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A B S T R A C T   

Stream temperature data are useful for deciphering watershed processes important for aquatic ecosystems. 
Accurately extracting signal trends from stream temperature is essential for predicting responses of environ
mental and ecological indicators to change. Missing data periods are common for various reasons, and pose a 
challenge for scientists using temperature signal analysis to support stream research and ecological management 
objectives. However, the sensitivity of estimated temperature signal patterns to missing data has not been 
thoroughly evaluated, despite the potentially large impact on interpretation. In this study, we explored the ef
fects of simulated missing daily data on the characterization of annual water temperature signals measured at 
headwater sites in the Pacific Northwest and Mid-Atlantic regions of the USA. For each site, we used linear 
regressions of sine-waves fitted to complete (365-d) and partial (7–357 consecutive missing data points) annual 
datasets of daily mean water temperature and computed three thermal parameters (mean, phase, and amplitude), 
which together can indicate thermally and ecologically influential watershed processes (e.g., depth and 
magnitude of groundwater discharge). Expected values (derived from complete datasets) ranged from 7.0 to 
12.6 ◦C, 205 to 254 d, and 1.9 to 9.5 ◦C for annual mean, phase, and amplitude, respectively. While annual phase 
and amplitude could be accurately estimated (i.e., within 95–99% confidence intervals of expected values) with 
up to approximately two months of consecutively missing data, annual mean temperature required more com
plete datasets. We found that datasets with less than seven weeks of consecutively missing data enabled esti
mation of all annual signal parameters with reasonable accuracy (>75% probability of being within the 95–99% 
confidence intervals of expected values). Imputation of missing data expanded this range to approximately 20 
weeks, with the greatest improvements in parameter estimation between 9 and 27 weeks of imputed missing 
data. However, caution should be exercised when applying this technique. For example, imputation improved 
the accuracy of parameter estimation for most sites, but accuracy decreased for some sites exhibiting strong 
groundwater influence. The timing of consecutive missing data points within a year had inconsistent effects on 
annual thermal parameter estimates among regions, years, and individual parameters. Utilizing sites with more 
than approximately seven consecutive weeks of missing data or 20 weeks of imputed data increases the prob
ability of mischaracterization of annual stream thermal regimes. Understanding this limitation is vital for 
identifying the potential of streams to serve as climate refugia for ecological indicator species and effective future 
management of stream systems.   

1. Introduction 

Temperature influences most of the physical, chemical, and 

biological processes of the stream corridor, determining habitat suit
ability for stream organisms (including important ecological indicator 
species) and driving patterns of fish development and metabolism and 
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biological production and decomposition. Channel water temperature is 
controlled by a balance of meteorological, hydrogeological, and bio
logical factors, such as incoming solar radiation, air temperature, wind 
speed, humidity, stream channel dimensions (depth and width), flow 
volume, groundwater (GW) inputs (Anderson, 2005; CAISSIE, 2006; 
Cluis, 1972; Gallice et al., 2015; Kurylyk et al., 2019; Webb et al., 2008), 
and riparian shading (Dugdale et al., 2018). However, climate change 
and other anthropogenic alterations to watersheds are substantially 
transforming the natural thermal regime of streams and rivers (Aris
mendi et al., 2013; CAISSIE, 2006; Hrachowitz et al., 2010; Steel et al., 
2017). Therefore, understanding the effect of these alterations on stream 
temperature regimes is essential for the effective management of stream 
ecosystems. 

Recent advances in technology and techniques, such as remote 
sensing and inexpensive digital data loggers, have increased the capacity 
to monitor and predict stream temperature at local to global scales. 
These burgeoning data represent a unique opportunity to explore trends 
and controlling factors of stream temperature across spatial and tem
poral scales. However, satellite-based thermal infrared is not applicable 
to most headwater streams, and most in-situ stream temperature data
sets are still collected seasonally, usually in summer, or over other 
limited periods of time (Arismendi et al., 2013; Leach and Moore, 2014). 
Long-term trends (i.e., annual and longer) in water temperature are 
driven by many interacting watershed processes that frequently vary 
over relatively short time scales (i.e., daily to seasonal) such as air 
temperature, GW influence, and surface water flow regimes. In order to 
understand and predict long-term trends, recent studies have established 
the importance of monitoring stream temperature for full annual cycles 
(Marsha et al., 2018; Steel et al., 2012), and paired annual air and water 
temperature signal patterns can indicate important watershed processes 
and climate change resilience of stream systems (Briggs et al., 2018a; 
Johnson et al., 2020). 

Heat has long been used as a tracer of various watershed processes 
(Anderson, 2005; Constantz, 2008), and many statistics and metrics 
specific to study objectives are calculated in the literature to explore 
patterns in the thermal signals, most often only during the summer 
period. In total, these metrics cover the various facets of the annual 
stream thermal regime—including magnitude, variability, frequency, 
duration, and timing—but in many cases are highly correlated with each 
other (Arismendi et al., 2013; Dunham et al., 2005; Jones and Schmidt, 
2018). In contrast, only recently have studies begun to explore patterns 
in distinct components of the annual temperature signal—such as dif
ferences in the mean, phase, and amplitude—or their relation to 
watershed processes (Maheu et al., 2016a). Together, these properties 
can indicate processes such as thermal inertia (Letcher et al, 2016), in
fluence of GW discharge and source depth (Briggs et al., 2018a, 2018b; 
Johnson et al., 2020), riparian shading (Johnson and Jones, 2000; 
Wondzell et al., 2019), or upstream dam presence (Buccola et al., 2016; 
Kędra and Wiejaczka, 2018; Maheu et al., 2016b). In a recent study, 
Johnson et al. (2020) used sine-wave linear regressions to investigate 
local thermal drivers at local to continental scales. In that study, the 
authors found that local controls were important for watershed- to 
regional-scale patterns in stream temperature and that annual signal 
patterns are relatively stable for periods less than a decade. Exploration 
of these annual patterns across more locations and time periods would 
provide a broader understanding of the drivers of stream temperature 
dynamics. 

The issue of missing data is already a common problem for stream 
temperature datasets (Letcher et al., 2016; Li et al., 2017; McNyset et al., 
2015; Sowder and Steel, 2012) and can arise from a myriad of events 
such as logger failure, stream freezing and drying, dislocation of loggers 
due to high flows, human interference, or simply limited measurement 
time periods and locations. Unfortunately, there are currently no 
guidelines for determining the proportion of missing data points 
acceptable to maintain robust characterization of annual stream tem
perature signals. Some studies have defined an “open-water” period (i. 

e., < 365 d) for regressions of seasonally frozen or uncoupled air-water 
temperature periods (Letcher et al., 2016; Maheu et al., 2016b), but 
these regressions are fundamentally different from full annual (365 d) 
regressions and the comparisons of coefficient values and subsequent 
watershed process interpretation and prediction may not be appro
priate. Other studies have recommended incorporating spatial covari
ance structures to account for missing data in stream temperature 
records (Bal et al., 2014; Letcher et al., 2016), but such approaches may 
underperform if geophysical covariates lack inference for local GW 
processes (e.g., Snyder et al., 2015) and predictive error from missing 
data would be expected to increase with spatial extent. 

Spatiotemporal varying coefficient model techniques that emphasize 
temporal correlation over spatial correlation (Li et al., 2017) may 
represent an improvement in this respect. Imputation (replacement with 
estimate) of missing values with multivariate data analysis (Josse et al., 
2016) is another recently developed technique that shows promise and 
has been used in large regional studies of stream temperature (Isaak 
et al., 2018, 2020). However, this technique’s predictions are dependent 
on temporal correlations with data from surrounding sites having more 
continuous records that may not be available and may not share the 
same annual thermal characteristics as the site with missing data. Even 
where available, it is currently unknown how much missing data the 
imputation technique could predict before accuracy deteriorates. 

The objective of this study was to systematically explore the effect of 
the proportion and timing of missing data points on the accuracy of 
annual thermal parameters for stream temperature estimated using sine- 
wave linear regression. We also evaluated the performance of a data 
imputation technique on improving the accuracy of estimated parame
ters. We used spatially intensive data collected from two disparate re
gions of the USA as case studies. This research outlines methods for 
researchers to make case-specific decisions regarding the appropriate 
level and timing of missing data for long-term signal modeling of stream 
temperature using common methodology. These techniques could also 
be applied to other stream temperature analyses dealing with missing 
data points. 

2. Methods and site descriptions 

We explored the effect of missing daily data on regressed annual (365 
d) stream temperature signals from field data collected in mountainous 
headwater basins in the Pacific Northwest and Mid-Atlantic regions of 
the USA. Sine-wave linear regressions were used to represent annual air 
and water temperature signals (Briggs et al., 2018a; Johnson et al., 
2020). The effects of the amount and timing of missing data periods on 
the accuracy of annual thermal parameters (inferred based upon dif
ferences with the full annual record) were evaluated and an approach for 
determining the appropriate level of missing data is outlined. The 
regional datasets used were chosen because of their robustness and fine 
spatial grain of sampling (>1 site per 2,000 ha and >1 site per 650 ha, 
respectively), which allowed for evaluations of the influence of local 
processes such as GW intrusion on thermal characteristics. The following 
subsections contain a brief description of the sites utilized for this study. 
Detailed site information and maps can be found in Johnson et al. 
(2020). 

2.1. Pacific Northwest: Olympic Experimental State Forest (OESF) 

The OESF is a 523,000-ha mostly forested planning area that con
tains 110,000 ha of state trust lands on the Olympic Peninsula in western 
Washington, USA (Martens et al., 2019). The 56 flow-disconnected OESF 
subwatersheds considered in this study (Johnson et al., 2020) fall within 
the Coast Range level III ecoregion (Omernik, 1987; Omernik and 
Griffith, 2014). Paired air and water hourly temperature data were 
collected at these sites between 1 October 2012 and 31 December 2018. 
Hourly data used were converted to daily mean values. Elevation in the 
OESF ranges from sea level to 1,155 m above mean sea level (a.m.s.l.). 
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Annual precipitation in this maritime climate ranges between 203 and 
355 cm with the majority falling as rain during the autumn and winter 
months (approximately October to March). Basin area for the 56 sites 
ranges from 15 to 789 ha. 

2.2. Mid-Atlantic: Shenandoah National Park (SHEN) 

SHEN is a 77,700-ha mostly forested protected area located along the 
spine of the Blue Ridge Mountains in northern Virginia, USA. The sites 
considered in this study are within the Blue Ridge level III ecoregion 
(Omernik, 1987; Omernik and Griffith, 2014) and include 120 flow- 
connected subwatersheds within 18 flow-disconnected watersheds 
(Johnson et al., 2020). Hourly water temperature data was collected at 
all 120 sites, whereas hourly air temperature were collected at a subset 
of the sites (n = 27) and modeled across sites using latitude and eleva
tion as predictors (Johnson et al., 2017). For this study, all hourly data 
used were converted to daily mean values and collected between 23 
June 2012 and 30 September 2016. The details of the temperature data 
collection can be found in Snyder et al. (2015) and Johnson et al. (2017). 
SHEN ranges in elevation from 162 to 1235 m a.m.s.l. and receives an 
average annual precipitation amount of 100 to 150 cm (Jastram et al., 
2013) with a majority falling as rain at all but the highest elevations. 
SHEN experiences greater seasonal changes in air temperatures but 
smaller seasonal changes in precipitation than OESF (Johnson et al., 
2020). Basin area for the 120 sites ranges from 27 to 3,628 ha. 

2.3. Annual sine-wave modeling 

To calculate the annual signal of mean daily air and water temper
atures, we followed the method outlined in Johnson et al., (2020). In 
short, the annual signal (365 d) of mean daily air and water tempera
tures for each site were approximated as sine waves using only the 1st 
harmonic (Johnson et al., 2020; Kothandaraman, 1971) and linearized 
using Ptolemy’s theorem: 

T(t) = a*sin(ωt)+ b*cos(ωt)+ T0 +∊(t) (1)  

where T is daily mean temperature (◦C), a and b are the regression co
efficients, ω is the angular frequency (rad d− 1), t is time (d), T0 is the 
annual mean temperature (◦C), and ∊ is the error term (◦C). The 
regression coefficient a is equal to A*cos(ϕ) and b is equal to A*sin(ϕ), 
where A is the amplitude (◦C) and ɸ is the phase (rad). The annual 
temperature signal amplitude is then determined as 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√
and phase 

is equal to tan− 1(b/a). Calculating the day of the year corresponding to 
the annual maximum temperature varies with the annual window 
defined. For more information see Appendix A, but for this study the 
following shift in phase was applied for the calendar year (1 January to 
31 December): 3π/2 − tan− 1(b/a). Phase was converted from radians 
into days by multiplying by 365/2π. 

The amplitude, phase, and mean represent the core parameters of a 
sine-wave signal—the variation, horizontal displacement, and vertical 
displacement, respectively. Comparing these core parameters between 
air and water temperature simultaneously has been shown to indicate 
various watershed processes, such as relative GW contribution to 
streamflow and effective depth of that contribution (Johnson et al., 
2020). This comparison is achieved by calculating three combined 
air–water annual thermal metrics: amplitude ratio, phase lag, and mean 
ratio (Briggs et al., 2018a; Johnson et al., 2020). Amplitude ratio (AR) is 
the water amplitude (Aw) divided by the air amplitude (Aa). Phase lag 
(Δɸ) was calculated as the difference between water temperature phase 
(ɸw) and air temperature phase (ɸa). Mean ratio (MR) is the water mean 
temperature (T0,w) divided by the air mean temperature (T0,a). 

2.4. Simulation of missing data 

The decision for what missing data threshold to use, above which the 

corresponding time series would be excluded from further analysis, 
should be made on a case-by-case basis, based on the type of signal 
processing method used and acceptable level of accuracy. To determine 
an appropriate threshold of missing data for our temperature datasets 
using linear regression to derive annual temperature signal parameters, 
a common method for hydroecological stream temperature character
ization and prediction, the following steps were taken. From each re
gion, 20 sites were randomly selected (40 sites total) from a subset of 
sites containing less than 10% missing data among the original records 
within an approximately two year long time range (23 September 2016 
to 19 September 2018 for OESF and 5 August 2014 to 21 September 
2016 for SHEN). The value of 20 sites in each region was chosen as it was 
the minimum sample size required to include a representative range of 
AR, Δɸ, and MR values for each region, which were calculated from 
preliminary regressions that did not allow for any missing data. 

Within a specific annual time window, each site’s temperature re
cord was subjected to a sequence of missing data points, m, from 0 to 
357 days with 7 day steps (total of 52 m values), which was used to 
develop a series of regressions. We assumed that missing data on 
consecutive days are more likely to be representative of actual temper
ature datasets (e.g., missing data resulting from temperature logger 
failure, stream freezing or drying, or dislocation of loggers due to high 
flows and human interference) than if the missing data were randomly 
distributed throughout time. Therefore, in this study, we focus on 
consecutively missing data. For completeness, these same procedures 
were also tested using a random distribution of missing data points, but 
those results (Appendix B) are not the focus of the current study. 

For each “site-m-annual window” combination (total of 55,120 for 
OESF and 63,440 for SHEN), we generated 100 unique regression 
models that were distinguished by a different randomly selected start 
date for missing data (tr) within the given annual window. Temperature 
values for dates from tr to tr + m-1 were then removed. This process was 
iterated within the regional two-year time range for each site-m pairing 
by moving the annual time window seven days forward and repeating 
the process described above for all annual windows completely within 
the regional time range. Once the two-year time range iterations were 
completed for a site-m pairing, the next m value in the sequence was 
assigned and the entire site-m-annual window process was repeated. 
These steps were then repeated for each site. 

We used the missMDA package (version 1.17) in R (Josse and Husson, 
2016) to test the performance of data imputation of missing values on 
improving annual parameter estimates. The above steps were followed 
for four of the annual windows with starting dates separated by 13 
weeks in each region, but imputation of simulated missing data for a 
given site-m-annual window combination was inserted prior to running 
the regression models. Specifically, principal component analysis was 
used to impute missing data for a given site utilizing the observed 
datasets from the other 19 regional sites (OESF and SHEN sites were 
handled separately). Imputation was conducted using the imputePCA 
function, where the number of dimensions was set by the results of 
running the estim_ncpPCA function with a possible maximum of six di
mensions. This function uses an iterative principal components analysis 
(PCA) imputation technique (Isaak et al., 2018). The sequence of 
imputed missing data points, im, follows that of m summarized above. 

An accuracy metric for non-imputed and imputed estimations was 
calculated as the relative difference between estimated and expected 
amplitude, phase, and mean values (i.e., estimated / expected) to 
determine missing data thresholds. A range in accuracy levels was 
assessed using the confint function in R (R Core Team, 2020) to calculate 
linear regression confidence intervals (CI) of expected values. Three CIs 
were computed: 95%, 99%, and 99.9%. The 95% CI is the narrowest 
range (i.e., most accurate) and the 99.9% CI is the widest range (i.e., 
least accurate) of the three levels. Estimated values were then compared 
to the minimum and maximum of a given CI level of the expected values. 

The maximum allowable number of missing data points (mmax) was 
calculated for four “exceedance probability” levels (0.5, 0.75, 0.9, or 
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0.95) to assess the effect of various m values on the performance of 
annual linear regressions. These exceedance probability levels were 
defined for each parameter and accuracy level by calculating the frac
tion of the site-m regressions (i.e., all annual windows included) whose 
given estimated parameter value fell within the given accuracy level of 
the expected parameter value. For example, the 0.9 exceedance proba
bility for T0,w at the 95% accuracy level for a given site occurs at the m 
value where the fraction of regressions producing T0,w estimates within 
the 95% CI of the expected T0,w values is above 0.9. While these fraction 
values were calculated for each site, we used the mean of all site fraction 
values at each m value to report exceedance probability mmax values. 

To investigate seasonal effects of missing data, we applied sequen
tially changing start dates using a single missing data threshold (mmax). 
The objective was to choose an mmax value that would result in a high 
probability (> ~90%) of estimating the annual parameter values within 
the 95–99% CI of the expected values. However, because the results 
varied by regional dataset and parameter, those conditions could not be 
satisfied for every case without excluding additional sites due to missing 
data. Therefore, a value of mmax was selected that was a balance between 
maximizing inclusion of sites within the two datasets and estimation 
accuracy of the three annual parameters: mmax = 49 (Johnson et al., 
2020). With this threshold value, the estimated annual mean, phase, and 
amplitude values for both regions had a > 75% probability of being 
within the 99% CI of the expected annual mean values (Table 1) and a >
90% probability for annual phase and amplitude values. A slightly 
greater mmax threshold of 63 would result in a < 75% probability of the 
estimated annual mean values being within the 99% CI of the expected 
parameters, so we decided to be more conservative and use a threshold 
of 49 in this study. Using this mmax threshold value, the effect of timing 
was assessed by calculating regression results with the first mmax dates of 
a given year assigned as missing data and then repeating regression 
calculations for sequentially later missing data periods of length mmax 
until the end of the year was reached for each site. 

Supplemental to the results for annual water temperature patterns, 
combined air-water annual thermal metrics (mean ratio, phase lag, and 
amplitude ratio) were calculated using existing air temperature data (no 
missing data manipulation) and these results are presented in Appendix 
C. This last procedure was used to assess the effect of missing data on the 
interpretation of potential GW influence, which recent studies have 
shown can be inferred from the paired air-water annual thermal metrics 
(Briggs et al., 2018a; Johnson et al., 2020). If missing data is an issue for 
a specific air temperature dataset, then the combined air-water results 
will reflect a combination of errors resulting from water and air tem
perature regressions. 

3. Results 

The relative difference between estimated fitted sine-wave regres
sion coefficient values for various levels of incomplete datasets and the 
expected fitted sine-wave regression coefficient values using a complete 
365-d dataset were compared for non-imputed and imputed datasets. 

3.1. Accuracy 

As anticipated, the relative difference between estimated and ex
pected annual water temperature mean (T0,w), phase (ɸw), and ampli
tude (Aw) values decreased as the proportion of missing data points 
decreased but the rate of this change (i.e., the slope of error) differed 
between parameters and region of field data collection (Figs. 1-2 and 
Table 1). Specifically, as the exceedance probability (0.5, 0.75, 0.9, 
0.95) increased, the mmax value decreased for all accuracy levels (i.e., 
within the 99.9% CI, 99% CI, and 95% CI of the expected values) 
(Table 1). Accurate estimation of T0,w was the most sensitive to the 
number of missing data points, while ɸw and Aw allowed for less com
plete datasets (higher mmax) for accurate estimations in both regions. 
OESF sites generally had lower mmax thresholds (i.e., more sensitive to 
missing data) for estimates of the three annual thermal parameters than 
SHEN sites (Table 1), despite smaller annual variation (Aw) and smaller 
regression residuals for OESF sites (Suppl. Info. Johnson et al., 2020). 
For OESF, the expected values ranged between 7.0 and 9.2 ◦C for T0,w, 
between 210 and 254 d for ɸw, and between 1.9 and 4.7 ◦C for Aw. For 
SHEN, the expected values ranged between 8.8 and 12.6 ◦C for T0,w, 
between 205 and 224 d for ɸw, and between 4.0 and 9.5 ◦C for Aw. 

The average relative (estimated / expected) CI ranges were similar 
between T0,w and ɸw, and three to four times wider (i.e., less accurate) 
for Aw for both datasets (Table 2). The relative differences in accuracy of 
estimated parameters between 99.9% and 99% CI ranges and between 
99% and 95% CI ranges were 0.4–0.6% in T0,w and ɸw, and 1.4–2.3% in 
Aw. SHEN sites exhibited narrower CI ranges for ɸw and Aw, and slightly 
wider CI ranges for T0,w than OESF sites. 

3.2. Timing of missing data effect 

Timing of missing data points within the annual window affected the 
accuracy of estimated T0,w, ɸw, and Aw values, but the magnitude of the 
effect varied between regions, years, and annual parameters (Fig. 3). 
Overall, accuracy was high, with most of the estimated annual param
eter values falling within the 95% CI of the expected annual parameter 
values and few occasions exceeding 10% of estimates outside of the 99% 
CI, regardless of timing. For both OESF and SHEN sites, the estimated 

Table 1 
Summary of the maximum number of missing data points acceptable (mmax) to satisfy various exceedance probability levels of estimated annual water temperature 
parameter values within a given confidence interval (CI) of the expected annual parameter values. The results for the annual mean (T0,w) are shown on top, annual 
phase (ɸw) in the middle, and annual amplitude (Aw) on the bottom. Thresholds of mmax values are given for fractions of estimated annual values, within a given 
accuracy level (i.e. CI), exceeding 0.5, 0.75, 0.9, and 0.95. The mmax values were extracted from the mean of the site lines (thick lines in Fig. 1). OESF values are shown 
to the left of the pipe (|) and SHEN values are shown to the right. As an example, the first mmax value of 84 | 126 should be read as, “up to 84 for OESF and 126 for SHEN 
missing data points are acceptable in order to have at least half (0.5) of estimated annual mean values within the 99.9% CI of the expected annual mean.”  

Annual Parameter Exceedance Probability 99.9% CI 99% CI 95% CI 

T0,w(◦C)  0.5 84 | 126 70 | 119 56 | 98  
0.75 56 | 98 49 | 63 35 | 42  
0.9 42 | 56 35 | 42 28 | 28  
0.95 35 | 49 28 | 35 21 | 21 

ɸw(d)  0.5 168 | 175 126 | 161 98 | 140  
0.75 91 | 133 77 | 112 63 | 70  
0.9 63 | 91 56 | 63 42 | 49  
0.95 56 | 70 42 | 56 35 | 42 

Aw(◦C)  0.5 133 | 175 112 | 154 91 | 133  
0.75 77 | 133 63 | 112 49 | 84  
0.9 56 | 105 42 | 56 35 | 35  
0.95 42 | 63 35 | 42 28 | 28  
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annual values were least accurate for T0,w given relatively tight CI 
ranges. The CI ranges for ɸw were similarly tight but in general the es
timates were relatively more accurate. AR exhibited the widest CI ranges 
and similarly accurate estimates as ɸw. However, for OESF sites, missing 
data beginning between approximately December and January pro
duced less accurate estimates of all three annual parameters in at least 
one of the two years. For both OESF and SHEN sites, the patterns be
tween individual years varied. 

3.3. Imputation performance 

Overall, imputation of missing data increased the accuracy of esti
mated annual temperature parameters (Fig. 4 and Table 3). Improve
ments were greatest between approximately 9–27 weeks of imputed 
missing data (i.e., im = 63–189 d) and extended exceedance probability 
thresholds by between 5 and 18 weeks. Selection of an imputed missing 
data threshold (immax) using the same criteria as mmax described above, 
results in a value of 133 d with a less conservative upper limit of 154 d. 

However, imputation was not equally successful among sites, as seen 
by the large variation among sites (Fig. 4). Additionally, in one OESF site 
and one SHEN site exhibiting late ɸw and moderate to low Aw (indicators 
of strong, shallow GW influence; Briggs et al., 2018a), accuracy of 
estimated parameters was worse, not better, when missing data were 
imputed. Conversely, imputation improved the accuracy of estimated 
parameters for another SHEN site exhibiting strong GW signals. Note 
that the results presented in Fig. 1 and Table 1 include all annual win
dows, but are virtually the same as the results produced by subsetting to 
the same annual windows used for the missing data imputation sce
narios. Therefore, comparison between Tables 1 and 3 is consistent. 

T0,w remained the most sensitive to the number of imputed missing 
data points, while ɸw and Aw required less complete datasets (i.e., higher 
immax) for accurate estimations in both regions. OESF sites still generally 
had lower immax thresholds (i.e., more sensitive to imputed missing data) 
for estimates of the three annual thermal parameters than SHEN sites 
(Table 3). For OESF, the expected values ranged between 7.1 and 9.2 ◦C 
for T0,w, between 211 and 253 d for ɸw, and between 1.9 and 4.7 ◦C for 

Fig. 1. Fraction of estimated annual water temperature parameter values within a given confidence interval (CI) of the expected annual parameter values versus the 
number of consecutively missing data points within a year (m). The results for the annual mean (T0,w) are shown on top (a,b), annual phase (ɸw) in the middle (c,d), 
and annual amplitude (Aw) on the bottom (e,f). Results for OESF sites are shown on the left (a,c,e) and results for SHEN sites are shown on the right (b,d,f). Colors 
represent the different accuracy levels (95% CI > 99.9% CI) of estimated annual parameter values. Each thin line represents the results for an individual site (n = 20 
for each region). Thick lines represent the mean of all the sites for a given parameter-region-m-CI combination. The 99% CI lines are not shown, but plot between the 
95% and 99.9% CI lines for each site. 
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Aw. For SHEN, the expected values ranged between 8.8 and 12.6 ◦C for 
T0,w, between 205 and 224 d for ɸw, and between 4.1 and 9.4 ◦C for Aw. 
Generally, for all annual parameters in both regions with less than 
approximately 231 days of imputed data, the degree of improved ac
curacy via imputation was greatest within the 95% CI and least within 
the 99.9% CI. 

4. Discussion 

Missing data is a common issue with stream temperature datasets, 
but currently there is little quantitative guidance for the use of incom
plete datasets to model annual stream temperature signals. Determining 
a missing data threshold (mmax) depends on the specific research goals 
and thus establishing an exact value of mmax to use for every possible 
scenario, location, and purpose is not possible. The value of this 
threshold could determine the interpretation of potential GW influence, 

Fig. 2. Box plots of the ratio between estimated and expected annual water temperature parameter values (estimated / expected) versus the number of missing data 
points within a year (m). The results for the annual mean (T0,w) are shown on top (a,b), annual phase (ɸw) in the middle (c,d), and annual amplitude (Aw) on the 
bottom (e,f). Results for OESF sites are shown on the left (a,c,e) and results for SHEN sites are shown on the right (b,d,f). Gray boxes show the interquartile range 
(IQR) with the median drawn as a horizontal black line, whiskers extend to 1.5∙IQR above and below the boxes, and circles represent outliers (i.e., values beyond 
1.5∙IQR). Mean confidence interval ranges of all sites and annual periods are displayed as colored horizontal solid lines in each panel (99.9% = red, 99% = blue, and 
95% = green). Each box plot consists of all results for each m value (i.e., 100 regressions × 20 sites × 53 (OESF) or 61 (SHEN) annual periods). Larger deviations from 
unity (horizontal dashed line) indicate less accurate estimates of annual water temperature parameter values (greater than unity is overestimation and less than unity 
is underestimation). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of the average relative accuracy of confidence intervals (CI) calculated 
as the ratio between estimated and expected annual water temperature 
parameter values (estimated / expected). Each accuracy value is determined by 
taking the mean of all site-annual period pairings in each regional dataset for a 
specific CI range. The relative accuracy (%) of the estimations can be calculated 
as the difference from unity multiplied by 100 (i.e., 100(ratio − 1)).  

Annual Parameter Dataset 99.9% CI 99% CI 95% CI 

T0,w(◦C ◦C− 1) OESF 0.978–1.022 0.983–1.017 0.987–1.013 
SHEN 0.974–1.026 0.980–1.020 0.985–1.015 

ɸw(d d− 1) OESF 0.973–1.027 0.979–1.021 0.984–1.016 
SHEN 0.980–1.021 0.984–1.016 0.988–1.012 

Aw(◦C ◦C− 1) OESF 0.897–1.104 0.919–1.081 0.939–1.061 
SHEN 0.925–1.076 0.941–1.059 0.955–1.045  
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which recent studies have shown can be inferred from the paired air- 
water annual thermal metrics (Briggs et al., 2018a; Johnson et al., 
2020). Results of this study showed that accurate estimates of all three 
annual thermal parameters were possible even when as much as seven to 
nine weeks (49–63 d) of temperature data are missing on consecutive 
days. In addition, imputation of missing data could extend this threshold 
to approximately 19 to 22 weeks (133–154 d) given complete temper
ature datasets are available from other sites with similar thermal sig
natures. However, variability in thermal parameter accuracy among 
sites suggests that caution should be exercised when using imputation 
approaches to fill temperature data gaps. 

Specifically, although imputation of missing data improved estima
tions of annual thermal parameters for a vast majority of sites in this 

study, for some sites imputation had the opposite effect. This pattern 
seemed to be associated with some of the sites exhibiting strong 
apparent GW influence, evidenced by late ɸw (>15 d) or low Aw (<0.55), 
which have important implications for the thermal stability of streams in 
a warming climate (Briggs et al., 2018a, 2018b). However, it is not 
immediately clear why the accuracy of estimated parameters for some 
sites with strong GW influence benefit from imputation while others 
exhibiting similar characteristics suffer. The imputation techniques 
presented in this study are dependent upon correlations among sites and 
records in a dataset to estimate missing values. Therefore, caution is 
needed when applying these techniques in regions or stream networks 
where GW influence is spatially patchy or if unique annual thermal 
characteristics may be present. Accurate characterization of spatial 

Fig. 3. Ratio between estimated (m = 49) and expected (m = 0) annual water temperature parameters (estimated / expected) versus the starting date of consecutive 
missing data for two consecutive years (October 2016–2018 for OESF and September 2014–2016 for SHEN). Ratio values of annual mean (T0,w, ◦C) are shown in the 
top row (a,b), annual phase (ɸw, d) in the middle row (c,d), and annual amplitude (Aw, ◦C) in the bottom row (e,f). Results for OESF sites (n = 20) are shown in the 
left column (a,c,e) and for SHEN sites (n = 20) in the right column (b,d,f). Each line (gray = Year 1, black = Year 2) represents the results for a single site. The 
horizontal dashed line represents unity, where less accurate estimates produce greater deviations from unity (greater than unity is overestimation and less than unity 
is underestimation). The two green-yellow-red bands at the bottom of each panel represent dates in which at least 90% of estimated parameter values are within the 
95% CI (green), at least 90% are within the 99% CI (yellow), or greater than 10% are outside the 99% CI (red) of the expected values, respectively (Year 1 is the top 
band and Year 2 is the bottom band). For OESF, the expected values range between 7.0 and 9.4 ◦C for T0,w, between 211 and 254 d (Gregorian calendar) for ɸw, and 
between 1.9 and 4.7 ◦C for Aw. For SHEN, the expected values range between 8.8 and 12.7 ◦C for T0,w, between 205 and 225 d for ɸw, and between 4.2 and 9.5 ◦C for 
Aw. Note that the x-axes differ between OESF and SHEN sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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heterogeneity in stream thermal regimes is essential to predicting future 
thermal and climate refugia. Further research is needed to assess the 
performance of this imputation technique, such as the number of PCA 
dimensions needed for a given number of missing data points. 

Using a mmax threshold of 49 d, the difference in estimated versus 
expected annual parameter values was minimized while simultaneously 
maximizing the number of applicable sites. A compromise in the chosen 
mmax value was necessary because of the different sensitivities to missing 
data of the three annual thermal parameters estimations. Therefore, T0,w 
estimates will be less accurate for m values approaching mmax, whereas 
ɸw and Aw will remain highly accurate in both regions. In contrast, 
estimated – expected differences in annual water temperature parameter 
values will fare worse for streams experiencing extended frozen or dry 
periods (e.g., m > 63 d) and far worse for datasets collected only 
seasonally (e.g., m > 240 d). Imputation could be considered for sites in 
these types of datasets if: 1) there are less than approximately 20 weeks 
of missing data within a given annual period for a subset of sites in the 

dataset, 2) the complete site time series are long enough to establish 
general relationships of annual thermal characteristics between sites 
(Jones and Schmidt, 2018), and 3) the site(s) with missing data do(es) 
not exhibit vastly different annual thermal characteristics from the rest 
of the sites in the dataset. 

Missing data points that occurred on consecutive days were the focus 
of this analysis as this is a more likely scenario when collecting stream 
temperature data because of data logger failure, dewatering, wash-out, 
etc. The results of this study indicate that incomplete datasets may be 
used in annual stream temperature modeling and the magnitude of error 
will depend on the threshold set. Sites in OESF and SHEN, which are 
representative of remote headwater sites, are only occasionally visited 
throughout the year and may be at higher risk of exclusion from annual 
analyses because the chances of data loss occurring for more than seven 
to nine weeks prior to visiting individual sites increases with fewer visits 
within a given year. Conversely, if the stream of interest is easily 
accessible, multiple visits are warranted within any given year to limit 

Fig. 4. Fraction of estimated water temperature annual parameter values within the 99% confidence interval (CI) of the expected annual parameter values versus the 
number of consecutively missing (m) or imputed (im) data points within a year. The results for the annual mean (T0,w) are shown on top (a,b), annual phase (ɸw) in 
the middle (c,d), and annual amplitude (Aw) on the bottom (e,f). Results for OESF sites are shown on the left (a,c,e) and results for SHEN sites are shown on the right 
(b,d,f). Colors represent either missing (red) or imputed missing data (black) for the 99% CI of estimated annual parameter values. Each thin line represents the 
results for an individual site (n = 20 for each region). Thick lines represent the mean of all the sites for a given parameter-region-m (or im)-CI combination. The 95% 
and 99.9% CI’s are not shown, but are slightly shifted below and above the 99% CI lines, respectively. See Fig. 1 for the missing data points 95% and 99.9% CI values 
for comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the length of potential missing data periods. The advent of automatic 
cloud-based data monitoring and access, such as those used at USGS 
streamgage stations (U.S. Geological Survey, 2020), also limits the 
length of potential missing data gaps by providing real-time access to 
data, which allows for faster responses to data failure. 

Ward (1963) showed that 12 monthly averages for an example site 
give virtually the same regression fit as 365 days of data, but this does 
not translate into measuring daily mean temperature only once every 
month. Based on our results, data from a large majority of the year 
(>80% or >60% with imputation) are required for accurate estimates of 
all three annual thermal metrics, less for randomly distributed missing 
data (Appendix B). A similar threshold (>70% complete) was used in a 
recent study (Isaak et al., 2020), though this was for a five-year period 
and not specifically for each year. Therefore, seasonally collected tem
perature datasets (most commonly during summer) especially should 
not be used to produce annual water temperature parameter estimates 
(<15% probability of being within the 95% CI of expected values), nor 
should imputation be used to produce annual estimates for these data
sets. More research is needed to explore how methods to fill in missing 
data (i.e., imputation) could benefit the applicability of sub-annually 
measured water temperature data in annual thermal pattern calcula
tions in other regions. 

Additionally, these results provide guidance for sites that experience 
intermittent flow throughout the year or temporary ice or snow cover in 
the winter. For example, if the period of ice/snow cover or no-flow 
conditions for a specific stream is less than the specified mmax 
threshold, then researchers could simply ignore the data collected while 
ice/snow or no-flow is present. If ice/snow cover or no-flow conditions 
last longer than the specified m threshold, the use of a modeling 
approach where the sine-wave modeling time period is defined as the 
free-flowing time (Letcher et al., 2016; Maheu et al., 2016b), may be 
necessary. However, more research is needed on this topic to address the 
appropriateness of comparing annual temperature parameters derived 
from a period of 365 days to parameters derived from a period of less 
than 365 days. We hypothesize that imputation of these types of data 
could lead to erroneous inferences, but we have not tested this explicitly. 

We found conflicting evidence regarding how the timing of missing 
data affect parameter accuracy. The magnitudes of these effects were 
highly variable, depending on the region, year, and annual parameter 
evaluated. Therefore, setting a more conservative maximum threshold 
of missing data based on the probability of exceedance for the entire 
year will likely be a better approach than setting a higher maximum 
threshold based on the inconsistent exceedance probability in a 

particular season. For example, assuming data are missing from winter 
months, annual estimates of one parameter may be highly accurate 
while annual estimates of another parameter may be poor. This incon
sistency is likely driven by a combination of the variability in the 
leverage (influence of measured value on fitted value) of individual 
temperature data points in the linear regressions among different annual 
periods, which is related to the sine-wave ideality of the measured 
temperature data within that annual period, and the timing of those high 
leverage data points within the year. In this study, OESF temperatures 
exhibited less sine-wave ideality (i.e., slight temporal asymmetry) than 
the SHEN temperatures which may partly explain why mmax thresholds 
were generally lower for OESF sites than SHEN sites. 

Outlying temperature values with high leverage have a large influ
ence on fitted linear regressions solved via least squares. Therefore, 
missing data corresponding to these outlier temperature values may 
have a greater influence on estimated parameter values than missing 
data corresponding to more common temperature values. For datasets 
that are highly influenced by outlier values, one potential solution is to 
use an alternative solving method less influenced by outlier values such 
as the Theil-Sen estimator (Fernandes and Leblanc, 2005). Timing of 
missing data corresponding to outlier temperature values may, in part, 
explain differences in the effect on the three annual temperature pa
rameters within a given region in this study. For example, missing data 
corresponding to anomalously high temperatures at or near the annual 
maxima may affect T0,w and AR more than ɸw, whereas later timing of 
these same missing data points may affect ɸw more than T0,w or Aw. As 
the mmax threshold increases, the accuracy of estimated annual water 
temperature parameters will decrease and the importance of the timing 
of missing data will increase as the relative error in regression estimates 
approaches the level of acceptance. Understanding the effect of missing 
data timing is especially important for sites consistently influenced by 
seasonal ice cover or flow intermittency. Thus, further research is 
needed to assess whether these relationships are applicable to regions 
outside of the current study areas. 

Previous research showed the utility of comparing paired air-water 
annual temperature Δɸ and AR values for deciphering watershed pro
cess (Briggs et al., 2018a; Johnson et al., 2020), where the depth of GW 
discharge is important for inferring a stream’s thermal resilience to 
changes in climate. However, setting a maximum missing data threshold 
too high could result in false classification of streams based on annual 
thermal signals, which could lead to large errors in the predicted ther
mal stability of a stream given increasing air temperatures and therefore 
its interpreted capabilities to serve as a thermal or climate refugia 
(Ebersole et al., 2020). For example, Briggs et al. (2018a) found that, in 
the GW-dominated Quashnet River (Massachusetts), AR values ranged 
from approximately 0.49–0.63 over a three-year period. Additionally, 
data from Shenandoah National Park, VA, and the models of Briggs et al. 
(2018a) indicated a Δɸ of approximately 10 d or greater corresponded to 
shallow GW discharge comprising at least 25% of total streamflow. Deep 
GW discharge does not induce a large stream Δɸ and is more resilient to 
changes in surface conditions. Therefore, an AR threshold of 0.65 
roughly separates strong atmospheric signals (AR > 0.65) from strong 
GW signals (AR ≤ 0.65) and a Δɸ threshold of 10 d roughly separates 
shallow (Δɸ ≥ 10 d) from deep (Δɸ < 10 d) GW signals. 

Using these approximate threshold guidelines for OESF and SHEN 
sites, it is clear that more missing data within a given annual period 
leads to a greater probability of mischaracterization of the dominant 
controls on the stream thermal regime (Appendix Figs. C1 and C2). At 
high missing data thresholds (e.g., greater than approximately half of 
the year), Δɸ and AR are overestimated, which leads to false indications 
of lagged strong atmospheric coupling where the expected values indi
cate shallow or deep GW influence (low AR) or weaker atmospheric 
signal influence (lower Δɸ with high AR). This could lead to un
derestimations of the thermal resilience of these streams to changing 
climate conditions. Therefore, accurate estimations of Δɸ and AR are 
especially important when these values approach the approximate 

Table 3 
Summary of the maximum number of imputed missing data points acceptable 
(immax) to satisfy various exceedance probability levels of estimated water 
annual parameter values within a given confidence interval (CI) of the expected 
annual values. Thresholds of immax values are given for fractions of estimated 
annual values, within a given accuracy level, exceeding 0.5, 0.75, 0.9, and 0.95. 
The immax values were extracted from the mean of the site lines (e.g., thick lines 
in Fig. 4). OESF values are shown to the left of the pipe (|) and SHEN values are 
shown to the right.  

Annual 
Parameter 

Exceedance 
Probability 

99.9% CI 99% CI 95% CI 

T0,w(◦C)  0.5 203 | 196 196 | 189 182 | 182  
0.75 168 | 161 154 | 154 133 | 147  
0.9 105 | 140 98 | 133 91 | 112  
0.95 70 | 119 70 | 112 63 | 98 

ɸw(d)  0.5 231 | 210 217 | 203 210 | 203  
0.75 196 | 175 189 | 168 175 | 168  
0.9 140 | 147 126 | 147 112 | 140  
0.95 84 | 140 84 | 133 77 | 119 

Aw(◦C)  0.5 217 | 203 210 | 203 210 | 196  
0.75 182 | 168 175 | 168 168 | 161  
0.9 112 | 147 112 | 140 105 | 133  
0.95 84 | 133 77 | 126 77 | 112  
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classification thresholds for Δɸ and AR (Appendix C). 

5. Conclusions 

With the recent expansion in available temperature data around the 
world, greater understanding of stream temperature dynamics is 
possible. However, missing data points within these datasets will 
continue to be an omnipresent issue, resulting from logger malfunction, 
human error, or natural occurrences such as high flows, desiccation, or 
freezing. In fact, sensors and methods have been developed specifically 
to differentiate periods with and without flow in streams (Arismendi 
et al., 2017; Blasch et al., 2002; Chapin et al., 2014). Therefore, guide
lines for the use and analysis of incomplete datasets are needed. In this 
study, we provide such guidelines for the analysis of annual paired 
air–water temperature datasets using linear regressions of sine-wave 
curves. The methods described here could be applied to other stream 
temperature modeling techniques that use incomplete datasets. 

Annual water temperature signals, especially when paired with local 
air temperature signals, are useful in determining important watershed 
processes for stream ecosystems. We found that the simultaneous ac
curate (within the 95–99% CI of expected values) estimation of three 
annual water temperature parameters – mean, phase, and amplitude – 
could only withstand fewer than two months of consecutive missing data 
points for our sites in the Pacific Northwest and Mid-Atlantic regions of 
the USA. Imputation of missing data expanded this period to between 
four and five months for most sites, but also decreased accuracy for lo
cations exhibiting unique annual thermal characteristics such as those 
with strong shallow GW influence. Nonetheless, the specific threshold of 
maximum allowable missing data points used in other projects should be 
set to the desired outcomes of the research or management objectives. In 
areas where both air and water temperature data are missing, utilizing 
modeled air temperature data, such as PRISM (PRISM Climate Group, 

2019), may help to expand the usefulness of existing water temperature 
datasets via combined air–water annual thermal metrics (Briggs et al., 
2018a; Johnson et al., 2020), but additional research in this field is 
required to determine the accuracy and applicability of these modeled 
air temperatures in other regions. 
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Appendix A 

The method used to convert annual phase values into the day of the year corresponding to the annual maximum temperature varies with the annual 
window defined for the linear regressions (i.e., Eq. (1)). Given the two regression coefficients (a and b), there are four possible combinations of 
coefficient signs (Appendix Fig. A1): (1) both a and b are positive, (2) a is positive and b is negative, (3) a is negative and b is positive, and (4) both a 
and b are negative. In the first and second scenarios, the annual maximum temperature occurs prior to the annual window mid-point, with the first 
scenario maximum occurring approximately one to two months after the start of the annual window, and the second scenario maximum occurring 
approximately three months later. In the third and fourth scenarios, the annual maximum temperature occurs after the annual window mid-point. The 
third scenario maximum occurs approximately one to two months prior to the end of the annual window and the fourth scenario maximum occurs 
approximately three months earlier. Therefore, the third scenario corresponds with the water year (WY) calendar (1 October to 30 September) for 
northern hemisphere streams and the fourth scenario corresponds with the Gregorian year calendar for northern hemisphere streams. The first 

Fig. A1. Four combinations of sine-wave linear regression coefficient signs: (1) a and b (+) (black), (2) a(+) and b(− ) (red), (3) a(− ) and b(+) (blue), and (4) a and b 
(− ) (green). The gray vertical dashed line represents the mid-point of the annual window. 
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scenario then corresponds with the Gregorian year calendar for southern hemisphere streams and the second scenario corresponds with the WY 
calendar for southern hemisphere streams. The first scenario could also correspond to an approximately June to May calendar year and the second 
scenario to an approximately April to March calendar year for northern hemisphere streams. Similarly, the third scenario could also correspond to an 
approximately April to March calendar year and the fourth scenario to an approximately June to May calendar year for southern hemisphere streams. 

Fortunately, the conversion of phase values from radians into day of the year corresponding to the annual maximum temperature has only two 
variants, which apply to northern and southern hemisphere streams separately, despite the four possible combinations of regression coefficient signs. 
In other words, how the conversion is carried out is dependent only on the timing of the annual maximum in relation to the mid-point of the annual 
window (i.e. t = π rad). For northern hemisphere streams (i.e., scenarios three and four, where the maximum occurs after the annual midpoint), phase 
(rad) is shifted by: 3π/2 − tan− 1(b/a). For southern hemisphere streams (i.e., scenarios one and two, where the maximum occurs before the annual 
midpoint), phase (rad) is shifted by: π/2 − tan− 1(b/a). For all scenarios, phase is converted from units of radians to days by multiplying by: 365/2π. 
Note that the timing of annual minimum temperature is shifted from the annual maximum by π for a symmetric sine-wave. 

Appendix B 

A secondary analysis using a random distribution of missing days of data found that dramatically more missing data was permissible than if the 
missing data existed on consecutive days (Fig. B1). Annual T0,w estimations were accurate with > 200 days of missing data, but annual ɸw and AW (m 
> 250) remained accurate with even greater number of missing data (> 90% probability of being within the 95% CI of the expected values). 

Fig. B1. Fraction of estimated annual water temperature parameter 
values within a given confidence interval (CI) of the expected 
annual parameter values versus the number of randomly missing 
data points within a year (m). The results for the annual mean (T0,w) 
are shown on top (a,b), annual phase (ɸw) in the middle (c,d), and 
annual amplitude (Aw) on the bottom (e,f). Results for OESF sites 
are shown on the left (a,c,e) and results for SHEN sites are shown on 
the right (b,d,f). Colors represent the different accuracy levels (95% 
CI > 99% CI > 99.9% CI) of estimated annual parameter values. 
Each thin line represents the results for an individual site (n = 20 for 
each region). Thick lines represent the mean of all the sites for a 
given parameter-region-m-CI combination.   
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Appendix C 

The difference between estimated and expected annual mean ratio (MR), phase lag (Δɸ), and amplitude ratio (AR) values follows that of annual 
water mean (Mw), phase (ɸw), and amplitude (Aw) (Figs. 1 and 2), assuming no missing air temperature data. Similar patterns were observed when 
plotting Δɸ versus AR (Appendix Figs. C1 and C2), where m ≤ 49 corresponds to highly accurate estimates of expected annual thermal metric values. 
Previous research showed the utility of plotting Δɸ versus AR for deciphering watershed process (Briggs et al., 2018a; Johnson et al., 2020). Streams 
dominated by atmospheric signals exhibit low Δɸ with high AR, whereas streams dominated by deep GW signals exhibit low Δɸ with low AR, and 
streams dominated by shallow GW signals exhibit high Δɸ with low AR. Dams have been hypothesized to possibly induce large Δɸ with high AR 
(Johnson et al., 2020), but our results (Figs. C1 and C2) indicate missing data may also induce these signal patterns. 

Fig. C1. OESF phase lag (Δɸ) versus amplitude ratio (AR) for 
various sets of missing data points (m), progressing in descending 
order from panels (a) to (d). Only a subset of the missing data sce
narios are colored and represented in the legend for each panel. 
Colored polygons represent the convex hull (i.e., smallest convex 
enclosure) for the five m values shown in each panel’s legend. Open 
gray circles represent values from the other missing data scenarios 
not represented in the legend for each panel. Dashed lines (Δɸ = 10 
d, AR = 0.65) roughly divide the Δɸ-AR space into three areas 
reflecting different dominant signals: top left area (Δɸ < 10 d, AR >

0.65) reflects strong atmospheric signals, right area (Δɸ ≥ 10 d) 
reflects strong shallow groundwater signals, and bottom left area 
(Δɸ < 10 d, AR ≤ 0.65) reflects strong deep groundwater signals.   

Fig. C2. SHEN phase lag (Δɸ) versus amplitude ratio (AR) for various 
sets of missing data points (m), progressing in descending order from 
panels (a) to (d). Only a subset of the missing data scenarios are 
colored and represented in the legend for each panel. Colored poly
gons represent the convex hull (i.e. smallest convex enclosure) for the 
five m values shown in each panel’s legend. Open gray circles 
represent values from the other missing data scenarios not repre
sented in the legend for each panel. Dashed lines (Δɸ=10d, AR =

0.65) roughly divide the Δɸ-AR space into three areas reflecting 
different dominant signals: top left area (Δɸ<10d, AR > 0.65) reflects 
strong atmospheric signals, right area (Δɸ≥10d) reflects strong 
shallow groundwater signals, and bottom left area (Δɸ<10d, AR ≤

0.65) reflects strong deep groundwater signals.   
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High m values resulted in overestimations of Δɸ and AR values (Fig. C1A and C2A), but as m decreases, Δɸ and AR decrease toward expected values. 
Therefore, high m values (> ~182) may indicate stronger lagged atmospheric coupling (high AR with high Δɸ) in sites when it is more likely that they 
are influenced by shallow or deep GW. For OESF sites (Fig. C1), estimated AR values are roughly representative of the expected AR values as early as m 
≈ 161. However, Δɸ values become underestimated as shown in the convex hull (i.e. smallest convex enclosure surrounding the data) shifted slightly 
to the left. For SHEN sites (Fig. C2), AR and Δɸ values are similarly overestimated and then underestimated, but the underestimation of Δɸ is greater 
for SHEN sites. Initially, this results in estimated convex hulls shifted up and right from the expected, but then shifted slightly below and left for smaller 
values of m. 
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