

Preparation and characterization of bio-based copolyesters: interest and limitations

AgroParisTech Talents d'une planète soutena

Author: Anusha Bhat Supervisors: Florian Pion & Eero Kontturi

Background

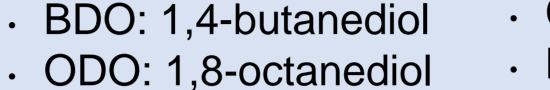
- The global fossil-fuel economy has jeopardized the planet's resources and resilience, resulting in climate change.
- The European Commission emphasizes the need for alternative sustainable plastics to meet rising demand [1], and bio-based polymers are a current research hot subject.
- Polyesters have tunable characteristics, a broad application range, and great recyclability[2].

Objectives

- Synthesize co-polyester from bio-based monomers (diacid/s + diol) extracted from non food and feed resources.
- Study the effect of monomer compositions on polymer properties.
- Aim for a greener cleaner and polymerization.
- Justify the results with LCA studies

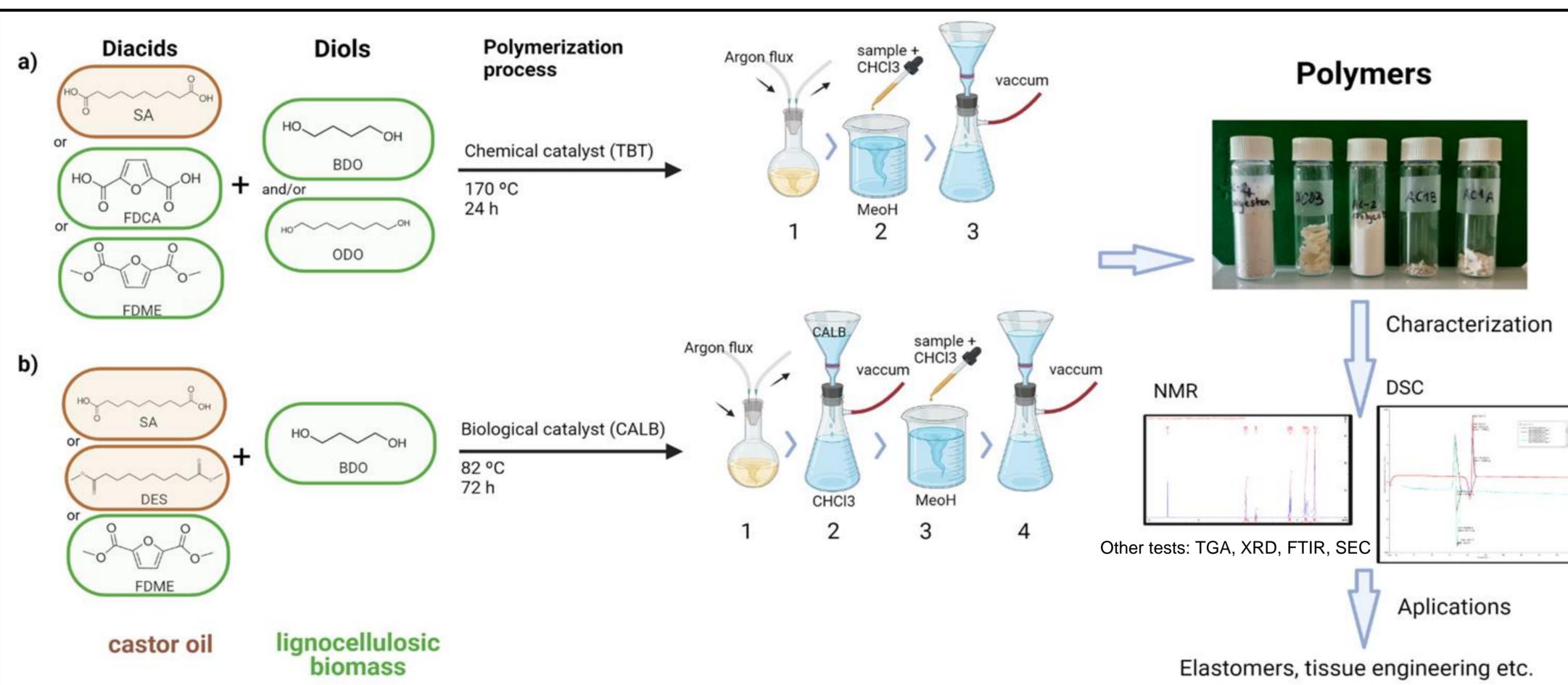
Life Cycle Analysis

Product Diol+Diacid+Catalyst+Solvent reaction system -Step 1: Polymerization process Process -Inputs Outputs 1 Inflov SA, BDO, DPE, Polymer solution **TBT**, Electricity Product Step 2: Precipitation and filtration flow Outputs Inputs Polymer solution Polymer powder MeOH, Electricity DPE, MeOH, TBT Step 3: Vacuum drying Outputs Inputs Dried final polymer Polymer powder Traces of solvent Electricity


Key acronyms

• DES: diethyl sebacate

• TBT: tetrabutyl titanate


- SA: sebacic acid
- FDCA: 2,5-furandicarboxylic acid
- FDME: furan dicarboxylic methyl ester DPE: diphenyl ether

Methodology

 CALB: Candida antarctica lipase B • MeOH: methanol

• CHCl₃: chloroform

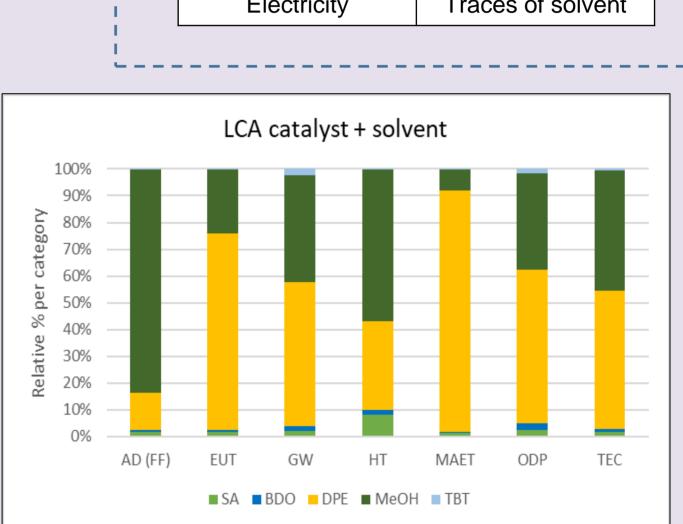


Figure 1: Bar graph of LCA impact categories for reactants in the polymerization.

Impact categories- AD (FF) abiotic depletion (fossil fuels); EUT: eutrophication; GW: global warming; HT: marine toxicology; MAET: human aquatic ecotoxicology; ODP: ozone layer depletion; TEC: terrestrial ecotoxicology.

- DPE solvent key contributor in all the impact categories.
- TBT catalyst 2nd key contributor in ODP and GW.
- No solvent, no catalyst- good for environment

Results and Discussions

A. Proof of Polymerization

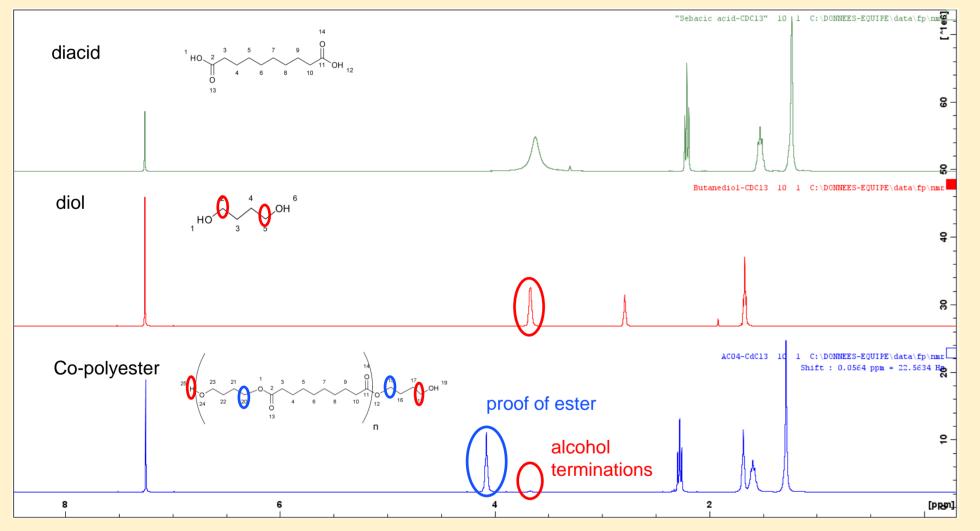


Figure 3: ¹H NMR spectrum of the co-polyester synthesised in comparison to the spectrum of the monomers, SA (diacid) and BDO (diol).

- to carbonyl groups attached and the corresponding peak on the spectrum.
- attached to carbon with the alcohol Н terminating group.

B. Impact of ratio of mixture of 2 different diols on polyesterification

Num ber	BDO (mole%)	ODO (mole%)	Melting point (°C)	Yield (%)	Polymer aspect	
1	0	100	67.4	90.4	White powder	
2	25	75	59.5, 65.7	117 (traces of solvent)	White powder	
3	50	50	62.0	109 (traces of solvent)	Off white flocs	
4	75	25	51.0, 54.6	74.4	Off white flakes	
5	100	0	65.1	75.3	White powder	

Table 1: Results from DSC compared with yield and aspect of the co-polyester.

All reactions were performed by chemical catalysis at 170 °C under argon flux, for 24 h.

Reactants: SA + BDO/ODO BDO/ODO (0/100),(100/0) > single,

C. Catalyst and/or solvent effect on co-polyester properties: aiming for a greener and cleaner reaction

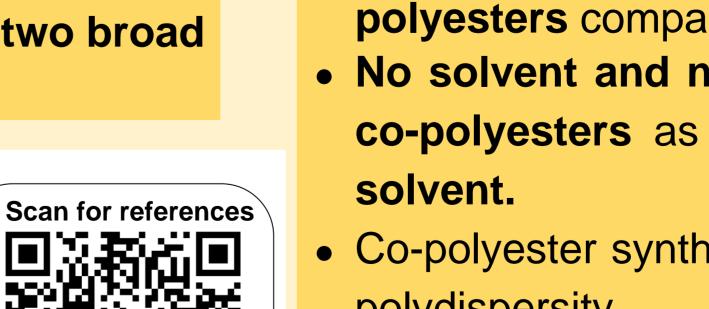
Numb er	Solvent	Cataly st	Reactio n time (h)	Polymer aspect	Polymerizati on degree*	Melting point (°C)	Yield (%)
1	Diphenyl ether	TBT	24	White powder	40.7	65.1	75.26
2	Methyl ethyl ketone	CALB	72	White flakes	9.6	55.0	22.04
3	-	TBT	4	White powder	69.5	66.2	8.12
4	Diphenyl ether	-	24	Yellowish powder	17.9	56.4	64.47
5	-	-	24	Yellowish powder	39	54.4	72.07

Results from DSC compared with yield, 2: Table polymerization degree and aspect of the co-polyester.

Reactants: SA + BDO

- No solvent, no catalyst co-polyester synthesis is possible [5].
- Chemical catalyst aids long chain co-

Reactants: SA+ BDO


• **Proof of ester bond:** Peak at 4.1 ppm [3,4]

sharp peak

 BDO mole% + ODO mole% → two broad peaks

Conclusions and Perspectives

- Co-polyester without solvent and catalyst is demonstrated. Further studies to study the co-polyester characteristics is to be carried out further.
- Despite the non-competitive market pricing of the bio-based polyesters, better properties and niche application probabilities make them viable and interesting. Maturation of the biorefinery model to reduce monomers costs is key for this technology to scale up.

- **polyesters** compared to biocatalyst.
- No solvent and no catalyst give same length co-polyesters as with chemical catalyst and
- Co-polyester synthesized without catalyst = high polydispersity.
- No solvent, no catalyst = cleaner, metal free reactions (biomedical applications [6]).

EMA Presents

International Poster Competition 2023

EMA General Assembly, 12-14 May 2023, Lisbon, Portugal

