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1 Introduction

The Gaussian or normal distribution is one of the most widedgd in statistics. Estimating its parameters using
Bayesian inference and conjugate priors is also widely .usée use of conjugate priors allows all the results to be
derived in closed form. Unfortunately, different books d#féerent conventions on how to parameterize the various
distributions (e.g., put the prior on the precision or théarce, use an inverse gamma or inverse chi-squared, etc),
which can be very confusing for the student. In this repoe swemmarize all of the most commonly used forms. We
provide detailed derivations for some of these resultsréisecan be obtained by simple reparameterization. See the
appendix for the definition the distributions that are used.

2 Normal prior

Let us consider Bayesian estimation of the mean of a uniea@aussian, whose variance is assumed to be known.
(We discuss the unknown variance case later.)

2.1 Likelihood
LetD = (x1,...,x,) be the data. The likelihood is

p(Dlp,0%) = i]:[lp(xiluﬁ):(ZWUQ)‘"/QGXP{_% '1(@_”)2} 1

Let us define the empirical mean and variance

X = — {L’l (2)
n 4
=1
2 = 13wy 3)
n =1 l

(Note that other authors (e.g., [GCSR04]) defifie= - >"" | (z; — )2.) We can rewrite the term in the exponent

as follows n
Z(%‘ —p)? = Z[(%‘ —T) — (n—2T)) (4)
= Z(Ii —f)2+2(f—u)2 —22(3371 —7)(n—7) )
= ns? +n(T —p)? (6)
since
Z(Iz’ -7)(p—-7) = (b—7) <(Z$i) —nf> = (p—7)(nT —n7T) =0 (7)

*Thanks to Hoyt Koepke for proof reading.



Hence

1 1 1
2 _ 2 — 2
p(Dlp,0%) = @n)E o P (——202 [ns® +n(T — ) ]) (8)
n/2 2
1 n o, 9 ns
x (?) exp (=553~ 1)) e (‘5) ©
If o2 is a constant, we can write this as
2
=2 =,
pDl) o exp (—505(T = p)?) o N(alp, =) (10)

since we are free to drop constant factors in the definitighefikelihood. Thus: observations with varianee® and
mear is equivalentto 1 observatian = 7 with variances? /n.

2.2 Prior
Since the likelihood has the form

2

p(Dl) o exp (—505(T = 0)?) o< (@i, ) (11)

thenatural conjugate prior has the form

1

p(n) o exp (—T,gw—uo)?) o N (tltt0,2) (12)

(Do not confuser2, which is the variance of the prior, with?, which is the variance of the observation noise.) (A
natural conjugate prior is one that has the same form askilghibod.)

2.3 Posterior
Hence the posterior is given by
p(u|D) o p(D|u,0)p(ulpo, o7) (13)
1 1
X exp l—ﬁ 213(331 - M)Q] X €xXp {—E(M - N0)2:| (14)
-1 —1
= oxp |55 (@] + p® = 2mip) + = (u® + p§ — 2u0p) (15)
20° = 20¢

Since the product of two Gaussians is a Gaussian, we willitethis in the form

€ exp {— 2(17% (1* = 2ppn + ui)] = exp {— 2(17% (b — un)Q] (17)
Matching coefficients ofi?, we findo? is given by
A G @
Ui% = aig +5 (19)
o2 = n:;igUQ -3 i T (20)
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Figure 1: Sequentially updating a Gaussian mean starting with a pegatered oniy = 0. The true parameters af¢ = 0.8

(unknown),(c®)* = 0.1 (known). Notice how the data quickly overwhelms the priawl dow the posterior becomes narrower.

Source: Figure 2.12 [Bis06].

Matching coefficients ofi we get
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(22)

(23)

(24)

)

This operation of matching first and second powerg &f calledcompleting the square.

Another way to understand these results is if we work withpgireision of a Gaussian, which is 1/variance (high

precision means low variance, low precision means higlavag). Let

Then we can rewrite the posterior as

p(u|D, )
An

Pon

A= 1/0?
)\0 = 1/0’8
An = 1/0'1%,
N (el oy An)
Ao + nA
TnA + oA
% = wharr + (1 — w)po

(25)
(26)
(27)

(28)
(29)

(30)
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Figure 2: Bayesian estimation of the mean of a Gaussian from one sai@plé/eak priot\' (0, 10). (b) Strong priot\' (0, 1). In
the latter case, we see the posterior mean is “shrunk” tataprior mean, which is 0. Figure producedgaussBayesDeno.

wherenz = " x; andw = K_i The precision of the posterio,, is the precision of the priok, plus one
contribution of data precision for each observed data point. Also, we see the mean of thenmsis a convex
combination of the prior and the MLE, with weights propon@bto the relative precisions.

To gain further insight into these equations, consider ffeceof sequentially updating our estimate jof(see
Figure 1). After observing one data poin{son = 1), we have the following posterior mean

2 2

o o
= 31
M1 0_2+08H0+0_2+08x ( )

i
_ _ 32
po + (@ M0)02+08 (32)

2

(o

_ A — S 33
v (@ o) (33)

The first equation is a convex combination of the prior and MIEe second equation is the prior mean ajusted
towards the data. The third equation is the dataadjusted towads the prior mean; this is caldadinkage. These
are all equivalent ways of expressing the tradeoff betwiketinood and prior. See Figure 2 for an example.

2.4 Posterior predictive
The posterior predictive is given by

palD) = [ plelup(ulD)dn (34)
— [ Nl N Gl 2 (35)
= N(aln,0? +0%) (36)

This follows from general properties of the Gaussian distion (see Equation 2.115 of [Bis06]). An alternative groo
is to note that

z o= (—p)+p (37)
r—pu ~ N(0,0%) (38)
po~ Npn,op) (39)

SinceF[ X1 + X»] = E[X;] + E[X2] and Var[X; + X3] = Var [X;] + Var [X,] if X7, X, are independent, we have
X ~ N (tn, 02 + 0?) (40)



since we assume that the residual error is conditionallgpeddent of the parameter. Thus the predictive variance is
the uncertainty due to the observation naigeplus the uncertainty due to the parameterts,

2.5 Marginal likelihood
Writing m = pp andr? = o3 for the hyper-parameters, we can derive the marginal likeld as follows:

£=p(Dlm,o% 1) = [ [[] NGl o W, ) (41)
i=1
B o Jx2 o om? #Z_ZEQ + ”iTQ + 2nTm 42)
 (V2mo)Vnr? + o2 P 202 972 ) FP 2(n72 + 02)
The proof is below, based on the on the appendix of [D126].
We have
£=p(Dpm,o® 7)) = [ [Nl o Wl ) 43)

i=1

1 1 1
= e o (e )4

Let us defineS? = 1/02 and7? = 1/72. Then

_ 1 w2 2 2 VT e
= c/exp <—%(S2nu2 — 262 in + T2 — 2T2um)> dp (46)
where
exp (—3(5? X, 27 + T%m?)) (47)
(V2r/S)(v2r/T)
So
52 x; T2
(= c/exp {—%(SQTH—TQ) (,uz — 2@%)} dp (48)
S2nT + T%m)? Sz + T2m\
= cexp (%) /exp —%(52n+T2) <,LL — %) ] d/.L (49)
B (S*nT + T%m)? V2r 50
_ cexp( e )m (50)
L YT T (S Ty VB o
T T (Van/S)(Vam/T) 2112 ) Von i1
Now
1 V2r _ o (52)
\/ZQW)/T\/SQTL-%TQ VNT2 4 o2
and
(z—? + %)2 B (nTT? 4+ ma?)?
2(& + %)  20272(n7? + 02) ®3)
_ n?T7r? /0% 4 o?m? /7% + 2nTm
B 2(nt2 + 02) (54)



So

2 2 *nT? ”2m 2
p(D) = i exXp (_7_5231 - m_2) exp CEa—. 2 —;_ nrm (55)
(vV27mo)nnr? + 02 20 or 2(n7? + o2)
To check this, we should ensure that we get
p(x, D
p(z|D) = ﬁ = N(@|pin, 05 + %) (56)

(To be completed)
2.6 Conditional prior p(u|o?)

Note that the previous prior is not, strictly speaking, coyate, since it has the forp{u) whereas the posterior has
the formp(u|D, o), i.e., o occurs in the posterior but not the prior. We can rewrite therpn conditional form as
follows

plplo) = N (ulpo, o /ko) (57)
This means that it is large, the variance on the prior pfis also large. This is reasonable sincedefines the
measurement scale ef so the prior belief aboyt is equivalent tas, observations of.y on this scale. (Hence a
noninformative prior is;y = 0.) Then the posterior is

p(plD) = N (ulpn, 0/ in) (58)

wherex,, = ko + n. In this form, it is clear thak, plays a role analogous ta Hencex, is theequivalent sample
size of the prior.

2.7 Referenceanalysis
To get an uninformative prior, we just set the prior variatwmfinity to simulate a uniform prior op.
p(p) o< 1=N(ul|,00) (59)
p(ulD) = N(u[z,0%/n) (60)
3 Normal-Gamma prior

We will now suppose that both the meanand the precisionn = o2 are unknown. We will mostly follow the
notation in [DeG70, p169].

3.1 Likelihood
The likelihood can be written in this form

1 ) —
— __— yn/2 Z
(DA = G exp< 2; ) (61)
B 1 A 2 -
= (27r)”/2 exp( 5 (" uw—T) ; i— T ]) (62)
3.2 Prior
The conjugate prior is theor mal-Gamma:
NG, Mo, 50, 0, 80) = N(palpto, (0A) ™) Ga(A| o, rate= Go) (63)
- A2 exp(— 22 (pu — A0~ LA 64
Zna (o, Ko, o, o) p( 2 (k= p0)") (64
1 a1 A
= %/\ 2 exp (—g[KO(M—MO)Q‘f‘ZﬁO]) (65)
1
'« 2 2
Zna (1o, ko, 0, Bo) = (af) (H_o) (66)
0
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Figure 3: Some Normal-Gamma distributions. Produced\@p! ot 2.

See Figure 3 for some plots.
We can compute the prior marginal pras follows:

ply) o prmw (67)

= /Ooo A%0+3 1 ex (A(ﬁo 4 ool o) 5 “0)2)> dx (68)

We recognize this as an unnormalizéd(a = « + %, b= 0o+ M) distribution, so we can just write down

p(p) o Fb(ff) (69)
x b (70)
1
= (Bt (n—p)) 72 (72)
_ (H_%ao%o(/;—/to)?)(2a0+1)/2 72)
0 0

which we recognize as aslaa, (/o 80/ (coko)) distribution.



3.3 Posterior
The posterior can be derived as follows.

p(u,)\|D) X NG(;J,,)\|/1,0,l$0,a0,ﬁ0)p(D|p,,)\) (73)
AT (RoAm)?)/2 a0 Le=Bod o /23 Ty (eimn)’ (74)
o AT AWF/2=1 = BoX = (A/2)l0(—po)*+ 52, (21 —)’] (75)

From Equation 6 we have

@i w? = n(u-7)?+ > (2~ 7)° (76)
i =1

Also, it can be shown that

Kon(T — po)?

e 2 ) 77
Ko(p — po)” +n(p —7)" = (ko +n) (1 — pn)” + P (77)
where 0T
Ly = Ro o nr (78)
Ko+ "N
Hence
Ro(t—po)® + 3 (i —p)® = rolu—po)® +n(n—2)" + > (v —F)° (79)
_ 2, Fon(T — po)? 2
= (ko +n)(p—pn)” + P + Z:(a:z T) (80)
So
1 2
p(u, N\ D) A2 e~ A/ 2)(rotn)(n—pin) (81)
S \@0+1/2=1 oA ,—(A/2) Zi(m,;—f)2ef()\/2)'mﬁg"7;:0)2 (82)
o< N(plpn, (£ +n)X) 1) x Ga(Nao +1/2, B,) (83)
where
- _y2 , Kon(T — po)?
W = Bot s (2—T)P+ 84
p fot3 i:l(x z) 2(ro + n) (64
In summary,
p(,u,/\|D) = NG(M)A|MTL)K’H,;05H76’H,) (85)
L = Kopo + N (86)
Ko +n
Kn = Ko+n (87)
a, = ap+n/2 (88)
e _y2 , Kon(T — po)?
= N i - T 89
p 5°+2;(x )+ 2(ro + n) (89)

We see that the posterior sum of squargs,combines the prior sum of squarék, the sample sum of squares,
> (z; — 7)?, and a term due to the discrepancy between the prior meanaanples mean. As can be seen from
Figure 3, the range of probable values foando? can be quite large even after for moderatekeep this picture in
mind whenever someones claims to have “fit a Gaussian” to dia¢a.



3.3.1 Posterior marginals

The posterior marginals are (using Equation 72)
p(A|D) = Ga(Aan, Bn) (90)
p(ulD) Taa, (1l pns Bn/ (Qnkin)) (91)

3.4 Marginal likelihood

To derive the marginal likelihood, we just dererive the postr, but this time we keep track of all the constant factors
Let NG’ (11, M 120, 0, a0, o) denote an unnormalized Normal-Gamma distribution, anddet Zn ¢ (o, ko, o, So)

be the normalization constant of the prior; similarly &t be the normalization constant of the posterior. Let
N'(x;|, ) denote an unnormalized Gaussian with normalization cahsfa/27. Then

n/2
R T N 1 ,
PAID) = NG N ) (57 ) T Ve (©2)
The NG’ and N’ terms combine to make the posterigrs’:
1
p(,u,/\|D) = Z_NGI(Na/\mna’inaamﬁn) (93)
Hence
Zn,
p(D) = Z*(2m)™"? (94)
A
Tan) B5° KoL o (-
= )32 (2m) /2 95
Tl i G 2n) (95)
3.5 Posterior predictive
The posterior predictive far new observations is given by
p(DnewyD)
Dpew|D) = ———= 96
P(Daecul D) ) (96)
_ Zntm g (ntm)/2 20 g vn/2
= 7 (2m) Zn(27r) (97)
Zn m —
= g emT (98)
1
Ionym) B < Kn )5 —m/2
= Ths 2m)~™ 99
In the special case that = 1, it can be shown (see below) that this is a T-distribution
n(Fn + 1
pID) = o, (alan, 2L (100

To derive them = 1 result, we proceed as follows. (This proof is by Xiang Xuamg & based on [GH94, p10].)
Whenm = 1, the posterior parameters are

i1 = ot 1/2 (101)
En+1 = HKp+ 1 (102)
1
_ 1 a2 K (T — /‘n)2
Prrr = Put 3 ;(x D S (103)



Use the fact that whem = 1, we haver; = z (since there is only one observation), hence we %5@;:1 (v;—7)% =
0. Let's user denoteD,,..,, thens,, 1 is

2
Rp (T — Un
6n+1 = ﬁn + ﬁ (104)
Substituting, we have the following,
Iang) B ( Kn )é —1/2
p Diyew|D = voeunE 2 105
( D) [(an) ﬁn-ﬁ Kn+1 (2m) ( )
_ T(on+1/2) g (52) (106
Dlan) (8, + %)%H/g Kon + 1
an+1/2 .
F((204n + 1)/2) Bn 1 < Kn >2 ~1/2
= 5 — [ — T (207)
(e \Govseay ) f ) 7
an+1/2 .
I'((2ap, +1)/2) 1 ( Kn ) 21
= — —) (m) (108)
T((2an)/2) | 1+ falztes 26 (fin +1)

- (r —1/2F((204n +1)/2) Qnkin 2 M —(2on+1)/2
) I'((20)/2) <2Oénﬂn(/fn + 1)) ( S B (rn + 1)) (109)

Let A = 5-72"us, then we have,

(R +1)?
1 —(2an+1)/2
1 0(2an +1)/2) (A 7 Az — pn)?
Dpew|D) = e 1+ ——— 11
PDneelD) = 0y \2an) T 24, (110)
We can see this is a T-distribution with centep:at precisionA = B“O(‘::jh), and degree of freedofuy,,.
3.6 Referenceanalysis
The reference prior for NG is
p(maA) o< AT! :NG(m,ALLL:',H:0,0é:—%,ﬁ:O) (111)
So the posterior is
p(mAD) = NG(pn =T,k =n,0n = (n=1)/2,0, = 3 ) (21 —7)?) (112)
i=1
So the posterior marginal of the mean is
_ — Zl(xz - 5)2
p(m|D) = t,—1(m|T, Y p— ) (113)

which corresponds to the frequentist sampling distributdthe MLE ;. Thusin this case the confidence interval
and credible interval coincide.

4 Gammaprior

If u is known, and only\ is unknown (e.g., when implementing Gibbs sampling), we usathe following results,
which can be derived by simplifying the results for the NolN& model.

10



4.1 Likelihood

A n
p(DIA) oc A2 exp <—§Z<xi—u>2> (114)
=1
4.2 Prior
p(\) = Ga(Na,B) x A2 le= (115)
4.3 Posterior
p(AID) = Ga(Aan, Bn) (116)
a, = a+n/2 (117)
Bo = B+3Y (wi—p)? (118)
1=1
4.4 Marginal likelihood
To be completed.
45 Posterior predictive
p(|D) = toa,(zlp, 0% = Bu/an) (119)
4.6 Referenceanalysis
p(A) o A1 =Ga()0,0) (120)
p(NID) = Ga(An/2,% 3 (@i — p)?) (121)
i=1

5 Normal-inverse-chi-squared (NI X) prior

We will see that the natural conjugate prior fo is the inverse-chi-squared distribution.
5.1 Likelihood

The likelihood can be written in this form

1 1 -
2 _ 2\—n/2 —\2 — 2
p(Dlp,0%) = W(U )"/ exp <_F [n;(xi —T)"+n(T — p) ]) (122)
5.2 Prior
The normal-inverse-chi-squared prior is
p(,uaO'Q) = NIXQ(:UON%(MV(%U(%) (123)
= N(ulpo,0?/ko) x x 2(c?|vo, o) (124)
_ 1 —1(_2\—(vo/2+1) R Y
- Zp(,u(); K0, Vo, 0_8) g (0 ) exXp 252 [VOUO + Ko (/1‘0 M) ] (125)
V(@) 9 \ /2
Zp(/l,o,li(),l/o,o'g) = TOF(VO/2) To’% (126)

11



NIX(15=0.0, K =1.0, v,=1.0, 62=1.0) NIX(1,=0.0, K =5.0, v,=1.0, 67=1.0)

(©) (d)

Figure 4: The NIx? (o, ko, vo, 05) distribution. po is the prior mean and, is how strongly we believe thissi is the prior
variance and is how strongly we believe this. (ah = 0, k0 = 1,0 = 1,05 = 1. Notice that the contour plot (underneath the
surface) is shaped like a “squashed egg”. (b) We increasstritieght of our belief in the mean, so it gets narrower= 0, ko =
5,10 = 1,08 = 1. (c) We increase the strenght of our belief in the varianget gets narroweryo = 0, k0 = 1,10 = 5,08 = 1.

(d) We strongly believe the mean and variance are b= 0.5, ko = 5,0 = 5,08 = 0.5. These plots were produced with
NI Xdeno2.

See Figure 4 for some plots. The hyperparametgando? /s, can be interpreted as the location and scale, @ind
the hyperparametets, ando? as the degrees of freedom and scaleof
For future reference, it is useful to note that the quadtatim in the prior can be written as

Qo(r) = So+ kol — po)? (127)
Kop® = 2(kopo) i + (Kopg + So) (128)

whereSy = 1/00—3 is the prior sum of squares.

12



5.3 Posterior
(The following derivation is based on [Lee04, p67].) Thetpasr is

p(u,a?ID) o N(plpo, 0 /ro)x (%o, 05 )p(Dlp, o°) (129)
o {0_1(02)_(”0/2“) exp (—2}7[%03 + koo — M)2]>:| (130)
x [(02)_”/2 exp (—2}7 [ns? +n(x — p)? ﬂ (131)

1
o) exp (=gl 4 e = 0]) = NI o) (132
g

Matching powers o&2, we find
vp = vo+n (133)

To derive the other terms, we will complete the square. et 102 andS,, = v, 02 for brevity. Grouping the
terms inside the exponential, we have

So+ ko(po — p)* +ns” +n(T — p)? = (So+ kopg +ns” +nT?) + p? (ko + 1) — 2(kopo + nT)(134)

Comparing to Equation 128, we have

Kn = Ko+n (135)
Knlln, = Koo +nT (136)
Sp + Knp2 = (So+ Kopd + ns® +nz?) (137)
S, = Sp+ns’+ noug +NT? — K (138)
One can rearrange this to get

Sp = So+ns?+ (kg +n") " (o —T)? (139)
= So+ns?+ —L0 (o —7)? (140)

Ko +n

We see that the posterior sum of squas= v,,o2, combines the prior sum of squarés, = voo3, the sample sum
of squaresps?, and a term due to the uncertainty in the mean.

In summary,
p, = [okotnT (141)
Kn = Ko —i—HTTLL (142)
vV, = UVg+n (143)
= e B o ) (144)
The posterior mean is given by

E[uD] = (145)
B*|D] = o (146)

The posterior mode is given by (Equation 14 of [BLO1]):
modéu|D] = u, (147)
modédo?|D] = % (148)

13



The modes of the marginal posterior are

moddu|D] = p,
2
2 _ Un0y
modéo”|D] = V32

5.3.1 Marginal posterior of o2
First we integrate oyt, which is just a Gaussian integral.

po*ID) = [ so* uiD)dn
1 K
—1 2\ —(vyn /241 2 n 2
oo 2 exp (<5l ) e (< e - )
2
5 o=l (o2)~n/2HD) oy <_L[Vn0_2]) oy/(2m)
20
1
- (02)—(un/2+1) exp (_W[V"U’QL])

= x (0"vn,07)

5.3.2 Marginal posterior of

Let us rewrite the posterior as

p(1.0?D) = Co—¢exp (—2—¢[una +nn<un—u>21>

where¢ = o2 anda = (v, + 1)/2. This follows since

un+1

0_71(0_2)70/”/24»1) —_ 0_710_ l/n _ ¢7 ¢7 . ¢7O¢ 1
Now make the substitutions
A = vpoy + En(p /‘)2
s = 4
= %
d _ A
de 23:
SO
p(uD) = [ Coternezag
= —(4/2) /C —lat Dz =2y
x A~ “/ a—le=Tdy
x A™¢
= (Vngz, + K (pin — M)Q)_(Vn'+1)/2
_(Vn""l)/Q
x {1+ - (u—un)ﬂ
Vpo?

X ty, (N|Mn,03//fn)

14
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(157)
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(162)

(163)

(164)
(165)

(166)

(167)



5.4 Marginal likelihood
Repeating the derivation of the posterior, but keepingktddhe normalization constants, gives the following.

p(D) = / / P(D|p, 0*)P(p, 0%)dpdo? (168)
B (un,mn,un,a%) 1
- Z (NO,EO,VO,US) 2 (169)
_ VRl /2 i
T VR T(w/2) ( ) (Vn02> 2n) 72 (170)
_ T(/2) [ro (vog)™/?
" T(0/2) V Fon (vno2)me/? Wn/z (171)
5.5 Posterior predictive
p(z|D) = //p(ﬂflu,02)p(u,02|D)dud02 (172)
= pf&bl))) (173)
_ Dl +1)/2) (V o2)n/? 1
- Tw/2) Ko + 1 (1002 + 2227 (@ — p1n)2)) D72 7172 (174)
_ ((Vn + 1)/2) K, 3 /{n(x - //fn)Q —(vn+1)/2
- o () () (7o)
=ty (o, L (176)

5.6 Referenceanalysis
The reference prior ig(, 0?) o (02)~1 which can be modeled by, = 0, vy = —1, 0¢ = 0, since then we get

P, 0%) 0™ (0%) T TENL = 071 (%) T = 07 (177)

(See also [DeG70, p197] and [GCSRO04, p88].)
With the reference prior, the posterior is

Hn = T (178)
v, = n—1 (179)
Kkn = n (180)
2 = Zili—7)’ (181)

) n—1
pi,0?D) o 0" Zexp (—%[Zm ~ )% 4+ n(T - m) (182)

The posterior marginals are
)2
p(®D) = ol -1, =TT (189
)2

PlD) = tos i, 22 (184)
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which are very closely related to the sampling distributiéthe MLE. The posterior predictive is

_ (14+n)Y (v —7)?
D)=t, 1 (T, d 1
Y (185)
Note that [Min00] argues that Jeffrey’s principle says theformative prior should be of the form
1
lim N (plpo, o /k)x % (07 [k, 05) oc (2m0?) "2 (0%) "  oc 077 (186)
This can be achieved by setting = 0 instead ofy = —1.
6 Normal-inverse-Gamma (NIG) prior
Another popular parameterization is the following:
p(u,0®) = NIG(m,V,a,b) (187)
= N(um,o?V)IG(0?|a,b) (188)
6.1 Likelihood
The likelihood can be written in this form
1 1
2 _ Lt 2\-n/2 - 2 — . \2
WDo?) = (o)) e (o s e - ) ) (189)
6.2 Prior
p(u,0?) = NIG(myg, Vo, ao, bo) (190)
= N(p|mo, a®Vo)IG(0?|ag, bo) (191)
This is equivalent to théV Iy ? prior, where we make the following substitutions.
mo = Ho (192)
1
Voo = — (193)
Ko
14
aw = 3 (194)
2
by, = 2% (195)
2
6.3 Posterior
We can show that the posterior is also NIG:
p(ﬂ702|D) = NIG(mn, Vp,an,by) (196)
Vil o= Vit4n (197)
TS—: = Vo_lmo + nx (198)
an, = ap+n/2 (199)
1
by = bo+ 5[mgv(;l +Y o af —mlV, Y (200)

The NIG posterior follows directly from th&/Iy? results using the specified substitutions. (bheerm requires
some tedious algebra...)
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6.3.1 Posterior marginals

To be derived.

6.4 Marginal likelihood

For the marginal likelihood, substituting into Equatioriii¥e have

C(an) [V (2b)* 1
D) = — 201
p( ) P(ao) VE) (an)an 7.(.n/2 ( 0 )
1
V|2 b3 T(an) 1
1 bkn F(ao) an/2

Vo2
1
V|2 b(()LO ['(an) 1

9a0—an (202)

a (203)
Vol B o) 777
6.5 Posterior predictive
For the predictive density, substituting into Equation W&have
Fn 1
= = 204
(1+ kn)o2 (= +1)o2 (204)
2ay,
= — - 205
20, (1 + V) (205)
So
bn(1+V,
pOID) = taa, (my, 2T (206)

These results follow from [DHMS02, p240] by settimg= 1, 3 = u, BTB = n, BTX = nz, XTX =Y, 22.
Note that we use a difference parameterization of the stetdéiso, our equations fop(D) differ by a2~ term.

7 Multivariate Normal prior

If we assumeX is known, then a conjugate analysis of the mean is very simnspiee the conjugate prior for the mean
is Gaussian, the likelihood is Gaussian, and hence the parsie Gaussian. The results are analogous to the scalar
case. In particular, we use the general result from [BisO@] with the following substitutions:

r=uy=7,A ' =%, A=1,b=0,L7' =%/N (207)
7.1 Prior
p(p) = N(plpo, o) (208)
7.2 Likelihood
1
7.3 Posterior
p(ulD,¥) = N(ulpn,XnN) (210)
Sy o= (St NeHT (211)
pny = SN (NST'T+ 5" o) (212)
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7.4 Posterior predictive

plD) = N(zlpn, 2+ 2N) (213)

7.5 Referenceanalysis
p(p) o< 1=N(u|-,00l) (214)
p(ulD) = N(T,X/n) (215)

8 Normal-Wishart prior

The multivariate analog of the normal-gamma prior is thenmedf\Wishart prior. Here we just state the results without
proof; see [DeG70, p178] for details. We assukhés ad-dimensional.

8.1 Likelihood

p(Dlu,A) = (2m) " 2|A|"/? exp <—% (xi—u)TA(xi—u)> (216)
=1
8.2 Prior
p(HaA) = NWi(uvALan’{vVaT):N(N|M07(/€A)_1)W7;V(A|T) (217)
1 1 K g _
= SN2 exp (< — o) A — po) ) IAIETI D 2 exp (~ (T A)) (218)
/2

Z = (%) |T|7/229%/2 4 (1/2) (219)

HereT is the prior covariance. To see the connection to the scaks,anake the substitutions

v Tt
a0 == (220)
8.3 Posterior
p(, AID) = N(ptlpn, (knA)~")Wiy,, (A|T;,) (221)
K+mn
T, = T+8+—2(uo—7)(po—7)7" (223)
n o — Kt Mo T )(o x
S = > (@7 (xi—x)" (224)
=1
Vp = V4N (225)
Kn = K-+n (226)
Posterior marginals
T,
p(p|D) = tu7ﬁd+1(l"|ﬂmm) (228)
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The MAP estimates are given by

(. A) = argmaxp(Dlp, A)NWi(p, A) (229)
I
o= Z i + koo N + Ko (230)
=1
n L0 T N N T -1
s iz (@i~ )@ — )"+ Ko(@ — po)(A — po)” + T (231)
N+vyvy—d
This reduces to the MLE ity = 0, vy = d and|Ty| = 0.
8.4 Posterior predictive
B Tn(kn +1)
p(z|D) =t —ay1(n, m) (232)
If d = 1, this reduces to Equation 100.
8.5 Marginal likelihood
This can be computed as a ratio of normalization constants.
Zn 1
p(D) = o nd/2 (233)

Zo (27)nd/2

S VIO ) N A 234)
/2T /2) |T|vn/2 \ kn
This reduces to Equation 95df= 1.
8.6 Referenceanalysis
We set
o =0, ko=0, vy=-1, |T| =0 (235)
to give
plp, A) o< [A|T(HED/ (236)
Then the posterior parameters become
n =T, Tp =95, kn=n, v,=n—1 (237)
the posterior marginals become
(WD) = tualulz.——) (238)
p ,’L - n—d ,’L ’TL(TL _ d)
p(AID) = Win_a(AlS) (239)
and the posterior predictive becomes
_S(n+1)
D) = t,_4(7, 240
plz|D) T (240)

9 Normal-Inverse-Wishart prior

The multivariate analog of the normal inverse chi-squaldX) distribution is the normal inverse Wishart (NIW) (see
also [GCSRO04, p85]).
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9.1 Likelihood
The likelihood is

p(D|p, ) oc [B]7F exp <—% (i — )8 (@i - u)) (241)
=1

= |Z Fexp <—%tr(215)) (242)

(243)

whereS is the matrix of sum of squares (scatter matrix)
S=> (i —F)(ax; —7)" (244)

9.2 Prior
The natural conjugate prior is normal-inverse-wishart

Y o~ IW,, (A (245)
wlx  ~  N(uo,%/ko) (246)
p(,Y) ' NIW (o, ko, Ao, 10) (247)
1o 1 _ K _
= e (S (0m ) = R ) ) (249
2004/2T 4 (1 /2) (27 [ ko )/
Z = 249
o|70/2 (249)
9.3 Posterior
The posterior is
p(NaE|D7M07"{07AO7VO) - NIW(H’aE|Mn7"{n7An7Vn) (250)
0+ no
pp = DREDERY Ko T g (251)
Kn Ko+ 1 Ko+ 1N
Kn = Ko+n (252)
Vp = UVp+n (253)
Ko
Ap = Ao+ 85+ 227 — po)(@ — po)” (254)

Ko +n

The marginals are

SID ~ IW(AYw) (255)
A,

Falt—d+ 1) 20

D =ty —ap1(tin,

To see the connection with the scalar case, notethatlays the role of, 02 (posterior sum of squares), so

A, A, o?
Fn(Vn —d+1)  Kpln  En (257)

20



9.4 Posterior predictive

Ap(kn +1)

Ko (Vn —d + 1)) (259

p(x|D) =ty —ay1(pn,
To see the connection with the scalar case, note that

Ap(kn +1) An(kin+1) 0% (kp+1)

= = 259
Fn(vn —d+1) KnVn Kn (259)
9.5 Marginal likelihood
The posterior is given by
1 1 1
Y|D) = ———=—NIW'(p,E|ag)——=N'(D|p, 2 260
p(u, E|D) 2D Z W' (u, |ao)(27r)nd/2 (Dlp, %) (260)
= ZLNIW’(M,XH%) (261)
where
1
NIW/ G Slan) = 2700 exp (< Sar (A=) = 0 )5 ) (262
n 1
N'(D|p,X) = |Z| zexp (—Etr(E_lS)> (263)
is the unnormalized prior and likelihood. Hence
o) = Lo 1 _ 2 PTa(vn/2)(2m/ )" |Ag| /2 ! (264)
p T Z, 2mndz T TRE 9%0d/2T 4 (19 /2) (27 [ 120)4/2 (270)m/2
B 1 2Vnd/2 (271_//{”)11/2 Fd(Vn/Q) (265)
— (2m)nd/2 2v0d/2 (27 /K )4/2 T g(vo/2)
L Tan/2) Al ()" (266)
7d/2 Ty (v9/2) |Ap|/2 \ kn

This reduces to Equation 171df= 1.
9.6 Referenceanalysis

A noninformative (Jeffrey’s) prior ig (s, ¥) o< |%|~(@+1)/2 which is the limit ofkg—0, vo— — 1, |A¢|—0 [GCSR04,
p88]. Then the posterior becomes

o = T (267)
Kn = n (268)
v, = n-—1 (269)
Ap = S=) (7 —7)(x; —7)7 (270)
p(X[D) = IW,_1(Z|5) (271)
WD) = toalpl, —E (272)
p(e|D) = tnd(x@,%) (273)

Note that [Min00] argues that Jeffrey’s principle says thentormative prior should be of the form
1 d
Tim N (o, £/ k) IW(SIKS) o [20] 72 ||~/ oc || ~(#+) (274)

This can be achieved by setting = 0 instead ofy = —1.
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Figure 5: SomeGa(a, b) distributions. Ifa < 1, the peak is at 0. As we increabewe squeeze everything leftwards and upwards.
Figures generated yammaDi st Pl ot 2.

10 Appendix: some standard distributions

10.1 Gammadistribution

The gamma distribution is a flexible distribution for posdtireal valued rv'sz > 0. It is defined in terms of two
parameters. There are two common parameterizations. 3hieione used by Bishop [BisO6] (and many other
authors):

a
b a—1_—xzb

Ga(x|shape =, rate =b) = F(a)x e x,a,b>0 (275)
The second parameterization (and the one used by Madalo'pdf ) is
1
Ga(zx|shape =, scale =3) = e P = Garte(z|a, 1/ 276
(«/shap ) = (2], 1/8) (276)

Note that the shape parameter controls the shape; the smameter merely defines the measurement scale (the
horizontal axis). The rate parameter is just the inversa®fttale. See Figure 5 for some examples. This distribution
has the following properties (using the rate parameteazst

mean = % (277)

mode = a_;l fora > 1 (278)
a

var = 22 (279)

10.2 Inverse Gammadistribution

Let X ~ Ga(shape= a,rate=b) andY = 1/X. Then itis easy to show that ~ IG(shape =u, scale =), where
the inverse Gamma distribution is given by

b(l,
IG(z|shape =, scale =) = ——az~(@FDeb/e

Ta) x,a,b>0

(280)
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IG(a,b)
1.4 :

—6— a=0.10, b=1.00
—*— a=1.00, b=1.00
—+—a=2.00, b=1.00
—+H—a=0.10, b=2.00
a=1.00, b=2.00
a=2.00, b=2.00

!

1.2

!

0.8

0.6

0.4r

0.2

Figure 6: Some inverse gamma distributions=§hapep=rate). These plots were producedibyvchi 2pl ot .

The distribution has these properties

mean = ——, a>1 (281)
a—1
b
= 282
mode p— (282)
b2

ar = ——— 2 283
e e M (259)

See Figure 6 for some plots. We see that increasijugt stretches the horizontal axis, but increasingoves the
peak up and closer to the left.
There is also another parameterization, using the rater@evscale):

1
IG(z|shape =, rate =) = @F(a)x_(aﬂ)e_l/(ﬁm), z,0, >0 (284)

10.3 Scaled Inver se-Chi-squared
The scaled inverse-chi-squared distribution is a repatenzation of the inverse Gamma [GCSR04, p575].

“2(zlv,0%) = ! L‘Q ”/2;5*5*16 [—L‘Q] x>0 (285)
X 7T T2y \ 2 P
2
= IG(x|shape%, scale%) (286)

where the parameter> 0 is called the degrees of freedom, ard> 0 is the scale. See Figure 7 for some plots. We
see that increasinglifts the curve up and moves it slightly to the right. Latehem we consider Bayesian parameter
estimation, we will use this distribution as a conjugatepfor a scale parameter (such as the variance of a Gaussian);
increasing’ corresponds to increasing the effective strength of tharpri
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—©&—y=1.00, 6°=0.50
% —%—v=1.00, 6?=1.00
| & —+—v=1.00, ¢*=2.00
[ b ~—— v=5.00, 2=0.50
‘ v=5.00, 62=1.00
v=5.00, 0°=2.00

Figure 7: Some inverse scalegf distributions. These plots were producedibw chi 2pl ot .

The distribution has these properties
2

mean = 2 forv > 2 (287)
v—2
2
vo
mode = I (288)
20204
var =20 = 1) orv > (289)

Theinver se chi-squared distribution, writteny; 2(z), is the special case where? = 1 (i.e.,0? = 1/v). This
corresponds tdG(a = v/2,b = scale= 1/2).

10.4 Wishart distribution

Let X be ap dimensional symmetric positive definite matrix. The Wighsuithe multidimensional generalization of
the Gamma. Since it is a distribution over matrices, it iddharplot as a density function. However, we can easily
sample from it, and then use the eigenvectors of the reguttiaitrix to define an ellipse. See Figure 8.

There are several possible parameterizations. Some aythgr, [Bis06, p693], [DeG70, p.57],[GCSR04, p574],
wikipedia) as well as WinBUGS and Matlabi(shr nd), define the Wishart in terms of degrees of freedom p
and the scale matri¥ as follows:

1
Wi, (X|S) = E|X|(”‘p‘1)/2 exp|[—3tr(S™'X)] (290)
Z = 2P0 (v/2)|S|"/? (291)
wherel',,(a) is the generalized gamma function
p .
20+ 1 —14
T — —p(p—1)/4 T - 292
p(a)=m 1:I 5 (292)
(SoT'; () = T'(«v).) The mean and mode are given by (see also [Pre05])
mean = vS (293)
mode = (v—p—1)S,v>p+1 (294)
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Wishart(dof=2.0,S=[4 3; 3 4]) Wishart(dof=10.0,S=[4 3; 3 4])
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Figure 8: Some samples from the Wishart distribution. Left= 2, right: v = 10. We see that if ifv = 2 (the smallest valid
value in 2 dimensions), we often sample nearly singularigegr Asv increases, we put more mass on fheatrix. If S = I,
the samples would look (on average) like circles. Generayad shpl ot .

In 1D, this becomeé&/a(shape= v/2, rate= S/2).
Note that if X ~ Wiy(S), andY = X!, thenY ~ IW,(S~!) andE[Y] = —3—.
In [BS94, p.138], and thei shpdf in Tom Minka’s lightspeed toolbox, they use the following@aeterization

AB[*
Ty(a)

We require thaB is ap x p symmetric positive definite matrix, ardd > p— 1. If p = 1, soB is a scalar, this reduces
to theGa(shape =, rate=b) density.

To get some intuition for this distribution, recall thatArB) is a vector which contains the inner product of the
rows of A and the columns aB. In Matlab notation we have

Wi(X|a,B) = |X|o~ (P+D/2 exp[—tr(BX)) (295)

trace(A B) = [a(l,:)*b(:,1), ..., a(n,:)xb(:,n)]

If X ~Wi,(S),then we are performing a kind of template matching betwkertolumns ofY andS—! (recall that
both X andS are symmetric). This is a natural way to define the distanted®n two matrices.

10.5 Inverse Wishart

This is the multidimensional generalization of the inveBsemma. Consider@x d positive definite (covariance) ma-
trix X and a dof parameter > d — 1 and psd matri¥s. Some authors (eg [GCSR04, p574]) use this parametenizatio

w,(X|s™!) = %|X|_(”+d+1)/2exp(—%TT(SX1)) (296)
|S|u/2
7 = — -1 297
2vd/2T (1 /2) (297)
where .
__d(d—1)/4 v+1—1
Ty(v/2) = 741/ HF(T) (298)
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The distribution has mean

S
EX = ——— (299)

In Matlab, usé wi shr nd. In the 1d case, we have
X2 (Z[w, 05) = IW,o (Bl (005) ) (300)
Other authors (e.g., [Pre05, p117]) use a slightly diffefermulation (with2d < v)

-1
d

IW,(X|Q) = (2<”—d—”d/2wd“—”/4 [Irw-da- j>/2>) (301)

j=1
x| QI IZX| T exp (—%Tr(xlcz)) (302)

which has mean
Q

FX = ———

v—2d—2 (303)

10.6 Student ¢ distribution
The generalized t-distribution is given as

ty (2, 0®) >

(v/2+1/2) 1
= 305
¢ I'v/2) vro (305)
wherec is the normalization consant.is the meany > 0 is thedegrees of freedom, ando? > 0 is the scale. (Note
that thev parameter is often written as a subscript.) In Matlab,tysef .

The distribution has the following properties:

. [1 i %(ﬂﬂ (304)

mean = pu, v>1 (306)
mode = pu (307)
var = %, v>2 (308)
Note: if x ~ ¢, (u,0?), then
TRy, (309)
g

which corresponds to a standard t-distribution witk: 0, 0% = 1:

(v +1)/2) 2/ \—(v+1)/2
tu(z) = W(l + 22 /)~ D/ (310)

In Figure 9, we plot the density for different parameter eslu Asr — oo, the T approaches a Gaussian. T-
distributions are like Gaussian distributions whteavy tails. Hence they are more robust to outliers (see Figure 10).

If v = 1, this is called a&Cauchy distribution. This is an interesting distribution sinceXf ~ Cauchy, thenE[X]
does not exist, since the corresponding integral divetgssentially this is because the tails are so heavy that gsmpl
from the distribution can get very far from the center

It can be shown that the t-distribution is like an infinite sofmGaussians, where each Gaussian has a different
precision:

p(x|p,a,b) = /N(£C|M,T_1)GCL(T|CL, rate= b)dr (311)
= taa(x|p, b/a) (312)
(See exercise 2.46 of [Bis06].)
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Student T distributions

0.4 T R T T
—o—t(v=0.1)
0.35 —*— t(v=1.0) |
—+— t(v=5.0)
0.3F 0 N(,1) |

0.25

0.2

0.15

Figure 9: Student t-distributiong’ (., o2, v) for u = 0. The effect ofc is just to scale the horizontal axis. As—oo, the
distribution approaches a Gaussian. Seadent Tpl ot .
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Figure 10: Fitting a Gaussian and a Student distribution to some daff @nd to some data with outliers (right). The Student
distribution (red) is much less affected by outliers thaa @aussian (green). Source: [Bis06] Figure 2.16.
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T distribution, dof 2.0 Gaussian
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Figure 11: Left: T distribution in 2d with dof=2 and& = 0.1/. Right: Gaussian density with = 0.1/, andp = (0, 0); we see
it goes to zero faster. Produced iyl t i var Tpl ot .

10.7 Multivariatet distributions
The multivariate T distribution i@ dimensions is given by

r d/2) |%|71/2
tl,(fL'|,U,, Z) = (VI/‘(QV—;Q)/2) v|d/|27rd/2 x |1+ %(IL - M)Tgil(x - /j‘) (313)

(314)

where: is called the scale matrix (since it is not exactly the cavaece matrix). This has fatter tails than a Gaussian:
see Figure 11. In Matlab, usa/t pdf .
The distribution has the following properties

Ex = pifr>1 (315)
modex = p (316)
Cove = —2 SEfory > 2 (317)

o

(The following results are from [Koo03, p328].) Suppdse~ T'(u, X, v) and we partition the variables into 2
blocks. Then the marginals are

Yi ~ T (i, Xis, v) (318)
and the conditionals are
Yilya ~ T(p1)2, X1)2,v +di) (319)
fig = p1+ S125855 (y2 — pi2) (320)
L = hip(En - 1225 E]) (321)
1 _
M = oo [ (2 = 12) 25 (2 — pi2)] (322)

We can also show linear combinations of Ts are Ts:
Y ~T(u,2,v) = AY ~T(Ap, AL A v) (323)

We can sample from @ ~ T'(u1, 3, v) by samplingz ~ T'(0, 1, ) and then transforming = ;. + R” x, where
R = chol(X), soRTR = 3.
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