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1 Introduction
The Gaussian or normal distribution is one of the most widelyused in statistics. Estimating its parameters using
Bayesian inference and conjugate priors is also widely used. The use of conjugate priors allows all the results to be
derived in closed form. Unfortunately, different books usedifferent conventions on how to parameterize the various
distributions (e.g., put the prior on the precision or the variance, use an inverse gamma or inverse chi-squared, etc),
which can be very confusing for the student. In this report, we summarize all of the most commonly used forms. We
provide detailed derivations for some of these results; therest can be obtained by simple reparameterization. See the
appendix for the definition the distributions that are used.

2 Normal prior
Let us consider Bayesian estimation of the mean of a univariate Gaussian, whose variance is assumed to be known.
(We discuss the unknown variance case later.)

2.1 Likelihood

Let D = (x1, . . . , xn) be the data. The likelihood is

p(D|µ, σ2) =

n
∏

i=1

p(xi|µ, σ2) = (2πσ2)−n/2 exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

(1)

Let us define the empirical mean and variance

x =
1

n

n
∑

i=1

xi (2)

s2 =
1

n

n
∑

i=1

(xi − x)2 (3)

(Note that other authors (e.g., [GCSR04]) defines2 = 1
n−1

∑n
i=1(xi − x)2.) We can rewrite the term in the exponent

as follows
∑

i

(xi − µ)2 =
∑

i

[(xi − x) − (µ − x)]2 (4)

=
∑

i

(xi − x)2 +
∑

i

(x − µ)2 − 2
∑

i

(xi − x)(µ − x) (5)

= ns2 + n(x − µ)2 (6)

since

∑

i

(xi − x)(µ − x) = (µ − x)

(

(
∑

i

xi) − nx

)

= (µ − x)(nx − nx) = 0 (7)

∗Thanks to Hoyt Koepke for proof reading.

1



Hence

p(D|µ, σ2) =
1

(2π)n/2

1

σn
exp

(

− 1

2σ2

[

ns2 + n(x − µ)2
]

)

(8)

∝
(

1

σ2

)n/2

exp
(

− n

2σ2
(x − µ)2

)

exp

(

−ns2

2σ2

)

(9)

If σ2 is a constant, we can write this as

p(D|µ) ∝ exp
(

− n

2σ2
(x − µ)2

)

∝ N (x|µ,
σ2

n
) (10)

since we are free to drop constant factors in the definition ofthe likelihood. Thusn observations with varianceσ2 and
meanx is equivalent to 1 observationx1 = x with varianceσ2/n.

2.2 Prior

Since the likelihood has the form

p(D|µ) ∝ exp
(

− n

2σ2
(x − µ)2

)

∝ N (x|µ,
σ2

n
) (11)

thenatural conjugate prior has the form

p(µ) ∝ exp

(

− 1

2σ2
0

(µ − µ0)
2

)

∝ N (µ|µ0, σ
2
0) (12)

(Do not confuseσ2
0 , which is the variance of the prior, withσ2, which is the variance of the observation noise.) (A

natural conjugate prior is one that has the same form as the likelihood.)

2.3 Posterior

Hence the posterior is given by

p(µ|D) ∝ p(D|µ, σ)p(µ|µ0, σ
2
0) (13)

∝ exp

[

− 1

2σ2

∑

i

(xi − µ)2

]

× exp

[

− 1

2σ2
0

(µ − µ0)
2

]

(14)

= exp

[

−1

2σ2

∑

i

(x2
i + µ2 − 2xiµ) +

−1

2σ2
0

(µ2 + µ2
0 − 2µ0µ)

]

(15)

Since the product of two Gaussians is a Gaussian, we will rewrite this in the form

p(µ|D) ∝ exp

[

−µ2

2

(

1

σ2
0

+
n

σ2

)

+ µ

(

µ0

σ2
0

+

∑

i xi

σ2

)

−
(

µ2
0

2σ2
0

+

∑

i x2
i

2σ2

)]

(16)

def
= exp

[

− 1

2σ2
n

(µ2 − 2µµn + µ2
n)

]

= exp

[

− 1

2σ2
n

(µ − µn)2
]

(17)

Matching coefficients ofµ2, we findσ2
n is given by

−µ2

2σ2
n

=
−µ2

2

(

1

σ2
0

+
n

σ2

)

(18)

1

σ2
n

=
1

σ2
0

+
n

σ2
(19)

σ2
n =

σ2σ2
0

nσ2
0 + σ2

=
1

n
σ2 + 1

σ2
0

(20)
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Figure 1: Sequentially updating a Gaussian mean starting with a priorcentered onµ0 = 0. The true parameters areµ∗ = 0.8
(unknown),(σ2)∗ = 0.1 (known). Notice how the data quickly overwhelms the prior, and how the posterior becomes narrower.
Source: Figure 2.12 [Bis06].

Matching coefficients ofµ we get

−2µµn

−2σ2
n

= µ

(∑n
i=1 xi

σ2
+

µ0

σ2
0

)

(21)

µn

σ2
n

=

∑n
i=1 xi

σ2
+

µ0

σ2
0

(22)

=
σ2

0nx + σ2µ0

σ2σ2
0

(23)

Hence

µn =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x = σ2
n

(

µ0

σ2
0

+
nx

σ2

)

(24)

This operation of matching first and second powers ofµ is calledcompleting the square.
Another way to understand these results is if we work with theprecision of a Gaussian, which is 1/variance (high

precision means low variance, low precision means high variance). Let

λ = 1/σ2 (25)

λ0 = 1/σ2
0 (26)

λn = 1/σ2
n (27)

Then we can rewrite the posterior as

p(µ|D, λ) = N (µ|µn, λn) (28)

λn = λ0 + nλ (29)

µn =
xnλ + µ0λ0

λn
= wµML + (1 − w)µ0 (30)
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Figure 2: Bayesian estimation of the mean of a Gaussian from one sample. (a) Weak priorN (0, 10). (b) Strong priorN (0, 1). In
the latter case, we see the posterior mean is “shrunk” towards the prior mean, which is 0. Figure produced bygaussBayesDemo.

wherenx =
∑n

i=1 xi andw = nλ
λn

. The precision of the posteriorλn is the precision of the priorλ0 plus one
contribution of data precisionλ for each observed data point. Also, we see the mean of the posterior is a convex
combination of the prior and the MLE, with weights proportional to the relative precisions.

To gain further insight into these equations, consider the effect of sequentially updating our estimate ofµ (see
Figure 1). After observing one data pointx (son = 1), we have the following posterior mean

µ1 =
σ2

σ2 + σ2
0

µ0 +
σ2

0

σ2 + σ2
0

x (31)

= µ0 + (x − µ0)
σ2

0

σ2 + σ2
0

(32)

= x − (x − µ0)
σ2

σ2 + σ2
0

(33)

The first equation is a convex combination of the prior and MLE. The second equation is the prior mean ajusted
towards the datax. The third equation is the datax adjusted towads the prior mean; this is calledshrinkage. These
are all equivalent ways of expressing the tradeoff between likelihood and prior. See Figure 2 for an example.

2.4 Posterior predictive

The posterior predictive is given by

p(x|D) =

∫

p(x|µ)p(µ|D)dµ (34)

=

∫

N (x|µ, σ2)N (µ|µn, σ2
n)dµ (35)

= N (x|µn, σ2
n + σ2) (36)

This follows from general properties of the Gaussian distribution (see Equation 2.115 of [Bis06]). An alternative proof
is to note that

x = (x − µ) + µ (37)

x − µ ∼ N (0, σ2) (38)

µ ∼ N (µn, σ2
n) (39)

SinceE[X1 + X2] = E[X1] + E[X2] and Var[X1 + X2] = Var [X1] + Var [X2] if X1, X2 are independent, we have

X ∼ N (µn, σ2
n + σ2) (40)
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since we assume that the residual error is conditionally independent of the parameter. Thus the predictive variance is
the uncertainty due to the observation noiseσ2 plus the uncertainty due to the parameters,σ2

n.

2.5 Marginal likelihood

Writing m = µ0 andτ2 = σ2
0 for the hyper-parameters, we can derive the marginal likelihood as follows:

` = p(D|m, σ2, τ2) =

∫

[
n
∏

i=1

N (xi|µ, σ2)]N (µ|m, τ2)dµ (41)

=
σ

(
√

2πσ)n
√

nτ2 + σ2
exp

(

−
∑

i x2
i

2σ2
− m2

2τ2

)

exp

(

τ2n2x2

σ2 + σ2m2

τ2 + 2nxm

2(nτ2 + σ2)

)

(42)

The proof is below, based on the on the appendix of [DMP+06].
We have

` = p(D|m, σ2, τ2) =

∫

[
n
∏

i=1

N (xi|µ, σ2)]N (µ|m, τ2)dµ (43)

=
1

(σ
√

2π)n(τ
√

2π)

∫

exp

(

− 1

2σ2

∑

i

(xi − µ)2 − 1

2τ2
(µ − m)2

)

dµ (44)

Let us defineS2 = 1/σ2 andT 2 = 1/τ2. Then

` =
1

(
√

2π/S)n(
√

2π/T )

∫

exp

(

−S2

2
(
∑

i

x2
i + nµ2 − 2µ

∑

i

xi) −
T 2

2
(µ2 + m2 − 2µm)

)

dµ (45)

= c

∫

exp

(

− 1
2 (S2nµ2 − 2S2

∑

i

xi + T 2µ2 − 2T 2µm)

)

dµ (46)

where

c =
exp

(

− 1
2 (S2

∑

i x2
i + T 2m2)

)

(
√

2π/S)n(
√

2π/T )
(47)

So

` = c

∫

exp

[

− 1
2 (S2n + T 2)

(

µ2 − 2µ
S2
∑

i xi + T 2m

S2n + T 2

)]

dµ (48)

= c exp

(

(S2nx + T 2m)2

2(S2n + T 2)

)
∫

exp

[

− 1
2 (S2n + T 2)

(

µ − S2nx + T 2m

S2n + T 2

)2
]

dµ (49)

= c exp

(

(S2nx + T 2m)2

2(S2n + T 2)

)
√

2π√
S2n + T 2

(50)

=
exp

(

− 1
2 (S2

∑

i x2
i + T 2m2)

)

(
√

2π/S)n(
√

2π/T )
exp

(

(S2nx + T 2m)2

2(S2n + T 2)

)
√

2π√
S2n + T 2

(51)

Now
1

√

(2π)/T

√
2π√

S2n + T 2
=

σ√
Nτ2 + σ2

(52)

and

(nx
σ2 + m

τ2 )2

2( n
σ2 + 1

τ2 )
=

(nxτ2 + mσ2)2

2σ2τ2(nτ2 + σ2)
(53)

=
n2x2τ2/σ2 + σ2m2/τ2 + 2nxm

2(nτ2 + σ2)
(54)
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So

p(D) =
σ

(
√

2πσ)n
√

nτ2 + σ2
exp

(

−
∑

i x2
i

2σ2
− m2

2τ2

)

exp

(

τ2n2x2

σ2 + σ2m2

τ2 + 2nxm

2(nτ2 + σ2)

)

(55)

To check this, we should ensure that we get

p(x|D) =
p(x, D)

p(D)
= N (x|µn, σ2

n + σ2) (56)

(To be completed)

2.6 Conditional prior p(µ|σ2)

Note that the previous prior is not, strictly speaking, conjugate, since it has the formp(µ) whereas the posterior has
the formp(µ|D, σ), i.e.,σ occurs in the posterior but not the prior. We can rewrite the prior in conditional form as
follows

p(µ|σ) = N (µ|µ0, σ
2/κ0) (57)

This means that ifσ2 is large, the variance on the prior ofµ is also large. This is reasonable sinceσ2 defines the
measurement scale ofx, so the prior belief aboutµ is equivalent toκ0 observations ofµ0 on this scale. (Hence a
noninformative prior isκ0 = 0.) Then the posterior is

p(µ|D) = N (µ|µn, σ2/κn) (58)

whereκn = κ0 + n. In this form, it is clear thatκ0 plays a role analogous ton. Henceκ0 is theequivalent sample
size of the prior.

2.7 Reference analysis

To get an uninformative prior, we just set the prior varianceto infinity to simulate a uniform prior onµ.

p(µ) ∝ 1 = N (µ|·,∞) (59)

p(µ|D) = N (µ|x, σ2/n) (60)

3 Normal-Gamma prior

We will now suppose that both the meanm and the precisionλ = σ−2 are unknown. We will mostly follow the
notation in [DeG70, p169].

3.1 Likelihood

The likelihood can be written in this form

p(D|µ, λ) =
1

(2π)n/2
λn/2 exp

(

−λ

2

n
∑

i=1

(xi − µ)2

)

(61)

=
1

(2π)n/2
λn/2 exp

(

−λ

2

[

n(µ − x)2 +

n
∑

i=1

(xi − x)2

])

(62)

3.2 Prior

The conjugate prior is thenormal-Gamma:

NG(µ, λ|µ0, κ0, α0, β0)
def
= N (µ|µ0, (κ0λ)−1)Ga(λ|α0, rate= β0) (63)

=
1

ZNG(µ0, κ0, α0, β0)
λ

1
2 exp(−κ0λ

2
(µ − µ0)

2)λα0−1e−λβ0 (64)

=
1

ZNG
λα0−

1
2 exp

(

−λ

2

[

κ0(µ − µ0)
2 + 2β0

]

)

(65)

ZNG(µ0, κ0, α0, β0) =
Γ(α0)

βα0
0

(

2π

κ0

)

1
2

(66)
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Figure 3: Some Normal-Gamma distributions. Produced byNGplot2.

See Figure 3 for some plots.
We can compute the prior marginal onµ as follows:

p(µ) ∝
∫ ∞

0

p(µ, λ)dλ (67)

=

∫ ∞

0

λα0+
1
2−1 exp

(

−λ(β0 +
κ0(µ − µ0)

2

2
)

)

dλ (68)

We recognize this as an unnormalizedGa(a = α0 + 1
2 , b = β0 + κ0(µ−µ0)2

2 ) distribution, so we can just write down

p(µ) ∝ Γ(a)

ba
(69)

∝ b−a (70)

= (β0 +
κ0

2
(µ − µ0)

2)−α0−
1
2 (71)

= (1 +
1

2α0

α0κ0(µ − µ0)
2

β0
)−(2α0+1)/2 (72)

which we recognize as as aT2α0(µ|µ0, β0/(α0κ0)) distribution.
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3.3 Posterior

The posterior can be derived as follows.

p(µ, λ|D) ∝ NG(µ, λ|µ0, κ0, α0, β0)p(D|µ, λ) (73)

∝ λ
1
2 e−(κ0λ(µ−µ0)2)/2λα0−1e−β0λ × λn/2e−

λ
2

Pn
i=1(xi−µ)2 (74)

∝ λ
1
2 λα0+n/2−1e−β0λe−(λ/2)[κ0(µ−µ0)2+

P

i(xi−µ)2] (75)

From Equation 6 we have
n
∑

i=1

(xi − µ)2 = n(µ − x)2 +

n
∑

i=1

(xi − x)2 (76)

Also, it can be shown that

κ0(µ − µ0)
2 + n(µ − x)2 = (κ0 + n)(µ − µn)2 +

κ0n(x − µ0)
2

κ0 + n
(77)

where

µn =
κ0µ0 + nx

κ0 + n
(78)

Hence

κ0(µ − µ0)
2 +

∑

i

(xi − µ)2 = κ0(µ − µ0)
2 + n(µ − x)2 +

∑

i

(xi − x)2 (79)

= (κ0 + n)(µ − µn)2 +
κ0n(x − µ0)

2

κ0 + n
+
∑

i

(xi − x)2 (80)

So

p(µ, λ|D) ∝ λ
1
2 e−(λ/2)(κ0+n)(µ−µn)2 (81)

×λα0+n/2−1e−β0λe−(λ/2)
P

i
(xi−x)2e−(λ/2)

κ0n(x−µ0)2

κ0+n (82)

∝ N (µ|µn, ((κ + n)λ)−1) × Ga(λ|α0 + n/2, βn) (83)

where

βn = β0 + 1
2

n
∑

i=1

(xi − x)2 +
κ0n(x − µ0)

2

2(κ0 + n)
(84)

In summary,

p(µ, λ|D) = NG(µ, λ|µn, κn, αn, βn) (85)

µn =
κ0µ0 + nx

κ0 + n
(86)

κn = κ0 + n (87)

αn = α0 + n/2 (88)

βn = β0 + 1
2

n
∑

i=1

(xi − x)2 +
κ0n(x − µ0)

2

2(κ0 + n)
(89)

We see that the posterior sum of squares,βn, combines the prior sum of squares,β0, the sample sum of squares,
∑

i(xi − x)2, and a term due to the discrepancy between the prior mean and sample mean. As can be seen from
Figure 3, the range of probable values forµ andσ2 can be quite large even after for moderaten. Keep this picture in
mind whenever someones claims to have “fit a Gaussian” to their data.
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3.3.1 Posterior marginals

The posterior marginals are (using Equation 72)

p(λ|D) = Ga(λ|αn, βn) (90)

p(µ|D) = T2αn
(µ|µn, βn/(αnκn)) (91)

3.4 Marginal likelihood

To derive the marginal likelihood, we just dererive the posterior, but this time we keep track of all the constant factors.
LetNG′(µ, λ|µ0, κ0, α0, β0) denote an unnormalized Normal-Gamma distribution, and letZ0 = ZNG(µ0, κ0, α0, β0)
be the normalization constant of the prior; similarly letZn be the normalization constant of the posterior. Let
N ′(xi|µ, λ) denote an unnormalized Gaussian with normalization constant 1/

√
2π. Then

p(µ, λ|D) =
1

p(D)

1

Z0
NG′(µ, λ|µ0, κ0, α0, β0)

(

1

2π

)n/2
∏

i

N ′(xi|µ, λ) (92)

TheNG′ andN ′ terms combine to make the posteriorNG′:

p(µ, λ|D) =
1

Zn
NG′(µ, λ|µn, κn, αn, βn) (93)

Hence

p(D) =
Zn

Z0
(2π)−n/2 (94)

=
Γ(αn)

Γ(α0)

βα0
0

βαn
n

(
κ0

κn
)
1
2 (2π)−n/2 (95)

3.5 Posterior predictive

The posterior predictive form new observations is given by

p(Dnew|D) =
p(Dnew, D)

p(D)
(96)

=
Zn+m

Z0
(2π)−(n+m)/2 Z0

Zn
(2π)n/2 (97)

=
Zn+m

Zn
(2π)−m/2 (98)

=
Γ(αn+m)

Γ(αn)

βαn
n

β
αn+m

n+m

(

κn

κn+m

)

1
2

(2π)−m/2 (99)

In the special case thatm = 1, it can be shown (see below) that this is a T-distribution

p(x|D) = t2αn
(x|µn,

βn(κn + 1)

αnκn
) (100)

To derive them = 1 result, we proceed as follows. (This proof is by Xiang Xuan, and is based on [GH94, p10].)
Whenm = 1, the posterior parameters are

αn+1 = αn + 1/2 (101)

κn+1 = κn + 1 (102)

βn+1 = βn +
1

2

1
∑

i=1

(xi − x̄)2 +
κn(x̄ − µn)2

2(κn + 1)
(103)

9



Use the fact that whenm = 1, we havex1 = x̄ (since there is only one observation), hence we have1
2

∑1
i=1(xi−x̄)2 =

0. Let’s usex denoteDnew, thenβn+1 is

βn+1 = βn +
κn(x − µn)2

2(κn + 1)
(104)

Substituting, we have the following,

p(Dnew|D) =
Γ(αn+1)

Γ(αn)

βαn
n

β
αn+1

n+1

(

κn

κn+1

)
1
2

(2π)−1/2 (105)

=
Γ(αn + 1/2)

Γ(αn)

βαn
n

(βn + κn(x−µn)2

2(κn+1) )αn+1/2

(

κn

κn + 1

)
1
2

(2π)−1/2 (106)

=
Γ((2αn + 1)/2)

Γ((2αn)/2)





βn

βn + κn(x−µn)2

2(κn+1)





αn+1/2

1

β
1
2
n

(

κn

2(κn + 1)

)
1
2

π)−1/2 (107)

=
Γ((2αn + 1)/2)

Γ((2αn)/2)





1

1 + κn(x−µn)2

2βn(κn+1)





αn+1/2
(

κn

2βn(κn + 1)

)
1
2

(π)−1/2 (108)

= (π)−1/2 Γ((2αn + 1)/2)

Γ((2αn)/2)

(

αnκn

2αnβn(κn + 1)

)
1
2
(

1 +
αnκn(x − µn)2

2αnβn(κn + 1)

)−(2αn+1)/2

(109)

Let Λ = αnκn

βn(κn+1) , then we have,

p(Dnew|D) = (π)−1/2 Γ((2αn + 1)/2)

Γ((2αn)/2)

(

Λ

2αn

)
1
2
(

1 +
Λ(x − µn)2

2αn

)−(2αn+1)/2

(110)

We can see this is a T-distribution with center atµn, precisionΛ = αnκn

βn(κn+1) , and degree of freedom2αn.

3.6 Reference analysis

The reference prior for NG is

p(m, λ) ∝ λ−1 = NG(m, λ|µ = ·, κ = 0, α = − 1
2 , β = 0) (111)

So the posterior is

p(m, λ|D) = NG(µn = x, κn = n, αn = (n − 1)/2, βn = 1
2

n
∑

i=1

(xi − x)2) (112)

So the posterior marginal of the mean is

p(m|D) = tn−1(m|x,

∑

i(xi − x)2

n(n − 1)
) (113)

which corresponds to the frequentist sampling distribution of the MLE µ̂. Thusin this case, the confidence interval
and credible interval coincide.

4 Gamma prior
If µ is known, and onlyλ is unknown (e.g., when implementing Gibbs sampling), we canuse the following results,
which can be derived by simplifying the results for the Normal-NG model.
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4.1 Likelihood

p(D|λ) ∝ λn/2 exp

(

−λ

2

n
∑

i=1

(xi − µ)2

)

(114)

4.2 Prior

p(λ) = Ga(λ|α, β) ∝ λα−1e−λβ (115)

4.3 Posterior

p(λ|D) = Ga(λ|αn, βn) (116)

αn = α + n/2 (117)

βn = β + 1
2

n
∑

i=1

(xi − µ)2 (118)

4.4 Marginal likelihood

To be completed.

4.5 Posterior predictive

p(x|D) = t2αn
(x|µ, σ2 = βn/αn) (119)

4.6 Reference analysis

p(λ) ∝ λ−1 = Ga(λ|0, 0) (120)

p(λ|D) = Ga(λ|n/2, 1
2

m
∑

i=1

(xi − µ)2) (121)

5 Normal-inverse-chi-squared (NIX) prior

We will see that the natural conjugate prior forσ2 is the inverse-chi-squared distribution.

5.1 Likelihood

The likelihood can be written in this form

p(D|µ, σ2) =
1

(2π)n/2
(σ2)−n/2 exp

(

− 1

2σ2

[

n

n
∑

i=1

(xi − x)2 + n(x − µ)2

])

(122)

5.2 Prior

The normal-inverse-chi-squared prior is

p(µ, σ2) = NIχ2(µ0, κ0, ν0, σ
2
0) (123)

= N (µ|µ0, σ
2/κ0) × χ−2(σ2|ν0, σ

2
0) (124)

=
1

Zp(µ0, κ0, ν0, σ2
0)

σ−1(σ2)−(ν0/2+1) exp

(

− 1

2σ2
[ν0σ

2
0 + κ0(µ0 − µ)2]

)

(125)

Zp(µ0, κ0, ν0, σ
2
0) =

√

(2π)√
κ0

Γ(ν0/2)

(

2

ν0σ2
0

)ν0/2

(126)
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Figure 4: The NIχ2(µ0, κ0, ν0, σ
2

0) distribution. µ0 is the prior mean andκ0 is how strongly we believe this;σ2

0 is the prior
variance andν0 is how strongly we believe this. (a)µ0 = 0, κ0 = 1, ν0 = 1, σ2

0 = 1. Notice that the contour plot (underneath the
surface) is shaped like a “squashed egg”. (b) We increase thestrenght of our belief in the mean, so it gets narrower:µ0 = 0, κ0 =
5, ν0 = 1, σ2

0 = 1. (c) We increase the strenght of our belief in the variance, so it gets narrower:µ0 = 0, κ0 = 1, ν0 = 5, σ2

0 = 1.
(d) We strongly believe the mean and variance are 0.5:µ0 = 0.5, κ0 = 5, ν0 = 5, σ2

0 = 0.5. These plots were produced with
NIXdemo2.

See Figure 4 for some plots. The hyperparametersµ0 andσ2/κ0 can be interpreted as the location and scale ofµ, and
the hyperparametersu0 andσ2

0 as the degrees of freedom and scale ofσ2.
For future reference, it is useful to note that the quadraticterm in the prior can be written as

Q0(µ) = S0 + κ0(µ − µ0)
2 (127)

= κ0µ
2 − 2(κ0µ0)µ + (κ0µ

2
0 + S0) (128)

whereS0 = ν0σ
2
0 is the prior sum of squares.
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5.3 Posterior

(The following derivation is based on [Lee04, p67].) The posterior is

p(µ, σ2|D) ∝ N (µ|µ0, σ
2/κ0)χ

−2(σ2|ν0, σ
2
0)p(D|µ, σ2) (129)

∝
[

σ−1(σ2)−(ν0/2+1) exp

(

− 1

2σ2
[ν0σ

2
0 + κ0(µ0 − µ)2]

)]

(130)

×
[

(σ2)−n/2 exp

(

− 1

2σ2

[

ns2 + n(x − µ)2
]

)]

(131)

∝ σ−3(σ2)−(νn/2) exp

(

− 1

2σ2
[νnσ2

n + κn(µn − µ)2]

)

= NIχ2(µn, κn, νn, σ2
n) (132)

Matching powers ofσ2, we find

νn = ν0 + n (133)

To derive the other terms, we will complete the square. LetS0 = ν0σ
2
0 andSn = νnσ2

n for brevity. Grouping the
terms inside the exponential, we have

S0 + κ0(µ0 − µ)2 + ns2 + n(x − µ)2 = (S0 + κ0µ
2
0 + ns2 + nx2) + µ2(κ0 + n) − 2(κ0µ0 + nx)µ(134)

Comparing to Equation 128, we have

κn = κ0 + n (135)

κnµn = κ0µ0 + nx (136)

Sn + κnµ2
n = (S0 + κ0µ

2
0 + ns2 + nx2) (137)

Sn = S0 + ns2 + κ0µ
2
0 + nx2 − κnµ2

n (138)

One can rearrange this to get

Sn = S0 + ns2 + (κ−1
0 + n−1)−1(µ0 − x)2 (139)

= S0 + ns2 +
nκ0

κ0 + n
(µ0 − x)2 (140)

We see that the posterior sum of squares,Sn = νnσ2
n, combines the prior sum of squares,S0 = ν0σ

2
0 , the sample sum

of squares,ns2, and a term due to the uncertainty in the mean.
In summary,

µn =
κ0µ0 + nx

κn
(141)

κn = κ0 + n (142)

νn = ν0 + n (143)

σ2
n =

1

νn
(ν0σ

2
0 +

∑

i

(xi − x)2 +
nκ0

κ0 + n
(µ0 − x)2) (144)

The posterior mean is given by

E[µ|D] = µn (145)

E[σ2|D] =
νn

νn − 2
σ2

n (146)

The posterior mode is given by (Equation 14 of [BL01]):

mode[µ|D] = µn (147)

mode[σ2|D] =
νnσ2

n

νn − 1
(148)
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The modes of the marginal posterior are

mode[µ|D] = µn (149)

mode[σ2|D] =
νnσ2

n

νn + 2
(150)

5.3.1 Marginal posterior of σ2

First we integrate outµ, which is just a Gaussian integral.

p(σ2|D) =

∫

p(σ2, µ|D)dµ (151)

∝ σ−1(σ2)−(νn/2+1) exp

(

− 1

2σ2
[νnσ2

n]

)∫

exp
(

− κn

2σ2
(µn − µ)2]

)

dµ (152)

∝ σ−1(σ2)−(νn/2+1) exp

(

− 1

2σ2
[νnσ2

n]

)

σ
√

(2π)√
κn

(153)

∝ (σ2)−(νn/2+1) exp

(

− 1

2σ2
[νnσ2

n]

)

(154)

= χ−2(σ2|νn, σ2
n) (155)

5.3.2 Marginal posterior of µ

Let us rewrite the posterior as

p(µ, σ2|D) = Cφ−αφ−1 exp

(

− 1

2φ
[νnσ2

n + κn(µn − µ)2]

)

(156)

whereφ = σ2 andα = (νn + 1)/2. This follows since

σ−1(σ2)−(νn/2+1) = σ−1σ−νnσ−2 = φ− νn+1
2 φ−1 = φ−α−1 (157)

Now make the substitutions

A = νnσ2
n + κn(µn − µ)2 (158)

x =
A

2φ
(159)

dφ

dx
= −A

2
x−2 (160)

so

p(µ|D) =

∫

Cφ−(α+1)e−A/2φdφ (161)

= −(A/2)

∫

C(
A

2x
)−(α+1)e−xx−2dx (162)

∝ A−α

∫

xα−1e−xdx (163)

∝ A−α (164)

= (νnσ2
n + κn(µn − µ)2)−(νn+1)/2 (165)

∝
[

1 +
κn

νnσ2
n

(µ − µn)2
]−(νn+1)/2

(166)

∝ tνn
(µ|µn, σ2

n/κn) (167)
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5.4 Marginal likelihood

Repeating the derivation of the posterior, but keeping track of the normalization constants, gives the following.

p(D) =

∫ ∫

P (D|µ, σ2)P (µ, σ2)dµdσ2 (168)

=
Zp(µn, κn, νn, σ2

n)

Zp(µ0, κ0, ν0, σ2
0)

1

ZN
l

(169)

=

√
κ0√
κn

Γ(νn/2)

Γ(ν0/2)

(

ν0σ
2
0

2

)ν0/2(
2

νnσ2
n

)νn/2
1

(2π)(n/2)
(170)

=
Γ(νn/2)

Γ(ν0/2)

√

κ0

κn

(ν0σ
2
0)ν0/2

(νnσ2
n)νn/2

1

πn/2
(171)

5.5 Posterior predictive

p(x|D) =

∫ ∫

p(x|µ, σ2)p(µ, σ2|D)dµdσ2 (172)

=
p(x, D)

p(D)
(173)

=
Γ((νn + 1)/2)

Γ(νn/2)

√

κn

κn + 1

(νnσ2
n)νn/2

(νnσ2
n + κn

κn+1 (x − µn)2))(νn+1)/2

1

π1/2
(174)

=
Γ((νn + 1)/2)

Γ(νn/2)

(

κn

(κn + 1)πνnσ2
n

)
1
2
(

1 +
κn(x − µn)2

(κn + 1)νnσ2
n

)−(νn+1)/2

(175)

= tνn
(µn,

(1 + κn)σ2
n

κn
) (176)

5.6 Reference analysis

The reference prior isp(µ, σ2) ∝ (σ2)−1 which can be modeled byκ0 = 0, ν0 = −1, σ0 = 0, since then we get

p(µ, σ2) ∝ σ−1(σ2)−(− 1
2+1)e0 = σ−1(σ2)−1/2 = σ−2 (177)

(See also [DeG70, p197] and [GCSR04, p88].)
With the reference prior, the posterior is

µn = x (178)

νn = n − 1 (179)

κn = n (180)

σ2
n =

∑

i(xi − x)2

n − 1
(181)

p(µ, σ2|D) ∝ σ−n−2 exp

(

− 1

2σ2
[
∑

i

(xi − x)2 + n(x − µ)2]

)

(182)

The posterior marginals are

p(σ2|D) = χ−2(σ2|n − 1,

∑

i(xi − x)2

n − 1
) (183)

p(µ|D) = tn−1(µ|x,

∑

i(xi − x)2

n(n − 1)
) (184)
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which are very closely related to the sampling distributionof the MLE. The posterior predictive is

p(x|D) = tn−1

(

x,
(1 + n)

∑

i(xi − x)2

n(n − 1)

)

(185)

Note that [Min00] argues that Jeffrey’s principle says the uninformative prior should be of the form

lim
k→0

N (µ|µ0, σ
2/k)χ−2(σ2|k, σ2

0) ∝ (2πσ2)−
1
2 (σ2)−1 ∝ σ−3 (186)

This can be achieved by settingν0 = 0 instead ofν0 = −1.

6 Normal-inverse-Gamma (NIG) prior
Another popular parameterization is the following:

p(µ, σ2) = NIG(m, V, a, b) (187)

= N (µ|m, σ2V )IG(σ2|a, b) (188)

6.1 Likelihood

The likelihood can be written in this form

p(D|µ, σ2) =
1

(2π)n/2
(σ2)−n/2 exp

(

− 1

2σ2

[

ns2 + n(x − µ)2
]

)

(189)

6.2 Prior

p(µ, σ2) = NIG(m0, V0, a0, b0) (190)

= N (µ|m0, σ
2V0)IG(σ2|a0, b0) (191)

This is equivalent to theNIχ2 prior, where we make the following substitutions.

m0 = µ0 (192)

V0 =
1

κ0
(193)

a0 =
ν0

2
(194)

b0 =
ν0σ

2
0

2
(195)

6.3 Posterior

We can show that the posterior is also NIG:

p(µ, σ2|D) = NIG(mn, Vn, an, bn) (196)

V −1
n = V −1

0 + n (197)
mn

Vn
= V −1

0 m0 + nx (198)

an = a0 + n/2 (199)

bn = b0 +
1

2
[m2

0V
−1
0 +

∑

i

x2
i − m2

nV −1
n ] (200)

The NIG posterior follows directly from theNIχ2 results using the specified substitutions. (Thebn term requires
some tedious algebra...)
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6.3.1 Posterior marginals

To be derived.

6.4 Marginal likelihood

For the marginal likelihood, substituting into Equation 171 we have

p(D) =
Γ(an)

Γ(a0)

√

Vn

V0

(2b0)
a0

(2bn)an

1

πn/2
(201)

=
|Vn|

1
2

|V0|
1
2

ba0
0

ban
n

Γ(an)

Γ(a0)

1

πn/2
2a0−an (202)

=
|Vn|

1
2

|V0|
1
2

ba0
0

ban
n

Γ(an)

Γ(a0)

1

πn/22n
(203)

6.5 Posterior predictive

For the predictive density, substituting into Equation 176we have

κn

(1 + κn)σ2
n

=
1

( 1
κn

+ 1)σ2
n

(204)

=
2an

2bn(1 + Vn)
(205)

So

p(y|D) = t2an
(mn,

bn(1 + Vn)

an
) (206)

These results follow from [DHMS02, p240] by settingx = 1, β = µ, BT B = n, BT X = nx, XT X =
∑

i x2
i .

Note that we use a difference parameterization of the student-t. Also, our equations forp(D) differ by a2−n term.

7 Multivariate Normal prior
If we assumeΣ is known, then a conjugate analysis of the mean is very simple, since the conjugate prior for the mean
is Gaussian, the likelihood is Gaussian, and hence the posterior is Gaussian. The results are analogous to the scalar
case. In particular, we use the general result from [Bis06, p92] with the following substitutions:

x = µ, y = x, Λ−1 = Σ0, A = I, b = 0, L−1 = Σ/N (207)

7.1 Prior

p(µ) = N (µ|µ0, Σ0) (208)

7.2 Likelihood

p(D|µ, Σ) ∝ N (x|µ,
1

N
Σ) (209)

7.3 Posterior

p(µ|D, Σ) = N (µ|µN , ΣN ) (210)

ΣN =
(

Σ−1
0 + NΣ−1

)−1
(211)

µN = ΣN

(

NΣ−1x + Σ−1
0 µ0

)

(212)
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7.4 Posterior predictive

p(x|D) = N (x|µN , Σ + ΣN ) (213)

7.5 Reference analysis

p(µ) ∝ 1 = N (µ|·,∞I) (214)

p(µ|D) = N (x, Σ/n) (215)

8 Normal-Wishart prior
The multivariate analog of the normal-gamma prior is the normal-Wishart prior. Here we just state the results without
proof; see [DeG70, p178] for details. We assumeX is ad-dimensional.

8.1 Likelihood

p(D|µ, Λ) = (2π)−nd/2|Λ|n/2 exp

(

− 1
2

n
∑

i=1

(xi − µ)T Λ(xi − µ)

)

(216)

8.2 Prior

p(µ, Λ) = NWi(µ, Λ|µ0, κ, ν, T ) = N (µ|µ0, (κΛ)−1)Wiν(Λ|T ) (217)

=
1

Z
|Λ|

1
2 exp

(

−κ

2
(µ − µ0)

T Λ(µ − µ0)
)

|Λ|(κ−d−1)/2 exp
(

− 1
2 tr(T−1Λ)

)

(218)

Z =
( κ

2π

)d/2

|T |κ/22dκ/2Γd(κ/2) (219)

HereT is the prior covariance. To see the connection to the scalar case, make the substitutions

α0 =
ν0

2
, β0 =

T0

2
(220)

8.3 Posterior

p(µ, Λ|D) = N (µ|µn, (κnΛ)−1)Wiνn
(Λ|Tn) (221)

µn =
κµ0 + nx

κ + n
(222)

Tn = T + S +
κn

κ + n
(µ0 − x)(µ0 − x)T (223)

S =

n
∑

i=1

(xi − x)(xi − x)T (224)

νn = ν + n (225)

κn = κ + n (226)

Posterior marginals

p(Λ|D) = Wiνn
(Tn) (227)

p(µ|D) = tνn−d+1(µ|µn,
Tn

κn(νn − d + 1)
) (228)
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The MAP estimates are given by

(µ̂, Λ̂) = argmax
µ,Λ

p(D|µ, Λ)NWi(µ, Λ) (229)

µ̂ =

n
∑

i=1

xi + κ0µ0N + κ0 (230)

Σ̂ =

∑n
i=1(xi − µ̂)(xi − µ̂)T + κ0(µ̂ − µ0)(µ̂ − µ0)

T + T−1
0

N + ν0 − d
(231)

This reduces to the MLE ifκ0 = 0, ν0 = d and|T0| = 0.

8.4 Posterior predictive

p(x|D) = tνn−d+1(µn,
Tn(κn + 1)

κn(νn − d + 1)
) (232)

If d = 1, this reduces to Equation 100.

8.5 Marginal likelihood

This can be computed as a ratio of normalization constants.

p(D) =
Zn

Z0

1

(2π)nd/2
(233)

=
1

πnd/2

Γd(νn/2)

Γd(ν0/2)

|T0|ν0/2

|Tn|νn/2

(

κ0

κn

)d/2

(234)

This reduces to Equation 95 ifd = 1.

8.6 Reference analysis

We set
µ0 = 0, κ0 = 0, ν0 = −1, |T0| = 0 (235)

to give

p(µ, Λ) ∝ |Λ|−(d+1)/2 (236)

Then the posterior parameters become

µn = x, Tn = S, κn = n, νn = n − 1 (237)

the posterior marginals become

p(µ|D) = tn−d(µ|x,
S

n(n − d)
) (238)

p(Λ|D) = Win−d(Λ|S) (239)

and the posterior predictive becomes

p(x|D) = tn−d(x,
S(n + 1)

n(n − d)
(240)

9 Normal-Inverse-Wishart prior
The multivariate analog of the normal inverse chi-squared (NIX) distribution is the normal inverse Wishart (NIW) (see
also [GCSR04, p85]).

19



9.1 Likelihood

The likelihood is

p(D|µ, Σ) ∝ |Σ|−n
2 exp

(

−1

2

n
∑

i=1

(xi − µ)T Σ−1(xi − µ)

)

(241)

= |Σ|−n
2 exp

(

−1

2
tr(Σ−1S)

)

(242)

(243)

whereS is the matrix of sum of squares (scatter matrix)

S =

N
∑

i=1

(xi − x)(xi − x)T (244)

9.2 Prior

The natural conjugate prior is normal-inverse-wishart

Σ ∼ IWν0(Λ
−1
0 ) (245)

µ|Σ ∼ N(µ0, Σ/κ0) (246)

p(µ, Σ)
def
= NIW (µ0, κ0, Λ0, ν0) (247)

=
1

Z
|Σ|−((ν0+d)/2+1) exp

(

−1

2
tr(Λ0Σ

−1) − κ0

2
(µ − µ0)

T Σ−1(µ − µ0)

)

(248)

Z =
2v0d/2Γd(ν0/2)(2π/κ0)

d/2

|Λ0|ν0/2
(249)

9.3 Posterior

The posterior is

p(µ, Σ|D, µ0, κ0, Λ0, ν0) = NIW (µ, Σ|µn, κn, Λn, νn) (250)

µn =
κ0µ + 0 + ny

κn
=

κ0

κ0 + n
µ0 +

n

κ0 + n
y (251)

κn = κ0 + n (252)

νn = ν0 + n (253)

Λn = Λ0 + S +
κ0n

κ0 + n
(x − µ0)(x − µ0)

T (254)

The marginals are

Σ|D ∼ IW (Λ−1
n , νn) (255)

µ|D = tνn−d+1(µn,
Λn

κn(νn − d + 1)
) (256)

To see the connection with the scalar case, note thatΛn plays the role ofνnσ2
n (posterior sum of squares), so

Λn

κn(νn − d + 1)
=

Λn

κnνn
=

σ2

κn
(257)
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9.4 Posterior predictive

p(x|D) = tνn−d+1(µn,
Λn(κn + 1)

κn(νn − d + 1)
) (258)

To see the connection with the scalar case, note that

Λn(κn + 1)

κn(νn − d + 1)
=

Λn(κn + 1)

κnνn
=

σ2(κn + 1)

κn
(259)

9.5 Marginal likelihood

The posterior is given by

p(µ, Σ|D) =
1

p(D)

1

Z0
NIW ′(µ, Σ|α0)

1

(2π)nd/2
N ′(D|µ, Σ) (260)

=
1

Zn
NIW ′(µ, Σ|αn) (261)

where

NIW ′(µ, Σ|α0) = |Σ|−((ν0+d)/2+1) exp

(

−1

2
tr(Λ0Σ

−1) − κ0

2
(µ − µ0)

T Σ−1(µ − µ0)

)

(262)

N ′(D|µ, Σ) = |Σ|−n
2 exp

(

−1

2
tr(Σ−1S)

)

(263)

is the unnormalized prior and likelihood. Hence

p(D) =
Zn

Z0

1

(2π)nd/2
=

2νnd/2Γd(νn/2)(2π/κn)d/2

|Λn|νn/2

|Λ0|ν0/2

2ν0d/2Γd(ν0/2)(2π/κ0)d/2

1

(2π)nd/2
(264)

=
1

(2π)nd/2

2νnd/2

2ν0d/2

(2π/κn)d/2

(2π/κ0)d/2

Γd(νn/2)

Γd(ν0/2)
(265)

=
1

πnd/2

Γd(νn/2)

Γd(ν0/2)

|Λ0|ν0/2

|Λn|νn/2

(

κ0

κn

)d/2

(266)

This reduces to Equation 171 ifd = 1.

9.6 Reference analysis

A noninformative (Jeffrey’s) prior isp(µ, Σ) ∝ |Σ|−(d+1)/2 which is the limit ofκ0→0, ν0→− 1, |Λ0|→0 [GCSR04,
p88]. Then the posterior becomes

µn = x (267)

κn = n (268)

νn = n − 1 (269)

Λn = S =
∑

i

(xi − x)(xi − x)T (270)

p(Σ|D) = IWn−1(Σ|S) (271)

p(µ|D) = tn−d(µ|x,
S

n(n − d)
) (272)

p(x|D) = tn−d(x|x,
S(n + 1)

n(n − d)
) (273)

Note that [Min00] argues that Jeffrey’s principle says the uninformative prior should be of the form

lim
k→0

N (µ|µ0, Σ/k)IWk(Σ|kΣ) ∝ |2πΣ|−
1
2 |Σ|−(d+1)/2 ∝ |Σ|−( d

2 +1) (274)

This can be achieved by settingν0 = 0 instead ofν0 = −1.
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Figure 5: SomeGa(a, b) distributions. Ifa < 1, the peak is at 0. As we increaseb, we squeeze everything leftwards and upwards.
Figures generated bygammaDistPlot2.

10 Appendix: some standard distributions

10.1 Gamma distribution

The gamma distribution is a flexible distribution for positive real valued rv’s,x > 0. It is defined in terms of two
parameters. There are two common parameterizations. This is the one used by Bishop [Bis06] (and many other
authors):

Ga(x|shape =a, rate =b) =
ba

Γ(a)
xa−1e−xb, x, a, b > 0 (275)

The second parameterization (and the one used by Matlab’sgampdf) is

Ga(x|shape =α, scale =β) =
1

βαΓ(α)
xα−1e−x/β = Garate(x|α, 1/β) (276)

Note that the shape parameter controls the shape; the scale parameter merely defines the measurement scale (the
horizontal axis). The rate parameter is just the inverse of the scale. See Figure 5 for some examples. This distribution
has the following properties (using the rate parameterization):

mean =
a

b
(277)

mode =
a − 1

b
for a ≥ 1 (278)

var =
a

b2
(279)

10.2 Inverse Gamma distribution

Let X ∼ Ga(shape= a, rate= b) andY = 1/X . Then it is easy to show thatY ∼ IG(shape =a, scale =b), where
the inverse Gamma distribution is given by

IG(x|shape =a, scale =b) =
ba

Γ(a)
x−(a+1)e−b/x, x, a, b > 0 (280)
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Figure 6: Some inverse gamma distributions (a=shape,b=rate). These plots were produced byinvchi2plot.

The distribution has these properties

mean =
b

a − 1
, a > 1 (281)

mode =
b

a + 1
(282)

var =
b2

(a − 1)2(a − 2)
, a > 2 (283)

See Figure 6 for some plots. We see that increasingb just stretches the horizontal axis, but increasinga moves the
peak up and closer to the left.

There is also another parameterization, using the rate (inverse scale):

IG(x|shape =α, rate =β) =
1

βa
Γ(a)x−(α+1)e−1/(βx), x, α, β > 0 (284)

10.3 Scaled Inverse-Chi-squared

The scaled inverse-chi-squared distribution is a reparameterization of the inverse Gamma [GCSR04, p575].

χ−2(x|ν, σ2) =
1

Γ(ν/2)

(

νσ2

2

)ν/2

x− ν
2−1 exp[−νσ2

2x
], x > 0 (285)

= IG(x|shape=
ν

2
, scale=

νσ2

2
) (286)

where the parameterν > 0 is called the degrees of freedom, andσ2 > 0 is the scale. See Figure 7 for some plots. We
see that increasingν lifts the curve up and moves it slightly to the right. Later, when we consider Bayesian parameter
estimation, we will use this distribution as a conjugate prior for a scale parameter (such as the variance of a Gaussian);
increasingν corresponds to increasing the effective strength of the prior.
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The distribution has these properties

mean =
νσ2

ν − 2
for ν > 2 (287)

mode =
νσ2

ν + 2
(288)

var =
2ν2σ4

(ν − 2)2(ν − 4)
for ν > 4 (289)

The inverse chi-squared distribution, writtenχ−2
ν (x), is the special case whereνσ2 = 1 (i.e.,σ2 = 1/ν). This

corresponds toIG(a = ν/2, b = scale= 1/2).

10.4 Wishart distribution

Let X be ap dimensional symmetric positive definite matrix. The Wishart is the multidimensional generalization of
the Gamma. Since it is a distribution over matrices, it is hard to plot as a density function. However, we can easily
sample from it, and then use the eigenvectors of the resulting matrix to define an ellipse. See Figure 8.

There are several possible parameterizations. Some authors (e.g., [Bis06, p693], [DeG70, p.57],[GCSR04, p574],
wikipedia) as well as WinBUGS and Matlab (wishrnd), define the Wishart in terms of degrees of freedomν ≥ p
and the scale matrixS as follows:

Wiν(X|S) =
1

Z
|X|(ν−p−1)/2 exp[− 1

2 tr(S−1
X)] (290)

Z = 2νp/2Γp(ν/2)|S|ν/2 (291)

whereΓp(a) is the generalized gamma function

Γp(α) = πp(p−1)/4

p
∏

i=1

Γ

(

2α + 1 − i

2

)

(292)

(SoΓ1(α) = Γ(α).) The mean and mode are given by (see also [Pre05])

mean = νS (293)

mode = (ν − p − 1)S, ν > p + 1 (294)
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In 1D, this becomesGa(shape= ν/2, rate= S/2).
Note that ifX ∼ Wiu(S), andY = X−1, thenY ∼ IWν(S−1) andE[Y ] = S

ν−d−1 .
In [BS94, p.138], and thewishpdf in Tom Minka’s lightspeed toolbox, they use the following parameterization

Wi(X|a,B) =
|B|a
Γp(a)

|X|a−(p+1)/2 exp[−tr(BX)] (295)

We require thatB is ap×p symmetric positive definite matrix, and2a > p−1. If p = 1, soB is a scalar, this reduces
to theGa(shape =a, rate=b) density.

To get some intuition for this distribution, recall that tr(AB) is a vector which contains the inner product of the
rows ofA and the columns ofB. In Matlab notation we have

trace(A B) = [a(1,:)*b(:,1), ..., a(n,:)*b(:,n)]

If X ∼ Wiν(S), then we are performing a kind of template matching between the columns ofX andS−1 (recall that
bothX andS are symmetric). This is a natural way to define the distance between two matrices.

10.5 Inverse Wishart

This is the multidimensional generalization of the inverseGamma. Consider ad×d positive definite (covariance) ma-
trix X and a dof parameterν > d−1 and psd matrixS. Some authors (eg [GCSR04, p574]) use this parameterization:

IWν(X|S−1) =
1

Z
|X|−(ν+d+1)/2 exp

(

−1

2
Tr(SX

−1)

)

(296)

Z =
|S|ν/2

2νd/2Γd(ν/2)
(297)

where

Γd(ν/2) = πd(d−1)/4
d
∏

i=1

Γ(
ν + 1 − i

2
) (298)
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The distribution has mean

E X =
S

ν − d − 1
(299)

In Matlab, useiwishrnd. In the 1d case, we have

χ−2(Σ|ν0, σ
2
0) = IWν0(Σ|(ν0σ

2
0)−1) (300)

Other authors (e.g., [Pre05, p117]) use a slightly different formulation (with2d < ν)

IWν(X|Q) =



2(ν−d−1)d/2πd(d−1)/4
d
∏

j=1

Γ((ν − d − j)/2)





−1

(301)

×|Q|(ν−d−1)/2|X|−ν/2 exp

(

−1

2
Tr(X−1Q)

)

(302)

which has mean

E X =
Q

ν − 2d − 2
(303)

10.6 Student t distribution

The generalized t-distribution is given as

tν(x|µ, σ2) = c

[

1 +
1

ν
(
x − µ

σ
)2
]−( ν+1

2 )

(304)

c =
Γ(ν/2 + 1/2)

Γ(ν/2)

1√
νπσ

(305)

wherec is the normalization consant.µ is the mean,ν > 0 is thedegrees of freedom, andσ2 > 0 is the scale. (Note
that theν parameter is often written as a subscript.) In Matlab, usetpdf.

The distribution has the following properties:

mean = µ, ν > 1 (306)

mode = µ (307)

var =
νσ2

(ν − 2)
, ν > 2 (308)

Note: if x ∼ tν(µ, σ2), then
x − µ

σ
∼ tν (309)

which corresponds to a standard t-distribution withµ = 0, σ2 = 1:

tν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)
(1 + x2/ν)−(ν+1)/2 (310)

In Figure 9, we plot the density for different parameter values. Asν → ∞, the T approaches a Gaussian. T-
distributions are like Gaussian distributions withheavy tails. Hence they are more robust to outliers (see Figure 10).

If ν = 1, this is called aCauchy distribution. This is an interesting distribution since ifX ∼ Cauchy, thenE[X ]
does not exist, since the corresponding integral diverges.Essentially this is because the tails are so heavy that samples
from the distribution can get very far from the centerµ.

It can be shown that the t-distribution is like an infinite sumof Gaussians, where each Gaussian has a different
precision:

p(x|µ, a, b) =

∫

N (x|µ, τ−1)Ga(τ |a, rate= b)dτ (311)

= t2a(x|µ, b/a) (312)

(See exercise 2.46 of [Bis06].)
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10.7 Multivariate t distributions

The multivariate T distribution ind dimensions is given by

tν(x|µ, Σ) =
Γ(ν/2 + d/2)

Γ(ν/2)

|Σ|−1/2

vd/2πd/2
×
[

1 +
1

ν
(x − µ)T Σ−1(x − µ)

]−( ν+d
2 )

(313)

(314)

whereΣ is called the scale matrix (since it is not exactly the covariance matrix). This has fatter tails than a Gaussian:
see Figure 11. In Matlab, usemvtpdf.

The distribution has the following properties

E x = µ if ν > 1 (315)

modex = µ (316)

Cov x =
ν

ν − 2
Σ for ν > 2 (317)

(The following results are from [Koo03, p328].) SupposeY ∼ T (µ, Σ, ν) and we partition the variables into 2
blocks. Then the marginals are

Yi ∼ T (µi, Σii, ν) (318)

and the conditionals are

Y1|y2 ∼ T (µ1|2, Σ1|2, ν + d1) (319)

µ1|2 = µ1 + Σ12Σ
−1
22 (y2 − µ2) (320)

Σ1|2 = h1|2(Σ11 − Σ12Σ
−1
22 ΣT

12) (321)

h1|2 =
1

ν + d2

[

ν + (y2 − µ2)
T Σ−1

22 (y2 − µ2)
]

(322)

We can also show linear combinations of Ts are Ts:

Y ∼ T (µ, Σ, ν) ⇒ AY ∼ T (Aµ, AΣA′, ν) (323)

We can sample from ay ∼ T (µ, Σ, ν) by samplingx ∼ T (0, 1, ν) and then transformingy = µ + RT x, where
R = chol(Σ), soRT R = Σ.
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