapter. Due to the low

implementation cost, our approach can be easily coupled with other security countermeasures.
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Figure 7-24. Attack localization time when running real benchmarks on an architecture similar
to KNL with the presence of different number of MIPs.

For example, [49] discussed a snooping attack in which the header of the packet is modified

before injecting into the NoC. This will alter the source address of the packet. While our

detection mechanism does not depend on any of the header information of the packet, since

our localization method uses the source address to localize the M3PIPs, an address validation

mechanism needs to be implemented at each router to accommodate header modification. The

address validation can be implemented as follows. Before a router injects each packet that

comes from the local IP into the NoC, the router can check the source address and if it not

the address of the local IP attached to that router, the router can drop it without injecting in

to the NoC.

Our proposed work is targeted for embedded systems with real-time constraints. Such

systems allow only a specific set of scenarios in order to provide real-time guarantees.

Features commonly observed in general purpose computing such as task mapping, runtime

task-migration, adaptive routing and introduction of new applications during runtime are

beyond the scope of this work. In order to apply our proposed approach in general purpose

systems, we need to store PACs and DLCs corresponding to each scenario and select the

respective curves during runtime. As discussed in Section 7.3.4, the hardware overhead to store

the parameterized curves for each scenario is minimal, which consists of two major parts (i)

overhead for storing the curves (1 × m × 4 bytes), and (ii) overhead for runtime monitoring

170



(6% of NoC area). For example, if we consider an 8x8 Mesh, the memory overhead to store

the curves would be 56 bytes (m = 14). If N scenarios are considered, the overhead would

be 6% + N × 56. Therefore, it may be feasible to consider a small number of scenarios (e.g.,

N < 10) without violating area overhead constraints.

7.6 Summary

This chapter presented a real-time and lightweight DDoS attack detection and localization

mechanism for IoT and embedded systems. It relies on real-time network traffic monitoring

to detect unusual traffic behavior. This chapter made two major contributions. It proposed

a real-time and efficient technique for detection of DDoS attacks originating from multiple

malicious IPs in NoC-based SoCs. Once an attack is detected, my approach is also capable

of real-time localization of the malicious IPs using the latency data in the NoC routers. I

demonstrated the effectiveness of my approach using several NoC topologies and traffic

patterns. In my experiments, all the attack scenarios were detected and localized in a timely

manner. Overhead calculations have revealed that the area overhead is less than 6% to

implement the proposed framework on a realistic NoC model. This framework can be easily

integrated with existing security mechanisms that address other types of attacks such as buffer

overflow and information leakage.
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CHAPTER 8
TRUST-AWARE ROUTING IN THE PRESENCE OF MALICIOUS IPS

Integrity of packets traversing through a network is a well-studied problem. Consider

a scenario where the integrity of exchanged data is ensured using a message authentication

code (MAC). The sender IP sends a packet together with an authentication tag, and the

receiver re-computes the tag to check for data integrity. If it doesn’t match, the packet has

been tampered during communication, and a re-transmission is required. This method of error

correction is widely employed in NoC-based SoCs [98, 187]. However, re-transmissions due to

corrupt packets can lead to several problems:

• Increased latency because of re-transmission as well as additional stall cycles introduced
by the IP cores while waiting for the requested data.

• This can increase the number of packets traversing the network, and as a result,
increased energy consumption and performance penalty.

• In MAC-then-encrypt protocols [188]1 , authentication tag is computed on the plaintext,
appended to the data, and then tag and plaintext are encrypted together. When MAC is
computed in this way, the receiver IP has no way of knowing whether the message was
indeed authentic or tampered until the message is decrypted. Therefore, the resources
spent to decrypt a tampered packet is wasted.

Systematic exploitation of error correction protocols, such as the one explained above,

can lead to Denial-of-Service (DoS) attacks. For example, a malicious IP can corrupt data on

purpose and cause continuous re-transmissions leading to a DoS attack [104]. Specifically, the

threat model explored in this chapter is as follows.

Threat Model: Figure 8-1 shows a standard NoC-based many-core architecture with

IPs connected in a Mesh topology. Each IP connects to a router via a network interface. The

network interface accommodates the authentication scheme which implements MAC-based

authentication [97]. A packet originating from a source IP (src) in a secure zone has to

traverse through the non-secure zone in order to reach the destination IP (dest) in another

1 MAC-then-encrypt is the standard method used in TLS [188].
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Figure 8-1. Overview of a typical SoC architecture with secure and non-secure zones.

secure zone. The IPs in the non-secure zone are potentially malicious. In reality, out of

all the potentially malicious IPs, only a small fraction is actually malicious. We call them

malicious IPs (MIP) in this chapter. If the packet traverses through such an MIP, it can

tamper with the packet and therefore, at dest, the authentication tag computation will not

match and the packet will be dropped. The src will re-transmit the packet since a response is

not received from the dest within the time-out period. The problem of minimizing this impact

gets aggravated due to two challenges. (1) The MIP will not always behave maliciously. In

other words, it will tamper packets only in sporadic intervals. (2). Since the src depends on the

response from the dest to know whether the packet was received or not, the MIP can tamper

the packet between src and dest or tamper the response packet between dest and src, and both

of these scenarios lead to the same outcome from the src’s point of view. I consider both of

these challenges when proposing the solution. A similar threat model was used in a previous

study that proposed countermeasures for DoS attacks [104].

In this chapter, I propose a trust-aware routing protocol that avoids MIPs when two

secure IPs are communicating with each other. The proposed approach leads to less

re-transmissions, and as a result, improved performance and energy efficiency. Trust-aware

routing can complement existing NoC attack detection and mitigation techniques by allowing

on-chip communication even in the presence of an adversary while minimizing the energy and

performance overhead.

The major contributions can be summarized as follows;
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1. I propose a “trust model” that effectively calculates trust between neighboring routers
and propagates trust values through the NoC.

2. I have developed a routing protocol that uses the trust values between routers to make
routing decisions such that the MIPs are avoided by packets when routing from source to
destination.

3. I have evaluated the effectiveness of the approach using both real benchmarks and
synthetic traffic patterns to demonstrate that it leads to significant improvement in both
performance and energy efficiency.

The remainder of the chapter is organized as follows. Section 8.1 discusses the motivation

behind my work. Section 8.2 presents my proposed NoC trust model. Section 8.3 describes

the trust-aware routing protocol that utilizes the NoC trust model. Section 8.4 presents the

experimental results. Finally, Section 8.5 summarizes the chapter.

8.1 Motivation

Lightweight authentication schemes implemented on NoC-based SoCs, try to provide

desired security while consuming minimum number of cycles. However, if the MAC fails

to match at the receiver’s end, the src has to re-transmit again, leading to wasted effort

in repeated NoC traversal and MAC calculation [187]. The challenge is aggravated in

MAC-then-encrypt protocols because MAC can only be calculated and matched after

decryption is done. If the packet is tampered, time and energy spent on decryption is wasted.

To analyze these overheads, we ran FFT, RADIX (RDX), FMM and LU benchmarks from

the SPLASH-2 benchmark suite on an 8 × 8 Mesh NoC-based SoC with 64 cores which

implements a MAC-then-encrypt security protocol and XY routing protocol. The behavior of

an MIP was simulated by one of the IPs along the routing path dropping n consecutive packets

after every p (period) packets. NoC delay (total NoC traversal delay for all packets) including

encryption/decryption and MAC calculation time, execution time and number of packets

injected were recorded with and without the presence of an MIP. The encryption/decryption

and authentication process is assumed to take 20 cycles per transmission [189]. Results are

shown in Figure 8-2B, Figure 8-2C, and Figure 8-2D, respectively. We observed 67.2% increase

in NoC delay and a 4.7% increase in execution time on average across all benchmarks. The
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number of packets injected increased by 60.1%. The combination of execution time and

number of injected packets directly affect the energy consumption since both time spent to

execute the task and dynamic power are increased.

B NoC delay C Execution time

D No. of packets injected

Figure 8-2. NoC delay, execution time and number of packets injected comparison with and
without the presence of an MIP when p = 20 and n = 14.

It is evident that in addition to checking data integrity, a mechanism to avoid MIPs

when routing through the non-secure zone can lead to less re-transmissions, and as a result,

increased performance and energy efficiency.

8.2 NoC Trust Model

This section describes our proposed trust model to quantitatively measure the trust

between two nodes. Trust is established between two nodes to handle packets without

tampering with the data. In particular, one node trusts the other node to perform the intended

action on the received packet (in the case of routing, forward the packet to the next hop). In

this chapter, the first node is referred to as the “producer” (α) and the second node as the

“consumer” (β). We introduce the notation {producer → consumer} (α → β) to denote a
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trust relationship2 . Trust can be established in two ways - (1) delegated trust, and (2) direct

trust. Direct trust is established when a node calculates trust about one of its neighbors. Trust

is said to be delegated when one node recommends a consumer node to another producer

node that is not directly connected to the consumer. The recommending node is referred to

as “recommender”. Figure 8-3A shows such an example. In this three node setup, direct trust

can be established between B and C, and A and B. But, trust between A and C can only be

established via B’s recommendation. Therefore, A→ C has a delegated trust relationship.

A B C D

Figure 8-3. Trust delegation across NoC. The values on the arrows represent the trust. For
example, T1 in (a) denotes T (a)

A→B where the superscript (a) corresponds to
Figure 8-3A.

To quantify trust between two entities, a measure of trust is required. Keeping a binary

value per node (either trusted or not) doesn’t capture the entire trust model due to several

reasons: (i) Trust can be delegated (in the example in Figure 8-3A, the amount of trust A

places on C depends on how much A trusts B), (ii) a malicious node might not launch an

attack at first, but do so after a while or periodically. Therefore, we assign a value (denoted

Tα→β) between -1 and 1 for each trust relationship (−1 ≤ Tα→β ≤ 1) to indicate a trust value

in the “potentially malicious” spectrum. The two bounds are defined as follows:

• When the producer is confident that the consumer will always function correctly:
Tα→β = 1.

• When the producer is confident that the consumer is definitely malicious: Tα→β = −1

2 The producer and consumer notations are different from src and dest since any two routers
along the routing path can be producer/consumer whereas src and dest refer to the origin of
the packet and its destination, respectively.
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In addition to the two bounds, Tα→β = 0 implies that the producer has no idea

whether the consumer is malicious or not. Therefore, at the beginning of network packet

transmission, all trust relationships are initialized to the value of zero. During operation, with

information received from nodes, trust values are calculated. It is important to note that,

when B recommends C to A (delegated trust), T (a)
A→C can be established only if T (a)

A→B ≥ 0. In

other words, A should not trust its enemy to recommend someone as trustworthy. Once this

condition is met, we present three axioms such that the trust delegation calculation adheres to

those. The remainder of this section describes these axioms (Section 8.2.1) and elaborate how

delegated trust (Section 8.2.2) and direct trust (Section 8.2.3) are calculated.

8.2.1 Axioms for Trust Delegation

Axiom 1: In delegated trust, trust value between producer and consumer should not

be higher than the trust between producer and recommender as well as the trust between

recommender and consumer. This can be formalized using Figure 8-3A;∣∣∣T (a)
A→C

∣∣∣ ≤ min(T
(a)
A→B, T

(a)
B→C) (8-1)

Axiom 2: Producer receiving the same recommendation about the same consumer via

multiple different recommenders should not reduce the trust between producer and consumer.

In other words, the producer will be more certain about the consumer or at least maintain

the same level of certainty if the producer obtains an extra recommendation that agrees with

the producer’s current opinion. For example, Figure 8-3A and Figure 8-3B show two scenarios

where A in first figure establishes trust with C via only one path and in the second scenario,

trust with C is established through two same-trust paths.

T
(b)
A→C ≥ T

(a)
A→C ≥ 0, for T1 > 0 and T2 ≥ 0 (8-2)

T
(b)
A→C ≤ T

(a)
A→C ≤ 0, for T1 > 0 and T2 < 0 (8-3)

This holds only if the multiple paths give the same recommendations.
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Axiom 3: In a setup similar to Figure 8-3C, it is possible to receive multiple recommendations

from a single node (B). Compared to that, recommendations from independent nodes such

as the ones shown in Figure 8-3D (B and E) should always be trusted more. In other words,

recommendations from independent nodes can reduce uncertainty more effectively than the

recommendations from correlated nodes. Formally;

T
(d)
A→C ≥ T

(c)
A→C ≥ 0, if T

(c)
A→C ≥ 0 (8-4)

T
(d)
A→C ≤ T

(c)
A→C ≤ 0, if T

(c)
A→C < 0 (8-5)

8.2.2 Delegated Trust Calculation

The calculation of trust from the point of view of any given node should adhere to the

above axioms. For the example shown in Figure 8-3A, we established that the necessary

condition is to satisfy Axiom 1. To achieve this, trust can be calculated by concatenation as

T
(a)
A→C = T

(a)
A→B · T

(a)
B→C . In general;

Tα→β = Tα→γ · Tγ→β (8-6)

where γ is the recommender. As mentioned before, this can only be calculated if Tα→γ ≥ 0.

It can be noticed that if α has no idea about the trustworthiness of γ (Tα→γ = 0), no matter

how much γ trusts β, α won’t trust β (Tα→β = 0).

In case of multi-path trust delegation such as the example in Figure 8-3B, axioms 2 and

3 have to be satisfied in addition to Axiom 1. When α can establish trust with β via two

paths, one via δ and another via ϵ (α − δ − β and α − ϵ − β), we combine the ratios of trust

concatenation.

Tα→β = z1 · (Tα→δ · Tδ→β) + z2 · (Tα→ϵ · Tϵ→β) (8-7)

where

z1 =
Tα→δ

Tα→δ + Tα→ϵ

, and z2 =
Tα→ϵ

Tα→δ + Tα→ϵ

(8-8)
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8.2.3 Direct Trust Calculation

We calculate direct trust based on the “sigmoid function” ( 1
1+e−x ), where x keeps track

of the number of successful transmissions at a given router. Since the sigmoid function ranges

between 0 and 1, we scaled it to range between -1 and 1 (Figure 8-4).

S(x) = 2 · 1

1 + e−x
− 1 (8-9)

Assume that α and β are neighbors. Initially, α has no trust information about β.

Therefore, x = 0, and as a result, S(x) = 0. When α learns about β’s behavior, it changes

the value x and re-calculates S(x). For example, if α gets a positive feedback about β’s trust,

direct trust is calculated as Tα→β = S(x+ δ) where δ is a small positive number. Since S(x) is

an increasing function as shown in Figure 8-4, α’s trust about β is now increased. Similarly, to

reduce trust, Tα→β = S(x− δ). Therefore, direct trust is calculated as;

x = x± δ, Tα→β = S(x) (8-10)

Figure 8-4. Sigmoid function S(x) variation with input x.

8.3 Trust-aware Routing

Once the trust values are established, they are used by our proposed routing protocol.

The basic idea is to route packets through highly trusted nodes so that MIPs are avoided. It

is important to note that, trust values have to be dynamically updated during SoC execution

since MIPs shift between malicious and non-malicious behavior according to our threat model.

The following subsections explain in detail how direct trust and delegated trust are updated at
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each router (Section 8.3.1 and Section 8.3.2, respectively) and how those trust values are used

in routing (Section 8.3.3).

8.3.1 Updating Trust

According to the threat model used in this chapter, if a src IP doesn’t receive a response

to the packet sent, it can be because of two reasons;

• Message was lost between src and dest: In this case, a response is never received.
The src times out after a while and re-transmits the packet. The routers along the
routing path observe that this is a re-transmission and reduces the direct trust of their
next-hop neighbors. Direct trust is reduced since a packet took that path before and
it was tampered. Direct trust re-calculation is done every time a re-transmission is
observed. Once the trust values go down compared to the other possible paths, the
packet takes an alternate path avoiding the MIP according to the routing protocol and is
received at the dest.

• Response was lost between dest and src: This means that the packet was received
at dest, but the response was not received by src. Again, src sends a re-transmission
which is received by dest. dest observes that this is an address that was previously
served and sends the response again. Again, routers along the path observes that
this is a re-transmission and reduces direct trust. This process is repeated until the
response is received by src. This causes the routers between src to dest to reduce trust
unnecessarily (false negative). However, we don’t try to correct it because to do that, src
has to keep track of all the paths the re-transmitted packets took to reset trust values.
Furthermore, the routers should also maintain previous trust values. Therefore, we allow
false negatives to happen. With several ongoing communications overlapped between
routers, the false negatives will regain trust over time.

Considering these scenarios, we use an event-driven approach to update trust. The

overview of our algorithm is shown in Algorithm 11. To keep track of the re-transmissions and

to increase/decrease direct trust according to that, we implement a separate data structure

at each router-“Communication Table” (ComTable). It stores each pending communication

using src, dest, address of corresponding memory location (addr), timestamp to indicate when

the entry was added to the table and a re-transmission flag (rtx flag). When a new packet

arrives at a router, it checks to see if there is a pending communication between the same

src and dest by matching src and dest fields in the packet header to entries in the ComTable

(line 1). If yes, it can either be for the same address (line 3) or for a different address. If it is
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for a different address, it means that the previous communication has completed successfully.

If it is for the same address, then it is identified as a re-transmission. The rtx flag is set to

indicate this (line 4) and direct trust with the next hop (getNextHop routine elaborated in

Section 8.3.3) is reduced (line 6). If it is a new communication, the rtx flag is checked to see

whether the previous communication between the same src and dest has not been flagged as

a re-transmission before (line 8). If it has not been flagged before, the path can be trusted.

Then the direct trust with next hop router is increased (line 10) and the trust is delegated

(line 11) to other neighbors as explained in Section 8.3.2. If it has already been flagged as a

re-transmission, no further action is taken since it has already been penalized and as a result,

direct trust has been reduced in a previous iteration (lines 4-6). In both cases, when it is a

new communication, the ComTable is updated by removing the old entry and adding the new

one (line 13). If it is the first communication that is passing through that router for that src

and dest pair, a new entry is added in the ComTable (line 16). The ComTable also records

a timestamp for each entry. The timestamp is used to stop the exponential growth of the

ComTable by removing old entries after a certain time threshold.

One limitation of this model is that it assumes that an IP will only send a second request

to the same destination once the first one is served. For architectures that support multiple

pending requests, we can easily extend this scheme. The sender maintains a list of pending

requests and adds a header bit in the next packet to indicate that this is another request

with the same src, dest, but has a different address. Then, the routers check this bit before

removing the previous entry and trust is increased only if this bit is not set. The rest of the

methodology remains the same.

8.3.2 Delegating Trust in the NoC

Once a communication is successfully completed, trust about the next-hop (Tα→β) is

delegated to nearby routers by each router (delegateTrust routine in Algorithm 11). This is

done by broadcasting a packet that contains Tα→β with a pre-defined time-to-live (τ) value in

the header in all directions except for the direction of the next hop router. In our experiments,
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Algorithm 11 Updating direct and delegated trust
This routine is called by each router every time a packet arrives.
Input: packet
Current node is assumed to be α

1: entry ← checkComTable(packet)
2: if entry ̸= NULL then
3: if entry.addr = packet.addr then
4: entry.rtxF lag ← 1
5: β ← getNextHop(packet)
6: Tα→β ← S(x− δ)
7: else
8: if entry.rtxFlag ̸= 1 then
9: β ← getNextHop(packet)

10: Tα→β ← S(x+ δ)
11: delegateTrust()
12: end if
13: updateComTable(packet)
14: end if
15: else
16: updateComTable(packet)
17: end if

Routine:checkComTable
Input: packet

18: for entry ∈ comTable do
19: if entry.src = packet.src & entry.dest = packet.dest then
20: return entry
21: end if
22: end for
23: return NULL

Routine:updateComTable
Input: packet

24: for entry ∈ comTable do
25: if entry.src = packet.src & entry.dest = packet.dest then
26: comTable.delete(entry)
27: end if
28: end for
29: newEntry.src← packet.src, newEntry.dest← packet.dest
30: newEntry.addr ← packet.addr, newEntry.rtxF lag ← 0
31: newEntry.timestamp← 0
32: comTable.add(newEntry)
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we set τ = 1. This causes the trust about the next hop router to be delegated to all other

neighbouring routers. An illustrative example of this mechanism is shown in Figure 8-5.

Once router α completes a communication where according to the routing protocol, the

next hop router is β, it sends the direct trust value (Tα→β) to B,D and E. These three

routers now calculate TB→β, TD→β and TE→β, which are delegated trust values, according to

the trust model in Section 8.2.2 (Equations 8-6). As a result, B,D and E learn about the

trustworthiness of a router (β) two hops away from them.

It is possible that this delegated trust packet itself is tampered and in that case, delegated

trust will not be updated. This has no impact since a delegated trust packet being dropped

means an MIP is on that path and its trust value will be negative. Delegated trust is

updated only when it comes from a trusted source with a positive trust value according to

Equation 8-6.

8.3.3 Routing Protocol

The goal of the routing protocol is to avoid MIPs in the non-secure zone while routing

through the most trusted routers. Each router stores the trust values of routers that are one

(direct trust) and two hops away from it (delegated trust). When a router receives a packet,

it first updates the trust values according to Algorithm 11. Next, the packet is forwarded to

the next hop. Both forwarding and Algorithm 11 use the getNextHop routine, which works as

follows;

• Read the dest ID of the packet

• Compare dest and current router IDs

– If dest is located in the same row or column as the current router, next hop is the
neighbouring router along that row or column towards dest.

– Else, check the sum of trust values of routers one and two hops towards the dest,
and select the neighbor along the path which has the largest trust value as the next
hop. If two paths have the same largest trust value, randomly pick one.

For example, in Figure 8-5, assume a packet arrives at router B with the destination G.

Since B is not in the same row or column as G, next hop is selected based on trust values.
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Figure 8-5. Illustrative example showing that once a communication completes, the direct trust
between α and β (Tα→β) is delegated to nodes one hop away from α.

When considering routers that are one and two hops away from B in the direction of G, there

are three possible paths: B − α − β, B − α − E, and B − C − E. Therefore, B calculates

max(TB→α + TB→β, TB→α + TB→E, TB→C + TB→E) and if TB→C + TB→E gives the maximum

trust value, next hop is C. Considering nodes that are always towards the destination (in

the example, B only considers α and C as next hops) ensures that the packet traverses the

network following only one of the shortest paths. This together with the use of bi-directional

links ensures the deadlock and livelock free nature of the routing algorithm. Our routing

protocol is identical to the congestion-aware routing protocol presented in [190] except that we

are using trust values instead of congestion values. Therefore, we can show that our routing

protocol is also is also deadlock-free and livelock-free using the same arguments from [190].

It is important to note that our trust-aware routing protocol works even if all the IPs in

the non-secure zone are malicious or, MIPs isolate the untrusted zone into several disconnected

sub zones of secure IPs. If all the neighbors of a router has a trust value of −1 (all routers are

malicious) it will still be routed through that path since −1 is the largest value. Therefore, the

packet is guaranteed to reach the destination, but might be corrupted. If there is a path from

source to destination that does not contain an MIP, our approach is guaranteed to find that

path and deliver the packets without being corrupted.

8.4 Experiments

This section explores the feasibility and effectiveness of our approach by presenting

experimental results and discussing the overheads associated with it.

184



8.4.1 Experimental Setup

We modeled an 8 × 8 Mesh NoC-based SoC with 64 cores using the gem5 cycle-accurate

full-system simulator [152, 153]. The interconnection network was built on top of “GARNET2.0”

model that is integrated with gem5 [147]. Each router in the Mesh topology connects to four

neighbors and a local IP via bidirectional links. Each IP connects to the local router through a

network interface, which implements the MAC-then-encrypt protocol. The default XY routing

protocol was modified to implement our trust-aware routing protocol. In our experiments, we

used δ = 0.5 (Equation 8-10) when increasing/reducing direct trust. The value 0.5 was chosen

experimentally such that the algorithm chooses alternative paths as quickly as possible while

minimizing the impact of false negatives.

We tested the system using 4 real benchmarks (FFT, RADIX, FMM, LU) from the

SPLASH-2 benchmark suite and 7 synthetic traffic patterns (uniform random (URD), tornado

(TRD), bit complement (BCT), bit reverse (BRS), bit rotation (BRT), shuffle (SHF),

transpose (TPS)). When running both real benchmarks and synthetic traffic patterns, each IP

in the top (first) row of the Mesh NoC instantiated an instance of the task. Real benchmarks

used 8 memory controllers that provide the interface to off-chip memory which were connected

to the bottom eight IPs. As synthetic traffic patterns don’t use memory controllers, the

destination of injected packets were selected based on the traffic pattern. For example, uniform

random selected the destination from the IPs at the bottom row with equal probability. Source

and destination modelling was done this way to mimic the secure and non-secure zones.

Four MIPs were modeled and assigned at random to IPs in the other six rows. To simulate

the sporadic behavior of the MIPs as discussed in the threat model, each MIP corrupted n

consecutive packets after every p (period) packets. According to our architecture model, the

IPs in the top row (secure zone) communicate with the IPs in the bottom row (secure zone)

through the other 6 rows (non-secure zone) of IPs out of which, 4 are malicious. Our approach

will work the same for any other secure, non-secure zone selection and MIP placement. The
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output of the gem5 simulation statistics was fed to the McPAT power modelling framework to

obtain power consumption [151].

8.4.2 Performance Improvement

Figure 8-6 shows results related to the performance improvement when running real

benchmarks. The figure compares performance results without the presence of MIPs (Without

MIP), with the presence of MIPs when default XY routing is used (With MIP-Default), and

when our approach is used with the presence of MIPs (With MIP-Our Approach). We can

observe that our approach reduces NoC delay by 53% (43.6% on average) compared to the

default XY routing protocol. Execution time and number of packets injected are reduced by

9% (4.7% on average) and 71.8% (66% on average), respectively. When the MIPs corrupt

packets, re-transmissions are caused and its trust is reduced. As a result, alternative paths

are chosen. The performance improvement depends on how quickly the algorithm chooses an

alternative path once an attack is initiated.

B NoC delay C Execution time

D No. of packets injected

Figure 8-6. NoC delay, execution time and number of packets injected with and without our
trust-aware routing model when running real benchmarks. p = 20 and n = 14.

In addition to real benchmarks, we experimented with synthetic traffic traces as well.

Results related to synthetic traffic patterns are shown in Figure 8-7. The comparison is the
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same as that of Figure 8-6. It shows that NoC delay and number of packets injected on the

NoC are reduced by 57.1% (51.2% on average) and 56.7% (50.1% on average), respectively.

B NoC delay C No. of packets injected

Figure 8-7. Execution time and number of packets injected with and without our trust-aware
routing model when running synthetic traffic patterns. p = 20, n = 14.

8.4.3 Energy Efficiency Improvement

As a result of reduced execution time and reduced number of re-transmissions, the energy

consumption of the SoC also reduces. Figure 8-8 shows the energy consumption comparison.

Note that 47.4% (28.3% on average) less energy is consumed by real benchmarks when routing

using our approach compared to the default XY routing in the presence of MIPs. Synthetic

traffic demonstrate energy savings of up to 75.6% (67.6% on average). Compared to real

benchmarks, synthetic traffic patterns show more energy reduction since synthetic traffic

focuses only on network traversals unlike real benchmarks which goes through the entire

processor pipeline including instruction execution, NoC traversal and memory operations.

Figure 8-8. Energy consumption with and without our trust-aware routing model when running
real benchmarks and synthetic traffic patterns. p = 20, n = 14.
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8.4.4 Overhead Analysis

To implement our routing protocol, additional hardware is required at each router. This

includes extra memory to store trust values and hardware to calculate, update and propagate

trust. To accommodate a row in the ComTable, 10 bytes of memory is required (6-bit src,

6-bit dest, 32-bit addr, 1-bit rtx flag, 32-bit timestamp). The maximum size of the ComTable

during our experiments was 24. This leads to 240 bytes of extra memory requirement per

router.

We used the default 5-stage router pipeline (buffer write, virtual channel allocation,

switch allocation, switch traversal and link traversal) implemented in gem5. Once separate

hardware is implemented, computations related to trust can be carried out in a pipelined

fashion in parallel to the computations in the router pipeline. To evaluate the area overhead,

we modified the RTL design of an open source NoC router [185] and synthesized the design

with 180nm GSCLib library from Cadence using Synopsis Design Compiler. This resulted in an

area overhead of 6% compared to the default router. This shows that the proposed trust-aware

routing protocol is lightweight and can be effectively implemented at routers in an NoC-based

SoC.

8.5 Summary

In this chapter, I proposed a trust-aware routing protocol that is capable of routing

packets by avoiding malicious IPs in NoC-based SoCs. The routing protocol is implemented

based on a trust model that calculates how much a neighboring node can be trusted to route

packets through that router. The experiments conducted by using both real benchmarks

and synthetic traffic patterns demonstrated significant performance and energy efficiency

improvements compared to traditional XY routing in the presence of a MAC-then-encrypt

security protocol. Overhead analysis has revealed that the area overhead to implement the

routing protocol is only 6%. This approach can be integrated with any existing authentication

scheme as well as other threat mitigation techniques, to secure the SoC while minimizing the

performance and energy efficiency degradation caused by a malicious IP tampering packets.
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CHAPTER 9
RECONFIGURABLE NETWORK-ON-CHIP SECURITY ARCHITECTURE

In the early days of IoT and embedded devices in general, they were intended for a

single or very few use cases. The requirements and working conditions were well defined

and predictable. Therefore, it was easy to make design choices to fit the requirements. For

example, a device for a power-thrifty application was designed to conserve power at the cost of

performance, while a high-performance system exhibited a different, yet predictable trade-off.

In comparison to that, the devices manufactured today are intended to serve general purpose

applications that are diverse and sometimes, not yet defined. Therefore, it is not possible to

statically optimize the devices to fit each use case.

Furthermore, in the pre-IoT era, before devices being integrated to our everyday lives,

the devices only required to last for a few years. In case of a phone or a personal computer,

new features will come into products within few years, or even few months and the previous

models will become out-dated. In contrast, if you are building a smart house or a smart grid,

you expect them to last well over 10 years. However, the requirements of a smart system over

a long life-span of 10+ years can change drastically. For example, a car equipped with the

state-of-the-art security mechanisms will be secure in the present-day, but will not be secure

against future attacks. The system is secure until the zero-day vulnerability is exposed. Clearly,

IoT devices must be adaptable on-field to changing application requirements.

The remainder of the chapter is organized as follows. Section 9.1 motivates the need

for reconfigurable security architecture. Section 9.2 outlines the threat model. Section 9.3

introduces some relevant background information. Section 9.4 explains our reconfigurable

security architecture. Section 9.5 presents the experimental results. Finally, Section 9.6

summarizes the chapter.

9.1 Motivation

It is evident that securing IoT devices based on complex SoCs throughout the device

lifetime among changing requirements and use-case scenarios should be considered during
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A Architecture view

B Resource-centric view C Run-time changes in requirements and tasks

Figure 9-1. Dynamic changes in IoT application characteristics: (a) an example IoT SoC, (b)
application flow, and (c) run-time change in requirements.

design time. Due to the resource-constrained nature of IoT SoCs, it is not always feasible

to enforce the strongest security mechanisms. Security has to be considered among other

interoperability constraints such as performance, power and area overheads. Besides, employing

the full security arsenal may not be required depending on the application characteristics

and use-case scenarios. For example, consider a smart watch that is used for browsing the

Internet at home as well as in a public coffee shop. It may be okay to trust the wireless

network at home and impose a light-weight security requirement in favor of a lower energy

profile. However, a stronger security mechanism is necessary when communicating with the

untrusted network in a coffee shop at the cost of power and performance. On the other
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hand, if the current state of the device battery is low, it might be desirable to compromise

on security and save more power to ensure application execution. The trade-off between

performance and energy is also integrated in modern-day smart phones by the introduction

of “power-saver” modes. Similarly, the discussion on security among other interoperability

constraints is required.

According to our threat model, the security threat comes from the malicious IPs (MIP)

integrated on the SoC. Due to mass production and tight time-to-market deadlines, most SoC

manufacturers outsource IP cores to third party vendors. These third party manufacturers are

not always trustworthy. Their IPs might contain hardware Trojans and other malicious implants

that can launch active as well as passive attacks on other legitimate components on the SoC

once they are activated. We call these third party IPs “potentially malicious IPs”. Due to the

distributed nature of the NoC, MIPs use resources offered by the NoC to launch attacks [113].

To capture these scenarios, we use an architecture and threat model as described below.

9.2 Architecture and Threat Models:

In our work, we use an architecture model similar to the one shown in Figure 9-2. It

shows an NoC-based SoC divided into secure and non-secure zones similar to the architecture

proposed in the ARM TrustZone architecture [191]. The secure zone comprises of IPs we can

trust to not contain malicious implants (secure IPs) and the non-secure zone contains IPs

obtained by third party vendors (potentially malicious IPs), which cannot be trusted. An IP in

one secure zone (top left) communicates secure information with a secure IP in the other zone

(bottom right). Since the packets traverse through the non-secure zone, the presence of a MIP

can pose a security threat.

Depending on increasing capabilities of MIPs, we divide the threats into tiers. Each tier is

assumed to include the capabilities of the previous tier. For example, a MIP classified in tier 3

has capabilities of tier 1 and 2 as well.

Tier 1:

• MIPs can eavesdrop on the packets traversing through the network
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Figure 9-2. Overview of a typical SoC architecture with secure and non-secure zones.

• Copied packets can cause information leakage.

Tier 2:

• MIPs can corrupt/spoof packets. Corrupted packets can lead to the erroneous execution
of programs as well as system failures.

• Spoofed packets inject new packets to the network causing system to malfunction.

• Packets can be re-routed to MIPs to leak information.

Tier 3:

• MIPs can launch denial-of-service (DoS) attacks on a critical component of the SoC
causing significant performance degradation.

We propose our reconfigurable security architecture to secure the SoC against these

different capabilities of MIPs depending on the usage scenario. The goal is to ensure secure

communication between secure IPs and to prevent any attacks. Major contributions of this

chapter are as follows:

• I propose a reconfigurable fabric that would enable utilization of security primitives in a
plug-and-play manner based on application requirements.

• I implement a tier-based security architecture that allows reconfigurable security.
Solutions proposed for each tier are countermeasures for the capabilities of MIPs at each
tier. An overview of possible attacks and corresponding countermeasures is shown in
Figure 9-3.

• I show that the security architecture can be dynamically reconfigured based on changing
application requirements.
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• I implement these mechanisms on an NoC-based SoC, and evaluate the efficiency of
different security tiers in terms of performance, energy and area. Then, I discuss how
different levels of security can be used depending on the use-case scenario.

Figure 9-3. Potential attacks and corresponding countermeasures in the tier-based security
architecture.

The primary objective of the chapter is not to improve any of the security tiers when

taken separately. Instead, the goal is to introduce a framework to integrate them together and

discuss pros and cons of activating each one against the other.

9.3 Background

This section introduces some key concepts used to implement our reconfigurable security

architecture.

9.3.1 Block Cipher Based Symmetric Encryption

In symmetric encryption, both encryption and decryption are done using the same key

(K). Let E denote the encryption algorithm. If the message to be encrypted is M , the

ciphertext C is produced by taking the key K and a plaintext M as inputs. This is denoted by

C ← EK(M). Decryption algorithm D performs the inverse operation to recover the plaintext

denoted by M ← DK(C). Based on input type, encryption algorithms are divided into two

categories, Block Ciphers and Stream Ciphers. In block cipher based encryption schemes,

the encryption algorithm comprises of one or more block ciphers. Formally, a block cipher is

a function E that takes a β-bit key K and an n-bit plaintext m and outputs an n-bit long

ciphertext c. The values of β and n depends on the design and are fixed for a given block

cipher. To encrypt M using block ciphers, M of a given length is divided into n-bit substrings

where n is called the block size (n = |m|). Each block cipher encrypts an n-bit plaintext
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m and concatenates the outputs at the end to create the ciphertext C corresponding to M .

The arrangement of block ciphers is defined by the mode of operation used in the encryption

scheme. Electronic Code Book (ECB) [192], Cipher Block Chaining (CBC) [193] and Counter

Mode (CM) [162] are three common block cipher modes of operation.

9.3.2 Hashing

Unlike encryption that relies on the ability to “reverse” (decrypt) the encrypted data

to produce the plaintext, hashing data makes it extremely difficult to reverse. In fact, the

security of a hash function relies on the output being computationally hard to reverse (known

as pre-image resistance) and the hash function being collision resistant [194]. A hash function

is a mathematical function that takes a key H and data to be hashed α as inputs and produces

a hash digest ∆ as the output denoted by ∆ ← H(H,α). A typical hash function produces a

fixed-length digest irrespective of the size of the input data.

9.4 Reconfiguration of NoC Security Primitives

This section presents our proposed reconfigurable security architecture. It consists of

a reconfigurable security engine (RSE) which is a dedicated IP on the SoC and security

mechanisms implemented at routers and network interfaces (NI) as outlined in Section 9.4.1.

While there are many security primitives, we consider three commonly utilized security

primitives in NoCs (encryption, authentication and DoS attack prevention). The security tiers

are selected together with relevant parameters. We define a set of parameters that have been

proposed in existing literature as well as parameters that became reconfigurable due to our

architecture. Each security tier is associated with the reconfigurable parameters as shown in

Table 9-1.

Table 9-1. Security primitives and corresponding reconfigurable parameters.
Security Primitive Reconfigurable Parameters
Encryption (Tier 1) Blockcipher, Key size, Block size, IV length
Authentication (Tier 2) Hash function, Key size, Input size
DoS attack detection and localization Detection only/Detection and localization,
(Tier 3) Detection interval
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The reconfigurable parameters in encryption and authentication are self-explanatory and

have been discussed in [195–197]. Tier 3 allows decoupling of DoS attack detection and

localization. If detection only is selected, the SoC will detect an ongoing DoS attack, but

not localize the malicious IP, whereas the other option enables both detection as well as

localization. The detection interval defines the duration which the detection mechanism is

active. It can be always active leading to quick detection of DoS attacks, or can be periodically

active to save power. The following sections describe each of these components in detail.

Section 9.4.1 describes our reconfigurable security architecture. The next three sections present

reconfigurable encryption, authentication and DoS attack detection & localization mechanisms

used in our architecture, respectively.

9.4.1 Reconfigurable Security Architecture

Our reconfigurable security architecture has two main parts. (i) Tier-based security

countermeasures and (ii) a reconfiguration mechanism. Figure 9-4 shows how the security

countermeasures are integrated in the NoC. The encryption and authentication tiers are

integrated in the NI whereas dedicated hardware for DoS attack detection and localization is

implemented in each router and IP. Different tiers of security and their capabilities are outlined

in Figure 9-3. The reconfiguration mechanism decides which security tier to activate and which

parameters to pass to the selected tier based on the system characteristics as well as security

requirements. Security tiers and parameters are selected using the reconfiguration registers

(RRG) integrated in each NI which are modified by the reconfiguration mechanism.

The reconfiguration mechanism has two types of components integrated in the SoC:

1. Security Agent (SAG): a security agent is integrated in each NI. SAGs monitor the
network for potential security attacks and also check the system characteristics such as
NoC congestion and battery life through sensors.

2. Reconfigurable Security Engine (RSE): a dedicated IP integrated on the SoC that
contains security policies and takes decisions on when to reconfigure security based on
the data given by SAGs.
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Figure 9-4. Additional hardware implemented at NIs and routers to facilitate our reconfigurable
security architecture.

Figure 9-5 shows an overview of how the RSE is connected on the SoC and Figure 9-4

shows how the SAGs are integrated into each NI. The SAGs offer three different services:

1. Gather data about system characteristics such as battery level and NoC congestion.

2. Pass messages received by security tiers to RSE. For example, if an ongoing DoS
attack is detected, SAGs send that information to RSE which can take the decision on
activating the localization component of security tier 3 to localize the attack.

3. Set the RRG in each NI to indicate which tier of security to activate according to the
decisions made by the RSE.

Algorithm 12 describes the main steps of reconfiguration. The RSE periodically pings

the SAGs to gather data about system characteristics (line 2). This is called the “security

heartbeat”. After gathering battery level and NoC congestion information, the RSE then

decides which security tier and parameters to activate based on its security policy and passes

that data to the SAGs, who set the RRGs (lines 11-14). In addition to decisions made at each

security heartbeat, an SAG can also interrupt the RSE if a potential security threat is detected

(line 6). RSE will follow the same process and set the RRGs. RSE and SAGs communicate

using a separate NoC, named the “service NoC”, that facilitates all packets transferred between

the RSE and SAGs without interfering with the data transferred between IPs. The IPs read the

RRGs to identify which security tier to activate together with its parameters and configures
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Figure 9-5. Example SoC including an RSE. Figure 9-4 shows a zoomed-in and more detailed
version of the same architecture considering only four IPs.

security accordingly (lines 15-24). When a packet is injected into the NoC, it first goes through

the security mechanisms depending on what tier is activated (lines 25-27).

This approach allows easy decoupling of the RSE, SAGs, security policy, security tiers

and reconfigurable parameters so that each component can be modified independently at

design time depending on the system requirements. The next three sections describe the

components of tier-based security countermeasures - encryption (Section 9.4.2), authentication

(Section 9.4.3) and DoS attack detection & localization (Section 9.4.4). A list of notations

used to illustrate our approach is listed in Table 9-2.

9.4.2 Reconfigurable Encryption

To encrypt packets in real-time embedded systems, the encryption scheme should support

high-speed encryption with low costs and latency. To achieve this, the operation mode of the

encryption scheme must support pipelined and parallelized implementations. Furthemore, due

to the nature of packets transferred and routing protocols used in the NoC, some of the packet

fields such as addresses, sequence numbers and ports need to be transferred in plaintext. These

fields are mainly the header fields of the packet. This leads to the requirement of an AEAD
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Table 9-2. Notations used to illustrate our approach.
Notation Description
EK(M) a message M encrypted using the key K
A ∥B concatenation of two bit strings A and B
A⊕B bitwise XOR of two bit strings A and B
{q}d d-bit representation of binary value q (e.g., if d = 4, {1}d = 0001)
MSBu(S) gives the most significant (leftmost) u bits of S
len(A) number of bits in A
0u string of u zero bits
X · Y multiplication of two elements X, Y ∈ GF (0n) where GF corresponds

to a Galois Field.

(Authenticated Encryption with Associated Data) scheme. According to our threat model

and proposed tier-based security model, encryption and authentication should be decoupled.

Therefore, an authenticated encryption scheme that allows isolation of the two stages is

required. Furthermore, the architecture should allow easy plug-and-play of security primitives

that allows the selection of reconfigurable parameters. To cater to these requirements, we

use the “Counter Mode (CM)” in our experiments. Figure 9-6 shows an overview of CM

including both encryption and authentication components. It is evident from the setup that

the framework supports easy decoupling of encryption and authentication allowing activation

of encryption only (tier 1), or both encryption and authentication (tier 2) through the values

written in RRGs during runtime. In this section, we present how the encryption scheme in CM

is implemented in NoC and Section 9.4.3 describes the NoC implementation of authentication.

Let m1,m2, ...,mb−1,m
∗
b denote a sequence of b bit strings that construct the plaintext.

Each bit string in the sequence, also known as a data block, has length n, except for m∗
b

with length u where 1 ≤ u ≤ n. This gives that the total length of plaintext in bits is

(b− 1)× n+ u. The ciphertext associated with this sequence follows the form c1, c2, ..., cb−1, c
∗
b

where each block is n bits long except for the final block c∗b which is u bits long.

The encryption algorithm is shown in Algorithm 13. Each blockcipher in CM encrypts the

string IV ∥ {q}d using a symmetric key K (line 5) where IV refers to the initialization vector
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Algorithm 12 Main steps in security reconfiguration
Send security heartbeat periodically

1: if timer > securityHeatBeatPeriod then
2: send security heartbeat to all SAGs and gather data -D
3: reconfigureSecurity(D)
4: restartTimer()
5: end if
6: if upon event potentialAttack == TRUE: then
7: get data sent by SAG - D ▷ get data sent by SAG with interrupt
8: reconfigureSecurity(D)
9: restartTimer()

10: end if
Major steps of reconfigure security function

11: procedure reconfigureSecurity(D)
12: Tn, Pn ← selectSecurityTier(D) ▷ select one from T1, T2, T3 and relevant parameters
13: send selected security tier (Tn) and parameters (Pn) to SAGs
14: setReconfigurationRegisters(Tn, Pn)
15: Tn, Pn ← readReconfigurationRegisters()
16: if Tn == T1: then
17: Q ← encryption(Pn)
18: else if Tn == T2: then
19: Q ← encryption(Pn) + authentication(Pn)
20: else if Tn == T3: then
21: Q ← encryption(Pn) + authentication(Pn)
22: monitorDoS(Pn)
23: end if
24: end procedure

Send packets in to the NoC
25: procedure sendPackets(M)
26: send Q(M)
27: end procedure

which is a nonce1 . The output rq of the block cipher is XORed with the plaintext mq sent to

that block (line 6). The final block, which can potentially have less bits (u), is XORed with the

most significant u bits of the block cipher output (line 8). The outputs are concatenated to

create the ciphertext of length (b − 1) × n + u (line 9). The decryption process is the exact

1 a nonce is a random string which is distinct for each invocation of the encryption
operation for a fixed key.
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Figure 9-6. Encryption and Authentication in CM

inverse of this and is omitted in this chapter to save space. In our experiments, we used the

Galois Counter Mode (GCM) which uses the same setup and AES as the block cipher together

with Galoish hash as the hash function. Complete details of GCM can be found in [198].

Algorithm 13 Encryption in counter mode
1: Inputs: plaintext to encrypt M = m1 ∥m2 ∥ ... ∥m∗

b

2: Output: ciphertext corresponding to the plaintext C
3: procedure encryption(Pn = {block cipher EK , key K, Initialization Vector IV })
4: for q = 1, ..., b− 1 do
5: rq ← EK(IV ∥ {q}d)
6: cq ← rq ⊕mq

7: end for
8: c∗b ← m∗

b ⊕MSBu(EK(IV ∥ {b}d))
9: C ← c1 ∥ c2 ∥ ... ∥ c∗b

10: return C
11: end procedure

9.4.3 Reconfigurable Authentication

While encryption makes sure that an eavesdropper cannot read the sensitive data,

authentication is required to ensure that the adversary doesn’t corrupt/spoof the packets. To

address this, we use a hash-based Message Authentication Code (HMAC). With HMAC, the

receiver is able to verify a message by checking a tag appended to the end of the packet by

the source. The receiver can re-compute the original authentication tag and check whether
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both tags match to see that the message has not been changed during NoC traversal. The tag

is computed by using a hash function that takes the message to be authenticated and a key

as inputs. In our approach, since the encrypted data is used as a part of the message to be

authenticated, we are following the Encrypt-then-MAC authentication technique, which is more

secure than Encrypt-and-MAC [199].

In our AEAD scheme, the associated data was not included in the encryption process.

However, associated data (A) should be used when calculating the tag. Similar to M and C,

A can also be denoted as a sequence of bit strings a1, a2, ..., al−1, a
∗
l . Each bit string in A has

a length of n, except for the last block, a∗l , with length v, where 1 ≤ v ≤ n. It follows that a∗l
can be a partial block and the total length of A in bits is (l − 1) × n + v. If Sq = IV ∥ {q}d,

the authentication tag (T ) can be calculated as;

T = MSBt(H(H,A,C)⊕ EK(S0)) (9-1)

where |T | = t and H(H,A,C) = Xl+b+1 [198]. The variable Xi for i = 0, 1, ..., l + b + 1 is

defined as;

Xi =



0 for i = 0

(Xi−1 ⊕ ai) ·H for i = 1, ..., l − 1

(Xl−1 ⊕ (a∗l ∥ 0b−v)) ·H for i = l

(Xi−1 ⊕ ci) ·H) for i = l + 1, ..., l + b− 1

(Xl+b−1 ⊕ c∗l ∥ 0b−u) ·H for i = l + b

(Xl+b ⊕ (len(A) ∥ len(C)) ·H) for i = l + b+ 1

where H is the hash function that takes the hash key H as one of the inputs. The t-bit

tag is then appended to the packet and injected into the network. Any tampering done to

the packet will cause the tag verification at the receiver’s end to fail resulting in the packet

being discarded and a re-transmission of the packet from the source. This will make sure
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that the corrupted/spoofed packets will be discarded by NIs before they reach the IPs. The

tag calculation method given in Equation 9-1 is according to the Galois hash function used

in our experiments. Other commonly used hash functions for message authentication include

SHA-256 [200] and MD5 [201].

9.4.4 Reconfigurable DoS Attack Detection and Localization

We implement the DoS attack detection and localization mechanism proposed in [85].

The previous work is a monolithic functionality, whereas in this chapter, we propose a

reconfigurable DoS attack detection and localization algorithm. Moreover, we integrate it

with reconfigurable encryption and authentication. The basic idea is to statistically analyze

network traffic and to model communication patterns. Using the model, two curves are

obtained that capture system characteristics. (i) Upper bounds of packet arrival curves (PAC)

are calculated at each router and (ii) destination packet latency curves (DLC) are constructed

at each IP. PAC bounds are used to detect DoS attacks and once an attack is detected, DLCs

are used to localize the MIP.

An overview of this approach together with the parameters passed from our reconfigurable

architecture is shown in Algorithm 14. The detection and localization mechanisms are

implemented in such a way that localization can be disabled without affecting the detection

mechanism. This is defined by the “DoSTier” parameter. In that case, an ongoing attack will

be detected, but the MIP will not be localized. While this approach gives better performance

and energy efficiency, the MIP can launch the attack again unless it is diagnosed separately.

Similarly, to achieve improved energy efficiency, the detection mechanism at the routers can

sleep periodically. The sleep time is defined by the “detectionInterval” parameter. In such

a scenario, energy efficiency will improve while compromising with delays in DoS attack

detection. An SoC running tasks with soft-deadlines can afford to have a DoS attack detection

mechanism that is not always active. However, if there are tasks with hard-deadlines, it is

better to detect immediately (no sleeping) to avoid delays caused by DoS attacks. The next
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two subsections describe the two major steps - detection and localization as well as PACs and

DLCs in detail.

Algorithm 14 DoS attack detection and localization mechanism
1: procedure monitorDoS(parameters Pn = {DoSTier, detectionInterval})
2: if DoSTier == detectOnly then
3: detectDoS(detectionInterval) ▷ start packet monitoring at routers and check for

PAC bound violations
4: end if
5: if DoSTier == detectAndLocalize then
6: detectDoS(detectionInterval) ▷ start packet monitoring at routers and check for

PAC bound violations
7: localizeDoS() ▷ if a potential attack is detected, initiate localization mechanism to

pinpoint the MIP
8: end if
9: end procedure

9.4.4.1 DoS attack detection using PAC bounds

Upon arriving at a router (r), a packet is seen as an event and can be recorded with

arrival curves [177]. The packet stream (Pr) comprises of all of the packets that arrive at r

during the execution of a particular program. Figure 9-7 illustrates comparison of two different

packet streams, one normal and one compromised, over the time interval [1, 17]. Pr (blue)

shows the normal stream of packet arrivals, and P̃r (red) shows a compromised stream with an

influx in packets over the same time. For some half-closed interval, [ta, tb), the total number of

packets passing through r is called the packet count (Npr [ta, tb)) which is defined in Equation

9-2. The parameters needed to calculate Npr [ta, tb) are Npr(ta) and Npr(tb), which are the

maximum number of packets before time ta and time tb, respectively.

∀ta, tb ∈ R+, ta < tb, n ∈ N :

Npr [ta, tb) = Npr(tb)−Npr(ta) (9-2)

Then, we construct the upper PAC bound (λu
pr(∆)) for every router from the previously

collected packet arrival data. In order to construct an upper bound, the maximum number of
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Figure 9-7. Two sample event traces where the blue trace shows packet arrivals at a router
under normal operation (Pr) and the red trace shows packet arrivals in the
presence of a DoS attack (P̃r).

arrivals is necessary for any time interval ∆(= tb − ta). Equation 9-3 defines how this is done

by sliding a window of length ∆ over Pr to calculate the maximum number of packets arrivals

within that window.

λu
pr(∆) = max

t≥0
{NPr(t+∆)−NPr(t)} (9-3)

The process is repeated for several fixed ∆ to construct the upper PAC bound. Once the upper

PAC bound is constructed, then it can be used in detecting abnormal behaviors in real time by

the “Leaky Bucket Algorithm”. Figure 9-8 shows a PAC bound and two PACs corresponding

to Pr and P̃r from Figure 9-7. It illustrates how P̃r, the compromised stream, goes beyond the

shaded region indicating there is a DoS attack happening.

Figure 9-8. Graph showing upper bound of PACs (λu
pr(∆)). The green line with round markers

show the PAC bound whereas the normal operational area is shaded in green.
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9.4.4.2 DoS attack localization using PAC bounds and DLCs

The localization method uses DLCs in addition to PAC bounds. While every router along

the path constructs PACs, every destination IP constructs a DLC. Figure 9-9 shows two

examples of DLCs with Figure 9-9(a) being normal operation and Figure 9-9(b) corresponding

to an attack scenario. The DLCs capture the latency of a packet (y-axis) from source to

destination Di against the number of hops traversed by the packet from source to destination

(x-axis). The distribution of latencies against each hop count follows the normal distribution,

which is represented by its mean and variance. The mean and variance of the latency

distribution of packets travelling k hops to reach Di are denoted by µi,k and σi,k, respectively.

The packet header holds the source and hop count information that the destination will extract

for profiling. From this, the destination constructs a graph capturing the latency of packets

from source to destination against the number of hops. Mean and variance for the distribution

at each hop count is calculated after every packet has arrived.

A Normal operation B Attack scenario

Figure 9-9. Two sample destination packet latency curves (DLC) constructed at an IP. Under
normal operation, the variance of the distribution is small, whereas in a DoS attack
scenario, it can be large.

Should a violation be flagged during the detection phase, the local IP attached to that

router initiates the diagnosis. By referring to its DLC, it finds the packets that have suspicious

(longer than usual) latencies using the parameterized µi,k and σi,k values. The local IP then

uses the source address of the delayed packets to get the congestion data from the other
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routers in that path. We can only conclude that the source address of the delayed packets

is a candidate MIP. If we conclude that the source address of the delayed packets is where

the attack is originated can lead to many false positives. Therefore, the method relies on the

victim pinpointing the attacker and other IPs removing the false positives. The behavior of

each router during DoS attack localization is given in Algorithm 15.

Figure 9-10. Illustrative example with local IP (D), attacker IP (A), victim IP (V ), and the
candidate MIP (S) as found by D.

We explain the behavior of the algorithm using Figure 9-10. The attacker IP, A, launches

a DoS attack at V and two other IPs, S and D, are located along the same congested path.

Routers of D and V both will flag a potential attack (lines 1-2) and check the DLC for

candidate MIPs. Even though S and D are not the attacker or the victim, packets originating

from S with destination D will be delayed since they are on the congested path. Therefore,

the router of S will be flagged as a candidate MIP by D (lines 3-7). As a result, the router

of S will receive a message from the router of D indicating that its local IP is the attacker,

which will cause the flag to be set to 1 (lines 8-12). However, S will receive another message

from V , since S is on the path from V to A, indicating that A is the potential attacker. This

will cause the flag at S to be changed to 2 (lines 13-15). The router of A will only receive the

message from V which will cause the flag to remain at 1. When the timeout occurs, flag at S

is set to 2, and therefore, no action is taken. However, the router of A has a flag set to 1, and

therefore, a broadcast is sent indicating that A is the attacker (lines 16-20).

The overview of both DoS attack detection and localization is shown in Figure 9-11. The

attack detection phase occurs first and is shown in the left part of the figure. The localization

of the MIP occurs after detection as shown in the right part of the figure. The complete

methodology is described in [85]. Unlike the work done by Charles et al. [85], we use the
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Algorithm 15 localizeDoS( ): event handlers for routers
1: upon event attacked == TRUE:
2: send a signal to local IP
3: upon receiving address of the candidate MIP S from local IP:
4: send a query to the router of S for its congestion status
5: if S is congested then
6: sends a diagnostic message < S,D > to all routers in the path from S to D indicating

that S is the potential attacker
7: end if
8: upon receiving a diagnostic message < S,D > from port pi:
9: start TIMEOUT if all flag == 0

10: if S is local IP and flag[pi] == 0 then
11: flag[pi] = 1 ▷ local IP is the MIP
12: end if
13: if S is not local IP then
14: flag[pi] = 2 ▷ local IP is not the MIP
15: end if
16: upon event TIMEOUT:
17: if flag contains 1 then
18: broadcasting that its local IP is the attacker
19: RESET
20: end if
21: upon event RESET:
22: flag[pi] = 0 for all ports pi

service NoC to pass messages between IPs when localizing the MIP to reduce the localization

time.

Figure 9-11. Overview of the DoS attack detection and localization framework.
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9.5 Experiments

In this section, we first present the experimental setup used to evaluate our framework and

then show the performance and energy data for different security tiers. Finally, we discuss the

area overhead and security guarantees provided by the architecture.

9.5.1 Experimental Setup

Our experimental setup was built using the gem5 cycle-accurate full-system simulator [152].

We modeled an 8 × 8 Mesh NoC-based SoC with 64 IPs. GARNET2.0 detailed on-chip

interconnection network model was used for the NoC after modifying the default garnet model

to include our reconfigurable security architecture [147]. The delay for encryption/decryption

and authentication was assumed to be 12 cycles [98]. GARNET2.0 uses the routing

infrastructure provided by gem5’s ruby memory system model. We set the number of pipeline

stages in the router to be 3 and each link is assumed to consume 1 cycle to transfer a packet

between neighboring routers. Each message from an IP goes through the security operations

implemented at the NI and is then divided into flits (flow control units) before being injected

into the NoC through its local router. The NoC then routes the packet depending on the

routing protocol (XY routing in our experimental setup) and the NI at the destination performs

decryption and tag validation before sending the message to the destination IP. The output

statistics of the gem5 simulation were fed to the McPAT power modeling framework to obtain

power consumption [151].

We tested the system using 4 real benchmarks (FFT, RADIX, FMM, LU) from the

SPLASH-2 benchmark suite [142] and 6 synthetic traffic patterns (uniform random (URD),

tornado (TRD), bit complement (BCT), bit reverse (BRS), bit rotation (BRT), transpose

(TPS)). When running both real benchmarks and synthetic traffic patterns, each IP in the

top (first) row of the Mesh NoC instantiated an instance of the task. Real benchmarks used 8

memory controllers that provide the interface to off-chip memory which were connected to the

bottom eight IPs. As synthetic traffic patterns don’t use memory controllers, the destination

of injected packets were selected based on the traffic pattern. For example, uniform random
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selected the destination from the 8 IPs at the bottom row with equal probability. Source and

destination modeling was done this way to mimic the secure and non-secure zones. When

simulating DoS attacks, a MIP that is randomly placed in the middle rows (non-secure zone)

injected more packets into the NoC targeted at one of the destination IPs, which receive

high traffic from legitimate requests. According to our architecture model, the IPs in the top

row (secure zone) communicate with the IPs in the bottom row (secure zone) through the

other 6 rows (non-secure zone) of IPs. Our approach will work the same for any other secure,

non-secure zone selection and MIP placement. Table 9-3 shows the reconfigurable parameters

selected in our experiments.

Table 9-3. Reconfigurable parameter values used in our experiments.
Security Primitive Reconfigurable Parameters
Encryption (Tier 1) AES Blockcipher, 128-bit key, 128-bit block,

96-bit IV
Authentication (Tier 2) Galois Hash, 128-bit key, 128-bit input
DoS attack detection and localization Detection and localization both active,
(Tier 3) Detection always active without sleeping

These choices were motivated by the capabilities of the simulator as well as the lightweight

nature of IoT and embedded devices.

9.5.2 Performance Results

To evaluate the execution time for each application, we simulated the setup with different

security levels. Figure 9-12 and Table 9-4 show results for four levels of security when running

real benchmarks.

• No-Sec - NoC without implementing any security.

• Tier1 - Tier 1 security implemented. Encryption only.

• Tier2 - Tier 2 security implemented. Encryption and authentication

• Tier3 - Tier 3 security implemented. Encryption, authentication and DoS attack
detection & localization.

Figure 9-12B shows NoC delay (end-to-end NoC traversal delay) of different security tiers.

Compared to No-Sec, 40%, 57% and 58% more delay is observed on average across
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all benchmarks in Tier1, Tier2 and Tier3, respectively. Execution time is compared in

Figure 9-12C and it shows a similar trend. Tier1, Tier2 and Tier3 take 7%, 12.7% and

13.2% more time to execute each simulation, respectively. The impact of security features is

less in total execution time since it includes instruction execution, memory operations, etc.,

in addition to NoC traversal delay. Difference between performance in Tier2 and Tier3 is very

small (0.5% in execution time) since the DoS attack detection mechanism can run in parallel

to normal router computations once separate hardware is implemented. Charles et al. reported

that there is no performance overhead in their 5-stage router pipeline. However, since we have

implemented a 3-stage router pipeline which makes the normal router computations to take

place faster, DoS attack detection can take a bit longer depending on crossbar contention at

that time, and therefore, we observe a slight delay.

B NoC delay

C Execution time

Figure 9-12. NoC delay and execution time comparison across different security levels using
real benchmarks.

The same experiments were run on synthetic traffic patterns and results are shown in

Figure 9-13. We can only capture NoC delay when running synthetic traffic patterns since

running synthetic traffic patterns do not include instruction execution and memory operations.

We observe 50%, 66% and 67% more NoC delay on average in Tier1, Tier2 and Tier3,
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Table 9-4. Execution time comparison in terms of number of clock cycles across different
security levels using real benchmarks.

FFT RDX FMM LU
No-Sec 3.444E+08 2.419E+10 8.807E+09 3.684E+09
Tier1 3.638E+08 2.669E+10 9.422E+09 3.968E+09
Tier2 3.833E+08 2.918E+10 1.004E+10 4.251E+09
Tier3 3.849E+08 2.939E+10 1.009E+10 4.275E+09

respectively, when compared with No-Sec. Both Figure 9-12 and Figure 9-13 show us that

added security comes at the expense of performance. Therefore, the security level has to be

reconfigured depending on the use-case scenario.

Figure 9-13. NoC delay comparison across different levels of security when running synthetic
traffic patterns.

9.5.3 Overhead Analysis

This section provides details on area and power overhead of our proposed framework. It

also discusses overhead associated with various components including service NoC, RSE as well

as security tier changes.

9.5.3.1 Area overhead

Additional hardware is required to implement our reconfigurable security architecture.

To evaluate this area overhead in comparison with the NoC that does not implement any

security (No-Sec), we implemented the security tiers using Verilog. We modified the RTL

of an open-source NoC architecture [185] and conducted our experiments using Synopsys

Design Compiler with 90nm Synopsis library (saed90nm). Results are shown in Table 9-5. Area

overhead was calculated for each security tier. For example, area overhead for Tier2 includes

overhead introduced by encryption as well as authentication hardware. Since our proposed
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framework requires all the features to be integrated so that the RSE can select which tier to

activate, the total area overhead is the overhead to implement Tier3 security, which is 6%. If a

certain SoC designer decides to only integrate features in Tier1 (encryption), overhead would

be 4.2%.

If Tier3 is implemented, in addition to the additional hardware required at routers and NIs,

each IP stores and processes the DLCs. The result of µi,k + 1.96σi,k is calculated and stored

for each hop count in the DLC as a 4-byte integer. This aggregates to a total memory space of

1×m× 4 parameters to store the DLC, where m is the maximum hop count between two IPs

in the NoC. It is safe to assume that this additional memory space is negligible since the IPs

typically have much more bandwidth than any other NoC component.

Table 9-5. Area occupied by security tiers.
Tier 1 Tier 2 Tier 3 Tier 1

(Overhead)
Tier 2
(Overhead)

Tier 3
(Overhead)

Area 609696
µm2

618473
µm2

620228
µm2

4.2% 5.7% 6%

9.5.3.2 Power overhead

The power overhead is introduced by the additional computations required to implement

the reconfigurable security architecture. Compared to No-Sec, each packet injected into

the network will have to go through encryption when Tier1 is enabled. At the destination,

the inverse process - decryption takes place. These processes consume extra power. Tier2

consumes extra power for the tag computation and validation part and Tier3, for constructing

DLCs at each IP and monitoring DoS attacks at each router. The gem5 output statistics

were fed into the McPAT power modeling framework to obtain power consumption. The

NoC power model in McPAT was modified according to the work done by Ogras et al. [135].

Power consumption when running the four real benchmarks (FFT, RADIX, FMM, LU) were

recorded and average power consumption is compared in Table 9-6 together with power

overhead introduced by each security tier. Tier1 has a power overhead of 3.2%, which consists

of overhead for encryption. Note that each tier includes capabilities of the tier below. In
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other words, 4.8% power overhead in Tier2 includes both encryption (3.2% in Tier 1) and

authentication (1.6%) power overhead. Similarly, Tier3 consumes 7.9% power overhead,

which includes the 4.8% overhead for Tier2 and an additional 3.1% for DoS detection and

localization. The results are consistent with the previous studies on lightweight NoC encryption

done by Sepúlveda et al. [90].

Table 9-6. Power consumption of our approach.
Tier 1 Tier 2 Tier 3 Tier 1

(Overhead)
Tier 2
(Overhead)

Tier 3
(Overhead)

Power 5304 mW 5387 mW 5546 mw 3.2% 4.8% 7.9%

9.5.3.3 Overhead of service NoC

The Service NoC proposed in our architecture is responsible for transferring packets

intended for the following purposes;

• DoS attack localization

• Communication between SAGs and RSE

• Key distribution for encryption and authentication

The proposal to use a separate NoC instead of using one NoC for all purposes was motivated

by state-of-the-art commercial SoCs that implement multiple physical NoCs to carry different

types of packets [4, 17]. The Intel Knights Landing (KNL) architecture features four parallel

NoCs [4] and has been widely deployed in the Intel Xeon processor family. The Tilera TILE64

architecture comprises of five parallel 2D Mesh NoCs, each used for a different purposes such

as communication with main memory, communication with I/O devices, and user-level scalar

operand and stream communication between tiles [17].

The trade-off here is performance versus area. When many different types of packets are

used in the NoC, the packet must contain data to distinguish between those types. Existing

buffer space has to be shared between packet types. Both these concerns add performance

overhead and when scaling upto 64 IPs, the overhead becomes significant. On the other

hand, contrary to intuition, additional wiring between nodes incur minimal overhead as long
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as the wires stay on-chip due to the advancements in fabrication processes. Furthermore,

the more expensive and scarce commodity is the on-chip buffer area compared to wiring

bandwidth. If virtual channels are used for different types of packets [113] and buffer space is

shared, the increased buffer spaces and logic complexity will equal to that of another physical

network. Yoon et al.’s work provides a comprehensive analysis about the trade-offs between

having virtual channels and several physical NoCs [172]. Using their analysis that fits the

NoC parameters we have chosen, the area and power overhead of having two physical NoCs

compared to one NoC are 6% and 7%, respectively.

9.5.3.4 Overhead of RSE implementation

The RSE is a dedicated IP on the SoC that decides the security tier to be used based on

the security policies. The policy engine can be implemented as a finite state machine (FSM)

where the security tiers are the states and state transitions happen depending on the policies.

In our work, we have discussed a specific implementation where RSE decides which security

tier and parameters to activate based on battery level and NoC congestion information. The

implementation of such a finite state machine incurs negligible area and power overhead [202].

9.5.3.5 Overhead of changing security tiers

It is worthwhile discussing what happens to the in-flight packets on the NoC during

a security tier change. When changing from Tier1 to Tier2, the transition forces an

authentication tag to be included in the NoC packets. However, the in-flight packets when

the transition happens does not contain an authentication tag since they were injected when

the architecture was in Tier1. Therefore, any packet that does not contain an authentication

tag will be dropped. Since we do not expect security to be reconfigured frequently, the

performance overhead due to the dropped packets is negligible. In fact, security reconfiguration

is expected to be less frequent compared to traditional reconfiguration techniques such as

dynamic voltage scaling (DVS) or dynamic cache reconfiguration (DCR). In DCR or DVS, the

reconfiguration frequency depends on the length of a phase in a task, which is in the order

of milliseconds or seconds. We envision that security reconfiguration frequency will be in the
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order of minutes of even hours. To quantify the performance overhead for dropping packets,

we profiled the maximum number of in-flight packets at any given time when Tier 1 is active.

Table 9-7 shows the results as a comparison of total number of packets injected when running

each benchmark.

Table 9-7. Maximum number of packets in flight at any given time compared to total number
of packets injected when running each real benchmark.

FFT RDX FMM LU
Total number of packets injected 809,632 103,987,824 25,629,248 11,820,880
Maximum number of packets in
Flight at any given time

532 569 585 630

Max # packets in flight as a
percentage of total # of packets

0.0657% 0.0005% 0.0023% 0.0053%

Dropping packets will not affect the accuracy of operation, since the IPs which injected

the dropped packets will re-transmit the requests after not receiving a response. Such

re-transmission mechanisms are already in place for NoC error correction protocols [203]. Note

that packet dropping is not required when transitioning from Tier 2 to Tier 3 (or vice versa)

due to the nature of the DoS attack detection mechanism. We have added this discussion in

Section 9.5.3.5.

9.5.4 Security Analysis

In this section, we discuss the security guarantees of different security tiers.

Tier1: implements encryption only. Therefore, the secrecy of packets is ensured while the

integrity of packets is not. An eavesdropper on the NoC will be unable to read the critical data

in a packet unless it manages to break the cipher. The security of the cipher depends on the

security of the operation mode, counter mode in this case, as well as the block cipher. Each

block in counter mode is treated independently while encrypting. In such a setup, using the

same IV ∥ {q}d string with the same key K can cause the “two time pad” situation. In our

method, using a nonce as the IV for each encryption addresses this. Further security can be

ensured by setting the string to IV ∥ seqj ∥ q where q corresponds to the block cipher ID and

seqj represents the sequence number of the jth packet. It gives per message and per block
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variability and ensures that the value is a nonce. The use of IV ∥ seqj ∥ q string allows reusing

the IV and it can be reset after a certain number of encryptions. GCM uses AES as its block

cipher. AES has been shown to be resistant against all known cryptographic attacks and is yet

to be broken [204].

Tier2: adds another layer of security on top of encryption by enabling authentication.

This addresses the issue of data integrity. The authentication tag validation relies on the

fact that unless the hash key is known, no other key and input string combination should

produce the same hash digest. If this condition fails, an adversary will be able to alter the

packet content, re-generate a tag for that string and replace the existing tag with it. Then the

corrupted packet will be validated as a legitimate packet. To ensure this doesn’t happen, the

chosen hash function has to be collision resistant. Our choice of hash function - Galois hash

adheres to this criteria and is also pre-image and secondary pre-image resistant [198].

Tier3: contributes the last layer of security of our framework - DoS attack detection &

localization. To evaluate the efficiency of the approach, we ran simulations in the presence

of one MIP placed at random in the middle rows (non-secure zone). The MIP injected more

packets into the NoC targeted at one of the destination IPs. The packet stream periods and

attack periods were selected at random. Packet steam periods were assigned a value between

2 and 6 µs at random and attack periods were assigned a random value between 10% and

80% of the packet stream period. Experiments were conducted using the six synthetic traffic

patterns and random placements of MIP launching the DoS attack. Out of the collected

traces, 10 of them were selected such that the test cases include all synthetic patterns and

applicable MIP placements. Figure 9-14 shows the detection time for the 10 test cases. The

results show that the detection time depends on the attack period and is approximately twice

the attack period. This confirms that DoS attack detection can be done in real-time. The

final step of Tier3, DoS attack localization can be done in real-time as well, as shown in

Figure 9-15. The efficiency of DoS attack localization was evaluated by measuring the time
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between detecting the attack and localizing the malicious IP. Figure 9-15 shows the results of

our experiments using the same ten test cases running synthetic traffic patterns.

The detection time and localization time both depend on characteristics of the NoC as

well as the position of victim/malicious IPs in the NoC. The proposed method detects a DoS

attack when the number of packet arrivals within a given time window exceeds the upper

bound. The time taken for this to happen depends on the the constructed upper bound, packet

arrival trends at routers along the path of the DoS attack, attack period and packet stream

period during normal operation. If the upper bound is tight during normal operation for a

particular time window, it only takes few additional packets to violate it. Therefore, some

test cases can exceed the upper bound quickly leading to detection times being very close to

the packet stream period. Some can take longer to exceed the interval since within that time

window, the upper bound was not violated.

The localization time depends heavily on the time it takes for the diagnostic packets

to traverse from the IPs connected to the routers that flagged the attack to the potentially

malicious IP. The localization time varies for each topology and victim/malicious IP placement.

For example, if we used a Point2Point topology, localization needs diagnostic message to

travel only one hop, whereas a Mesh may require multiple hops. Therefore, localization is

faster in Point2Point compared to a Mesh. In general, the localization time is less compared to

detection time because the localization process completes once the small number of diagnostic

packets reach all the potentially malicious IPs, whereas detection requires many packets before

violating a PAC bound during runtime.

The results are consistent with the work done in [85]. Charles et al. has shown that the

framework is capable of detecting and localizing DoS attacks across different topologies and

deterministic routing protocols [85]. Therefore, it is a perfect fit for real-time IoT applications.

9.6 Summary

In this chapter, I presented a reconfigurable security architecture which allowed

enabling/disabling of security levels (tiers) depending on the use case scenario. Security cannot
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Figure 9-14. DoS attack detection time for 8× 8 Mesh topology in the presence of one MIP.

Figure 9-15. DoS attack localization time for 8× 8 Mesh topology in the presence of one MIP.

be considered alone in resource constrained IoT devices. The interoperability constraints -

performance, energy efficiency and area should be taken into account when deciding the level

of security required. I introduced a tier-based security architecture and proposed an efficient

reconfiguration mechanism that allows monitoring system characteristics and decides which

security mechanism(s) to activate based on security policies. The proposed tier-based security

mechanisms comprises of encryption, authentication and DoS attack detection & localization.

Experimental results discussed how different tiers can affect the interoperability constraints as

well the security guarantees. My reconfigurable security architecture is lightweight and provides

real-time security guarantees. Therefore, it is ideal for resource-constrained IoT devices that

has dynamic requirements and long application life.
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CHAPTER 10
DIGITAL WATERMARKING FOR DETECTING MALICIOUS IPS

Eavesdropping attacks have become a major concern with a recent occurrence of a

hardware security breach due to third-party vendors aiming at industrial espionage raising

concerns across top US authorities [53]. The attack was facilitated by a hardware Trojan that

acted as a covert backdoor and spied on computer servers used by more than 30 companies

in USA, including Amazon and Apple. In this chapter, I propose a digital watermarking-based

malicious intellectual property (IP) detection mechanism for eavesdropping attacks.

Specifically, I consider the following attack scenario. A hardware Trojan integrated in

the NoC IP launches an attack to eavesdrop on the NoC packets. The goal is to exfiltrate

information while remaining hidden, and thus the Trojan will not perform any action that

would reveal its presence, such as corrupting packets to cause SoC malfunction (data integrity

attacks) or degrade performance causing denial-of-service (DoS) attacks. Previous work has

explored the most effective way of launching an eavesdropping attack in NoC, considering

attack effectiveness and difficulty to detect the Trojan. It identified Trojan(s) inserted in

NoC component(s) colluding with another malicious IP(s) as the strongest attack model. An

illustrative example of this scenario is shown in Figure 10-1, where a hardware Trojan-infected

router and an accomplice application launch an eavesdropping attack where the infected router

copies packets passing through it and sends them to the accomplice application running on

another malicious IP. This hardware-software collusion attack is similar to the Illinois Malicious

Processor (IMP) [50]. This setting and related threat models have been the focus of [46] as

well as several prior studies [49, 88–91, 95, 168].

NoC security research has proposed authenticated encryption (AE) as a solution to

eavesdropping attacks [88, 90, 91]. With AE, packets are encrypted to ensure confidentiality

and an authentication tag is appended to each packet to ensure integrity (and detect re-routed

packets). However, the use of AE as the defense to eavesdropping attacks is sub-optimal

for two reasons. First, it incurs significant performance degradation on resource-constrained
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devices (as I show experimentally in Section 10.2). Second, authentication tags may be

unnecessarily complex if used only for the purpose of detecting eavesdropping attackers who

seek to remain undetected as long as possible — and thus are unlikely to interfere with data

integrity.

In this chapter, I address a fundamental question: is it possible to replace authenticated

encryption with a lightweight defense while maintaining security against eavesdropping

attacks? Specifically, I propose to replace the costly computation of authentication tags with

a lightweight eavesdropping attack detection mechanism based on digital watermarking. The

attack detection capabilities achieved by digital watermarking is coupled with encryption to

ensure data confidentiality.

The remainder of the chapter is organized as follows. Section 10.1 describes the threat

model in detail. Section 10.2 motivates the need for my work. Section 10.3 introduces my

watermarking-based attack detection method. Section 10.4 provides theoretical guarantees

on performance and security of my approach followed by experimental results in Section 10.5.

Section 10.6 discusses additional security considerations. Finally, Section 10.7 summarizes the

chapter.

10.1 Background and Threat Model

In this section, we present a background on digital watermarking and discuss the threat

model in detail.

10.1.1 Digital Watermarking

The process of hiding information related to digital data in the data itself is called digital

watermarking. It has been widely used in domains such as broadcast monitoring, copyright

identification, transaction tracking, and copy control. For example, in the movie industry,

a unique watermark can be embedded in every movie. If the movie later gets published

on the internet illegally, the embedded watermark can be used to identify the person who

leaked it. In network flow watermarking, watermarks are embedded into the packet flow using

packet content [205], timing information [206] or packet size [207]. This can be used for
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tracing botmasters in a botnet [208], tracing other network-based attacks [209] and service

dependency detection [210].

10.1.2 Threat Model

The global trend of distributed design, validation and fabrication has raised concerns

about security vulnerabilities. Malicious implants, such as hardware Trojans, can be inserted

into the RTL or into the netlist of an IP core with the intention of launching attacks without

being detected at the post-silicon verification stage or during runtime [7]. Insertion of Trojans

can happen in many places of the long, distributed supply chain such as by an untrusted CAD

tool or designer or at the foundry via reverse engineering [43]. As evidence of the globally

distributed supply chain of NoC IPs, iSuppli, an independent market research firm, reports

that the FlexNoC on-chip interconnection architecture [40] is used by four out of the top five

Chinese fabless semiconductor OEM (original equipment manufacturer) companies [47]. In

fact, Arteris, the company that developed FlexNoC, achieved a sales growth of 1002% over

a three-year time period through IP licensing [48]. Therefore, there is ample opportunity for

attackers to integrate hardware Trojans in the NoC IP and compromise the SoC. NoC IPs are

ideal candidates to insert hardware Trojans due to several reasons: i) the complexity of NoC

IPs makes it extremely difficult to detect hardware Trojans during functional verification as well

as runtime [49], ii) extracting data from NoC packets allows attackers to obtain confidential

information without relying on memory access or hacking into individual IPs, and iii) the

distributed nature of NoC components across the SoC makes it easier to launch attacks.

We focus on eavesdropping attacks, also known as snooping attacks, which pose a

serious threat to applications running on many-core SoCs. IPs that are integrated on

the same SoC use the NoC IP when communicating through message passing as well as

through shared memory. For example, the Intel Knights Landing architecture prompts memory

requests/responses from cores to traverse the NoC for shared cache look-ups and for off-chip

memory accesses [4]. Therefore, eavesdropping on data transferred through the NoC allows

adversaries to extract confidential information.
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Adversarial model. In this chapter, we consider an adversary consisting of a hardware

Trojan-infected router and a colluding malicious application running on an IP. The goal of

the adversary is to exfiltrate confidential information by observing NoC traffic without being

detected. Remaining hidden is key for the adversary to exfiltrate as much information as

possible. Because the adversary must remain hidden, we assume that the adversary does not

interfere with the normal operation of the NoC. For example, this means that the adversary

does not modify the content of packets (attack on integrity) or cause large delays in processing

of packets (denial-of-service) as either would likely lead to detection.

Figure 10-1. Illustration of an eavesdropping attack through colluding hardware and software.

Attack scenario. Eavesdropping attacks by malicious NoC IPs rely on the hardware Trojan

creating duplicate packets with modified headers (specifically, destination address in the

header) and sending them into the NoC for an accomplice application to receive them [46,

49]. Figure 10-1 shows an illustrative example. We consider a commonly used 2D Mesh

NoC topology where IPs are connected to the NoC, more specifically to the router, via a

network interface (NI). When the NI receives a message from the local IP, the message is
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packetized and injected into the network.1 Packets injected into the NoC are routed using the

hop-by-hop, turn-based XY routing algorithm and received by the destination router. The NI

then combines the packets to form the message which is passed to the intended destination

IP. In our example (Figure 10-1), two trusted applications running in nodes S and D are

communicating with each other, and an eavesdropping attack is launched to steal confidential

information. The attack is carried out by two main components: i) a Trojan-infected router,

and ii) an IP running a malicious application. The malicious router (X) copies packets passing

through it and sends them to the IP running the malicious program at node Y , which reads

the confidential information. To facilitate this attack, several steps should be carried out

by the attacker. First, the hardware Trojan is inserted by the third-party NoC IP provider

during design time. The Trojan is designed such that it can act upon commands sent by the

malicious application. Once the SoC is deployed, the malicious application sends commands at

a desired time to launch the attack. The Trojan then starts copying and sending packets to the

malicious application. The malicious application can also send commands to pause the attack

to avoid being detected.

Figure 10-2. Router infected with a hardware Trojan.

1 Most NoCs facilitate flits, which is a further breakdown of a packet used for flow control
purposes. We stick to the level of packets for the ease of explanation as our method remains
the same at the flit level as well.
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Figure 10-2 shows a block diagram of a router design infected with the Trojan that

launches the attack described in our threat model [46]. The Trojan copies packets arriving at

the input buffer, changes the header information so that the new destination of the packet is

where the malicious application is (node Y according to our illustrative example) and inject the

new packet back to the input buffers so that it gets routed through the NoC to reach Y . The

Trojan does not tamper with any other part of the packet, except for the header to re-route

the packet, due to two reasons: i) the goal is to extract information, so corrupting data defeats

the purpose, and ii) corrupting data increases chances of the Trojan getting detected. Since

the original packet is not tampered with and is routed to the intended destination D, the

normal operation of the SoC is preserved. The Trojan also has a very small area and power

footprint. Ancajas et al. [46] used a similar threat model in their work and reported 4.62% and

0.28% area and power overheads, respectively, when compared with the router design without

the Trojan. The performance overhead when copying and routing packets to the malicious

application is less than 1% [46]. Therefore, the likelihood of the Trojan being detected is very

small unless additional security mechanisms (such as the one proposed in this chapter) are

implemented.

10.2 Motivation

AE is a widely accepted countermeasure against eavesdropping attacks. Details of how

AE can be implemented at the NoC level is given in Section 9.4.2. Encryption provides packet

confidentiality and authentication is capable of detecting re-routed packets. Since the header

is modified by the hardware Trojan in order to re-route the packet to the malicious application,

the authentication tag validation fails and the attack is detected. To analyze the performance

overhead introduced by an AE scheme, we ran FFT, RADIX (RDX), FMM and LU benchmarks

from the SPLASH-2 benchmark suite [142] on an 8×8 Mesh NoC-based SoC with 64 IPs using

the gem5 simulator [18] considering two scenarios:

• Default-NoC: Bare NoC that does not implement encryption or authentication.

224



• AE-NoC: NoC that uses an authenticated encryption scheme with a setup similar to
Figure 9-6.

More details about the experimental setup is given in Section 10.5.1. Results are shown

in Figure 10-3. A 12-cycle delay was assumed for encryption/decryption and authentication

tag calculation when simulating AE-NoC according to the evaluations in [97]. The values

are normalized to the scenario that consumes the most time. AE-NoC shows 59% (57% on

average) increase in NoC delay (average NoC traversal delay for all packets) and 17% (13% on

average) increase in execution time compared to the Default-NoC. The overhead for security

has a relatively lower impact on execution time compared to the NoC delay since the execution

time also includes the time for executing instructions and memory operations (in addition to

NoC delay). NoC delay in Default-NoC case is caused by delays at routers, links and the NI.

In AE-NoC, in addition to those delays, encryption/decryption delays and authentication tag

calculation/validation delays are added to each packet. Additional delays are due to complex

encryption/decryption operations and hash calculations for authentication.

B NoC delay

C Execution time

Figure 10-3. NoC delay and execution time comparison across different levels of security for
four SPLASH-2 benchmarks.

225



When security is considered, Default-NoC leaves the data totally vulnerable to attacks,

whereas AE-NoC ensures confidentiality and data integrity. For systems with real-time

requirements, an execution time increase of 17% to accommodate a security mechanism is

unacceptable. Furthermore, validating the authentication tag for each packet contributes

to the SoC power consumption. Since the Trojan is rarely activated and only the packet

header is modified (packet data is not corrupted) to avoid detection, authenticating each

packet becomes inefficient in terms of both performance and power consumption [88]. Clearly,

authenticating to detect re-routed packets introduce unnecessary overhead. It would be ideal

if the security provided by AE-NoC could be achieved while maintaining the performance

of Default-NoC. However, in resource-constrained environments, there is always a trade-off

between security and performance.

In this chapter, we propose a novel digital watermarking-based security mechanism that

incurs minimal overhead while providing high security. Our approach replaces authentication

by watermarking. Encryption is used to ensure data confidentiality. Our method achieves a

better trade-off than: (1) no authentication that is vulnerable to credible Trojan attacks, and

(2) authenticated encryption, which incurs performance degradation prohibiting their use in

applications with real-time constraints.

10.3 NoC Packet Watermarking

In this section, we first present a few key definitions and concepts used in our proposed

watermarking construction. We then describe our lightweight eavesdropping attack detection

mechanism based on digital watermarking.

10.3.1 Definitions

In this section, we introduce two important definitions that would be used in the rest of

the chapter.
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10.3.1.1 Hoeffding’s inequality

Let {X1, ..., Xn} be a sequence of independent and bounded random variables with

Xi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then;

Pr

[∣∣∣∣ 1n
n∑

i=1

(Xi − E [Xi])

∣∣∣∣ ≥ t

]
≤ e

(
− 2nt2

(b−a)2

)

for all t ≥ 0 [211]. By Hoeffding’s Lemma, which says if Xi ∈ [a, b] then E
[
eλX

]
≤ eλ

2(b−a)2/8

for any λ ≥ 0, a random variable bounded in [a, b] is sub-Gaussian with variance proxy

σ2 = (b−a)2

4
. Therefore;

Pr

[∣∣∣∣ 1n
n∑

i=1

(Xi − E [Xi])

∣∣∣∣ ≥ t

]
≤ e

(
− nt2

2σ2

)
(10-1)

10.3.1.2 Bounds for binary codes

Let C be a binary code of length w, size M (i.e., having M codewords) and minimum

Hamming distance δ between any two codewords denoted by (w,M, d). The distance

distribution of C can be calculated as;

Bi =
1

M

∑
c∈C

|c′ ∈ C : D(c, c′) = i|, 0 ≤ i ≤ n

It is clear that B0 = 1 and Bi = 0 for 0 < i < d [212].

Let A(w, d) represent the maximum number of codewords M in any binary code of

length w and minimum Hamming distance d between codewords. Finding optimum A(w, d)

for a given w and d is an NP-Hard problem [213]. However, exact solutions are known for

few combinations of values and in the general case, upper and lower bounds of the maximum

number of codewords are known [214, 215].

10.3.2 Overview

We call the flow of packets sent from one IP (source) to another IP (destination), a

“packet stream”. Our detection mechanism relies on the following assumptions about the

architecture and threat model.
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• The Trojan does not tamper with the legitimate packet content as this may reveal its
presence (Section 10.1.2). The Trojan only modifies the header of duplicated packets to
change the destination (data fields of the duplicated packets are not tampered with) and
it allows the legitimate packets to pass as usual.

• Packets are not dropped by intermediate routers and the order of packets in a packet
stream is kept constant. This is reasonable as deadlock and livelock free XY routing is
used together with FIFO buffers [49].

• When the attacker injects copied packets into the NoC, all the packets can get delayed
due to congestion. While this delay is random, the maximum delay is bounded. We
explore this assumption in detail in Section 10.4.2.

Our proposed approach is to embed a unique watermark into every packet stream.

Figure 10-4 shows an overview. We propose to include the watermark encoder and decoder

at the NI of each node. It is reasonable to assume that the NI can be trusted since it acts

as the interface between all the IPs in the SoC and the NoC IP, and is typically designed

in-house [95, 97]. The NI at source S encodes the watermark and the NI at destination

D decodes it to identify that the packet stream is valid, or in other words, the packets

in the packet stream are intended to be received by D. This process is followed by each

source/destination pair in the NoC. In case of an attack, the watermark decoded by the NI

of the receiving node (node Y according to our illustrative example), will be invalid and a

potential attack is flagged. To ensure this behavior, the watermarking mechanism must have

the following characteristics:

1. The watermark is unique to each packet stream.

2. There is a shared secret between S and D, which is “hard” for any other node to guess
or deduce.

In addition to watermarking, we rely on encryption/decryption modules implemented

at the NIs. The watermark is embedded in the encrypted packets and is decoded before the

decryption process. Encrypting packets is required to provide data confidentiality during

packet transfers and due to the nature of our watermarking scheme that allows the malicious

application to receive some packets before detecting the attack. Proposing an encryption

mechanism is beyond the scope of this chapter and several previous work have already
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Figure 10-4. Overview of the watermarking scheme where the watermark encoder and decoder
are implemented at the NI.

proposed NoC-based SoC architectures with encryption/decryption modules implemented

at the NI [95, 97, 98]. Our proposed watermarking scheme can be implemented on top of

those solutions. The performance improvement is achieved by replacing the authentication

scheme with our lightweight digital watermarking scheme. The following sections describe our

approach in detail. First, we outline the concept behind probabilistic NoC packet watermarking

(Section 10.3.3), and then discuss the operation of the watermark encoder and decoder in

detail (Section 10.3.4). Finally, we outline an effective method for managing secrets shared

between nodes (Section 10.3.5).

10.3.3 Probabilistic Watermarking Concept

The watermark ωSD is embedded by the NI of S before the packets are injected into

the NoC. We use a timing-based watermark (as opposed to size or content-based) for three

reasons; (i) timing alterations are harder to detect by an attacker, (ii) it allows a lightweight

implementation as it is easy to manipulate, and (iii) it does not alter the packet content

allowing encryption schemes to be implemented together with watermarking [216]. The

watermark is embedded by slightly delaying certain packets in the stream. If ωSD is unique, it

should be correctly decoded at the NI of destination D with high probability. In contrast, the

probability of decoding ωSD as valid at any other NI should be very low.
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Given n packets of a packet stream PSD such that;

PSD = {pSD,1, pSD,1, ..., pSD,i, ..., pSD,n}

the inter-packet delay (IPD) between any two packets can be calculated as τSD,i,i+1 =

tSD,i+1 − tSD,i where tSD,i is the timestamp of the packet pSD,i. Without loss of generality, for

the ease of illustration, we will remove “SD” from the notation and denote the packet stream

PSD as P and IPD τSD,i,i+1 as τi.

The encoder selects 2m packets {pr1 , pr2 , ..., pr2m} out of the n packets of packet stream

P . The selected packets are paired with another 2m packets (outside of the initially selected

2m packets) to create 2m pairs such that each pair is constructed as {prz , prz+x} where x ≥ 1

and z = 1, ..., 2m. Therefore, it is assumed that the packet stream has at least 4m packets.

The IPD between each pair of packets can be calculated as;

τrz = trz+x − trz (10-2)

Given that the 2m packets are selected independently and randomly, we model the IPDs as

independently and identically distributed (IID) random variables with a common distribution.

The IPD values are then divided into 2 groups. Since we had 2m pairs of packets, each

group will have m IPD values. Let the IPD values of the two groups be denoted by τ 1k and τ 2k

(k = 1, ...,m), respectively. It follows that both τ 1k and τ 2k are IID. Therefore, the expected

values µ (and the variances) of the two distributions are equal. Let ∆ be the average difference

between the two IPD distributions:

∆ =
1

m
·

m∑
k=1

τ 1k − τ 2k
2

(10-3)

Then, we can calculate the expected value and variance of ∆:

E [∆] = E
[
τ 1k
]
− E

[
τ 2k
]
= 0 , Var(∆) =

σ2

m
.
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Where σ2 is the variance of the distribution τ1k−τ2k
2

. In other words, the distribution of ∆ is

symmetric and centered around zero. The parameter m is referred to as the “sample size”.

The core idea of our watermarking approach is to intentionally delay a selected set of

packets to shift the ∆ distribution left or right to encode the watermark bits in the timing

information of the packets. Specifically, the distribution of ∆ can be shifted along the x-axis

to be centered on −α or α by decreasing or increasing ∆ by α, where α is called the “shift

amount”. As a result, the probability of ∆ being negative or positive will increase. Concretely,

to embed bit 0, we decrease ∆ by α. To embed bit 1, we increase ∆ by α. Decreasing ∆ can

be done by decreasing each τ1k−τ2k
2

by α (Equation 10-3). Decreasing τ1k−τ2k
2

can be achieved by

decreasing each τ 1k by α and increasing each τ 2k by α. It is easy to see that increasing ∆ can

be done in a similar way. Decreasing or increasing one IPD (τ 1k ) is achieved by delaying the

first packet or the second packet of the pair, respectively.

The encoded watermark can be detected by calculating ∆ and checking if ∆ is positive

or negative. If ∆ > 0, bit 1 is decoded. Otherwise (if ∆ ≤ 0) bit 0 is decoded. This scheme

can be extended to a w-bit watermark (ωSD) by repeating the above process w times. During

the decoding process, a w-bit watermark (ω′
SD) is extracted from the packet stream and if

the hamming distance between ωSD and ω′
SD is lower than a pre-defined error margin δ, we

can conclude that the watermark embedded at the source S is detected at the receiver. If the

watermark does not match, an attack is flagged.

Figure 10-5 shows the distribution of ∆ and the corresponding distribution after shifting

it by α > 0. Since our scheme is probabilistic, there is a probability that the embedded

watermark bits will be incorrectly decoded, thus leading to false alarms (false positives) or

missed detection (false negatives). This is because for any α > 0, a small portion of the

distribution of ∆ falls outside the range (−∞, α]. Therefore, if we embed bit 0, there is

a small probability that the bit will be incorrectly decoded as 1. It can be seen that this

probability is the same as the probability that a sample from the unshifted distribution takes a

value outside the range (−∞, α]. Similarly, a bit encoded to be 1 can be decoded incorrectly
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because samples from ∆ have a small probability of falling outside the range [−α,∞).

However, we can tune parameters m (sample size), α (shift amount) and δ (error margin) to

achieve a very high (nearly 100%) decoding success rate (Section 10.5).

Figure 10-5. Example showing the ∆ distribution shifted by α.

To provide formal guarantees, we define the “bit decoding success rate” (BDSR) as the

probability of the embedded watermark bit being decoded correctly (for a shift amount of α).

We denote this quantity by Pr [∆ < α]. Note that the BDSR also depends on m and σ2, but

this is not explicit in the notation Pr [∆ < α] because it is implicitly captured by ∆. We now

give an illustrative example to further explain this concept.

Illustrative Example: Figure 10-6 shows a sample packet stream in the time domain with

packet injection times. For ease of explanation in this example, m is set to one and therefore,

two packets (2m) are selected from the packet stream (Pr1 and Pr2). Both packets are paired

with two other packets that are x (=3) packets away in the packet stream (Pr1 with Pr1+3

and Pr2 with Pr2+3). The IPD between each pair is calculated as τr1 = tr1+3 − tr1 and

τr2 = tr2+3 − tr2 . The two IPD values are then divided into two groups and ∆ calculated

according to Equation 10-3 as τr1−τr2
2

(sum for all m and division by m not shown since

m = 1). We repeated the process using a packet stream that had more than 3000 packets

obtained by running a simulation using the gem5 architectural simulator [18] on a real

benchmark. An 8 × 8 Mesh NoC was modelled using the Garnet2.0 [139] interconnection

network model. The node in the top left corner (node S) ran the RADIX benchmark from the
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SPLASH-2 benchmark suite [142]. One memory controller was modelled and attached to the

node in the bottom right corner (node D) so that the memory requests always traverse from S

to D. Figure 10-7 shows the histogram collected at the NI of S for the distribution of ∆ with

m = 1 and x = 3. Packets were collected at random with the above parameter values to plot

∆. We can observe from Figure 10-7 that the distribution closely approximates the distribution

we expected. The calculated sample mean (E [∆]) for this particular example was 0.0053,

which is very close to zero. Increasing the number of selected packets (2m) further increases

the likelihood of the sample mean being zero.

The next section describes the details of the watermark encoder and decoder operations.

Figure 10-6. Sample packet stream with m = 1 and x = 3.

Figure 10-7. Distribution of ∆ with m = 1 and x = 3.

10.3.4 Watermark Encoder and Decoder

As outlined in Section 10.3.2, our watermarking scheme includes a shared secret between

S and D, which is “hard” for any other node to guess or deduce. In addition, several

233



parameters are shared between S and D. Specifically, S and D share the tuple ⟨m,α,wSD,K⟩.

The first three parameters were introduced in Section 10.3.2 as the sample size (m), the

shift amount (α), and the unique watermark that represents PSD (wSD). The length of wSD

(w) can be derived from wSD. In addition, K is a secret which is used to derive a key for

the encryption scheme and a seed S using a key derivation function. S is used to seed the

pseudo-random number generator which selects the 2m IPDs. We assume that the attacker

does not know the watermark wSD or secret K, but may know m and α.

10.3.4.1 Watermark encoding process

When the watermark encoder, which is integrated in the NI of node S, receives packets

from its local IP with the destination node D, it encodes the watermark according to the

process outlined in Section 10.3.3 and the shared secret between S and D. The selection

of the IPDs that construct the ∆ distribution needs to be deterministic so that the process

is identical for the watermark encoder and decoder, and it needs to ensure that an attacker

cannot replicate the same behavior. To achieve this, we need a method to pair packets

deterministically based on the shared secret, but that appears uniformly random to the attacker

(who does not know the shared secret). We propose to implement this using a pseudo-random

number generator (PRNG) seeded (i.e., initialized) with S (or something derived from it). This

ensures that the encoder and decoder produce the same sequence of random numbers. Further,

an attacker (who does not know the seed) cannot predict the next PRNG output, even with

the knowledge of the previous output [217].

Let F denote the selection function that given a packet stream, selects and divides 2m

IPDs into two groups, each of size m. We choose a window of packets and pair two random

packets together from each window. Therefore, to construct 2m IPDs, 2m such packet

windows are required. The operation of F used in our method is outlined in Algorithm 16. The

PRNG seeded with S is used to randomly generate two integers rz and x (line 2) such that

0 ≤ rz ≤ W − 1 and 0 < x and rz + x ≤ W − 1, where W is the size of the window. This

can be done using rejection sampling to ensure that rz ̸= x and then calling the smaller integer

234



rz and the larger rz + x. The packet at the index rz (prz) is paired with the packet that is x

packets away giving the random pair {prz , prz+x} (lines 5-6). The calculated IPD values are

then evenly divided into two groups (lines 7-15).

Algorithm 16 Selection function F
Input: Seed S
Output: Two IPD groups used to encode one watermark bit

1: procedure F
2: rz, x ← PRNG(S)
3: for all k = 1, ..., 2m do
4: A ← selectNextWindow(PSD)
5: prz ← A[rz]
6: prz+x ← A[rz + x]
7: τrz ← trz+x − trz
8: if k is odd then
9: τ 1k ← τrz

10: else
11: τ 2k ← τrz
12: end if
13: end for
14: return [{τ 11 , τ 12 , ..., τ 1m}, {τ 21 , τ 22 , ..., τ 2m}]
15: end procedure

Since 2m IPDs are required to encode a 1-bit watermark, w iterations of the procedure

F are required to encode the w-bit watermark. When encoding one watermark bit, the

distribution discussed in Section 10.3.3 holds only when each pair of packets is the same

distance x apart from each other. Therefore, the same rz and x values are used for each

iteration of k. When encoding another watermark bit, another iteration of F is required in

which another pair of rz and x values will be generated by the PRNG. To ensure that the same

rz and x values are not generated for subsequent watermark bits, the PRNG must be seeded

only once. An example to show how the selection function can be used to encode a w-bit

watermark including how to select the window is given in Section 10.5.

10.3.4.2 Watermark decoding process

Node D upon examining the packet stream PSD, decodes the w-bit watermark w′
SD by

following the process outlined in Section 10.3.3 and the shared secret tuple. The decoder
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concludes that the watermark is valid if the Hamming distance between wSD (taken from the

shared secret tuple) and w′
SD (decoded from the received packet stream PSD) is less than or

equal to the error margin δ. Formally, the watermark is valid if;

D(wSD, w
′
SD) ≤ δ (10-4)

where D is the Hamming distance between two bit strings and 0 ≤ δ ≤ w. The reason for

allowing an error margin δ and not looking for an exact match is that no matter how large the

shift amount α is, there is a probability that the watermark is decoded incorrectly as discussed

in Section 10.4.1. Tuning parameter δ allows us to minimize this probability. In addition, as

shown in Section 10.4.2, it allows us to minimize the impact of the attack.

10.3.5 Managing Shared Secrets

The watermark encoder and decoder operation introduced in Section 10.3.4 relies

on shared secret tuples between nodes to make sure the watermarking scheme cannot be

compromised. To facilitate this, an efficient way to generate and manage such secrets is

required. Developing an efficient management mechanism is beyond the scope of this work and

many previous studies have addressed this problem in several ways. One such example is the

key management system proposed by Lebiednik et al. [163]. In their work, a separate IP called

the “key distribution center” (KDC) handles the distribution of keys. Each node in the network

negotiates a new key with the KDC using a pre-shared portion of memory that is known by

only the KDC and the corresponding node. The node then communicates with the KDC using

this unique key whenever it wants to obtain a new key. The KDC can then allocate keys and

inform other nodes as required. Our proposed digital watermarking scheme can be integrated

with a similar key generation and management mechanism.

10.4 Theoretical Analysis

In this section, we provide some mathematical guarantees about the correctness and

security of the watermarking scheme which we further validate with experimental results in

Section 10.5. First, we provide a bound on BDSR during normal operation (Section 10.4.1).
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Then we evaluate the impact of an attacker on BDSR (Section 10.4.2). Finally, we present

how the error margin δ can be selected such that it maximizes the chance of successfully

decoding the watermark while minimizing the chances of an attack if the attacker is aware of

our detection method (Section 10.4.3).

10.4.1 Watermark Bit Decoding Success Rate During Normal Operation

Given this watermark encoding/decoding scheme, it is clear that larger the shift amount

α is, the higher the bit decoding success rate (BDSR) will be. However, having arbitrarily large

α is not feasible in systems with real-time constraints. In this section, we show that we can

achieve close to 100% BDSR for arbitrarily small α by changing the sample size m.

As discussed in Section 10.3.3, a watermark bit can be decoded incorrectly if at the

receiver’s end, |∆| > α. Therefore, we should analyze the behavior of Pr [|∆| > α]. There

are several well-established statistical tools for this, but in particular we can use concentration

results, also known as tail bounds. Since the IPDs are bounded and independent, we can use

Hoeffding’s inequality (introduced in Section 10.3.1.1) and Equations (from Section 10.3.3)

related to the distribution of ∆;

Pr [|∆| ≥ α] ≤ e

(
−mα2

2σ2

)

Using symmetry; Pr [∆ < α] ≥ 1− 1

2
e

(
−mα2

2σ2

)
(10-5)

Therefore, we can observe that the BDSR is lower bounded by a value that depends on α and

m. The results show that irrespective of the distribution of the IPDs, for arbitrarily small α

values, we can always take the BDSR close to 100% by increasing the sample size m. In other

words, no matter how small the shift amount α needs to be to abide by the timing constraints

of the system, we can still achieve high BDSR by selecting more packets in each IPD group.

10.4.2 Impact of an Attack on the Bit Decoding Success Rate

Having established mathematical guarantees about BDSR during normal operation,

we shift our focus to explore how BDSR of legitimate packet streams can be affected by

an attack. According to the threat model, the Trojan infected router copies packets and
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sends them to a malicious application running on a different IP. As a result, more packets

are introduced to the network which can cause congestion. All packets in the network can be

delayed because of this. Therefore, the attack can introduce additional delays to the legitimate

packet streams. It is safe to assume that these additional delays are finite. If the attacker

delays packets indefinitely through congestion, the attack is no longer an eavesdropping attack,

but rather a flooding type of denial-of-service attack [85] that is beyond the scope of this

chapter.

Given that the Trojan-infected router does not know which packets were selected

by the watermark encoder (as explained in Section 10.3.4), the delay introduced by the

attacker (whatever it is) on the selected IPDs is IID from the perspective of S and D.

Using this insight, we can analyze ∆′, which is the distribution after modifying ∆ defined in

Equation 10-3 with the added delays, and conclude that;

Pr [∆′ < α] ≥ 1− 1

2
e

(
− mα2

2(σ+σd)
2

)
(10-6)

where σd is the added delay variance due to the added congestion. Observe that the only

change is the increase in variance caused by the attacker. We can choose σd depending on the

amount of congestion the attacker is willing to cause without risking being detected. Similar

to the argument we made when reasoning about the BDSR using Equation 10-5, we can see

that BDSR is lower bounded and by manipulating the sample size, we can make the BDSR

arbitrarily close to 100%. Therefore, the impact on the watermarking detection is a bounded

increase of variance on an otherwise 100% successful watermarking scheme. As the illustrative

example that calculates BDSR in Section 10.5.2 outlines, the success rate can be brought very

close to 100% even with the selection of a modest value for m.

10.4.3 Optimal Error Margin Selection

As discussed in Section 10.3.4, the use of the error margin δ instead of an exact match

between the decoded and the expected watermark, allows us to tune δ to maximize the

“watermark detection success rate” (WDSR). Unlike BDSR, which refers to the success of
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decoding a single bit, WDSR considers the entire watermark with w bits. The probabilistic

nature of our watermarking scheme leaves a small probability that the watermark will be

incorrectly decoded irrespective of the values chosen for the parameters. While this probability

is small, efficient selection of δ can push WDSR as close as possible to 100%. On the other

hand, using a larger error margin also increases the success of potential attacks. Indeed,

assuming that the attacker is aware of our detection strategy, the best strategy for an attacker

to eavesdrop on data without being detected is to try to forge a watermark. If he succeeds,

then the duplicated packets will be accepted as valid by the node that runs the accomplice

application and our proposed watermarking-based defense will be defeated. We call the success

probability of such a forging attack the “watermark forging success probability” (WFSP). The

goal of the detection scheme is thus to set the parameters such that WDSR is maximized while

minimizing WFSP. We explore how this can be achieved in this section.

10.4.3.1 Maximizing watermark detection rate

The probability of incorrectly decoding a bit was formalized using the metric BDSR as

Pr [∆ < α]. Considering symmetry, let ϑ = Pr [−∞ < ∆ < α] = Pr [−α < ∆ <∞]. Then

for a w-bit watermark, probability of accurately decoding all w bits will be ϑw. Therefore, the

expected WDSR can be calculated as;

δ∑
i=0

(
w

i

)
ϑw−i(1− ϑ)i (10-7)

We can see that with a large δ, the expected WDSR increases. We observe from Equation 10-7

that;
δ∑

i=0

(
w

i

)
ϑw−i(1− ϑ)i ≥ ϑw

Therefore, we can make the expected WDSR larger than the desired WDSR by increasing ϑ.

Revisiting Equation 10-6, we observe that ϑ can be made sufficiently close to 1 by increasing

the sample size m irrespective of α, σ and σd. Therefore, we can conclude that in theory, it is

possible to make WDSR close to 100% even with a modest error margin.
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10.4.3.2 Minimizing risk of watermark forging attacks

While increasing δ can increase WDSR, larger the δ, larger the expected WFSP will

be. We address this in two steps. First, we select watermarks such that under a given error

margin δ, the probability that one watermark can be incorrectly decoded as another watermark

(watermark collision) is minimized. Then, we discuss the case where an attacker, after knowing

our detection mechanism, tries to inject duplicated packets such that the decoder at the

receiver incorrectly validates the watermark (watermark forging) and accepts the duplicated

packet steam as valid.

The problem of selecting distinct w-bit watermarks for each source-destination pair can

be recast as the problem of selecting distinct codewords. This is a well-established problem

that has been extensively studied in the information theory literature. Indeed, it is known

that for any given set of distinct codewords, if the minimum Hamming distance between any

two codewords is at least 2δ + 1, a nearest neighbor decoder will always decode correctly

when there are δ or fewer errors [218]. Therefore, if the watermarks are chosen such that any

two watermarks are at least 2δ + 1 distance apart, the probability of a watermark collision is

minimal. We select the number of bits in the watermark w such that this property is satisfied

using the method explained in Section 10.3.1.2. An example of how w is selected is given in

Section 10.5.2.2.

Even if w is selected such that watermark collision probability is minimized, an attacker

may still try to impersonate a legitimate sender. Assume that wSD and wSY are valid

watermarks with distance 2δ + 1 (minimum possible distance between two watermarks)

between nodes S and D and S and Y , respectively. A Trojan-infected router in the path from

S to D duplicates packets and sends to an accomplice application in node Y . For Y to accept

the duplicated packet stream as a legitimate packet stream coming from S, the watermark

of the duplicated packet stream should match wSY . We refer to this attack as a watermark

forging attack.

240



Section 10.3.4 and Section 10.3.5 detailed how watermarks are kept unknown to any other

parties, except for the sender and receiver in a packet stream, using shared secrets. Therefore,

the attacker’s method to forge a watermark can be reduced to a random bit flipping game

with the goal of matching wSY . Random bit flipping is achieved by randomly delaying the

duplicated packets in PSD. For the attacker to win the game, wSD should change to wSY .

Since the minimum distance between any two watermarks is 2δ + 1, considering the error

margin of δ, the minimum required number of bit flips is δ + 1. Therefore, the attacker should

flip at least δ + 1 bits to win the game. However, flipping the wrong bits can take the target

even further. Therefore, the best chance for the attacker to win the game is if it flips the

correct δ + 1 bits of wSD to match wSY (to end up within the error-margin of wSY , i.e., within

δ-Hamming distance of wSY ). The probability that the attacker flips the correct δ + 1 bits

at any given round of the game is thus:
(

w
δ+1

)−1. Assuming the attacker plays n times, the

attacker’s probability of winning, or in other words, the probability of successfully forging the

watermark (WFSP) at least once (after n attempts) is;

1−

[
1− 1(

w
δ+1

)]n

(10-8)

Observe that by manipulating w and δ, this probability can be made arbitrarily small.

Furthermore, n cannot be arbitrarily large because if the probability of winning in the first

few attempts is low, then the attacker will be detected before the attacker can successfully

forge the watermark.

This allows us to conclude that we can make WDSR close to 100% and WFSP close to

0%. Equations 10-6, 10-7 and 10-8 combined give us the theoretical trade-off model between

WDSR and WFSP. However, we cannot accommodate arbitrarily large m and w in practical

scenarios. Therefore, in the next section (Section 10.5), we provide experimental evaluations

and discuss realistic values that can be achieved under our threat model and architecture.
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10.5 Experiments

In this section, we experimentally evaluate the theoretical models established in previous

sections and choose the parameters that give the optimum results. The selected parameters

are then used to explore the performance gain achieved by using our method compared to

traditional AE based schemes.

10.5.1 Experimental Setup

We evaluated our approach by modeling an NoC-based SoC using the cycle-accurate

full-system simulator - gem5 [18]. “GARNET2.0” interconnection network model that is

integrated with gem5 was used to model an 8x8 Mesh 2D NoC [139]. To ensure the accuracy

of our simulator model when compared to real hardware, we used the simulator framework

proposed in [153], which has validated simulator results with results from the Intel Knights

Landing (KNL) architecture (Xeon Phi 7210 hardware platform [137]), when setting up the

experimental environment. Figure 10-8 shows an overview of the NoC-based SoC model. Each

IP was modeled as a processor core executing a given task at 1GHz with a private L1 Cache.

Eight memory controllers were modeled and attached to the IPs in the boundary providing

the interface to off-chip memory. In case of a cache miss, the memory request/response

messages were sent to/from memory controllers as NoC packets. The NoC was modeled with

3-stage (buffer write, route compute + virtual channel allocation + switch allocation, and

link traversal) pipelined routers with wormhole switching and 4 virtual channel buffers at each

input port. Packets are routed using the deadlock and livelock free, hop-by-hop, turn-based XY

deterministic routing protocol.

Each processor core in the SoC was assigned an instance out of FFT, RADIX (RDX),

FFM and LU benchmarks from the SPLASH-2 benchmark suite [142]. Each simulation round

can in theory, give
(
64
2

)
× 2 = 4032 packet streams (assuming two-way communication between

any pair out of the 64 nodes) and the number of iterations that depended on the number of

benchmarks (four in our case) can give 4 ×
(
64
2

)
× 2 = 16,128 packet streams. However,

depending on the address mapping, only some node pairs out of all the possible node pairs
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Figure 10-8. 8x8 Mesh NoC setup used to generate results.

communicate. Our simulations generated 3072 packet streams for all benchmarks between

1024 unique node pairs which we used to evaluate our method. However, to decide the number

of bits in the watermark w, looking at only the number of unique node pairs is not sufficient

because to avoid watermark collisions, the Hamming distance between any two watermarks

should be at least 2δ + 1. According to Section 10.3.1.2, as δ increases, w increases as well.

Therefore, more packets are required to encode the watermark and as a result, the time to

detect an ongoing attack increases (more packets need to be observed before recognizing

the watermark). Increasing m has a similar impact. Increasing α increases the application

execution time and it takes longer to detect eavesdropping attacks. This motivates us to

explore optimum parameter (m, α and δ) values such that WDSR is maximized and attack

detection time, execution time as well as WFSP are minimized.

10.5.2 Parameter Tuning

We first explore m and α when encoding a single watermark bit and then extend the

discussion to consider WDSR, WFSP, execution time and detection time.

10.5.2.1 Bit decoding success rate behavior with m and α

When embedding one watermark bit in a packet stream, Equation 10-5 gives a theoretical

estimate of the BDSR. To compare the theoretically expected BDSR with experimental results,
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we use a non-overlapping sliding window of λ packets and select 2m IPDs according to the

method in Section 10.3.4.1. One bit is encoded in each of the 3072 selected packet steams

following the same methodology and decoded at the receiver’s side according to the method

introduced in Section 10.3.3. λ = 8 is chosen to ensure adequate randomness in the IPD

selection process. A detailed analysis of λ value selection is given in Section 10.6. We keep

α = 60ns fixed and vary m from 2 to 15. Results are shown in Figure 10-9. We compare

the outcome from our experiments with the theoretical model (Equation 10-5). For example,

expected BDSR for m = 4, α = 60ns and σ2 = 2662 is calculated as;

Pr [∆ < 60] ≥ 1− 1

2
e

(
− 4×602

2×2662

)
≈ 0.967

Figure 10-9. BDSR variation with sample size m. α = 60ns.

We now fix m = 4 and vary α from 10ns to 100ns to explore BDSR variation with

α. Figure 10-10 shows the comparison between the theoretical model (Equation 10-5) and

results generated from our experiments. The experimental results in both Figure 10-9 and

Figure 10-10 show that our theoretical model gives an accurate bound on BDSR. As α and

m are increased, BDSR converges to 1. However, our goal is to detect any attack with high

accuracy while incurring minimum performance overhead. Therefore, BDSR is not the only

deciding factor. As α and m is increased, the execution time of the application/benchmark
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running with our attack detection mechanism increases as well. α and m should be chosen

such that this trade-off is maintained.

Figure 10-10. BDSR variation with shift amount α. m = 4.

While Figure 10-9 and Figure 10-10 show how BDSR varies with m and α, both figures

had one parameter fixed while varying the other. To observe how both m and α effect the

BDSR as well as the execution time, we did a grid search in the ranges 2 ≤ m ≤ 10,

10 ≤ α ≤ 80 and w = 20 and eliminated cases where expected BDSR was less than 0.95

and execution time increase was more than 5%. These thresholds were chosen to achieve

the optimum balance in the trade-off. Results are shown in Figure 10-11. w = 20 is chosen

because, to provide a unique watermark for each communicating node pair (1024 in our

experiments), 10 bits are required. 10 additional bits are kept to allow error margins as well

as to avoid collisions. However, as discussed in Section 10.5.2.2, w can be further optimized

leading to a better execution time. Execution time increase is measured as the average

execution time increase as a percentage when benchmarks are run with our approach compared

to Default-NoC introduced in Section 10.2. Out of the possible combinations in Figure 10-11,

we pick m = 4 and α = 60 as it gives an adequate trade-off for our exploration.

10.5.2.2 Choosing δ and w

With the values selected for m and α, we explore the impact of the error margin δ on

WDSR. To calculate expected WDSR according to Equation 10-7, w should be decided.

However, the value of w is dependant on the value we select for δ. Therefore, we explore the

245



Figure 10-11. BDSR and execution time variation with m and α. w fixed at 20.

behavior of expected WDSR with respect to δ for several fixed w values (w ∈ {14, 16, 18, 20}).

Results are shown in Figure 10-12. δ = 0 represents exact matches between the decoded

watermark and the expected watermark without using an error margin. The importance of

using δ is evident when the scenario of looking for exact matches (δ = 0) is compared with any

other δ value. For example, for the values ϑ = 0.967 and w = 20, WDSR with exact matches

is ϑw = 51.1% whereas for the same ϑ and w values with an error margin of 2 (δ = 2), WDSR

is 97.3%.

Figure 10-12. Expected WDSR variation with error margin δ for several w values. m and α
fixed at 4 and 60ns, respectively.

As outlined in Section 10.4.3.2, the chosen δ value affects the chances of the attacker

succeeding in a forging attack (WFSP). To evaluate the impact, we explored WDSR

(Equation 10-7) and WFSP (Equation 10-8) values for different combinations of w and δ.
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However not all w and δ values can co-exist if watermark collisions are to be avoided. Assume

that the chosen δ value is 2. As outlined in Section 10.4.3.2, for two watermarks not to collide,

they should be at least 2δ + 1(=5 if δ = 2) Hamming distance apart. Since there are 1024

unique node pairs, we can set w as the minimum number of bits required to generate 1024

unique codewords such that the minimum Hamming distance between any two codewords is 5.

In other words, we are looking for w such that A(w, 5) ≥ 1024 according to Section 10.3.1.2.

From [214], we can derive w ≥ 18. Therefore, to ensure that there are no collisions between

watermarks with an error margin of 2, at least 18 bits are required for the watermark. Similarly,

we can derive w ≥ 21, for δ = 3, and w ≥ 14 for δ = 1. Since increasing w has an impact

on execution time as well, for each δ value, we pick the two smallest possible w value such

that there are no watermark collisions. Table 10-1 shows expected WDSR, WFSP values,

experimental WDSR value and execution time increase for the selected configurations.

Table 10-1. WDSR, WFSP and execution time increase for varying w and δ. ϑ = 0.967,
n = 10

δ w Expected WDSR WFSP Experimental
WDSR

Execution Time
Increase

1 14 0.9238 0.1046 0.9538 3.49%
1 15 0.9139 0.0912 0.9512 3.61%
2 18 0.9797 0.0121 0.9801 3.95%
2 19 0.9765 0.0102 0.97884 4.06%
3 21 0.9955 0.0075 0.9987 4.29%
3 22 0.9946 0.0064 0.9964 4.40%

These results strongly support our claim that WFSP can be made arbitrarily small by

manipulating w and δ. We observe from Figure 10-12 that WDSR converges to 1 starting

δ = 2. Furthermore, observing values in Table 10-1, we can pick δ = 2 and w = 18 as a

configuration that gives an adequate trade-off.

10.5.3 Performance Evaluation

With the selected parameters, m = 4, α = 60, δ = 2, w = 18, we explore the

performance improvement achieved by our method compared to the traditional AE based

defenses. Section 10.2 introduced two scenarios - Default-NoC and AE-NoC against which
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we evaluate the performance of our approach (digital watermarking-based attack detection

coupled with encryption). NoC delay and execution time comparison are shown in Figure 10-13

considering Default-NoC, AE-NoC and our watermarking based attack detection method.

Our approach only increases the NoC delay by 27.9% (26.3% on average) and execution time

by 5.2% (3.95% on average) compared to the default NoC whereas AE-NoC increased NoC

delay by 59% (57% on average) and execution time by 17% (13% on average). Therefore, our

method has the ability to significantly improve performance compared to other state-of-the-art

security mechanisms intended at preventing eavesdropping attacks.

B NoC delay

C Execution time

Figure 10-13. NoC delay and execution time comparison

In addition to execution time comparison, time taken to detect an ongoing attack

(detection time) is also critical. Detection time is calculated as the time taken to decode the

complete watermark from a packet stream. As soon as the w-bit watermark is decoded and

validated, any eavesdropping attack can be detected. Table 10-2 shows detection time for

each benchmark normalized to total execution time. This shows that our watermark detection

scheme is capable of detecting any eavesdropping attacks in a timely manner.
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Table 10-2. Attack detection time for different applications/benchmarks.
FFT RDX FMM LU
6.56E-3 4.8E-5 1.9E-4 3.9E-4

In summary, these results validate our theoretical model and provide a framework to tune

the parameters such that eavesdropping attacks can be detected quickly with high accuracy

while providing a significant performance improvement compared to existing state-of-the-art

solutions.

10.6 Discussion

The security of the watermarking scheme depends on the secrecy of some parameters

(Section 10.3.4). Parameters include the watermark wSD as well as the key K for each PSD. A

key distribution center (KDC) acts as a trusted dealer to distribute these parameters. In this

section, we discuss security implications if some of these assumptions do not hold.

10.6.1 Eliminating the Trusted Dealer

In the absence of a trusted dealer, each communicating node pair will have to agree on

a watermark and a key. While this can be facilitated by key-exchange protocols such as the

Diffie-Hellman key exchange, the lack of a trusted dealer can cause duplicated watermarks

(watermark collisions). If watermarks are selected uniformly at random to minimize the chances

of collision, according to the birthday bound, the number of bits assigned to the watermark

should be double of what is required. For example, if an 18-bit watermark is required in

the presence of a trusted dealer, 36 bits are required in its absence because of the birthday

bound. While our watermarking scheme can give better accuracy and less collisions for a 36-bit

watermark, the execution time as well as the detection time will increase. Therefore, a designer

needs to carefully select the size of the watermark to minimize the collision without violating

the performance budget.

10.6.2 What Can Be Inferred from Packet Timing?

It is important to note that the watermark is encoded in the IPD values, not in the

individual packet injection/received times. Furthermore, packet injection times can vary
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depending on the behavior of the application as well. There can be phases in the application

execution where more packets are injected to the NoC whereas in some other phases, delay

between packet injections is comparatively high. Therefore, “guessing” the watermark cannot

be easily accomplished by merely observing packet arrival times. Moreover, the only way for

an attacker to forge the watermark successfully is to know both the watermark and the PRNG

seed.

Indeed, even if the watermark could be inferred from packet timing, the PRNG seed

cannot be inferred from packet timing information due to cryptographic guarantees of using a

PRNG. In the next section, we assume that the watermark is known by the adversary but not

the PRNG seed and analyze the probability that an attacker can forge the watermark. This

probability can be reduced to a random bit flipping game (probability = 1
2
).

10.6.3 Watermark Is Not a Secret Anymore?

Assume that the attacker knows the watermark, but not the PRNG seed. To forge the

watermark, the attacker must select the two correct packets (that forms the IPD) from each

window. Observe that without the PRNG seed, the attacker’s probability of correctly guessing

the two packets from a given window is 1/
(
λ
2

)
(Case I). Similarly, we can derive that the

probability of two packets chosen by the attacker partially overlapping with the correct two

packets and the probability of the attacker not selecting either one of the two correct packets

are 2(λ − 2)/
(
λ
2

)
(Case II) and

(
λ−2
2

)
/
(
λ
2

)
(Case III), respectively. Therefore, the higher

the value chosen for λ, the lower the chances of a successful attack. The probability of the

attacker not selecting either one of the two packets correctly (Case III) goes above 0.5 at

λ = 8. In the overlapping scenario, if the first packet selected by the attacker is the correct

second packet (or vice versa), delaying it will give the incorrect watermark bit. However, to

give a conservative estimate, we ignore that possibility and use λ = 8 so that the probability

of selecting both packets incorrectly is at least 1
2
. This analysis shows that our watermarking

scheme can be tuned to work even in scenarios with very strong security assumptions such

as the watermark being leaked to the attacker. Additionally, for systems which require even
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stronger security, another layer of security can be added if we rotate the watermark assigned

between each pair of nodes after some number of iterations.

10.7 Summary

In this chapter, I introduced a lightweight eavesdropping attack detection mechanism

using digital watermarking in NoC-based SoCs. I considered a widely explored threat model in

on-chip communication architectures where a hardware Trojan-infected router in the NoC IP

copies packets passing through it, and re-routes the duplicated packets to an accompanying

malicious application running on another IP in an attempt to leak information. Compared to

existing authenticated encryption based methods, my approach offers significant performance

improvement while providing the required security guarantees. Performance improvement is

achieved by replacing authentication with packet watermarking that can detect duplicated

packet streams at the network interface of the receiver. I discussed the accuracy and security

of my approach using theoretical models and empirically validated them. Experimental results

demonstrated that my approach can significantly outperform the state-of-the-art methods.
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CHAPTER 11
SECURING NOC USING MACHINE LEARNING

Malicious IPs (MIPs) can lead to a wide variety of threats such as eavesdropping attacks,

data integrity attacks, etc. In this chapter, I focus on securing the system-on-chip (SoC)

from MIPs that launch flooding type of denial-of-service (DoS) attacks. Previous work on

mitigating flooding type of DoS attacks explored traffic latency comparison [106], traffic

partitioning [107], and packet arrival monitoring [85, 100]. These approaches made an

unrealistic assumption, highly predictable NoC traffic patterns, which allowed the construction

of linear statistical bounds to detect DoS attacks [85, 100, 106]. Unfortunately, this

assumption does not hold during many realistic scenarios that include task migration, task

preemption, changing application characteristics due to major input variations, etc. In this

chapter, I propose a machine learning (ML) based DoS attack detection mechanism that

is capable of adapting to use cases with unpredictable NoC traffic patterns and detecting

attacks with high accuracy. While ML has shown promising results for optimizing NoC power

consumption [219], to the best of my knowledge, my approach is the first attempt at securing

NoC-based SoCs using ML. Major contributions of this chapter are as follows;

• I propose an ML-based DoS attack detection method that trains ML models during
design time and uses the trained models to classify network traffic behavior to detect
flooding type of DoS attacks.

• I outline features that can be extracted from NoC traffic as well as engineered features,
and experimentally evaluate the most suitable features.

• I perform a comprehensive exploration of 12 different ML models to select the best fit for
the given architecture and threat models.

• My approach achieves high accuracy in DoS attack detection across different NoC traffic
patterns caused by various applications and application mappings.

The rest of the chapter is organized as follows. Section 11.1 elaborates the threat model

and presents related work. Section 11.2 motivates the need for ML-based detection of DoS

attacks. Section 11.3 describes my ML-based DoS attack detection methodology. Section 11.4

presents the experimental results. Finally, Section 11.5 summarizes the chapter.
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11.1 Threat Model

DoS attacks can happen from MIPs intentionally degrading SoC performance by flooding

the NoC with packets. MIPs can target a component that is critical to SoC performance, such

as a memory controller that provides the interface to off-chip memory, and inject unnecessary

requests [85, 100]. As a result, the legitimate requests can experience severe delays. An

example attack scenario is shown in Figure 11-1. A MIP at node 1 targets its victim at

node 7 and injects additional packets. The traffic rate in routers along the routing path is

increased causing NoC congestion, which leads to performance degradation and reduced energy

efficiency. Since the victim receives a lot more requests than it is designed to handle, responses

are delayed and that can lead to violation of task deadlines. Violation of real-time requirements

can be catastrophic for safety-critical applications. A similar threat model was used in previous

work that explored DoS attacks in NoC-based SoCs [85, 100, 102, 107].

Figure 11-1. Example DoS attack from a malicious IP to a victim IP in a mesh NoC setup.
The thermal map shows high traffic near the victim IP.

11.2 Motivation

To evaluate the potential of using ML to detect DoS attacks in NoC-based SoCs, we

simulated both malicious and benign programs using the gem5 cycle-accurate full-system

simulator [18] and extracted features from NoC traffic. A 4 × 4 mesh NoC was modeled using

the GARNET2.0 [139] interconnection network model. The mesh consisted of 16 IP cores

and 4 memory controllers as shown in Figure 11-2. Each router in the middle of the mesh

is connected to four other routers in the four directions and to an IP core. When a memory
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request (e.g., memory LOAD or STORE instruction) is initiated by a core during application

execution, in case of a cache miss, a memory request is injected into the NoC in the form of

NoC packets. Typically, the packets are further broken down into smaller units called “flits”

to facilitate flow control mechanisms. The flits are routed in the appropriate virtual network

(vnet), that matches the cache coherence request type, via routers and links. When the

flits arrive at the memory controller, the memory fetch is initiated and once the operation

is completed, the response is routed back to the original requestor. Figure 11-2 shows the

architecture model used for both normal and attack scenarios. During normal execution, two

processor cores ran two instances of the FFT benchmark from the SPLASH-2 benchmark

suite [142]. For the attack scenario, in addition to the two applications, a MIP was modeled to

inject packets at the four memory controllers uniformly, increasing the overall network traffic by

50%. More details about the experimental setup is given in Section 11.4.1.

Figure 11-2. Architecture models used to extract NoC traffic features.

We extracted NoC traffic features and labeled them based on normal (target label = 0)

and attack (target label = 1) scenarios. Figure 11-3 shows the correlation matrix of features

extracted from NoC traffic. Each feature is denoted by a “feature ID” instead of the feature

name. A detailed description of the features is given in Section 11.3. The highlighted column

shows the correlation of each feature to the target label (feature ID - V ). The values shown in
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Figure 11-3. Correlation matrix of extracted NoC traffic features.

Figure 11-3 are the pairwise “Pearson Correlation Coefficients” (PCC) of all the features. PCC,

calculated as:

ρX,Y =
cov(X,Y )

σX · σY

gives a measure of the linear correlation between a pair of random variables (X,Y ). PCC

value ranges from −1 to 1. ρX,Y = 1 (light color shades) implies that X and Y have a linear

relationship where Y increases as X increases. ρX,Y = −1 (dark color shades) also implies a

linear relationship, but in this case, Y decreases as X increases. ρX,Y = 0 implies that there is

no linear correlation between the variables.

We can observe the following from Figure 11-3:

• Most features are not perfectly correlated to each other and falls in the low to
medium (0 ± 0.5) correlation range. In other words, the dataset does not exhibit
“Multicollinearity” [220]. Multicollinearity, if existed, can severely affect performance of
ML models outside of the original (training) dataset. Therefore, NoC features have the
potential to train accurate classifiers.
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• Since column V shows values in the range of (0 ± 0.3), we can conclude that the target
label is not linearly correlated with the features. Therefore, a linear model, such as
linear regression or naive bayes classifier, to differentiate normal and attack scenarios
are unlikely to yield good results. Exploration of ML techniques that capture non-linear
behavior, such as neural networks, decision trees or gradient boosting, is required.

These observations give us evidence that if an ML model is to be trained based on these

features, it has the ability to distinguish between normal and attack traffic without causing

model overfitting. Therefore, a trained ML model can potentially detect DoS attacks during

runtime irrespective of the location of the MIP(s). Based on this premise, in subsequent

sections, we present our ML-based runtime DoS attack detection mechanism and empirically

validate our approach.

11.3 DoS Attack Detection Using Machine Learning

We propose an ML-based DoS attack detection mechanism that is trained statically

during design time, and the trained models are used to detect DoS attacks during runtime. An

overview of our approach is shown in Figure 11-4. During design time, NoC traffic is statically

analyzed to gather the dataset that is used to train the ML models. Both normal and attack

scenarios are emulated during this phase using a few known application mappings. The trained

models are stored in a dedicated IP denoted as the “Security Engine” (SE). During runtime,

NoC traffic data is gathered at each router using probes attached to routers and the collected

data is sent to the SE using a separate physical “Service NoC”. The models at the SE use data

collected within a predefined time window to make inferences about the condition of the NoC.

In Section 11.4, we show that our method is capable of classifying data as normal or attack,

irrespective of the locations of cores running the applications and the locations of MIP(s).

Our ML-based DoS attack detection mechanism relies on the following features of the

architecture model.

• Probes attached to routers can gather data from NoC packets without incurring
significant performance and power overhead.

• The SoC architecture comprises of two physical NoCs: i) a Data NoC that is used
to communicate between IPs for application execution, and ii) a Service NoC which
transfers data collected from probes to the SE.
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Figure 11-4. Major steps of the ML-based DoS attack detection mechanism.

The remainder of this section is organized as follows. Section 11.3.1 presents the NoC

traffic features and the ML model used to make inferences. Section 11.3.2 discusses the

hardware implementation to have probes connected to routers that gather data and send to the

SE via the Service NoC.

11.3.1 Machine Learning Model

As outlined in Section 11.2, NoC packets/flits in our architecture model corresponds to

memory requests/responses between IPs running the applications and the memory controllers.

We extract information when flits are transferred through routers. The features consist of

data extracted from NoC packets as well as engineered features using the extracted data. A

complete list of NoC traffic features used in our exploration is shown in Table 11-1. However,

as elaborated in Section 11.4.3, we experimentally eliminated some features based on feature

importance1 in an attempt to find the optimum trade-off between the least number of features

and the highest model accuracy. Feature IDs of the selected features, when running the final

model, are marked with a star (*) in Table 11-1.

We use “Gradient Boosting”, a powerful technique to perform supervised ML classification,

to classify normal and attack scenarios. It is an ensemble learner that creates the final model

based on a collection of weak predictive models, decision trees in most instances, and that

1 Feature importance gives a score to indicate how important a feature is in the decision
making process of an ML model. In a trained model, the more a feature contributes to key
decisions, the higher its relative importance.
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Table 11-1. NoC traffic features used in our machine learning model
Feature ID Feature Name Feature Description
A outport* port used by the flit to exit the router

(0-local,1-north,2-east,3-south,4-west)
B inport port used by the flit to enter the router

(0-local,1-north,2-east,3-south,4-west)
C cc type cache coherence type of the packet corresponding to

the flit
D flit id identifier used to denote each flit of a packet
E flit type type of flit (head, tail, body)
F vnet virtual network used by the flit
G vc* virtual channel used by the flit
H traversal id* identifier used to group all packet transfers related to

one NoC traversal
J hop count* number of hops from the source to the destination
K current hop number of hops from the source to the current router
L hop percentage ratio between the current hop and the hop count
M enqueue time* time spent inside the router by the flit
N packet count decr. cumulative no. of flit arrivals within time window τ

(decremented as packets arrive)
O packet count incr. cumulative no. of flit arrivals within time window τ

(incremented as packets arrive)
P max packet count maximum no. of flits transferred through the router

within a given time window τ
Q packet count index packet count incr × packet count decr
R port index outport × inport
S traversal index* cache coherence type × flit id × flit type × traversal

id
T cc vnet index cache coherence type × vnet
U vnet vc cc index cache coherence vnet index × vc

results in better overall prediction capabilities due to iterative learning from each model. The

key concept of the algorithm is to create new base-learners having a maximum correlation with

the negative gradient of the loss function of the entire ensemble. Weaker predictive models

in the ensemble are trained gradually, additively, and sequentially, and their shortcomings are

identified by the use of gradients in the loss function which indicates the acceptability of the

model’s coefficients at fitting the underlying data. The decision to use gradient boosting for

our classification was made experimentally as outlined in Section 11.4.2.
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11.3.1.1 Training the ML model

The ML model is trained statically, during design time. We choose a few application

mapping scenarios to train the model that includes both normal execution and attack

scenarios. Figure 11-2 shows one such configuration. A list of all training and testing

configurations is outlined in Section 11.4.1. Network traces are collected during application

execution at each router. When flits pass through the routers, a feature vector is constructed

including the selected features for each flit. All selected features are transformed using

“MinMaxScaler” to fit into the range of 0 to 1, without distorting the shape of the original

features. Transformed features are then used to tune the hyperparameters of the model using

“Bayesian Optimization”, which outputs the best-optimized list of parameters while learning

from previous iterations in each iteration. This process is repeated for all 16 routers separately

to train 16 models, one per each router.

11.3.1.2 Attack detection

During runtime, probes attached to the routers gather data and send to the SE for

evaluation. The SE aggregates data and constructs feature vectors corresponding to each

router, following a process similar to that of during model training. LetMi correspond to the

model trained for router ri using gradient boosting. Feature vectors falling within a predefined

time window τj is then used as input to each trained model, which gives a probability of

an attack as the output. If Vi,j denotes the set of feature vectors constructed at ri for τj,

the probability of an attack is denoted by pi,j, where pi,j ← Mi(Vi,j). The probability is

calculated as the portion of feature vectors labeled as “attack” during τj. If all feature vectors

are classified as attack by the model, the probability is 1. If all feature vectors are classified

as normal, the probability is 0. The overall probability of an attack for the time window τj is

calculated after pooling all probabilities as;

Pj =

∑
∀i(pi,j · |Vi,j|)∑

∀i |Vi,j|
(11-1)
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The overall probability for the time window τj (Pj) is a weighted average of probabilities from

each model where the weights correspond to the number of flits transferred through each

router within the given time window. If Pj is greater than a predefined threshold λ, an attack

is flagged. This process is repeated for every τj during SoC operation to detect attacks that

can be potentially initiated at any point in time.

Weights based on the number of flits indicate that when a model makes a decision

based on a lot of data points, it can be trusted to give a more accurate result. The choice

was motivated by the fact that we make no assumptions about the placement of the secure

and non-secure IPs. However, if more information is available, the weighted average can

be adjusted so that some models contribute more to the final decision. For example, if the

locations of the non-secure (potentially malicious) IPs are known, the probabilities of models

corresponding to those routers can be given more weight and it would result in a better

overall performance in distinguishing normal traffic from an attack scenario. How to combine

different probabilities to arrive at a single conclusion under various assumptions is well studied

in the area of “Opinion Pooling”, which is a part of probability theory, and can be used in our

approach based on the assumptions made [221].

It is important to note that all the features we have used in our method can be extracted

from the packet header or by counting flits or as a combination of header and count

information. Observing the packet payload (e.g., memory data block in case of a memory

data fetch packet) is not required. Therefore, our approach can be used together with other

NoC security mechanisms such as encryption and authentication.2

2 NoC packet encryption and authentication is typically done using “Authenticated
Encryption with Associated Data” (AEAD) schemes where only the payload is encrypted and
associated data, such as the packet header, is sent as plaintext to facilitate routing during NoC
traversal [95].
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11.3.2 Implementation of Hardware Components

Our approach relies on collecting features at routers using probes and sending the data

via a separate physical NoC (Service NoC) to the SE to make inferences. In this section, we

discuss the implementation of these hardware components.

11.3.2.1 Multiple physical NoCs

We identify two main types of packets to be transferred through the NoC to facilitate

our ML-based DoS attack detection method: i) packets related to application execution as

introduced in Section 11.2, and ii) packets related to extracted NoC features transferred from

probes at routers to the SE. Instead of using different virtual networks to carry the different

packets types, we propose to use two separate physical NoCs (Data NoC and Service NoC) to

carry the two main types of packets. The choice is motivated by state-of-the-art commercial

NoC-based SoC architectures that follow the same practise [4, 17]. Intel Knights Landing

(KNL) architecture [4], widely deployed in the Intel Xeon processor family, consists of four

parallel NoCs. Similarly, the TILE64 architecture by Tilera [17] features five parallel NoCs, to

carry different packet types such as communication with main memory, communication with

I/O devices, and user-level scalar operand and stream communication between tiles.

There is a trade-off between area and performance when considering one versus multiple

NoCs. When different packet types are facilitated through the same NoC, header fields must

be added to distinguish between the packets types. Furthermore, the buffer space must be

shared between virtual networks. This can lead to performance degradation, specially when

scaling to many-core processors. On the other hand, separate physical NoCs contribute to the

area overhead. However, due to advances in manufacturing technologies, additional wiring to

facilitate the NoCs incurs minimal overhead as long as the wires stay on-chip. On-chip buffer

area has become the more scarce resource. If virtual networks are used, the increased buffer

space due to sharing and the logic complexity to handle virtual networks can closely resemble

to having a separate physical NoC. Intel and Tilera opted for separate physical NoCs for the

same reasons. Yoon et al’s work provides a comprehensive trade-off analysis [172]. When we
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apply the analysis from [172] to fit the parameters in our work, the power and area overhead of

having two physical NoCs versus one NoC are 7% and 6%, respectively.

11.3.2.2 Probes at routers and security engine

Hardware implementations for probes collecting data at routers and the SE have been

explored in several prior work [101, 222]. Fiorin et al. [101] utilized probes attached to the

network interfaces to collect data and send to a central processing element to detect DoS

attacks. The runtime NoC monitoring and debugging framework proposed in [222] also used

a similar setup where event related information is gathered at NoC routers and sent to a

central unit for processing. Our security mechanism is built using a similar architecture. In our

framework, the probes are event triggered on flit arrival. The probes consist of a sniffer, an

event generator and an interface to the Service NoC. The sniffer extracts the features from flits

and sends to the event generator to create the timestamped messages. The network interface

then packetizes the messages and sends to the SE via the Service NoC. The SE completes

feature engineering and combines the engineered and extracted features to construct the final

feature vectors. Previous work performed detailed overhead analysis and reported minimal

area overhead, for example, the probes consumed 0.05mm2 compared to a 0.26mm2 router

area when synthesized with 0.13 micron technology [222]. Our overhead analysis is consistent

with [222].

11.4 Experiments

This section is organized as follows. First, we describe our experimental setup (Section 11.4.1).

Next, we explore several machine learning models to identify the best performing one and show

why gradient boosting is the best choice (Section 11.4.2). Then, we rank feature importance

according to the selected model and eliminate low priority features in an attempt to find the

optimum trade-off between the number of features and model accuracy (Section 11.4.3).

Finally, we show how our ML-based DoS attack detection mechanism performs across several

training and testing configurations by exploring model accuracy for all the test cases in

Table 11-2 (Section 11.4.4).
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11.4.1 Experimental Setup

Following the realistic architecture model proposed in [153], the 4 × 4 mesh NoC was

modeled using the “GARNET2.0” framework [139] that is integrated with the gem5 [18]

cycle-accurate full-system simulator. The NoC model was implemented using X-Y routing with

wormhole switching, 3-stage router pipeline (buffer write, route compute + virtual channel

allocation + switch allocation, and link traversal) and 4 virtual channel buffers per input port.

Each IP was modeled as a processor core executing a given task at 1GHz with a private L1

cache. Processor cores used the NoC for memory operations as outlined in Section 11.2. The

four memory controllers attached to four boundary nodes of the NoC provided the interface to

off-chip memory. The address space was shared equally between the memory controllers. Four

benchmarks from the SPLASH-2 benchmark suite [142] (FFT, RADIX, FMM, LU) were used

as application instances.

During normal operation, n IPs out of the 16 IPs in the 4 × 4 mesh, were chosen

at random to run an instance of the benchmark (active IPs). To model the DoS attack

scenario, an IP that did not run an instance of the benchmark injects memory request

packets to the four memory controllers to cause performance degradation. Figure 11-2

shows one configuration of the random active, idle and malicious IP placement where n = 2. A

complete set of training and testing configurations are listed in Table 11-2. Iteration ID (IID) 1

indicates that the model has been trained with two datasets: i) normal execution scenario with

applications running on IPs 0 and 15 (N-0-15), and ii) attack scenario with an attacker at IP

1 launching a DoS attack while applications are running on IPs 0 and 15 (N-0-15-A-1). The

trained model has been tested with three attack scenarios: i) N-0-15-A-7, ii) N-0-15-A-11, and

iii) N-0-15-A-12. The IP numbers correspond to the node numbers given in Figure 11-1.

11.4.2 Machine Learning Model Comparison

To identify which ML model performs the best for our given architecture and threat

models, we compared the performance of 12 ML models - Naive Bayes Classifer (NBC),

Logistic Regression (LRN), 2-Layer Neural Network (2NN), 3-Layer Neural Network (3NN),
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Table 11-2. Train and test configurations
Iteration ID (IID) Train: Normal Train: Attack Test: Attack
1 N-0-15 N-0-15-A-1 N-0-15-A-7

N-0-15-A-11
N-0-15-A-12

2 N-0-15 N-0-15-A-1 N-0-15-A-7
N-0-15 N-0-15-A-11 N-0-15-A-12
N-0-9 N-0-9-A-1 N-0-9-A-7
N-0-9 N-0-9-A-11 N-0-9-A-12
N-0-6 N-0-6-A-1 N-0-6-A-7
N-0-6 N-0-6-A-11 N-0-6-A-12
N-0-4 N-0-4-A-1 N-0-4-A-7
N-0-4 N-0-4-A-11 N-0-4-A-12

3 N-0-6-9-15 N-0-6-9-15-A-1-11 N-0-6-9-15-A-1-7
N-0-6-9-15-A-7-11
N-0-6-9-15-A-11-12
N-0-6-9-15-A-7-12

4-Layer Neural Network (4NN), 5-Layer Neural Network (5NN), 6-Layer Neural Network

(6NN), K-Neighbors Classifier (KNN), LightGBM Classifier (LGB), Decision Tree Classifier

(DCT), Random Forest Classifier (RFC), and XGBoost Classifier (XGB). Each model was

trained using the training dataset of IID 2. Figure 11-5 shows training accuracy and validation

accuracy measured using an 80:20 training:validation split from the dataset at router 0

(r0). The model comparison results at other routers manifested a similar trend (omitted

from Figure 11-5 for clarity). As predicted in Section 11.2, non-linear ML models perform

better than linear models with XGB showing the best results. XGBoost is an algorithm based

on gradient boosting machines, that is optimized for parallel tree boosting with a better

performance and faster execution speed on tabular data.

To evaluate the selected XGB model further, we use cross validation, which is a

resampling process used to evaluate the performance of a trained ML model. “KFold”

cross validation shuffles the dataset and splits it into k subsets, then trains on k − 1 and

evaluates on the other set iteratively (untill each subset is used as the test set). In contrast,

“StratifiedKFold” cross validation shuffles the dataset and splits it into k subsets by class and

uses a subset from each class in the test set emulating a representation of the entire dataset in
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Figure 11-5. ML model performance comparison using IID 2 training dataset.

each fold for both training and validation. We use StratifiedKFold cross validation since it gives

a better representation over the entire dataset. Results for 10 folds of StratifiedKFold cross

validation is shown in Table 11-3. The results generated by cross validation confirms that the

model is less biased, performing well in unseen data and not overfitting. Since our exploration

indicated that XGB performs best in the given scenario, we use XGB as the ML model for our

DoS attack detection method.

Table 11-3. Validation results of the trained XGBoost model using StratifiedKFold cross
validation.

11.4.3 Feature Importance

While using more features can certainly increase model accuracy, extracting redundant

features from NoC traffic can lead to unnecessary performance and power overhead. Therefore,

we eliminate features that show the least importance for the decision making process of the

ML model-XGB. Table 11-4 shows the feature importance rank of each feature for the XGB

model trained at each router for IID 2 dataset. Since each router runs a model trained from
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the data extracted at that particular router, the feature importance rank slightly changes from

router to router. However, the overall trend remains consistent where the highlighted features

are the least used. Therefore, for the rest of the exploration, we eliminate the highlighted

features when training and testing the accuracy of our DoS attack detection mechanism.

Table 11-4. Feature importance rank for each feature at each router with least important
features highlighted.

11.4.4 DoS Attack Detection Accuracy

With the selected model and features, in this section, we evaluate the accuracy of our

DoS attack detection method. As outlined in Section 11.3, each model outputs the attack

probability independently for a given time window τj. The overall attack probability during τj

(Pj) is calculated according to Equation 11-1. Figure 11-5 and Figure 11-6 show excerpts from

results generated during an attack (IID 2 and test case N-0-15-A-12) and a normal (IID 2 and

test case N-0-15) scenario, respectively. Each time window is fixed at 1000 cycles (τj = 1000).

The threshold for inferring attacks from Pj is set to 0.5 (λ = 0.5) since an attack scenario
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should give probabilities close to 1 whereas in a normal scenario, the probabilities should be

close to 0. Columns “r0” through “r15” in Figure 11-5 and Figure 11-6 show the probabilities

outputted by models corresponding to each router. Column “Pj” shows the overall probability

for time window τj calculated using Equation 11-1 and the “Status” column indicates the final

decision of the ML model for each τj. The two excerpts show 100% accuracy since all the time

windows are classified accurately. However, each test case consists of more than 3000 such

time windows (3280 in the complete table corresponding to Table 11-5), which is related to the

application execution time. The DoS attack detection accuracy is calculated as the portion of

accurately classified time windows.

Table 11-5. Results of attack scenario for IID 2 and test case N-0-15-A-12.

Table 11-6. Results of normal scenario IID 2 and test case N-0-15.
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Figure 11-6 shows DoS attack detection accuracy for all test cases shown in Table 11-2.

In IID 1, the model is trained with only two datasets (N-0-15 and N-0-15-A-1) and tested with

varying MIP locations (7, 11 and 12). Even though the number of training datasets is low, the

ML model still achieves an accuracy of ∼90%. As the number of training datasets is increased,

the model achieves very high accuracy (∼99%), even when tested with MIP locations which

the model was not trained on. Training and testing datasets in IID 3 corresponds to four

applications (compared to two applications in IID 1 and IID 2) running on the SoC while

two IPs are assumed to be malicious. Results show that our approach is capable of detecting

DoS attacks with high accuracy irrespective of the number or the placement of MIPs and the

number of applications running on the SoC. High attack detection accuracy is achieved not

only if active and malicious IP placements match the training configurations, but also in new

MIP placements, which the model has not been trained on.

Figure 11-6. DoS attack detection accuracy for all test cases in Table 11-2.

To explore the behavior of our method across different applications, we trained the model

on IID 1 with the FFT benchmark and tested on test case N-0-15-A-7 with LU, FMM and

RADIX running as application instances. Results in Figure 11-7 show that even though the
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model is not trained on a particular application (traffic pattern), it is capable of detecting

attacks with high accuracy.

Figure 11-7. DoS attack detection accuracy across different applications for IID 2, test case
N-0-15-A-7.

11.5 Summary

In this chapter, I introduced a machine learning based DoS attack detection mechanism

for NoC-based SoCs. I considered a widely explored threat model where a malicious IP floods

the NoC with a large number of packets causing deadline violations, performance degradation

or reduced energy efficiency. Unlike existing DoS attack detection methods that rely on highly

predictable NoC traffic patterns and specific use cases, my approach is capable of detecting

DoS attacks with high accuracy in the presence of unpredictable NoC traffic patterns caused

by diverse applications with input variations and application mappings. Experimental results

demonstrated that non-linear models, such as gradient boosting, produce the best results for

the given architecture and threat models. My observations from ML model performance and

feature importance reveal that the key to achieving high accuracy is to carefully craft features

out of the data extracted from NoC traffic. My approach is capable of detecting DoS attacks

with high accuracy in a wide variety of scenarios.
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CHAPTER 12
CONCLUSIONS AND FUTURE WORK

12.1 Conclusions

In this dissertation, I have presented a comprehensive investigation of security vulnerabilities

and countermeasures in NoC-based SoCs. My work first introduced an accurate NoC model

(Chapter 3) to enable exploration of optimization opportunities (Chapter 4) as well as

realistic evaluation of lightweight security countermeasures. Next, I proposed several security

countermeasures that fall into the broad categories of design-for-security and runtime mon-

itoring solutions. Specifically, this dissertation made the following contributions. Chapter 5

presented a lightweight incremental encryption scheme that can provide confidentiality of NoC

packets. Chapter 6 proposed a lightweight encryption and anonymous routing mechanism in

NoC-based SoCs. Chapter 7 presented a framework for real-time detection and localization

of DoS attacks. In Chapter 8, I proposed a trust-aware routing protocol in the presence of

malicious IPs. Chapter 9 presented a reconfigurable security architecture that can be tuned

based on use-case scenarios as well as changing circumstances. In Chapter 10, I proposed a

digital watermarking based malicious IP detection method to address eavesdropping attacks.

Finally, Chapter 11 presented a DoS attack detection method using machine learning.

12.2 Future Research Directions

This dissertation addressed security challenges in NoC-based SoC architectures. The

future giga and tera-scale architectures can impose new challenges and opportunities. The

introduction of emerging NoC technologies such as wireless and optical have already shown

promising results. However, it is a major challenge to develop low-cost and flexible security

solutions with minimal impact on area, performance and energy. The work proposed in this

dissertation can be extended to the following directions.

• Security and privacy analytics using machine learning: The intersection of machine
learning and security has not been given adequate attention in an NoC context. Apart
from a few runtime monitoring techniques that used machine learning concepts, this
area is still in its infancy. Tools such as Cisco Encrypted Traffic Analytics [223] utilize
machine learning to detect threats by observing traffic behavior and unencrypted packet
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header information. It has shown promising results in the computer networks domain.
Models that can be trained offline and detect threats during runtime has the potential to
provide security guarantees, especially for real-time and safety-critical applications.

• Assertion based security: The two main techniques used to validate NoC packets and
components so far are formal verification and simulation based techniques. While
formal methods can provide security guarantees, the complexity of NoC designs
make the exploration space grow exponentially. On the other hand, simulation based
techniques cannot provide 100% security guarantees. Assertion based security validation
is considered to be a middle ground that uses best of both worlds. Assertions have
been extensively used for functional validation. The applicability of assertions to verify
non-functional requirements (e.g., to monitor NoC security vulnerabilities) is still an open
problem for future investigation.

• Security of emerging NoC architectures: The increased usage of emerging NoC
technologies have motivated researchers to explore security in optical, wireless and 3D
NoC architectures. The applicability of the proposed ideas to emerging NoC technologies
is an interesting future research direction. The inherent characteristics of emerging
NoC technologies can create unique security vulnerabilities as well. For example,
wireless NoCs inherently use broadcast message to communicate between nodes. In
such a scenario, eavesdropping attacks can become more prominent. Therefore, an
evaluation of what modifications (if any) are needed to the proposed approaches to fit
the characteristics of each domain is worth exploring.

• Seamless integration of security mechanisms: While existing literature has discussed
different threat models, it is naive to think that mitigating one particular type of threat
will secure the SoC. For example, defending against eavesdropping attacks does not
guarantee that eavesdropping is the only possible attack in that particular architecture.
Developing security mechanisms for different threat models is a promising starting point.
However, seamless integration of a suite of security mechanisms is required to secure
the hardware root of trust. For example, Intel SGX (Software Guard Extensions) [224]
provides hardware based software protection techniques. Future research needs to explore
how to integrate several NoC security mechanisms and ensure their inter-operability in
hardware, firmware and software layers in order to enable a truly secure cuberspace.
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