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1. Introduction

The increased demand for food due to rapid population growth has been identified as a

global concern that calls for innovative approaches to achieve sustainable agriculture.

Accurate crop-specific information is very important for decision making, and resource

allocation, which are vital for realizing food security. The conventional approaches are

not sustainable because they often require many resources, are labour intensive, and are

time-consuming. Geographical Information Systems (GIS) and remote sensing can

provide evidence-based information with good accuracy to boost crop production.

Satellite imagery is now available with enhanced spatiotemporal accuracy and Machine

Learning (ML) algorithms that enable the production of accurate and efficient crop

classification maps to support decision-making at various levels of government,

especially in resource allocation. This study focused on the classification

of two major crops i.e., sugarcane and cotton using sentinel-2 time series data and

Random Forest (RF) algorithm in Orfeo toolbox. These crops are widely used as raw

materials in many industries in the world. The presence of the JDW sugar mill industry

in Pakistan nearby, which seeks information on sugarcane production, influenced our

selection of the study area for this research.
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5. Methodology
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6. Results and Discussion

Figure 1. Classification of Sentinel-2 Images

▪ The results of the classification using uni-temporal satellite images (based on crop cycle) are shown in Figure 1. Eight

landcover classes are shown, which sugarcane is the dominant crop in the study area (green color) and other non-

agricultural classes such as built-up and roads. The classification result from the multi-temporal image (Figure ) gives

a better accuarcy of 84.75% (Figure 4) because of the improved temporal resolution that captures the crops phenological

differences or changes. The multi-temporal data also performs better in classifying sugarcane than the

other unitemporal images with a producer accuracy of 87.3%. The stable land cover classes, bare soil and road, have

a consistent accuracy throughout the seasons. The final crop classification map (Figure 3), produced by post processing of

Figure 2, shows that sugarcane and cotton are the dominant crops, then other vegetation which includes mostly orchards

and finally grass. The "other" group contains the other land cover types.

Figure 3. Crop Classification Map of Sentinel-2 Image 

Figure 2. Classification Map of Sentinel-2 Image (stacking three images)

7. Conclusions

▪ Using multi-temporal satellite imagery is better for 

crop classification because of the rapid phenological 

properties of crops and the varying weather conditions.

▪ The study area is really agro-intensive, majorly dominated

by sugarcane and cotton.

▪ For the improvement of this classification, model training 

sample size can be increased.

▪ We recommend collecting training samples from the field 

in multiple time phases to capture the crop phenology better, 

therefore enhancing the classification accuracies.

▪ The use of hyperspectral imagery from satellite or drone will 

give a better result in distinguishing sugar cane from other crop 

types.

8. Recommendations

The authors appreciate Farmdar company 
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Figure 5. Area of each land cover classes
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Figure 4. Accuracy comparison of composite with three of classified images
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