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ARTICLE INFO ABSTRACT

Despite decades of research into air and stream temperature dynamics, paired air-water annual temperature
signals have been underutilized to characterize watershed processes. Annual stream temperature dynamics are
useful in classifying fundamental thermal regimes and can enhance process-based interpretation of stream
temperature controls, including deep and shallow groundwater discharge, when paired with air signals. In this
study, we investigated multi-scale variability in annual paired air-water temperature patterns using sine-wave
linear regressions of multi-year daily temperature data from streams of various sizes. A total of 311 sites from
two spatially intensive regional datasets (Shenandoah National Park and Olympic Experimental State Forest) and
a spatially extensive national dataset spanning the contiguous United States (U.S. Geological Survey gages) were
evaluated. We calculated three annual air-water thermal metrics (mean ratio, phase lag, and amplitude ratio) to
deduce the influence of groundwater and other watershed processes on stream thermal regimes at multiple
spatial scales. Site-specific values of the three annual air-water thermal metrics ranged from 0.69 to 5.29 (mean
ratio), —9 to 40 days (phase lag), and 0.29 to 1.12 (amplitude ratio). Regional patterns in the annual thermal
metrics revealed persistent yet spatially variable influences of shallow groundwater discharge and high levels of
thermal variability within watersheds, indicating the importance of local hydrogeological controls on stream
temperature. Furthermore, annual thermal metric patterns from the regional datasets were generally concordant
with the national dataset suggesting the utility of these annual thermal metrics for analysis at multiple scales.
Analysis of the national dataset showed that previously defined thermal regimes based on water temperature
alone could be further refined using air-water metrics and these metrics were related to physiographic watershed
characteristics such as contributing area, elevation, and slope. This research demonstrates the importance of
spatial scale and heterogeneity for inferring hydrological process in streams and provides guidance for the
interpretation of annual air-water temperature metrics that can be efficiently applied to the growing database of
multi-year temperature records. Results from this research can aid in the prediction of future thermal habitat
suitability for coldwater-adapted species at ecologically and management-relevant spatial scales with readily
available data.
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1. Introduction term ecological management. Temperature is one of the most important

properties controlling the water quality of streams (Caissie, 2006). Al-

As climate change and other anthropogenic alterations to water-
sheds transform the natural thermal regime of streams and rivers
(Bassar et al., 2016; Isaak et al., 2012; Kaushal et al., 2010; Kedra and
Wiejaczka, 2018), understanding the sensitivity and vulnerability of
stream segments to these changes is increasingly imperative for long-

most all physical, chemical, and biological processes of the stream
corridor are influenced by temperature, including fish development and
metabolism, dissolved oxygen concentration, biogeochemical cycling,
and organic matter decomposition. Absent hydrologic alteration,
channel water temperature is driven by meteorological and
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Nomenclature

A, A,, A, Annual temperature amplitude (air or water)

Agr Annual temperature amplitude ratio
a, b Linear regression coefficients
Mg Annual temperature mean ratio

T, T,, T,y Mean daily temperature (air or water)
To, To,a» To,w Annual temperature mean (air or water)
t Time

€ Linear regression error term
¢, §a, » Annual temperature phase (air or water)
A Annual temperature phase lag

® Angular frequency

ANOVA Analysis of variance

BFI Base-flow Index

GW Groundwater

NOAA  National Oceanic and Atmospheric Administration

OESF Olympic Experimental State Forest

PRISM  Parameter-elevation regressions on independent slopes
model

SHEN Shenandoah National Park

USGS U.S. Geological Survey

WADNR Washington State Department of Natural Resources

hydrogeological factors, such as incoming solar radiation, outgoing
longwave radiation, air temperature, wind speed, humidity, stream
channel dimensions (depth, width, and flow volume), and groundwater
(GW) inputs (Caissie, 2006; Cluis, 1972; Westhoff et al., 2007). Because
of its effect on ecosystem processes, stream temperature has received
abundant attention in the scientific literature for more than a half-
century and numerous modeling approaches have been used to predict
different facets of its regime (key reviews include Anderson, 2005;
Benyahya et al., 2007a; Caissie, 2006; Gallice et al., 2015; Kurylyk
et al.,, 2019; Webb et al., 2008). Short-term air-water temperature re-
lations have been used to map spatially variable stream water thermal
sensitivity in summer (Kelleher et al., 2012). However, longer-term
annual water temperature patterns, and how these relate to local air
temperature patterns and watershed processes, have been under-
explored.

Stream temperature models fall into deterministic or statistical
groups (Benyahya et al., 2007a; Caissie, 2006). Deterministic models
are based on the balance of energy (heat) and mass (flow) fluxes in a
water body (Boyd and Kasper, 2003; Glose et al., 2017). These models
are best for conducting impact studies that assess changes to one or
more components of the stream heat budget or when exploring changes
in temperature at multiple spatial scales (Benyahya et al., 2007a;
Caissie, 2006; Westhoff et al., 2007). However, total heat budget
models are complex, computationally expensive, and require numerous
hydrological, physiographic, and meteorological inputs that may be
excluded from typical measurement protocols, poorly defined at the
spatial scale needed for ecological applications, or difficult to quantify.
In contrast, statistical models are computationally simpler with
minimal data requirements (Benyahya et al., 2007a) facilitating pre-
diction at ecologically relevant spatial grains and extents. However,
statistical models currently lack a clear understanding of the relation-
ships between derived model coefficients and important watershed
processes potentially limiting their utility. Further, unsampled spatial
heterogeneity can lead to overly simplistic predictions at multiple
scales. For instance, the development of national-scale models, such as
The National Water Model (NOAA, 2019), requires understanding of
intra- and inter-regional spatial variation for meaningful downscaled
predictions.

Statistical models typically use stochastic methods to assess re-
lationships between water and air temperatures for small time-steps
(e.g., daily). These models result in the derivation of a long-term per-
iodic component of water temperature data, which is commonly as-
sumed to be temporally stable (Caissie et al., 1998). However, inter-
annual and long-term trends in water temperature may be driven by
temporally variable watershed processes, including solar radiation, GW
discharge dynamics from adjacent aquifers and temporal runoff pat-
terns. While tracing heat signatures has long been used to monitor the
activity of these and other contributing factors (Anderson, 2005;
Constantz, 2008; Halloran et al., 2016), few studies have explored their
influence on patterns and properties of the long-term water tempera-
ture signal (i.e., mean, phase, and amplitude). Together, these

properties can indicate the presence of stream thermal inertia (Letcher
et al., 2016), influence of shallow (~upper 6 m) versus deeper GW
discharge (Briggs et al., 2018b), riparian shading (Fabris et al., 2018;
Johnson and Jones, 2000; Wawrzyniak et al., 2017), or dam operations
(Rounds, 2007). However, it is unclear whether these observations are
applicable across locations and climates and if annual stream tem-
perature signals are relatively stable over time. Further, air temperature
is often assumed to be a dominant control on stream temperature at
seasonal timescales, but recent research indicates uncoupling of the
annual signal amplitude and phase relations between air and water
temperature may be used to infer other watershed controls on the
stream heat budget (Briggs et al., 2018a).

Here, we assess the utility of simple statistical modeling approaches
using multi-year paired air-water temperature data for developing
ecologically relevant thermal metrics, and to evaluate how these di-
agnostic metrics vary across multiple spatial scales. The specific ob-
jectives are to: (1) compare annual air and water temperature signal
parameters and combined air-water metrics across watershed, regional,
and national spatial scales; and (2) provide guidance for the inter-
pretation of three paired air-water annual thermal metrics (mean ratio,
phase lag, and amplitude ratio) derived from sine-wave linear regres-
sions with respect to physical watershed processes. These objectives are
addressed using paired air and water temperature data collected at
relatively high spatial resolution in mountain headwater streams from
two different climatic regions of the United States (U.S.) (Pacific
Northwest and Mid-Atlantic), along with data from streams of generally
larger size distributed across the contiguous U.S. The use of the latter,
national dataset, allows for a comparison between the paired air-water
annual temperature signals method presented here and another multi-
year thermal classification method that used the same sites (Maheu
et al., 2016). This previously developed stream thermal regime classi-
fication system, using identified key environmental drivers, was based
exclusively on water temperature data. Their results showed that sites
could be clustered based on differences in the annual water temperature
mean, amplitude, and phase parameters, and that these clusters could
be predicted by air temperature and flow characteristics. We hypothe-
size that the inclusion of the comparison of annual water temperature
patterns to local annual air temperature patterns in the present analysis
will improve the ability to predict processes such as GW exchange and
riparian vegetation characteristics that may vary across steep gradients
or spatial discontinuities.

2. Data and methods

In this section, we describe the site characteristics of the regional
and national datasets used in this study and methods for analyzing
annual air and water temperature sine-wave signals with linear re-
gression.



Z.C. Johnson, et al.

& British Columbia

Canada

Journal of Hydrology 587 (2020) 124929

B Legend

A Air and water

o Water only
[ Watershed boundary
Parent material
B Basaltic
Granitic
I Limestone
Siliciclastic
1
k!
. "‘ 6
%
wS 9
gy
Legend 2
: W 0
Air and water “* Iy
monitoring location X b:’ @ oP :
|:| Monitored watershed \'\, g% o p@
Ealel = 1
i._._._|OESF Boundary [} Vo' Twomile ;&
i o
DNR-managed lands 1584 o Onemile
: i 4 &
Rivers and streams H Q i
i =)
Lake i
Parent material H i |
Unconsolidated ‘i 4y
sediments, including i ~Jd N
glacial i N
Sedimentary rocks and ‘ ,."/ v
deposits 'l /
H J
+ ) i ) g
Volcanic rocks and i =5
deposits Lo 7 210 S5 10 20km i
= — J
C.
o
.

Legend

Data Availability Thermal Regimes

Reference\ﬁ\
X No Data ©  highly variable cool m Non-ref - P

*  stable cold O Ref
@ stable cool 0 250 500 1,000 1,500 2,000
A variable cold km
& variable cool
¢ variable warm
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Table 1

Summary of median upstream basin characteristics for the OESF, SHEN, and
USGS sites. Statistical differences between the datasets were determined using a
one-way ANOVA followed by a Tukey honestly significant difference post-hoc
test (Graves et al., 2015) and represented as italicized letters following the
mean values.

Dataset  Statistic Basin Area (ha) Basin Elevation (m) Basin Slope (%)
OESF' Mean 210a 320a 32.3b
Range 15.4-789 76.8-854 4.00-69.0
Std. Dev. 169 187 19.2
SHEN? Mean 800a 781b 34.0b
Range 27.4-3630 584-1110 13.7-52.2
Std. Dev. 723 120 8.60
USGS®  Mean 1.41 x 10° 914b 16.8a
Range 432-3.32 x 10°  17.0-3680 0.10-53.1
Std. Dev.  3.73 x 10° 774 14.7

1 Basin area and elevation values were calculated using a 0.9 m (3 ft) LiDAR-
derived digital elevation model (DEM) (WADNR, 2019) and basin slope values
were calculated using USGS 10-m DEM.

2 Values were calculated using USGS 10-m DEM. *Values were extracted
from the GAGES-II database (U.S. Geological Survey, 2011).

2.1. Site descriptions

The Pacific Northwest Olympic Experimental State Forest (OESF)
and Mid-Atlantic Shenandoah National Park (SHEN) sites (Fig. 1 and
Table 1) represent two regions of the U.S. with watersheds of differing
climate, elevation, vegetation, geology, logging history, and glaciation
history. In these disparate regions similarly sized mountainous water-
sheds (n = 56 sites in OESF and 120 in SHEN) were instrumented with
paired air-water temperature sensors for multiple years. These sites
provide an opportunity to compare spatial and temporal temperature
patterns from opposite coastal areas of the U.S. as well as examine
within-region patterns. In addition, stream temperature data were also
analyzed from 135 U.S. Geological Survey (USGS) stream gage sites
previously classified by Maheu et al. (2016), which are spatially dis-
persed across the contiguous U.S. (Fig. 1 and Table 1). This regional-
and national-scale analysis expands the spatio-temporal analysis of
thermal regime across different biomes with unique climates, hydro-
geology, and land-use histories.

2.1.1. Regional datasets: OESF and SHEN

The OESF is a 523,000-ha mostly forested planning region that
contains 110,000 ha of state trust lands on the Olympic Peninsula in
western Washington, U.S. (Martens et al., 2019) (Fig. 1A). SHEN is a
77,700-ha mostly forested protected area located along the spine of the
Blue Ridge Mountains in northern Virginia, U.S. (Fig. 1B). Elevation in
the OESF ranges from sea level to 1,155 m above sea level (a.s.l.). Mean
annual precipitation in this maritime climate ranges between 203 and
355 cm with the majority falling as rain primarily during the fall and
winter months (approximately October to March). Elevation in SHEN
ranges from 162 to 1,235 m a.s.l. and receives an average annual pre-
cipitation amount between 100 and 150 cm (Jastram et al., 2013), with
the majority falling as rain at all but the highest elevations. A com-
parison of cumulative monthly precipitation amounts and mean air
temperatures between OESF and SHEN is shown in Appendix A.

OESEF stream flows rise with the onset of the rainy season in autumn,
peak during winter to early spring (approximately December through
March), and decline to reach base-flow conditions in summer (ap-
proximately June through August) based on discharge data from USGS
gages 12041200 and 12043000 (U.S. Geological Survey, 2019).
Average monthly base-flow index (BFI) values for these two gages,
calculated using the USGS Groundwater Toolbox (Barlow et al., 2017)
HySEP-Fixed method over the same time period as temperature mea-
surements (see below), were 0.70 and 0.68, respectively. Maximums
(> 0.87) typically occurred in July and minimums (< 0.48) in October
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for both gages. Standard deviation (SD) between annual means
(2013-2018 water years, i.e., 1 October to 30 September) were < 0.03
for both gages.

Although SHEN experiences less dramatic seasonal variation in
rainfall amounts than OESF, late spring through summer months gen-
erally have slightly more precipitation than autumn through winter
months. However, because peak precipitation rates occur during the
growing season in these primarily deciduous forests and much of the
incoming water is utilized by flora during transpiration, stream flows
typically peak during winter to spring months (approximately
December through May) with a slow rise starting in autumn and a
slightly faster decline to reach base-flow conditions during late summer
to early autumn months (approximately August through September)
based on discharge data from USGS gages 01662800 and 01663500
(U.S. Geological Survey, 2019). Average monthly BFI values for these
two gages were 0.72 and 0.59, respectively. Annual BFI patterns were
approximately bi-modal, with maximums (> 0.80 and > 0.65, respec-
tively) occurring from December to April and in August and minimums
(< 0.62 and < 0.50, respectively) occurring in July and from Sep-
tember to October. SD of annual means (2013-2016 water years)
were < 0.04 for both gages. BFI values for all gages near OESF and
SHEN generally indicate that GW is an important contribution to
overall stream flow in these regions.

A total of 56 flow-disconnected OESF subwatersheds were used in
this study that fall within the Coast Range level III ecoregion (see
Section 2.1.2 for a more detailed description of these classifications)
(Omernik, 1987; Omernik and Griffith, 2014). Paired air and water
temperature measurements were collected at these sites between 1
October 2012 and 31 December 2018. These sites have been used in
recent publications regarding stream and forest conditions of the OESF
(Martens et al., 2019; Minkova et al., in press). The SHEN sites used in
this study are within the Blue Ridge level III ecoregion (Omernik, 1987;
Omernik and Griffith, 2014) and include 120 subwatersheds within 18
flow-disconnected watersheds that all lie within the boundaries of the
park. Hourly water temperature data were collected at all 120 sites,
while air temperature was collected at a subset of the sites and modeled
using latitude and elevation as predictors (Johnson et al., 2017). For
this study, data collected between 23 June 2012 and 30 September
2016 were used, and the details of the temperature data collection can
be found in Snyder et al. (2015) and Johnson et al. (2017). Various
subsets of these sites and time period have been the foci of previous
stream temperature research (Briggs et al., 2018b,a; Johnson et al.,
2017; Snyder et al., 2015) and the data are publicly available (Briggs
et al., 2017; Snyder et al., 2018).

The OESF encompasses more than 17,000 km of streams (stream
order 1-4, excludes the mouth of the Quillayute River), including
portions of several major regional rivers (WADNR, 2016). The 56 sites
represent tributaries to these regional rivers, whose waters reach the
Pacific Ocean via the Clallam River to the north and the Quillayute,
Hoh, and Queets Rivers to the west, as well as coastal streams, such as
Goodman Creek and Mosquito Creek to the west. Collectively, these
small fish-bearing streams contain various populations of several
coldwater salmonid species (Martens, 2016). SHEN contains over
1000 km of streams (stream order 1-3) that ultimately drain into
Chesapeake Bay through the Rappahannock, Potomac, and James
Rivers. SHEN’s native brook trout (Salvelinus fontinalis) coldwater ha-
bitat is widely recognized as being among the best in the middle Ap-
palachians and streams in the park collectively provide habitat for at
least 41 fish species (Jastram et al., 2013; National Park Service,
2019a).

Two general types of geologic substrate dominate within the OESF:
sedimentary rocks and deposits (58.2% of the area) at higher elevations
and unconsolidated sediments including glacial and alluvial deposits
(39.0% of area) at lower elevations. Volcanic rocks and deposits also
exist within the OESF but represent a minor fraction of the area (2.8%).
Three principal bedrock types exist within SHEN and each represents
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approximately one-third of the total park area: granitic, metabasaltic,
and siliciclastic (Gathright, 1976; Southworth et al., 2009). Limestone
is also present but in less than 2% of the park’s area. Colluvium dom-
inates higher elevation surficial deposits and debris-fan deposits dom-
inate lower elevations. Currently, there is limited known information
regarding GW sources within the OESF (Safeeq et al., 2014b,a, 2013)
but much is known in SHEN. Perennial springs are prevalent in SHEN
and thus GW inputs are a major driver of stream flow (DeKay, 1972;
Lynch, 1987; Snyder et al., 2013), the source of which originates from
generally shallow (< 10 m depth) layers of residuum and colluvium
that overlie low-permeability bedrock (Busenberg and Plummer, 2014;
Lynch, 1987; Plummer et al., 2001). In one SHEN watershed, spatially
distributed passive seismic geophysical measurements in the riparian
zone indicated an average depth to bedrock of only 2.6 m (Briggs et al.,
2018b).

All but four of the 56 OESF subwatersheds used in this study are
managed by the Washington State Department of Natural Resources.
The remaining four sites serve as reference sites for the area because
they are ecologically similar to the OESF state lands sites but are lo-
cated in the adjacent Olympic National Park and never experienced
timber harvesting. Natural ecosystem disturbance is dominated by
major wind events and wildfire (WADNR, 2016). Riparian forest con-
ditions in the OESF state lands are primarily in the earlier stages of
forest development (< 80 years), with 70% of riparian areas dominated
by hardwoods or young conifers (WADNR, 1997). Outside of riparian
areas, OESF forests are primarily coniferous (Franklin and Dyrness,
1973; Henderson et al., 1989). SHEN’s federally protected forests have
not experienced any timber harvesting since the establishment of the
park in 1935. Today, SHEN’s forests cover approximately 95% of the
park’s land and natural ecosystem disturbance is dominated by invasive
insects and wildfire. The majority of the forest is made up of deciduous
species (National Park Service, 2019b), and a recent outbreak of the
invasive hemlock woolly adelgid (Adelges tsugae) has resulted in a 95%
loss of Eastern hemlock (Tsuga canadensis), which has significantly
decreased riparian shading in the affected areas (National Park Service,
2019b).

2.1.2. National dataset: USGS gage sites
Maheu et al. (2016) selected 135 sites for which daily water
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temperature data were available from the USGS Geospatial Attributes of
Gages for Evaluating Streamflow (GAGES-II) database (U.S. Geological
Survey, 2011) (Fig. 1C). These sites span seven level I, 14 level II, and
45 level III ecoregions (Omernik, 1987; Omernik and Griffith, 2014).
Ecoregion levels are hierarchical, grouping locations on different spatial
scales (I = continental, Il = national and subcontinental, III = re-
gional) based on patterns of biotic and abiotic phenomena including
geology, vegetation, climate, and land use. Median basin elevations
range from 17 to 3680 m a.s.l. and basin areas are generally larger than
the OESF and SHEN sites (Table 1). Of the 135 USGS sites, 76 are
classified as reference sites (i.e., represent watersheds with minimal
hydrological disturbance) (U.S. Geological Survey, 2011) and the re-
maining 59 were included to expand the spatial coverage despite ex-
periencing some form of hydrological disturbance. The degree of hy-
drologic disturbance is measured as an index in the GAGES-II database,
ranging from 1 (minimally disturbed) to 42 (highly disturbed). Hy-
drologic disturbance index values were generally only slightly lower in
the reference sites (range = 1 to 18, mean = 7.7, SD = 3.4) than the
non-reference sites (range = 4 to 25, mean = 12.2, SD = 4.0) used for
this study. Therefore, the sites used in this study generally represent less
disturbed hydrologic regimes. Site average BFI values extracted from
the GAGES-II database (divided by 100) were slightly greater for re-
ference sites (range = 0.07 to 0.85, mean = 0.57, SD = 0.16) than
non-reference sites (range = 0.14 to 0.88, mean = 0.47, SD = 0.20).

In this study, a date range of 1 January 2010 to 1 January 2019 was
chosen to both maximize the possible amount of temperature data and
to generally correspond to the time period of data collection in SHEN
and OESF. Of the original 135 sites, 26 were removed due to the ab-
sence of mean daily water temperature data within this time frame.
This resulted in a loss in coverage of three level III ecoregions but no
loss in level I or level II ecoregions. Because a large number of USGS
sites exhibited long durations of zero and sub-zero water temperatures,
which decouples the air-water relationship (Letcher et al., 2016), any
data points <0 °C were removed before performing the sine-wave re-
gressions.

Of the remaining 109 sites, 67 are reference sites and 42 are non-
reference sites. Where mean daily water temperature was not available
for a given site, but daily minimum and maximum temperatures were,
the mean daily water temperature was calculated as the average of

T = Asin(wt + ¢) + Ty
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Fig. 2. Conceptual figure of an example air and water temperature annual sinusoidal curve (equation shown on top). Symbols represent the various air and water
annual thermal parameters and the equations represent the combined air-water annual thermal metrics.
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these two temperatures. As local air temperature data were only
available for two years at two sites, PRISM 4-km grid cell resolution
mean daily air temperatures (PRISM Climate Group, 2019) were ex-
tracted from the pixel nearest the site coordinates for each of the 109
sites over the same time period as the water temperature data using R
(Hart and Bell, 2015). Accuracy of the PRISM mean daily air tem-
perature values were tested by comparing the observed local streamside
air temperature values from the two USGS sites and a subset of OESF
and SHEN sites with the PRISM values extracted from the nearest pixel.
This comparison is summarized at the end of Section 2.2.

2.2. Annual sine-wave regression

Linear regressions of sine-waves were used to analyze observed
multi-year air and water temperature data from across the contiguous
U.S. First, a watershed- to regional-scale comparison was undertaken to
explore intra- and inter-watershed to intra- and inter-regional thermal
variability using paired air-water data collected at relatively high spa-
tial resolution from the OESF and SHEN focal regions. Second, a lower-
resolution but spatially distributed comparison was performed to ex-
plore air-water thermal variability across many regions of the con-
tiguous U.S. using the USGS national dataset.

Defining annual signals is common for stochastic modeling of water
temperature. In a stochastic approach, water temperature is separated
into two components: a long-term (i.e., seasonal or annual) periodic
component and a short-term nonseasonal residual component (Caissie
et al., 1998; Kothandaraman, 1971; Stefan and Preud’homme, 1993).
The annual component of water temperatures is defined by a Fourier
series or sinusoidal function, which is then subtracted from the ob-
served temperature data, leaving the residual component. Box-Jenkins
methods or a second-order Markov process are common methods to
predict the residual values (Benyahya et al., 2007a; Caissie et al., 1998;
Caissie, 2006; Cluis, 1972). These modeled residuals are then added
back to the modeled long-term component to predict water tempera-
ture. Many studies exist that examine the residuals component
(Ahmadi-Nedushan et al., 2007; Benyahya et al., 2007b; Caissie et al.,
2001, 1998; Cluis, 1972; Hague and Patterson, 2014; Salas, 1992), but
the annual component is largely ignored in the context of process-based
analysis. The characteristics of annual stream temperature signals can
be used to deduce which hydrogeological processes are driving stream
thermal regimes (Johnson, 1971; Maheu et al., 2016), particularly
when compared to local air temperature dynamics (Briggs et al.,
2018b,a). In this study, the annual signal of mean daily air and water
temperatures for each site were approximated as sine waves using only
the 1st harmonic (Kothandaraman, 1971):

T(t) = A = sin(wt + ¢) + T + £(1) @

where T is daily mean temperature (°C), A is the amplitude (°C), w is the
angular frequency (rad d™Y), tis time (d), ¢ is the phase (rad), Ty is the
mean temperature (°C), and € is the error term (°C). The amplitude,
phase, and mean represent the core parameters of a sine-wave sig-
nal—the variation, horizontal displacement, and vertical displacement,
respectively (Fig. 2). The annual time period was defined based on the
water year from t = 1 (1 October) to t = 365 (30 September, t = 366 in
leap years), resulting in annual vectors of ® and t each containing daily
values. Although the use of higher harmonics improves the regression
fit by accounting for sub-annual variation, this study focuses on the
fundamental annual signals and thus the first harmonic is appropriate
(Kothandaraman, 1971). The use of mean daily temperatures eliminates
the need to account for lags between air and water temperatures on the
scale of hours (Stefan and Preud’homme, 1993; Webb et al., 2003).

The sine-wave equation (Eq. (1)) was linearized using Ptolemy’s
theorem to enable linear regression (Kothandaraman, 1971):

T(t) = a = sin(wt) + b * cos(wt) + Ty + (t) 2

where a and b are the regression coefficients equal to A * cos(¢) and
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A # sin(¢), respectively. The annual air and water temperature signal
amplitudes are then determined as v a? + b? and phase for each signal is
calculated as tan~!(b/a). Amplitude is approximately half of the annual
range in mean daily temperatures (Ward, 1985), when disregarding
anomalously warm or cold days. Phase was converted into units of days
by multiplying by the length of the year divided by 2. To control for
the influence of local weather patterns on annual water temperature
signals, annual air and water temperature parameters were combined
into three annual metrics based on the core features of a sinusoid curve
(Fig. 2). Amplitude ratio (Agr), also known as magnitude ratio
(Kothandaraman, 1972) or damping factor (Kurylyk et al., 2015), is the
water amplitude (A,) divided by the air amplitude (A,) (Briggs et al.,
2018b,a). Phase lag (A$) was calculated as the difference between
water temperature phase (§,,) and air temperature phase (¢,) (Briggs
et al., 2018b,a; Kothandaraman, 1972). Mean ratio (Mg), also known as
ratio of means (Kothandaraman, 1972), is the water mean temperature
(To,w) divided by the air mean temperature (T ,). Comparing multiple
metrics simultaneously can give insights into potential GW contribu-
tions and effective depth of that contribution. Shallow GW (within
approximately 8 m of land surface) has an annual temperature signal
that is both lagged and damped compared to local air temperature,
while deeper GW typically shows little annual temperature variation
(Constantz, 2008). Therefore, shallow and deep GW discharges in-
troduce unique annual temperature signals into stream water. An ex-
tended A$ (> ~10 d) corresponding with a low Ay (i.e., negative re-
lation) has been shown to be the result of shallow GW influence,
whereas deeper GW influence would induce similar or even lower Ag
with minimal A (Briggs et al., 2018a).

Using a moving window in the linear regression (Eq. (2)), where the
best-fit sinusoidal parameters and combined metrics can change at each
step through time, can indicate the temporal stability of the sinusoid fits
(Zivot and Wang, 2006). Many iterations of the linear regression were
calculated for each site by shifting the 365-day window by 1 day for
each iteration. This resulted in a possible maximum of 1919, 1463, and
2924 separate regressions for each OESF, SHEN, and USGS site, re-
spectively, and the three annual thermal parameters and combined
metrics were calculated for each regression iteration. However, in most
cases, the median parameter and median combined metric values from
these regressions for each site are reported, hereafter “site median”, in
order to compare values between sites.

Regression fit was assessed using root mean squared error (RMSE).
Temporal variation of RMSE and each annual thermal parameter and
combined metric was assessed by calculating the standard deviation of
values from the many regression iterations for each site. Up to 49 days
of missing data within each 365-day window were allowed for each
site, as we found through simulation (data not shown) would still yield
accurate estimates of the three annual thermal parameters. One OESF
site, three SHEN sites, and 11 USGS sites were removed due to no 365-
day periods with <49-days of missing data. Five of the 11 USGS sites
removed in this way were a result of removing temperatures <0 °C
mentioned earlier. This left a total of 55, 117, and 98 sites for the OESF,
SHEN, and USGS datasets respectively. All regressions and statistical
calculations were carried out using R (R Core Team, 2017). Spearman’s
rank correlation coefficient (p) between various parameters and com-
bined metrics was calculated using the cor.test function. One-way
ANOVA followed by a Tukey honestly significant difference post-hoc
test was used to evaluate differences among datasets using the mult-
compView package in R (Graves et al., 2015). The relationship of annual
thermal parameters and combined metrics with selected watershed
characteristics was summarized for each site. These characteristics in-
cluded median upstream basin elevation, median upstream basin slope,
and accumulated upstream basin area (Table 1).

For a subset of sites, PRISM air temperature records were compared
to locally measured streamside temperatures. Overall, the difference
between the PRISM air temperature values and observed values was
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minor. Therefore, while error surrounding the annual thermal para-
meters estimated with PRISM data is slightly higher than with locally
measured data, the overall patterns and relationships among the annual
thermal parameters and combined metrics are still valid. On average,
PRISM slightly overestimated the air temperature annual mean, phase,
and amplitude when compared to sites with locally measured air tem-
perature data. Therefore, these differences would generally result in a
modest underestimation of annual mean ratio, phase lag, and amplitude
ratio. However, the differences between PRISM predictions and ob-
served air temperatures at a specific site may lead to small over-
estimations of the annual thermal parameters as well. Comparing
PRISM air temperature predictions with air temperature from the only
two USGS sites in the dataset with observed data, on average PRISM
overestimated the air temperature annual mean (by 0.07 °C) and phase
(by 3.9 d) and underestimated the annual amplitude (by 0.57 °C) in one
site but underestimated the annual mean (by 0.78 °C) and over-
estimated the annual phase (by 1.4 d) and amplitude (by 0.37 °C) in the
other site. For the comparison with a subset of OESF and SHEN sites,
PRISM tended to overestimate the annual mean by an average of
0.58 °C (difference range of —0.75 to 2.12 °C), overestimate annual
phase by an average of 1.8 d (difference range of —3.7 to 4.1 d), and
overestimate annual amplitude by an average of 0.68 °C (difference
range of —0.2 to 1.35 °C).

3. Results

In summary, OESF and SHEN thermal regimes were dramatically
different when annual air and water temperature signal parameters
were compared separately. However, when air and water temperature
signals were combined (i.e., Mg, A$, and Ag), OESF and SHEN sites
generally exhibited similar patterns of shallow GW discharge dom-
inance, as indicated by a negative A¢-Ag relation. The generally larger
USGS sites exhibited greater spatial variation in the annual air and
water temperature parameters among its sites, which led to high
variability in the combined air-water annual thermal metric values.
Some USGS sites exhibited potentially deeper GW influence than the
OESF and SHEN sites (low Ar with lower A¢). The Maheu et al. (2016)
thermal regime -classifications generally clustered together when
plotted in Mg-Ad-Ar metric space despite only considering annual water
temperature patterns during their development. However, some re-
gimes exhibited a large range in metric values, which led to some
overlap between regimes. Basin area, elevation, and slope were vari-
ably, but significantly (p < 0.05), correlated with the three annual
thermal metrics among the three datasets.

3.1. Annual sine-wave regressions

Air temperature regression fits were much better (i.e., lower RMSE)
for OESF sites than SHEN and USGS sites (Table 2 and Appendix Figure
B.1), which is likely related to greater sub-annual temperature variation
(high and low) at the SHEN and USGS sites that are not well captured
by the fundamental annual sinusoid. The USGS sites exhibited sub-
stantially higher variability in air temperature RMSE among its sites
(SD = 0.57 °C) than that of either the OESF (SD = 0.12 °C) or SHEN
(SD = 0.02 °C) sites. Water temperature regressions showed stronger
fits and were more similar between the three datasets than for air
temperature regressions (Fig. 3), though the USGS sites again showed
higher variability among sites.

3.2. Annual parameter and metric patterns

Despite large differences in annual precipitation, air temperature,
and water temperature regimes between the two regional datasets, the
observed patterns in combined air-water annual thermal metrics were
similar for the SHEN and OESF regions. Overall, OESF sites exhibited
lower air and water annual means (To, and Ty ,, respectively), lower
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amplitudes (A, and A, respectively), and higher phases (i.e., later peak
temperatures; ¢, and ¢, respectively) than SHEN sites (Fig. 4). How-
ever, the majority of site-specific combined air-water annual metric
values overlap between the two regions (Fig. 4, panels G-I). In general,
there were slightly higher My and A¢ values, and slightly lower Ag
values for OESF sites than SHEN sites (Table 2 and Fig. 4). Interestingly,
the SHEN Mg values are mostly < 1.0 (i.e., water temperatures gen-
erally cooler than air temperatures) despite all of the sites experiencing
sub-zero air temperatures on at least 10% of the days. The USGS sites
exhibited a larger range in air and water temperature annual mean,
phase, and amplitude values than OESF and SHEN sites (Fig. 4, panels
A-F). This large parameter range also resulted in greater variability in
the My, A, and Ag metric values with generally lower A$ and higher Ag
than the OESF and SHEN sites (Table 2 and Fig. 4, panels G-I). The three
extreme USGS values of My (Fig. 4G) come from sites on the geother-
mally influenced Firehole and Gibbon Rivers in Yellowstone National
Park, Wyoming.

The days of the year corresponding to the fitted annual maximum
air and water temperatures were typically later for OESF sites than
SHEN sites (Fig. 4E and Appendix Table B.1), but water temperatures
generally reached their maximum less than two weeks after the max-
imum air temperatures for both regions (Fig. 4B and Appendix Table
B.1). The fraction of days with water temperatures cooler than air
temperatures was typically higher for SHEN sites than OESF sites (Table
B.1). The USGS sites exhibited a similar range in the timing of the an-
nual air maxima, but the annual water maxima were generally earlier
than the OESF and SHEN sites. The range in the fraction of days with
water temperatures cooler than air temperatures was much larger for
the USGS sites, but the mean of the fraction was between that of the
OESF and SHEN sites. A comparison of the three annual metric values
between OESF sites on state (n = 51) and federal (i.e., reference sites)
(n = 4) lands is shown in Appendix C.

Variation in the three annual thermal metrics between regressions
for a given site (i.e., temporal variation in the regressions) was present
and similar for both regional datasets but of minor magnitude, espe-
cially for Mg (Fig. 5 and Appendix Table B.2). This temporal variation is
less than the spatial variation in median metric values among OESF and
SHEN sites (i.e., Appendix Table B.2 versus Table 2) for all three annual
thermal metrics. In general, the time series for a given annual thermal
metric within the OESF or SHEN datasets exhibited similar shapes
among sites but were vertically displaced from each other. Temporal
patterns were generally not consistent between the three annual metrics
within these regions, suggesting that temporally variable factors

Table 2

Summary statistics for the site median air and water temperature regression fits
and combined air-water annual thermal metrics for OESF, SHEN, and USGS
sites. Statistical differences between the datasets were determined using a one-
way ANOVA followed by a Tukey honestly significant difference post-hoc test
(Graves et al., 2015) and represented as italicized letters following the mean
values.

Metric Dataset Mean Range Std. Dev.
Air RMSE (°C) OESF 2.38a 2.07-2.66 0.12
SHEN 4.09b 4.07-4.14 0.02
USGS 4.07b 2.75-5.29 0.57
Water RMSE (°C) OESF 1.12a 0.60-1.33 0.15
SHEN 1.55b 0.56-2.12 0.25
USGS 1.84c 0.63-3.32 0.50
Mg (5 OESF 1.03ab 0.90-1.10 0.04
SHEN 0.98a 0.89-1.09 0.03
USGS 1.12b 0.69-5.29 0.61
A (d) OESF 12.7¢ 6.8-39.8 4.4
SHEN 10.4b 6.3-30.6 3.4
USGS 3.3a —9.3-31.8 6.6
Ag () OESF 0.612a 0.293-0.744 0.097
SHEN 0.683b 0.445-0.805 0.069
USGS 0.758¢ 0.312-1.123 0.168




Z.C. Johnson, et al.

Journal of Hydrology 587 (2020) 124929

— Air Water

g-) 20 —

T 50 A

2

=] 15 15

S 107

Qo g 10

S

20 g -

l(k -5 - " Observed

W 40 4 Regressed 0 -

O T T T T T T T T T T T T T T

8 2013 2014 2015 2016 2017 2018 2019 2013 2014 2015 2016 2017 2018 2019

. 25/

® 20

= 154

g 10

o 5

§ 01

— -5

5 -10

T -15 +

w T

—_ 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016

o "y

o 307 30

—

S 20 25

o o

g 10 20 -

QE, 0 15 -

= -10 - 10

®w o0 - =

8 20 ‘ 5

S S0 T T T T T T T T — 0 1
2010 2011 2012 2013 2014 201S 2016 2017 2018 2019 2010 2011 2012 2013 2014 201S 2016 2017 2018 2019

Date

Date

Fig. 3. Observed (gray) and regressed (black) air (left column) and water (right column) temperature time series for all OESF (top row), SHEN (middle row), and
USGS (bottom row) sites. Each line (gray or black) represents a single site. Each black line represents a site’s mean (n < 365) of the moving window regression fits for

each date. Note that the x-and y-axes scales are different for each dataset.

affecting stream temperature do so differently for each annual thermal
metric. Mg (1.9% and 1.7%) showed the least temporal variation and
Ad (12.4% and 9.2%) showed the greatest for both OESF and SHEN
respectively, when comparing the site temporal SD of the three annual
thermal metrics to the site median value of each metric (Appendix
Table B.2). The USGS sites also exhibited lower temporal variation than
between site spatial variation. However, temporal signals in the three
annual thermal metrics were more variable between sites in the USGS
national dataset because of the spatial extent of this dataset in com-
parison to OESF and SHEN regional datasets. Similar to the OESF and
SHEN sites, though, My (4.6%) generally showed the least temporal
variation and A$ (206%) the most temporal variation when compared
to the site median value for the USGS sites. These same trends were also
observed in the annual air and water temperature parameters for each
dataset (Appendix Table B.2), with slightly larger variation magnitude
than the annual thermal metrics when compared to the site median
value for each. The site time series for air temperature parameters
mirror those of water temperature in each dataset, with vertical dis-
placement among sites (Appendix Fig. B.2).

A strong negative correlation was observed between A$ and Ay for
both OESF (p = -0.671,p < 0.01) and SHEN (p = -0.588,p < 0.01)
sites (Table 3 and Fig. 6A), implying variable-strength shallow GW
influence in both datasets. There is also a moderate correlation between
Mg and Ag for OESF (p = 0.341, p < 0.01) sites and a significant but
weak correlation between My and A¢ for SHEN (p = 0.181,p < 0.10)
sites. Both regions have a few sites exhibiting signs of strong shallow
GW influence (low Ay with high A¢). For those SHEN sites, My varies
above and below 1.0, similar to SHEN sites having seemingly weaker
GW influence (higher Ay with lower A$). However, for those OESF sites,
My, values are consistently approximately 0.9 and represent the lowest
My, values in the region. Additionally, several OESF sites show signs of

somewhat deeper GW influence than the SHEN sites. These can be seen
in Fig. 6 (panels A or C) as the OESF sites with Ag values < ~0.51 and
with A values < ~17 d. One of these is a reference site, a tributary to
the Hoh River.

The USGS sites show significant (p < 0.01) correlation for every
pairing of the three annual thermal metrics (Table 3 and Fig. 6B),
though the negative correlation between A$¢ and Ay (p = —0.354) is
weaker than in the OESF and SHEN datasets. A few USGS sites also
exhibited signs of strong shallow GW influence while several other sites
showed signs of strong deep GW influence (low A and low Ag) that
were not observed in OESF or SHEN sites. The majority of sites ex-
hibiting relatively strong shallow to deep GW influence were reference
sites (i.e., minimal hydrological disturbance). Negative phase lag values
were observed in several reference and non-reference sites (Fig. 6B),
which is unusual as minimum phase lags are typically expected to ap-
proach zero. For reference sites, the negative phase lag values may have
been due to error associated with using modeled rather than locally
measured air temperatures. For non-reference sites, negative phase lags
could also have been due to the degree of hydrologic disturbance at the
site in addition to using modeled air temperatures. Reference sites
generally exhibited lower My (mean of 1.10 versus 1.16) and Ag (mean
of 0.713 versus 0.825) and higher A$ (mean of 4.4 d versus 1.8 d) than
the non-reference sites (Fig. 6B). The hydrologic disturbance index was
positively correlated with Mg (p = 0.393) and Ag (p = 0.479) and
negatively correlated with A$ (p = —0.320).

The Maheu et al. (2016) thermal regime classifications tended to
group together in A§-Ag space (Fig. 6C), though with some spread in
values especially in the “stable cold”, “stable cool”, and “variable cold”
regimes, which led to overlap between some regime groupings. In
general, the “variable warm” and “variable cool” regimes exhibited
moderate Mg (means of 1.04 and 1.13) with low A$ (means of 0.0 d and
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—1.2 d) and high Ar (means of 0.920 and 0.919), while the “stable
cold” regime exhibited low to moderate My (mean = 0.96) with
moderate to high A¢ (mean = 9.2 d) and low to high Ay
(mean = 0.654). The “highly variable cool” regime generally exhibited
high My (mean = 1.36) with low A$¢ (mean = —0.1 d) and high Ar
(mean = 0.888). The “variable cold” regime generally exhibited
moderate Mg (mean = 1.14) with low A$ (mean = 0.6 d) and moderate
Ag (mean = 0.724). The “stable cool” regime was the most widespread,
exhibiting anywhere from low to extremely high My (mean = 1.35)
with low to moderate A¢ (mean = 2.7 d) and low to high Ar
(mean = 0.704).

Derived annual thermal metrics showed variable associations with
physical characteristics of contributing watersheds. Basin area was
most strongly correlated with the three annual thermal metrics in the
OESF and SHEN datasets in comparison with basin elevation and slope
(Fig. 7 and Appendix Table C.2). Basin area, elevation, and slope were
all significantly correlated with the three annual thermal metrics in the
USGS dataset, with basin slope having the strongest correlations. Basin
area differences between OESF and SHEN sites was related to some of
the separation between the two regions noted in Fig. 4 for the three
annual thermal metrics. The larger SHEN basins skewed the overall Mg
and A values lower and the overall Ag values higher. When excluding
SHEN sites with basin area > 850 ha, the distributions of Mg
(mean = 0.99), A (mean = 11.0 d), and Ar (mean = 0.661) overlap
with those of OESF to a greater degree. Basin elevation had a greater
effect on OESF sites than SHEN sites, where it was negatively correlated
with Ag in both regions but negatively correlated with My and posi-
tively correlated with A¢ only in OESF sites (Appendix Table C.2). Basin
slope was significantly correlated with A$ (positively) and Agx

(negatively) in OESF and SHEN sites. When aggregating all three da-
tasets, basin area exhibited the strongest correlation with A¢ (nega-
tively) and Ay (positively) among the basin characteristics but was not
correlated with Mg (Appendix Table C.1). However, basin elevation was
significantly correlated with My (negatively) and Ay (negatively), and
basin slope was significantly correlated with Mg (negatively), A (po-
sitively), and Ag (negatively). The strength of correlations among the
three basin characteristics is summarized in Appendix C (Appendix
Table C.2).

4. Discussion

In this study, paired air and water annual temperature signals were
analyzed and summarized at watershed, regional, and national spatial
scales. These annual patterns are also discussed in the context of up-
stream physical watershed characteristics. Our results demonstrate the
utility of paired air-water annual temperature data for inferring hy-
drogeological processes in streams. Specifically, we show that (1) sine-
wave regression yields useful statistical parameters for interpreting GW
influence on stream temperature; (2) regions within North America can
be highly spatially patchy in this regard, indicating the importance of
localized influences such as GW discharge at the reach to watershed
scale; and (3) while results from a national dataset exhibited wider
parameter ranges, patterns were largely consistent with those of the
regional datasets, suggesting the general utility of our approach. These
findings suggest that heat-as-a-tracer approaches, such as those used
here, may provide a foundation for assessing the relative importance of
local processes on stream thermal regimes and in predicting climate
change effects at ecologically relevant spatial scales.



Z.C. Johnson, et al.

Journal of Hydrology 587 (2020) 124929

USGS
1.15 10 i
1.10 A
1.05 2 =
1.00
0.95 - 25 oS e A
0.90 - PPN MRy o o (e
1 4 ‘*e a: - SQOoO 005000.00000“‘ “ we
. Int ile R 0.85 - ~ 0900 s mies o smerrree =, N0
0.80 nierquartie Range 0.50 oY » N —
T T T T T T T T T T T T T T T T T T T
50 S0
— AN/ 40 - =
i) N AN e
St — ' N
)
© _ L \
= ey
% =i “""‘1 ﬁﬁ.{‘"o."\..o".,u.’o“"t"‘u;”
& n tf“‘o‘g Dt AL N R R et 27T

2

T T T T T T T T T T T

O 084 ... 0.8 - 3 2 N 1.4 -
= -~ . = \
Y ‘ 074 BN IRIANCRS (129 R
14 pas SN e ree s > 0 n 3 VAR e N L s Do
@ 0.6 - S Semmar @l O : &2 [ 1.0 1 ¥ e e e PR =
.g \ . S R - Wi Nee an et v e = geese
0.5 o | O
% 04 0.4 0.6 o TnLeTSvaemmmteerthehan, o e ues
E 8 . 5 J| 3 iy S Gyt 7 = o ." - “ ;
0.4 TR e S
<< 0.3 VN i) TN 0.3 Py
s 0.2
T T T T T T T T T T T T T T T T T T T
2014 2015 2016 2017 2018 2013 2014 2018 2016 2011 2013 2018 2017 2019

Regression-ending Date

Regression-ending Date

Regression-ending Date

Fig. 5. Time series of the annual mean ratio (Mg, top row), phase lag (A9, middle row), and amplitude ratio (A, bottom row) values for OESF (left column), SHEN
(middle column), and USGS (right column) sites. Each gray line represents a time series for a single site. The median (solid black line) and interquartile range (dashed
black line) values are calculated from all sites for each regression window. The time series for each annual metric is produced by using a 365-day moving window
linear regression (see Methods) and values are reported on the last day of that period.

Table 3

Spearman correlation coefficient (p) values between the site median annual
thermal metrics from the OESF, SHEN, and USGS sites. Statistical significance
(p) level is shown with asterisks (*) after the p values. *** representsp < 0.01,
** represents 0.01 < p < 0.05, and * represents 0.05 < p < 0.10.

Dataset Metric Mg Ad AR
OESF Mg 1

A -0.211 1

Ar 0.341""" -0.671""" 1
SHEN Mg 1

A 0.181* 1

Ar -0.032 —0.588""" 1
USGS Mg 1

Ad —-0.425"" 1

Ar 0.292""" —-0.354""" 1
OESF-SHEN-USGS Aggregate Mg 1

Ad -0.159"" 1

Ar 0.178""" —-0.597""" 1

The high spatial resolution datasets (i.e., OESF and SHEN) allowed
for intra- and inter-regional comparisons. Combined annual air-water
temperature patterns were found to differ more within these two re-
gions on opposite coasts of the U.S. than between them despite mod-
erate to large differences in both annual air and water temperature
signals between regions. This suggests that differences at watershed and
sub-regional spatial scales may be more important for drivers of stream
temperature variation than differences at the regional scale. Evidence of
strong shallow GW influence in SHEN sites was reported in a previous
study (Briggs et al., 2018a), with extended A¢ up to approximately one
month associated with low Ag. Interestingly, the OESF sites generally

10

exhibited similar A§-Ar relationships, suggesting that these sites are
also influenced by strong shallow GW. This finding is consistent with
the conceptual hydrogeological model developed by Nelms and Moberg
(2010) for the Blue Ridge Physiographic Province that indicates a
dominance of shallow steep hillslope GW flowing over low permeability
bedrock and sourcing stream water, compared to deeper potential GW
flow paths. Additionally, the OESF sites generally showed greater in-
fluence of somewhat deeper GW than SHEN sites as indicated by
smaller A associated with similarly low Ag.

The (mostly) larger basins assessed in the national-scale USGS da-
taset showed greater ranges in the three annual thermal metrics but
there was considerable overlap with metrics observed for regional-scale
sites. However, the large-scale spatial variation in the USGS dataset
likely contains only a subset of the local variation in any given region
due to the low spatial resolution of site locations. Therefore, watershed-
and regional-scale variation in stream temperature patterns will be
important considerations for coldwater fish habitat prediction, which is
dependent on network-level variability in stream temperature.
Additionally, while a few of the USGS sites also exhibited strong
shallow GW influence, several other sites showed signs of strong deep
GW influence (low A with low Ag), which is expected to provide more
resilient thermal refuges for coldwater-adapted aquatic species (Briggs
et al., 2018b,a; Kurylyk et al., 2015, 2014; Menberg et al., 2014). This
deep GW signal was missing in the two regional datasets, whose hy-
drogeology may limit deep GW influence (Busenberg and Plummer,
2014; Lynch, 1987; Plummer et al., 2001). Characteristics of the con-
tributing basin such as area, elevation, and slope generally corre-
sponded more strongly with the annual air-water temperature metric
patterns when comparing sites in the USGS dataset, which suggests that
these characteristics are generally correlated with upstream processes
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were truncated above 1.5.

such as varied-depth GW discharge at a national scale. However, when
comparing sites at a higher spatial resolution (i.e., sub-regional), these
correlations are more variable and generally weaker, which further
suggests that watershed-scale processes are important for determining
habitat-level conditions for aquatic biota. The approaches outlined in
this study, utilizing metrics calculated from annual temperature sine-
wave fits to paired air-water temperature data, show promise for im-
proving classifications of stream thermal regimes on a continental scale
and our understanding of current and potential future controls on
stream temperature patterns.

Linear regression of a sinusoidal curve represents a relatively simple
but powerful method to summarize and compare annual air and stream
temperature signals. Prediction of daily stream temperatures was not
the goal of this study, but the performance of these simple sinusoidal
regressions, with site median RMSE values between 0.56 °C and 2.12 °C
and a mean RMSE amonyg sites of 1.41 °C for the regional datasets, was
comparable to other methods of stream temperature prediction, some
using much more complex methods (Benyahya et al., 2008; Caissie
et al., 2001; Laanaya et al., 2017; Zhu et al., 2018). The national-scale
USGS dataset experienced a wide range of site median RMSE values
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(0.63 to 3.32 °C) and a high mean RMSE (1.85 °C) because of the large
spatial coverage of the sites. Locally observed air temperature is com-
monly lacking in many stream temperature datasets (e.g., USGS da-
taset). However, predicted local air temperature data, such as those in
the PRISM dataset, can be used to accurately calculate annual air
temperature parameters. This could greatly expand the spatial coverage
of paired air-water temperature datasets and provide a useful man-
agement tool for predicting suitable thermal habitat.

4.1. Interpretation of annual parameter and metric patterns

Results reported here indicate that paired air-water annual signals
are a promising tool for efficiently diagnosing the influence of local
drivers of stream thermal regimes, particularly the pervasive influence
of GW in small streams. Attenuation of the annual water signal when
compared to the annual air signal (i.e., lower values of Ag) can result
from multiple physical watershed factors such as GW discharge, heavy
shading, increased channel water volume, presence of a nearby up-
stream reservoir/lake, or snowmelt input. However, more research is
needed to identify the unique signature of each factor in order to
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separate their individual influence. For example, GW discharge may
influence A$ and Ag, but not Mg, to a greater degree than riparian
shading. Predominant shifts in water phase (i.e., Ap > ~10 d) have
been shown to be mainly the result of shallow GW discharge or the
influence of upstream lakes or impoundments whereas factors such as
streambed conduction and flow volume do not influence A appreciably
(Briggs et al., 2018b,a; Ward, 1963, 1985). However, the examination
of Ap and Ag in combination provides a diagnostic indicator of the
relative strength and depth of GW influence, where strong deeper
sources are associated with low A¢ and low Ay while strong shallower
sources are associated with high A$ and low to moderate Ar. Shallow
GW was shown to primarily influence the heavily shaded SHEN streams
in previous studies (Briggs et al., 2018a,b), which should be less re-
silient to climate and land use changes than deeper GW sources because
shallower GW sources are more sensitive to air temperature and GW
thermal properties more closely reflect surface conditions. Thus, these
measures are useful for characterizing thermal resilience of streams.
Multiple physical watershed factors can also affect patterns of Mg,
however, ascertaining GW influence from My patterns in tandem with
A or Ag is less straightforward than with A§-Ag patterns. The effect of
GW input on Mg may be minor if the common, but not necessarily
accurate, assumption holds that mean annual GW temperature is within
~1-2 °C of the mean annual air temperature (Anderson, 2005; Benz
et al., 2017; Ward, 1985). Therefore, other watershed factors may be
better construed from My patterns. For example, in some areas, water
temperatures are bounded at low and high extremes, uncoupling their
behavior from that of air temperature (Letcher et al., 2016; Mohseni
and Stefan, 1999). Therefore, colder regions may be expected to exhibit
Mg values > 1.0, whereas warmer regions may be expected to exhibit
Mg values < 1.0. The seasonality of flow volume and thermal inertia
may affect Mg values because more energy is required to change the
temperature of a larger flow volume. Snow- or glacial-melt may also
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induce My values < 1.0. Geothermal influences likely result in anom-
alously high My values, which was observed in three of the USGS sites.
Additional research is needed to understand how other factors such as
shading impact Mg.

Hydrological alteration, such as dams or diversions, may complicate
efforts to quantify GW influence. For instance, greater hydrological
alteration in the non-reference USGS sites generally resulted in higher
Mg and Ay values and lower A values, which could be interpreted as
weaker GW influence. However, GW inputs could be important at sites
experiencing hydrological disturbance as well. Another complicating
factor is the influence of freezing temperatures on the annual water
signal. Sites that freeze for a portion of each year exhibit a sinusoid
curve that is cut off at the lower temperatures, which affects the esti-
mate of annual amplitude and mean. Thus, the more days spent at or
below 0 °C results in more of the lower end of the sinusoid curve that is
cut off, which produces further changes to the annual amplitude and
mean and less confidence in inferences regarding GW influence. In
these cases, it may be more appropriate to calculate annual median
temperature rather than annual means.

Few studies have investigated the applicability of comparing sinu-
soidal temperature signals of different periods (i.e., <365 days)
(Caissie et al., 1998) or sinusoidal temperature signals with varying
amounts of missing data. Therefore, more work is needed to provide
guidance for summarizing the annual signals at such sites. More re-
search on an international scale is also needed to classify where dif-
ferent types of streams currently fit in the annual air-water temperature
metric space (Fig. 6C) and to identify which watershed processes pri-
marily influence these patterns. Identifying the main drivers of these
patterns is important for our understanding of current thermal regimes
and spatial variation, but it may also aid in predicting how these
thermal regimes will shift given future changes to air temperature and
precipitation patterns. This knowledge is crucial for the management of
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coldwater-adapted species. Therefore, future work should also focus on
developing new thermal regime classifications that account for local air
temperature patterns to further our understanding of current and po-
tential future thermal regimes.

4.2. Regional and national patterns

When air temperature patterns are taken into account, variation in
OESF and SHEN water temperature patterns was greater within these
regions than between them and potentially driven by similar GW-sur-
face water exchange dynamics. This suggests that local processes such
as GW-surface water interactions, riparian shading, and flow volumes
are more important than regional differences in climatic and landscape
variables such as air temperature, precipitation, and forest type (de-
ciduous versus coniferous) in driving thermal characteristics of head-
water streams. Moreover, the large range in Ay values exhibited among
sites in both regions despite consistently heavy riparian shading, which
has been shown to be an important factor for stream heat budgets
(Dugdale et al., 2018; Groom et al., 2017; Johnson and Jones, 2000),
solidifies attribution of these thermal patterns to variable-strength GW
damping of seasonal water temperatures.

On average, OESF sites had slightly lower Ay and slightly longer Ad
than SHEN sites, suggesting greater GW influence overall. Both regions
also included some sites that exhibited strong shallow GW influence
(low to moderate Agr with moderate to high A¢). But OESF had some
sites with patterns indicative of deeper GW (low to moderate Az with
low to moderate Ad). These deeper GW-influenced sites could represent
areas that are more resistant to changes in air temperature over the
longer term, potentially providing durable climate refugia for cold-
water-adapted fish (Briggs et al., 2018a; Kurylyk et al., 2015; Menberg
et al., 2014; Taylor and Stefan, 2009). Additionally, deeper GW flow
paths will presumably provide more stable base-flow conditions during
droughts than shallow GW flow paths.

The effect of advective heat exchanges associated with GW inputs
and channel flow volumes on My appear to be more consistent in OESF
than SHEN. Since OESF sites do not experience many sub-zero air
temperature days, high GW influence acts to dampen summer tem-
perature highs more than winter temperature lows leading to lower Mg
values. Further, because of relatively higher winter flow volumes, OESF
sites without significant GW influence will dampen winter temperature
lows more than summer base-flow temperature highs, leading to higher
Mg values. In contrast, SHEN correlations between My and GW influ-
ence were weaker and not directly related to factors such as basin area,
elevation, apparent GW depth, or relative GW discharge volume. These
findings suggest that other local factors such as aspect or differences in
the temporal variability of flow volume may be responsible.

Analysis of thermal metrics derived from the coarse-scale tem-
perature data collected from USGS gages across the country indicated
that larger stream sites generally clustered into groups based upon
annual air-water thermal metrics that were remarkably similar to
thermal regime classes developed by Maheu et al. (2016), which were
based solely on water temperature data (Fig. 6C). These patterns sug-
gest that summaries of water temperature data alone can explain sub-
stantial variation in thermal regimes over large regions. However, we
found that some of the site classifications based upon the Maheu et al.
(2016) method exhibited wide variation in annual air-water thermal
metric space, suggesting that classifications could be improved by in-
corporating local air temperature data. We argue that incorporating air
temperature data would provide more discriminatory power within
regions where local processes like GW may vary greatly but weather
patterns, including precipitation, air temperature, and surface flow
patterns, are relatively consistent.

The USGS national dataset demonstrated an even greater range in
air-water temperature patterns than what was observed in the regional
datasets. However, only a few sites exist within any region of the USGS
dataset and likely only represent a subset of the variability in air-water
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temperature patterns within any one region. Still, similar to some OESF
sites, some of the USGS sites exhibited strongly reduced Mr and Agr
values along with longer A¢ values. These sites fell within the “stable
cold” regime, which may be influenced by GW discharge that has been
shown to be spatially variable at regional and watershed spatial scales
(Johnson et al., 2017; Lowry et al., 2007; Snyder et al., 2015;
Wawrzyniak et al., 2017). Several USGS sites exhibited potentially even
deeper GW influence than the OESF sites, verifying the existence of
strong GW influence even in streams with relatively larger contributing
areas. More work is needed to identify the prevalence of shallow to
deep GW influence in small to large streams. Slightly negative A¢ values
observed in the USGS dataset are likely a result of error in the estimate
of air temperature phase when using PRISM data instead of locally
observed data. However, hydrologic alteration and seasonally varying
flow volumes could also account for these negative values. For the site
with the greatest negative Ad value (gage 11501000), quickly de-
creasing discharge volumes in spring, which dramatically increase the
stream’s susceptibility to warming trends, likely explains why the water
temperature appears to reach an annual maximum prior to the air
temperature. These discharge trends are also likely, in part, due to
minor upstream diversions.

4.3. Watershed factors

Previous studies have shown stream temperature to be correlated
with watershed characteristics (Daigle et al., 2010; Dugdale et al.,
2015; Kelleher et al., 2012; Mayer, 2012; Scott et al., 2002). In this
study, the relationships of the annual air-water thermal metrics with
three basic watershed properties were explored: median upstream basin
elevation, median upstream basin slope, and accumulated upstream
basin area. Basin area appeared to have the greatest influence on the
three annual thermal metrics, consistently negatively correlated with
A¢ and positively correlated with Ag. This suggests that, in general, as
streams increase in size, they become more coupled to air temperature
dynamics. Correlation with My was both positive and negative de-
pending on which dataset was used. Therefore, it may be implied that,
in general, larger basins were associated with less relative GW influ-
ence. However, there was significant variation in the three annual
thermal metrics for small and large basins, with many basins on either
end of this spectrum not conforming to this general trend. This apparent
contradiction could account for some of the disparity in predictions of
the sensitivity of water temperatures to changing air temperatures
(Bogan et al., 2003; Isaak et al., 2016; Leach and Moore, 2019; Snyder
et al., 2015; Stefan and Preud’homme, 1993). Basin slope was nega-
tively correlated with area and consequently reflected the opposite
correlations to the three annual thermal metrics. Negative correlation
between basin elevation and Mg is consistent with relatively cool water
temperatures at high elevations progressing toward the equilibrium
temperature as elevation decreases. Therefore, GW, shading, or other
watershed processes may be cooling water temperatures relative to air
temperatures at higher elevations. Further exploration of the relation-
ships between the annual thermal metrics and watershed characteristics
is needed.

Investigating watershed controls of annual stream temperature
patterns on a site level is important, however understanding how the
annual stream temperature patterns evolve in the longitudinal direction
is crucial for predicting the network extent of suitable thermal habitat
for coldwater-adapted species (Fausch et al., 2002; Fullerton et al.,
2015). To the best of our knowledge, minimal research has focused on
how annual stream temperature signals evolve in a downstream di-
rection. Stream temperature has been shown to exhibit positive spatial
autocorrelation tendencies (Isaak et al., 2014). In other words, stream
sites that are flow-connected will to some degree exhibit the same in-
fluence of their shared upstream processes, but the downstream site will
reflect influences that are added between the sites. All of the OESF sites
are flow-disconnected, which increases the wuncertainty when
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interpreting differences in the annual stream temperature metrics be-
tween sites due to decreased spatial autocorrelation and the many po-
tential differences in contributing watersheds. Most of the SHEN sites
are flow-disconnected but many are also flow-connected, representing
both main-stem and tributaries to main-stem sites.

Longitudinal flow connection allows for tracking of these annual
stream temperature signals as they travel downstream. Creating a net-
work of temperature dataloggers (e.g., Marsha et al., 2018) could help
address critical questions regarding the primary drivers of various fa-
cets of the annual stream thermal regime, while still allowing for
comparison between separate watersheds or regions. This analysis
could be taken further by utilizing the moving window approach pre-
sented here to examine the temporal variation in longitudinal evolution
of stream temperature and monitor temporal changes in the primary
drivers of longitudinal annual stream temperature pattern evolution. As
an illustration, graphics and interpretation of the evolution of the an-
nual stream temperature metrics as they migrate downstream in the
SHEN watershed of Jeremys Run are provided in Appendix D. However,
more research is needed to relate upstream watershed processes to
observed changes in the annual stream temperature metrics as the
water travels longitudinally downstream.

4.4. Temporal variation

Temporal variation (i.e., within-site or among-regression variation)
was found to be relatively small for all three annual thermal metrics
derived from both regional datasets as well as the national dataset. In
general, A¢ exhibited the greatest variability followed by Agr then Mg.
Changes over time to the annual thermal metrics likely correspond to
temporal changes in heat fluxes, flow volume, and GW input.
Diagnosing the primary drivers of temporal change may be possible by
analyzing the simultaneous change between Ag, A, and M. While this
is outside the scope of the current study and warrants further attention,
what follows is a brief and hypothetical discussion of these relation-
ships.

Increased flow volume, assuming all else is equal, should result in a
decrease in Ar due to water’s high heat capacity. However, depending
on the source of the increased flow volume (e.g., runoff, snowmelt, GW
seepage, industrial waste, etc.), Ag could also increase. Snowmelt, dam
operations, and GW seepage may be the only sources of flow volume
that could induce a simultaneous large increase in A$. Mg would likely
not change with an increase in flow volume unless the source of the
extra water exhibited a significant difference in its mean temperature
from that of the air, such as snowmelt.

Unfortunately, it is difficult to interpret sub-annual effects on an-
nual stream temperature signals. For example, increased incoming
short-wave radiation due to decreased riparian shading is generally
expected to increase Az and My and decrease A$ as the equilibrium
temperature’s annual amplitude is increased and stream temperature is
pushed towards it (Caissie et al., 2005). Yet, a decrease in riparian
shading could result from relatively short-term changes, such as the loss
of deciduous riparian cover in autumn, or a longer-term change, such as
a large removal of riparian vegetation. Changes that persist for more
than approximately one year will be more discernible within the annual
parameters. However, sub-annual variation about the annual signal
(i.e., residuals) corresponds to characteristics of the annual signal. For
example, the water temperature RMSE values are strongly correlated
with A§ (p = —0.709) and AR (p = 0.773) when aggregating the three
datasets in this study. Therefore, stronger GW influence will result in
less sub-annual variation.

5. Conclusions
Paired air-water annual temperature signals are a promising tool for

efficiently diagnosing GW influence and other major controls on stream
water thermal regimes (e.g., dam operation, riparian shade, etc.) from
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readily available data sources. Previous thermal regime classifications
based on seasonal water temperatures alone tended to cluster when
plotted in air-water annual temperature metric space in expected ways,
however, including the paired air-water annual signal analysis adds
critical information such as local controls. In this study, two high spatial
resolution regional datasets and a coarser spatial resolution national
dataset were used to describe subwatershed- to continental-scale
variability in derived annual thermal parameters. Patterns in combined
air-water annual thermal metrics were discussed in relation to upstream
watershed processes and characteristics. High spatial resolution data
collection (e.g., SHEN and OESF) can be used to identify major sub-
regional patterns in annual air-water temperature metrics, such as the
negative relation between Ay and A indicating dominance of shallow
GW discharge, but also reach-scale variability within watersheds.
Differences in riparian shade can lead to differences in Ay values, but
both SHEN and OESF are heavily shaded systems throughout.
Therefore, the large range in observed Ay values within each region can
be more confidently attributed to variable GW damping of seasonal
water temperatures. OESF shows a greater cluster of somewhat deeper
GW discharge as indicated by lower A without extended Ad.

The national-scale annual air-water temperature metric analysis
using USGS GAGES-II data shows broader total variability than the
regional-scale analysis, where the metrics appear to be related to phy-
sical watershed characteristics such as contributing area, elevation, and
slope. This dataset also includes sites with apparent deep GW influence,
as indicated by lower Ay with minimal A¢ that is lacking in the regional
datasets. However, relatively high spatial resolution tracking of air-
water temperature signals reveals strong spatial variation within and
between subwatersheds, demonstrating an overwhelming influence of
local controls on thermal patterns. Overall, these patterns are surpris-
ingly similar between OESF and SHEN and imply similar controlling
hydrogeological processes such as shallow GW discharge. In contrast,
the spatially extensive nationwide dataset is likely only sampling a
subset of the local variation in any one region. The complex nature of
ecosystems and the importance of spatial scale for understanding eco-
system pattern and process has long been a focus in ecology (Cheruvelil
et al., 2013; Fahrig, 1992; Fausch et al., 2002; King et al., 2019; Levin,
1992; Stendera et al., 2012) and, more recently, recognizing the con-
nections among and within terrestrial and aquatic ecosystems. Our re-
sults demonstrate the importance of spatial scale for inferring hydro-
logical process in streams from annual air-water temperature metrics,
and that analysis based on coarse spatial sampling is likely to miss
important intra-regional patterns. Further research into watershed- to
continental-scale variability in the annual air-water temperature pat-
terns within the U.S. and beyond, including the prevalence of shallow
versus deep GW influence, are needed to aid in the prediction of
thermal habitat suitability for coldwater-adapted species at ecologically
relevant spatial scales.
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