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Abstract

Quantum computers will be able to break all currently deployed public-key
cryptographic algorithms. As these algorithms are crucial to secure our
IT infrastructure, we urgently need to transition to so-called post-quantum
cryptographic algorithms, which can resist attacks from attackers with access to
large-scale quantum computers. There already exist several candidate quantum-
resistant algorithms, but despite substantial progress in the last decade, they are
unfortunately still less efficient and less understood than the algorithms that are
currently deployed, especially in the case of digital signature algorithms, which
are the focus of this thesis. This makes the necessary transition to post-quantum
algorithms more difficult.

To help solve this problem, this thesis makes contributions to three objectives:
to diversify the set of available signature schemes, to investigate the (in)security
of supposedly post-quantum signatures through cryptanalysis, and to design
digital signature algorithms that are more efficient in terms of speed, key size,
and signature size.

Diversifying post-quantum signature schemes. There is a sizeable
collection of mathematical building blocks that we can build post-quantum
cryptography with, for example, there are algorithms based on lattices,
error-correcting codes, hash functions, isogenies, and algorithms based on
systems of multivariate quadratic equations. However, researchers have been
struggling to produce truly practical signature schemes with these building
blocks. (i.e., schemes that are as fast and as compact as the pre-quantum
algorithms we use today). Therefore, it is important to keep searching for
other areas of mathematics that we can use to build cryptography from. In
this thesis we introduce the most common mathematical foundations for post-
quantum signatures. Then, we introduce signature schemes based on different
mathematical structures: we designed PKP-DSS and SUSHSYFISH, two
signature schemes based on permuted kernels, and LegRoast, a signature scheme
based on the Legendre symbol. Performance-wise, the new schemes are not yet
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as good as the best post-quantum signature schemes (the main issue is their
signature size, which is around 10 KB, roughly a factor 10 larger than the most
compact lattice-based signature schemes.). However, independent researchers
have already made significant performance improvements on the PKP-DSS
scheme, so there is hope that these schemes will someday be competitive with
state-of-the-art post-quantum signature schemes (which have been optimized
extensively during the last decade).

Cryptanalysis. Unfortunately, we cannot unconditionally prove that a
signature scheme is secure. Therefore, to gain confidence in the security of an
algorithm, we have to resort to analysing it and looking for weaknesses. This
is called cryptanalysis. If after extensive study no weaknesses are found, then
the algorithm could be secure. In this thesis, we define what it means for a
signature scheme to be (in)secure, and then we report on our cryptanalytic
work. We found weaknesses in multiple signature schemes that were proposed as
candidates for standardisation. The most important result was the discovery of
weaknesses in Rainbow, one of the finalists of the NIST standardization project.
Due to this discovery, the selection of Rainbow for standardization seems unlikely.
As such, the research presented in this thesis might have prevented a weak
algorithm from becoming standardized and deployed at a large scale.

Designing more efficient signature schemes. Finally, we give a brief
introduction to how digital signature schemes are designed, before moving on
to some new signature schemes I designed myself. These new algorithms are
more efficient than other post-quantum signatures which are based on the same
mathematical building blocks. For example, one of the new schemes is CSI-FiSh,
a signature scheme based on isogenies between supersingular elliptic curves.
CSI-FiSh is more than a factor 300 faster and has signatures that are a factor 3
smaller than other signatures based on the same mathematical foundation.



Beknopte samenvatting

Quantumcomputers zullen in staat zijn om alle publieke-sleutel cryptografische
algoritmes die momenteel in gebruik zijn te breken. Om onze IT-infrastructuur
veilig te houden, moeten we daarom dringend overstappen op zogenaamde
post-kwantum cryptografische algoritmes, die bestand zijn tegen aanvallers
met toegang tot grootschalige kwantumcomputers. Er bestaan al verschillende
kandidaat-kwantumbestendige algoritmes, maar ondanks veel vooruitgang in het
afgelopen decennium zijn ze helaas nog steeds minder efficiënt en minder goed
begrepen dan de algoritmes die momenteel in gebruik zijn, vooral in het geval
van digitale handtekeningsalgoritmes, die het onderwerp van dit proefschrift
zijn. Dit bemoeilijkt de noodzakelijke overgang naar post-kwantum algoritmes.

Om dit probleem op te lossen, levert dit proefschrift bijdragen aan drie
doelstellingen: het diversifiëren van de reeks beschikbare handtekeningsal-
goritmes, het onderzoeken van de (on)veiligheid van bestaande post-kwantum
handtekeningen door middel van cryptanalyse, en het ontwerpen van nieuwe
digitale handtekeningsalgoritmes die efficiënter zijn in termen van snelheid,
sleutelgrootte en handtekeninggrootte.

Het diversifiëren van post-kwantum handtekeningsalgoritmes. Er is
al een aantal wiskundige bouwstenen waarmee we post-kwantumcryptografie
kunnen bouwen. Er zijn bijvoorbeeld algoritmen op basis van roosters,
foutverbeterende codes, hashfuncties, isogenieën en algoritmes op basis van
systemen van multivariate kwadratische vergelijkingen. Onderzoekers hebben
echter moeite om met deze bouwstenen echt praktische handtekeningsalgoritmes
te produceren. (d.w.z. schema’s die net zo snel en compact zijn als de
pre-kwantum algoritmes die we momenteel gebruiken). Daarom is het
belangrijk om te blijven zoeken naar andere gebieden van de wiskunde
waarop we cryptografie kunnen bouwen. In dit proefstuk introduceren we
eerst de meest voorkomende wiskundige bouwstenen voor post-kwantum
handtekeningsalgoritmes. Vervolgens introduceren we handtekeningsalgoritmes
op basis van nieuwe wiskundige structuren: we ontwierpen PKP-DSS en
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SUSHSYFISH, twee handtekeningsalgoritmes gebaseerd op gepermuteerde
kernen, en LegRoast, een algoritme gebaseerd op het Legendre-symbool. Qua
prestaties zijn de nieuwe schema’s nog niet zo goed als de beste post-quantum
handtekeningsalgoritmes (het belangrijkste probleem is de grootte van de
handtekening, die met ongeveer 10 KB ongeveer een factor 10 groter dan de meest
compacte op roosters gebaseerde algoritmes.). Onafhankelijke onderzoekers
hebben het PKP-DSS algoritme echter al aanzienlijk kunnen verbeteren, dus er
is hoop dat deze algoritmes ooit kunnen concurreren met de beste post-kwantum
algoritmes (die het afgelopen decennium uitvoerig zijn geoptimaliseerd).

Cryptanalyse. Helaas kunnen we niet onvoorwaardelijk bewijzen dat een
handtekeningsalgoritme veilig is. Om vertrouwen te krijgen in de veiligheid
van een algoritme, moeten we daarom onze toevlucht nemen tot het analyseren
en zoeken naar zwakke punten. Dit heet cryptanalyse. Als er na uitgebreid
onderzoek geen zwakke punten worden gevonden, kan het algoritme veilig zijn. In
dit proefschrift, definiëren we wat het betekent voor een handtekeningsalgoritme
om (on)veilig te zijn, en vervolgens rapporteren we over mijn cryptanalytische
werk. Ik vond zwakke punten in meerdere algoritmes die werden voorgedragen
als kandidaat om gestandaardiseerd te worden. Het belangrijkste resultaat
was de ontdekking van zwakke punten bij Rainbow, een van de finalisten van
het NIST post-kwantum standaardisatieproject. Door deze ontdekking lijkt
de selectie van Rainbow voor standaardisatie onwaarschijnlijk. Op die manier
heeft mijn onderzoek, waarschijnlijk kunnen voorkomen dat een zwak algoritme
gestandaardiseerd werd en op grote schaal in gebruik genomen werd.

Het ontwerpen van efficiëntere handtekeningsalgoritmes. Ten slotte
geven we een korte inleiding over hoe digitale handtekeningsalgoritmes worden
ontworpen. Daarna gaan we verder met enkele nieuwe handtekeningsalgoritmes
die ik zelf heb ontworpen. Deze nieuwe algoritmes zijn efficiënter dan andere
post-kwantum algoritmes die op dezelfde wiskundige bouwstenen zijn gebaseerd.
Een van de nieuwe schema’s is bijvoorbeeld CSI-FiSh, een handtekeningschema
gebaseerd op isogenieën tussen supersinguliere elliptische krommes. CSI-FiSh is
meer dan een factor 300 sneller en heeft handtekeningen die een factor 3 kleiner
zijn dan andere handtekeningen die op dezelfde wiskunde zijn gebaseerd.
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Chapter 1

Introduction

NET::ERR_CERT_AUTHORITY_INVALID
Your connection isn’t private. Attackers might be trying to
steal your passwords, messages, or credit cards.

— Google Chrome 87.0.4280.88

We live in an increasingly digital world, where we use electronics to communicate
with each other, make purchases, and access our fridges, toasters, and security
cameras. This world would not be possible without cryptographic techniques
to secure our networks and applications. End users might not be aware of the
importance of cryptography, or even think that cryptography is a nuisance
because cryptography is only noticeable when something goes wrong (e.g.,
when your browser doesn’t show you a webpage because its certificate expired).
However, in a world without cryptography, eavesdroppers could listen in on
your private communications, criminals could plunder your bank account and
terrorists could remotely take control of critical infrastructure. Alarmingly, this
hypothetical world could soon become a reality, because the vast majority of
our cryptographic systems rely on techniques that will become insecure when
the first sufficiently large quantum computers are built.

1.1 Digital signature algorithms

Historically, if two persons wanted to communicate securely, they needed to
agree on some secret way of encrypting and decrypting messages. For example,
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they could agree to replace each occurrence of the letter ‘a’ by the letter ‘p’,
each letter ‘b’ by the letter ‘c’, and so on. A more advanced example is Enigma
encryption, which was used by the German military forces during World War
II. Each day, the Enigma machine needed to be reconfigured according to the
secret configuration of the day. If a message encrypted with one configuration
was decrypted with an Enigma machine in a different configuration, the message
would be completely unintelligible.

In modern-day cryptography, this kind of encryption is referred to as symmetric-
key encryption, because both parties need to know the same secret information
(known as the secret key) to encrypt and decrypt messages. Nowadays symmetric-
key cryptography is very efficient and widely used, with the most popular
algorithm being the Advanced Encryption Standard (AES). If you want to
use symmetric key-cryptography there is a practical problem though: How do
you securely agree on a secret key? During World War II, the daily keys were
distributed in codebooks, which were high-value targets for allied forces. If the
allies managed to recover one book, they could listen in on the communications
of an entire network, for as long as keys from that book were used.

Public-key encryption. Luckily, we don’t all have our water-soluble
codebooks which we are instructed to flush down the toilet when an intruder
enters our house. Where then do we get our secret keys to send WhatsApp
messages to our friends and buy products online? A solution to this problem
was proposed in the visionary paper of Diffie and Hellman [27], who proposed
a new kind of cryptography called public-key cryptography. In this kind of
cryptography a user can generate a pair of keys, a secret key to keep to himself,
and a public key which he can distribute freely. Any person can use the public
key to encrypt a message, but only the person with the corresponding secret
key can decrypt and read the message. This approach solves the problem of
distributing secret keys because each person can generate their own secret key,
and only public keys (which are not sensitive) have to be distributed. The
downside of this approach is that public-key algorithms are computationally
demanding, which makes it impractical to encrypt large amounts of data such
as video files. To solve this problem, hybrid encryption is often used: if person
A wants to send a large amount of data to person B, he first uses a public key
algorithm to securely send a secret key to person B. In the next step, they use
the shared secret key to communicate large amounts of data with an efficient
symmetric encryption scheme.

Public-key signatures. Encryption algorithms can keep your messages
confidential, but they do not guarantee that the entity you are communicating
with is authentic. To solve this problem, we need a different cryptographic
technique, which is the main topic of this thesis: Digital Signature Algorithms.
Much like handwritten signatures, a digital signature can be appended to a
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message to convince the reader that the message is authentic. A digital signature
scheme consists of 3 algorithms:

• The first is a randomised key generation algorithm, that produces a
pair of keys. A secret key which the signer keeps to himself, and a
corresponding public key, which he can advertise publicly.

• The second is a signing algorithm, that takes a message and a secret key
as input and produces a digital signature that can be appended to the
message.

• The last is a verification algorithm, that takes a message, a public key,
and a digital signature as input and outputs accept or reject signaling
whether the signature is deemed valid or not.

Digital signature algorithm are designed in such a way that it is impossible to
create a valid signature without the knowledge of the secret key. Therefore,
digital signatures can guarantee the authenticity of messages, assuming you
can guarantee the authenticity of the public key and that you can keep the
secret key secret. If the receiver of a signed message can successfully verify the
signature for an authentic public key, then the authenticity of the message is
guaranteed, because no one else could have produced the signature. A formal
description of some security properties of digital signature algorithms will be
given in Chapter 3.

Applications of digital signatures. Since the invention of the first digital
signature scheme in 1977, digital signatures have become an indispensable
tool for computer security. Digital signatures are commonly used to achieve 3
security goals:

• Entity Authentication. As mentioned before, digital signatures can be
used to authenticate entities. An important example is the TLS protocol,
which is used to secure most of the traffic on the Internet. When a user
browses to example.com he gets connected to a server on the internet. It
could be that the server is really controlled by example.com, but it could
also be a fraudulent server that tries to impersonate example.com. In the
TLS protocol, the user sends a random message to the server, and the
server responds with a digital signature for that message. The user then
verifies if the signature is valid under the public key of example.com. If
this is the case, then the user can be sure that he is talking to a legitimate

example.com
example.com
example.com
example.com
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server, because only servers controlled by example.com have the secret
key capable of producing valid signatures1.

• Data Authentication. Digital signatures can also ensure the authen-
ticity of data, meaning that the sender is authentic and that the data
has not been altered in transit. This is so, because altering a message
invalidates the digital signature. This is important for the practice of
code-signing: typically, if you download an app for your smartphone or if
your operating system receives a software update, the software is signed
by the author of the software (or the app store). If the signature is not
valid, the software will not be installed. This prevents attackers from
inserting malware in legitimate software2.

• Non-repudiation of origin. Once the holder of the secret key has signed
a message, he can not dispute the authorship of the message at a later point
because no other person is capable of producing the valid signature. This
is why digital signatures can be used to electronically sign legal documents.
In many countries, including EU countries, electronic signatures have legal
significance similar to handwritten signatures. For the same reason, digital
signatures are used in modern credit card payments: when a purchase is
made, the EMV chip on the credit card produces a digital signature for the
transaction. This authenticates the credit card, but it also prevents the
holder of the credit card from denying having approved of the purchase.

RSA signatures. The concept of digital signatures was introduced by Diffie
and Hellman in their 1976 paper [27], but the first concrete digital signature
scheme was only proposed a year later by Rivest, Shamir, and Adleman [60].
A secret key for the RSA cryptosystem consists of two large randomly chosen
primes p and q, while the public key is their product N = pq (along with some
exponent e). If an attacker can factorise the integer N to find its two prime
factors p and q, then he can recover the secret key from the public key, which
means he can sign arbitrary messages as if he was an honest signer. Therefore,
the RSA cryptosystem can only be secure if the problem of factoring large
integers is hard. When the RSA algorithm was first proposed, the authors
estimated that it would take a computer 3.8 billion years to factor a 200 digit-
long number (i.e., 663 binary digits), which is almost as long as the current age of
planet Earth. However, due to algorithmic advances and advances in computer
technology the first 200 digit RSA modulus was factored in 2004 [6]. At the

1The randomness is necessary to prevent a replay attack. If the same message was signed
for each connection, then the attacker could browse to example.com to get a valid signature,
and then use that valid signature to impersonate example.com.

2Of course, this does not help if the attacker manages to insert the malware before the
author signs his code, as happened in the recent SolarWinds attack which breached many
branches of the US government and companies such as Microsoft, Cisco, and Equifax.

example.com
example.com
example.com
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Figure 1.1: Three geometric objects defined as the solution sets of an equations
in the variables x and y.

time of writing, the largest RSA modulus known to be factored is 250 digits
long and was factored with 2700 core-years of computing effort [13]. Nowadays
it is recommended to use RSA with a 617 digit modulus (2048 bits) to resist
classical attackers. RSA signatures have long been the most widely used digital
signature algorithm, but in the last decade, digital signature algorithms based
on elliptic curves have started to gain market share because they are more
efficient and because they have smaller key and signature sizes.

Elliptic curve signatures. Elliptic curve cryptography (ECC) is a family
of cryptographic algorithms based on geometric objects called elliptic curves.
Much like a line consists of the points (x, y) in the plane satisfying x = a+ by,
and a circle consists of the points satisfying (x− a)2 + (y − b)2 = r2, an elliptic
curve can be thought of as the set of points satisfying an equation

y2 = x3 + ax+ b ,

together with a point at infinity, which we denote by O. If the values of a and
b are integers modulo a prime p, the elliptic curves is said to be defined modulo
p. Similar to how one can add points on the number line, 2 points on an elliptic
curve can also be added together to form a new point on the curve3. This
addition law turns the points of the elliptic curve (including O) into a group
with neutral element O. This means that for each point P we have P +O = P ,
and for each point P there exists a point Q such that P + Q = O (and we

3The addition law is not as simple as adding numbers, but there are concrete formulas to
compute the sum (x1, y1) + (x2, y2) in terms of x1, y1, x2 and y2.
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denote this point Q by −P ). For a point P on an elliptic curve E, we define

[k]P = P + · · ·+ P︸ ︷︷ ︸
sum of k copies of P

.

Given the point P and the integer k one can efficiently compute [k]P , but if you
are given two points P and Q on an elliptic curve mod p, it could be very hard
to find a value for k such that Q = [k]P . This problem is called the discrete
logarithm problem on elliptic curves. For certain curves, this problem can be
very hard to solve computationally. In the worst case, classical algorithms for
solving the discrete logarithm problem take on the order of √p steps to find k,
where p is the prime modulo which the curve is defined. Therefore, if you use
a well-chosen curve modulo a 256-bit prime p, then solving the problem takes
roughly 2128 steps, which is prohibitively expensive. There exist multiple digital
signature algorithms that rely on the hardness of the discrete logarithm problem
for their security, such as ECDSA signatures [1] and Schnorr signatures [63].
These algorithms use a fixed base point P on a curve E modulo a certain prime
p, chosen such that the discrete logarithm problem is hard. The public key
then consists of a point Q on the elliptic curve, while the secret key is the
discrete logarithm of Q relative to P , i.e., the secret key is the value k such
that [k]P = Q. If the attacker can solve the discrete logarithm problem, then
he can recover the secret key from the public key and use it to sign arbitrary
messages. Therefore, these elliptic curve digital signature algorithms are only
secure if the attackers are not able to solve the discrete logarithm problem.

Unfortunately, there do exist very efficient quantum algorithms for factoring
integers and finding discrete logarithms, which means that if an attacker has a
quantum computer that is powerful enough to run these algorithms, the RSA
and ECC signature algorithms are no longer secure.

1.2 Quantum computing

Quantum computing is an upcoming technology that aims to exploit quantum
phenomena, such as superposition and entanglement, to perform certain
computational tasks much more efficiently than possible with traditional
computing. Unlike traditional computers, which are at any point in time in some
well-defined state, quantum computers can be in exponentially many states at
the same time (more precisely, the quantum computer is in a superposition of
all the states). For example, register A in a classical 64-bit computer could hold
an integer x in the range from 0 to 264−1. If you call the squaring function, the
computer will compute x2 and store it in register B. On a quantum computer,
register A could hold all the numbers from 0 to 264 − 1 at the same time. If
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you then call the function, the quantum computer will compute the squares of
all these 264 numbers and store them simultaneously in register B. In this way,
a quantum computer can simultaneously do 264 = 18 446 744 073 709 551 616
computations! This is why quantum computers can be much more powerful
than traditional computers. However, the laws of quantum mechanics prevent
us from looking at all the squares in register B. If one was to peek at register
B, the state of register B collapses to a classical state, containing only a single
square. At this point, the reader might think it is useless to do 264 computations
if you can only learn one of the results. And indeed, for a long time it was not
clear if quantum computers would be useful or not (regardless of whether they
can be built).

It wasn’t until the early ‘90s that computer scientists were able to find tasks that
quantum computers can do much more efficiently than classical computers [26,
67]. Initially, these tasks were artificial and designed to be easily solvable by
quantum computers, but in 1994, Shor designed a quantum algorithm that
outperforms classical computers on two tasks that can actually be considered
useful: finding the prime factors of large integers and computing discrete
logarithms in cyclic groups [65]. It is incredibly unfortunate that these two
tasks are exactly the two problems that public-key cryptography is built upon.
As discussed earlier, the most widely used public-key algorithms are RSA, which
can be broken if the attacker can factor large integers, as well as the DH and
ECDSA algorithms, which can be broken if the attacker can compute discrete
logarithms. This means that most cryptographic systems will be vulnerable to
attackers with access to a quantum computer that is sufficiently powerful to
run Shor’s algorithm.

Since the last few years, the effort towards building useful quantum computers
has heated up and shifted from academia to industry. Major players such as
IBM, Intel, Microsoft, Google, and various startups are competing and regularly
breaking each other’s records, progressing towards more and more powerful
quantum computing devices. The first useful quantum computers will likely be
too noisy to break cryptography, but they would still be useful for simulating
the behavior of molecules, which could result in more efficient catalysts, drugs,
or batteries. These applications have the potential to generate billions in value
and propel the field of quantum computing further.

In contrast to the early applications, it (currently) seems that fault-tolerant
quantum computing is required to break cryptography. This can be achieved
with so-called quantum error-correcting codes, which measure and correct small
errors that inevitably occur during longer computations. This causes some
overhead which makes fault-tolerant quantum computing more expensive than
noisy quantum computing. Still, a majority of quantum computing experts
estimate that there is a probability of 50% or more that quantum computing
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Figure 1.2: Results from a survey among 22 quantum computing experts about
the treat of quantum computing on cryptography, from the quantum threat
timeline report [52]

poses a significant risk to public-key cryptography in 13 years (2034), according
to a 2019 survey [52] (see Figure 1.2).

1.3 Post-quantum cryptography

Luckily, there is no fundamental reason why cryptography should be vulnerable
to quantum computers, and indeed some parts of cryptography, including
most of symmetric-key cryptography, are largely unaffected by the advances
in quantum computing. It just so happened that through a stroke of bad luck,
most of public-key cryptography was built on the hardness of factoring integers
and solving discrete logarithms, which turned out to be two of the relatively
few tasks that quantum computers excel at. A common misconception is that
we need quantum computers to secure our communication from attackers with
quantum computers. This is not the case. There already exist a variety of new
cryptographic algorithms, designed to be secure against quantum adversaries,
and which we can run on the classical computers we have today. This is known
as post-quantum cryptography (not to be confused with quantum cryptography,
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which is cryptography designed to exploit phenomena from quantum physics
such as entanglement).

There are many branches of post-quantum cryptography, each based on the
hardness of a different mathematical problem. The most prominent branches
are:

• code-based cryptography, which relies on the hardness of problems
related to error-correcting codes, such as syndrome decoding in random
linear codes,

• hash-based cryptography, which relies on the problem of finding
collisions or preimages for cryptographic hash functions,

• lattice-based cryptography, which relies on problems related to
lattices, such as finding the point of a high-dimensional lattice that is
closest to a given point outside the lattice,

• multivariate quadratic cryptography, which relies on the hardness
of finding a solution to a system of multivariate quadratic equations, and

• isogeny-based cryptography, which relies on the hardness of problems
involving isogenies between elliptic curves.

Chapter 2 deals with the various hardness assumptions underlying these branches
in more detail.

Research in many of these branches predates Shor’s algorithm and the threat of
quantum computing. For example, the code-based McEliece cryptosystem [50]
dates back to 1978 and is almost as old as the RSA system. However, because
none of these branches had so-far produced any algorithms that could compete
with RSA, DH, and Elliptic curve algorithms, they had mostly remained in the
background of cryptography. One exception is lattice-based cryptography, which
had been pursued since 1996 [2] for its strong theoretical security guarantees,
and later because it proved to be a versatile tool for constructing advanced
primitives such as fully homomorphic encryption [39].

The threat of quantum computing has reinvigorated research efforts in all
the areas of post-quantum cryptography, in particular towards making the
cryptosystems practical by optimising the algorithms, proposing concrete
parameter sets, and writing efficient and side-channel secure implementations.
Despite substantial progress, post-quantum cryptography is still not as practical
or mature as the time-tested cryptographic techniques that are in use today.
Overall, post-quantum algorithms are slower or need more bandwidth and
storage (e.g., due to large keys) than the pre-quantum alternatives they are
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meant to replace. This, in combination with the fact that few post-quantum
algorithms have been standardised, can discourage cryptography users to make
the transition to post-quantum cryptography.

It might seem a good idea to wait for post-quantum cryptography to
mature further before making the transition to post-quantum cryptography.
Nevertheless, in certain situations, there are strong arguments for making the
transition sooner rather than later. One example is secure web browsing where
the adoption of new algorithms is a slow process that could take up to 15
years. The sooner we start the transition to post-quantum cryptography, the
larger the share of post-quantum secure connections will be on the day that
sufficiently powerful quantum computers become available. But the applications
that most urgently need post-quantum cryptography are perhaps those that
need to protect data that will remain valuable and sensitive for a long period of
time, such as personal health records. This is because there is a retroactive risk:
attackers can collect encrypted communication today, and store it patiently for
15 to 25 years until quantum computers can recover the sensitive information.

NIST PQC project. In 2016, motivated by progress in the development
of quantum computers, including theoretical techniques for quantum error
correction, the US National Institute of Standards and Technology (NIST)
decided that it would be prudent to begin developing standards for post-
quantum cryptography. To this end, NIST defined five security levels and
launched a call for proposals [55] to invite the public to submit public key
algorithms that achieve one or more of these security levels. The call resulted
in 82 submissions, of which 69 were allowed to proceed to the first round of
the competition-like process. NIST solicited comments from the cryptographic
community and monitored the lively discussions on the online NIST PQC
forum [54], as a part of its evaluation process, which spanned multiple rounds.
A total of 26 algorithms proceeded to the second round of the process [3],
while only 7 finalists proceeded to the third round [4]4. NIST aims to select a
subset of the 7 finalists and standardise them as Federal Information Processing
Standards (FIPSs) or Special Publications (SPs).

In the past, NIST followed a similar process to standardise block ciphers and
cryptographic hash functions. This resulted in the AES and SHA-3 standards,
which are now very widely deployed and have been tremendously successful
at helping to establish trust in IT systems around the world. NIST estimates
the benefits of AES in the period 1996-2017 on the US economy alone at 250
billion US dollars [47]. The post-quantum project is different from the AES
and SHA-3 competitions because the science of post-quantum cryptography

4In addition to the 7 finalists, 8 alternate algorithms with potential for future
standardisation were selected.
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is still in its infancy and there is much uncertainty about the security of the
new algorithms. This is exemplified by the many weaknesses that have been
discovered in the submitted algorithms. NIST expects to standardise multiple
winners so that if one of the standardised algorithms turns out to be insecure
there are different options to fall back to.

1.4 Research problems and overview of the thesis

This thesis contains my contributions towards three broad research objectives
listed below. These contributions are presented in Part II of this doctoral thesis
as a set of research papers. The remainder of Part I of the thesis is split up into
three chapters, one for each research objective. Each chapter gives an overview
of the relevant state-of-the-art, and explains the contributions I made towards
the research objective.

Objective 1: Expanding the set of hard problems we can build
post-quantum cryptography on. As mentioned in the introduction, RSA
signatures rely on the hardness of factoring integers, and elliptic curve signatures
rely on the hardness of the discrete logarithm problem. It is dangerous to have
all of cryptography rely on a few hard problems, because if those problems
become efficiently solvable then all cryptography becomes insecure, which is
precisely what will happen when sufficiently powerful quantum computers are
built. The same risk applies to post-quantum cryptography: if all the post-
quantum algorithms rely on a small set of hard problems, then we risk losing
all our cryptography again when those problems become efficiently solvable
(e.g., if another fundamentally different computing technology arises, but more
likely because someone discovers an efficient algorithm). An important research
objective is therefore to diversify the set of hard problems that we can build
post-quantum cryptography from, to avoid putting all our eggs in one basket.
Moreover, by researching new hard problems we might find that we can construct
more efficient algorithms, or construct advanced cryptographic primitives that
we do not know how to build from other hard problems. This research question
is discussed in Chapter 2.

Objective 2: Evaluating the (in)security of post-quantum signatures.
Currently, there do not exist public-key algorithms that we can unconditionally
prove to be secure against attackers with limited computational resources. At
best, we can prove that breaking a cryptographic algorithm is at least as hard as
solving some other problem that seems difficult to solve, but some cryptographic
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algorithms (including the RSA algorithm5) we can not even prove such a
guarantee. Therefore, it is important to study the hardness of the underlying
problem, or to study the security of the cryptographic algorithm directly by
looking for efficient algorithms that can break the scheme. If after substantial
effort no serious vulnerabilities are found, we can have some confidence that
the algorithm is secure and can be used in applications. The research objective
of finding vulnerabilities in post-quantum signature algorithms is discussed in
Chapter 3.

Objective 3: Designing secure and more efficient post-quantum
signatures. Currently, most post-quantum signature schemes have significantly
larger key and signature sizes or have much slower signing and verification
operations than the signatures that are in use today. For example, the current
ECDSA keys and signatures are only 32 Bytes and 64 Bytes large, while
Falcon [17], the most compact lattice-based algorithm, has keys of 897 bytes
and signatures of 666 bytes. SQISign [23], the latest isogeny-based signature
algorithm has key and signature sizes that are only approximately twice as large
as those of ECDSA, but its signing operation takes 2.5 seconds, which is more
than 3 orders of magnitude slower than ECDSA and which is too slow for most
applications. These practical limitations can make it too costly for users to make
the necessary switch to post-quantum cryptography in resource-constrained
applications, which hurts the security of our IT infrastructure. To mitigate this
problem, the final research objective of this thesis is to design cryptographic
algorithms that can be securely implemented as efficiently as possible. This
research question is discussed in Chapter 4.

5We know that if you can factor integers you can break the security of RSA, but it is
not (unconditionally) proven that breaking RSA is at least as hard as factoring integers. In
theory, someone could come up with an efficient method to break the security of RSA which
does not use an algorithm to factor integers.



Chapter 2

Post-Quantum Hardness
Assumptions

Choose your problems rather than letting them choose you.

— Mark Manson, The Subtle Art of Not Giving a F*ck

Public key algorithms rely on the assumed hardness of some computational
problems for their security. For example, the RSA system can only be secure if
factoring integers is hard. This chapter provides an overview of the hardness
assumptions used for constructing post-quantum digital signature schemes.
In Sect. 2.1 we briefly discuss why hardness assumptions are necessary. In
Sect. 2.2, we give very brief introductions to the five most used families of
hardness assumptions in post-quantum cryptography. Finally, in Sect. 2.2.5 we
cover my contributions towards expanding the set of hardness assumptions that
post-quantum cryptography can be built upon.

2.1 Why hardness assumptions?

Ideally, we would want to use an efficient digital signature algorithm for which
we can mathematically prove that without the secret key, an attacker can not
produce a valid signature for any message. Unfortunately, this is not possible,
because the attacker can just try all the possible signatures until he finds a valid
one. The next best thing we can hope for is to prove that forging a signature

15
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is computationally expensive. For example, we could hope to prove that any
algorithm to forge signatures takes on average at least 2128 operations.

Unfortunately, proving that certain computational tasks cannot be solved
efficiently is a notoriously difficult problem in computer science. Even for
seemingly simple tasks such as multiplying integers computer scientists struggle
to prove non-trivial lower bounds. Finding a family of signature schemes for
which the verification algorithm is efficient (i.e., can be done with a polynomial-
time algorithm), but for which forging a signature is not efficient (i.e., cannot
be done with a polynomial-time algorithm) would solve the P 6= NP problem,
one of the 7 Millennium prize problems with a bounty of 1 million USD [18].
It should therefore not be surprising that no cryptographer has been able to
construct a digital signature algorithm with an unconditional security proof,
and it seems unlikely that this will happen in the near future.

Reductions. While it is difficult to rigorously prove that a computational
problem A is hard, it can be much easier to prove that problem A is at least
as hard as some other problem B. If you can solve instances of problem B
by efficiently using an algorithm that solves problem A as a subroutine, then
that proves that problem A is at least as hard as problem B. (If A can be
solved efficiently, then B can also be solved efficiently by plugging the efficient
algorithm for A into the algorithm for B). In computer science, this is called a
reduction, and we say that problem B can be reduced to problem A.

Example 2.1 (Multiplication is at least as hard as addition). Most
people would agree that multiplying two numbers seems strictly harder than
adding 2 numbers, but we currently do not know how to (unconditionally) prove
that this is the case [42]. However, it is simple to prove that multiplication is
not simpler than addition with a reduction. To do this, we efficiently transform
the addition problem into a multiplication problem as follows: suppose we are
given two bit strings of length d that represent two numbers x, y ∈ N in binary
notation. Our task is to compute a binary representation of length d+ 1 of their
sum x+ y. We can efficiently compute a representation of A = 1 + 2d+1a and
B = 1 + 2d+1b by putting a ‘1’ and d ‘0’s in front of the representations of a
and b.

If we multiply A and B we get

AB = (1 + 2d+1a)(1 + 2d+1b) = 1 + 2d+1(a+ b) + 22d+2ab

whose binary representation is

< AB >2= 1 00 . . . 00︸ ︷︷ ︸
d zeros

x1x2 . . . xd+1︸ ︷︷ ︸
digits of a+b

y1y2 . . . yl︸ ︷︷ ︸
digits of ab

.
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We have shown that one can add two numbers by multiplying two (slightly
larger) numbers and extracting the solution from the product. This means that
multiplying is not easier than adding.

Provable security. Since cryptographers have very slim hopes of directly
proving that their signature scheme is secure, they use the reduction technique
instead. Signature schemes are constructed in such a way that one can reduce
some computational problem (ideally a well-studied problem such as the discrete
logarithm problem) to the problem of forging signatures. If such a security
reduction exists it means that breaking the security of the scheme is at least
as hard as solving the computational problem and we say that the scheme is
“provably secure”, even though the security only follows from the assumption
that the computational problem is hard. A security proof is not a guarantee that
a signature algorithm cannot be broken by attackers, but is at best a tool to
make scrutinizing the algorithm easier. It would be too costly to spend tens of
thousands of man-hours on analyzing the security of an algorithm before using
it in practice1, but if our algorithms have security reductions from a small set
of well-established hardness assumptions it makes the problem of scrutinizing
our algorithms more manageable.

2.2 Post-Quantum hardness assumptions

This section gives a short introduction to the five most frequently used families
of hardness assumptions in post-quantum cryptography. But first, since we will
be looking at some mathematical problems, we will introduce some common
mathematical notation.

Notation. For a prime power q, we denote by Fq the finite field of order
q. Matrices will be denoted by upper case letters, e.g., M , and vectors will
be denoted by bold lower case letters, e.g., x. We denote by GL(k,Fq) the
group of invertible k-by-k matrices over Fq. We denote by S(n) the group
of permutations of a set of size n. Additional notation will be introduced as
needed.

1IBM claimed to have spent 17 man-years on the cryptanalysis of the Data Encryption
Standard (DES), but nevertheless more weaknesses were discovered years after the standard
was published (although the weaknesses did not result in practical attacks).
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2.2.1 Multivariate quadratic assumption

Multivariate Quadratic (MQ) cryptography is based on the assumed hardness of
finding a solution to a system of multivariate quadratic equations over a finite
field. This problem is called the MQ problem and is defined more formally as
follows.

Definition 2.2 (multivariate quadratic map). A multivariate quadratic map
P with m components in n variables over a field K is a function

P : Kn → Km : x 7→ P(x) = (p1(x), . . . , pm(x))

where p1, . . . , pm is a list of m quadratic polynomials in n variables with
coefficients in K.

Definition 2.3 (MQ problem). The MQ problem asks, given a multivariate
quadratic map P : Fnq → Fmq over a finite field Fq, and a target t ∈ Fmq , to
find a solution s such that P(s) = t.

The MQ problem is known to be NP-hard2 over any finite field Fq [38], which
is a very strong argument for its worst-case hardness. If n > m(m + 1) or
m > n(n− 1)/2 the problem can be solved in polynomial time [69], but when
n ∼ m the problem is believed to be exponentially hard on average, which is
important if we want to use random (or random-looking) instances of the MQ
problem as a basis for our cryptographic algorithms.

The most efficient algorithms for solving cryptographically relevant instances of
the MQ problem are (variants of) F4, F5, and XL [34, 34, 19], which rely on
algebraic techniques related to Gröbner bases. For parameter sets over small
finite fields (e.g. q = 2, 3 or 4) the algorithm of Joux and Vitse [44], which is a
crossbred between exhaustive search and Gröbner basis methods, can be the
more efficient than purely algebraic algorithms.

Table 2.1 shows the estimated gate count of the best classical algorithms for
finding a solution to random MQ systems. We see that the complexity increases
exponentially with the increasing size of the system (number of variables and
number of equations). For fields of size q = 16 we see that it suffices to take 60
equations in 60 variables to get an estimated complexity of 2155 gates, which
seems currently far too computationally expensive for an attacker. This is why
the Rainbow signature scheme uses a system with 64 equations over F16 for
NIST security level I. In the right half of the table, we see that if the number of
equations increases for a fixed number of variables, then the MQ problem can

2Informally, a problem X is NP-hard if any problem whose solution can be efficiently
verified can be reduced to X.
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Table 2.1: An overview of the estimated gate counts of the best classical
algorithms for finding a solution to a random system of m multivariate quadratic
equations in n variables over a finite field of size q = 16.

n m log2(#gates)
20 20 65
30 30 88
40 40 110
50 50 133
60 60 155
70 70 177
80 80 198

n m log2(#gates)
60 60 155
60 70 137
60 80 119
60 90 110
60 100 103
60 110 94
60 120 92

be solved more efficiently. This means that if an attacker can somehow obtain
enough additional equations, then an MQ problem might become easy enough
to solve.

There are two kinds of signature schemes based on the MQ problem, traditional
MQ schemes and the more modern provably secure schemes.

Traditional MQ signatures

The first MQ signature algorithm was the C∗ algorithm proposed in 1988 by
Matsumoto and Imai [49]. Although the scheme was shown to be insecure by
Patarin [56], the design of C∗ has inspired many other MQ signature schemes.
The central idea goes as follows:

Key generation. The key generation algorithm chooses a multivariate
quadratic map F : Fnq → Fmq with some special structure that makes it possible
to efficiently solve the MQ problem for F (the specific structure varies from
scheme to scheme). Then, F is randomized by composing it with 2 random
invertible linear maps S ∈ GL(m,Fq) and T ∈ GL(n,Fq). The randomized
map P = S ◦ F ◦ T is used as the public key, while the factorization S,F , T is
the secret key.

Signing. To sign a message m, the user first hashes the message to a digest
t = H(m), with a collision resistant hash function H that outputs elements in
the co-domain of P (see Sect. 2.2.3). Then, the signer uses his knowledge of the
factorization T ,F ,S to compute a signature s such that P(s) = t. This can be
done efficiently in 3 steps: First compute t′ = S−1(t), then use the structure
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of F to compute s′ such that F(s′) = t′ and finally compute the signature
s = T −1(s′).

Verification. To verify if a signature is valid, the verifier simply checks whether
P(s) = H(m).

The hope is that composing the special map F with random linear maps makes
it look like a uniformly random MQ map, so that finding preimages is hard
without knowledge of the secret structure hidden in P . The majority of the MQ
signature schemes follow this approach, including the two MQ-based signature
schemes still in the NIST PQC project Rainbow [31, 29] and GeMMS [14]3.
The main advantage of multivariate signature schemes is that the signature size
is small because a signature consists of a short vector s ∈ Fnq . The drawbacks
are that the public keys are really large, because a public key is a list of m
polynomials (e.g. m = 60), and each polynomial contains O(n2) coefficients that
need to be stored. For example, the parameter set of the Rainbow signature
scheme claiming NIST security level I has a signature size of only 66 bytes, but a
public key size of 158 KB. Another drawback is that traditional MQ signatures
lack meaningful security reductions, which means that it is harder to gain
confidence in their security. Over the years, many MQ signature schemes have
been proposed, broken, patched, and broken again in a cycle towards more secure
(but also more complicated) signature schemes. For example, during the third
round of the NIST PQC project, the attacks on the two remaining candidates
Rainbow and GeMMS have improved by a factor 220 and 225 respectively [8, 28].

Provably secure schemes

MQDSS [62], SOFIA [16], and MUDFISH [9] are three MQ signature schemes
with a fundamentally different approach. They enjoy security reductions from
the MQ problem for randomly chosen maps P , which results in more confidence
in their security. The performance characteristics of these schemes are also
very different from the traditional MQ schemes. Traditional MQ schemes are
fast, have small signatures and large keys. In contrast, the provably secure
MQ schemes are slower, have larger signature sizes but much smaller keys. For
example, the MUDFISH scheme has a signature size of 14.4 KB, but a key
size of only 38 bytes at NIST security level I. Signing takes 5 ms on a modern
processor, which is roughly a factor 200 slower than Rainbow.

3Rainbow is one of the three finalist signature schemes, and GeMMS is one of the four
alternate signature schemes.
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2.2.2 Isogeny-based assumptions

Isogeny-based cryptography relies on the hardness of computational problems
related to isogenies between elliptic curves. We encountered elliptic curves
before in the context of traditional elliptic curve cryptography, where a single
elliptic curve E is chosen, and the cryptography was based on arithmetic of the
points on the curve E. In contrast, isogeny-based cryptography defines a very
large class of elliptic curves and cares about how those elliptic curves relate to
each other with so-called isogenies.

Isogenies between elliptic curves

Definition 2.4. A map φ from an elliptic curve E to a (possibly different)
elliptic curve E′ is an isogeny, if it is given by non-constant rational functions,
i.e., a map of the form

φ : E → E′ : (x, y) 7→ (f(x, y), g(x, y)) ,

where f and g are non-constant rational functions, and if φ maps the point at
infinity of E to the point at infinity of E′.

If a map satisfies this definition, it is automatically a group homomorphism
from the group of points on E to the group of points on E′, meaning that
φ(P +Q) = φ(P ) + φ(Q) for all P,Q ∈ E. We say E and E′ are isogenous if
there exists an isogeny from E to E′. Being isogenous is an equivalence relation
because the composition of two isogenies is itself an isogeny and if there exists
an isogeny φ : E → E′ there also is a so-called dual isogeny φ̂ : E′ → E that
goes in the opposite direction.

Every isogeny φ has a degree deg(φ). In isogeny-based cryptography, we usually
only encounter separable isogenies, for which the degree corresponds to the
number of points in the kernel of φ (also counting the points defined over the
algebraic closure of the field of definition of E). The degree of the composition
of two isogenies is the product of their degrees. We refer to Silverman [66] for a
good reference on elliptic curves and isogenies between them.

The computational problems that isogeny-based cryptography relies on are
variants of the following basic problem: given two isogenous curves E and E′
defined over a large prime field Fp, find an isogeny from E to E′.
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Isogeny based signature schemes

Isogeny-based cryptography can be divided into two families. The SIDH-family
(named after the first scheme SIDH [43]) and the CRS family, named after
Couveignes, Rostovstev, and Stolbunov who started this family [20, 61].

SIDH. Schemes in the SIDH family fix a large prime p and make use of the
set of supersingular elliptic curves over Fp (up to isomorphism). A helpful fact
is that all supersingular curves are isomorphic to a curve defined over Fp2 , so
one never needs to do arithmetic over larger field extensions. There are roughly
p/12 supersingular curves, and it turns out that all these curves are pairwise
isogenous [51]. For a prime l, we say that the supersingular l-isogeny graph is
the graph whose vertices are the supersingular elliptic curves, and whose edges
correspond to isogenies of degree l. It turns out that the supersingular l-isogeny
graph is l + 1 regular (i.e., each curve has l + 1 outgoing l-isogenies), and that
the graph is an expander graph, which roughly means that a random walk on
the isogeny graph will quickly converge to a uniform distribution on the set
of supersingular curves. Digital signature algorithms using this setting were
proposed by Yoo et al. [70] (based on [43]) but were not very efficient. Recently,
a new approach that uses quaternions appeared that has remarkably small key
and signature sizes [23].

CRS. In the CRS-family, algorithms fix a large prime p, and a set of elliptic
curves E``p(O, π) that consists of all the curves defined over Fp that share a
common Fp-endomorphism ring4 O.
The set E``p(O, π) is chosen because there is a certain commutative group
C`(O), called the ideal class group of the endomorphism ring O, whose elements
are represented by invertible fractional ideals in O, that acts on E``p(O, π).
The group action is defined as

? : C`(O)× E``p(O, π)→ E``p(O, π) : [a] ? E := E/E[a]

where E[a] = ∩φ∈a ker(φ) is a finite subgroup of E, and E/E[a] is the unique (up
to Fp isomorphism) elliptic curve for which there is an isogeny φ : E → E/E[a]
whose kernel is exactly E[a]. This group action is free and transitive, which
means that for each pair of curves (E,E′) ∈ E``p(O, π)2 there is a unique
element [a] in the class group for which [a] ? E = E′.

4The Fp-endomorphism ring of an elliptic curve consists of the isogenies from E to itself
and the zero morphism. Together these form a ring with pointwise addition and composition
of morphisms. We say two elliptic curves E and E′ have the same Fp-endomorphism ring if
their endomorphism rings are isomorphic, with the isomorphism sending the Frobenius on E
to the Frobenius on E′.
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Figure 2.1: Isogeny graphs in the SIDH setting (left) and CRS/CSIDH setting
(right). Left: Nodes represent supersingular curves mod p = 863, 2-isogenies
are denoted by red edges, 3-isogenies are denoted by blue edges. (adapted from
an image of Enric Florit and Gerard Finol [36]).
Right: Nodes represent supersingular curves defined over F419 with common
endomorphism ring Z[

√
−419]. Red, blue, and green edges correspond to 2, 3,

and 7-isogenies respectively (Image due to Lorenz Panny [15]).

Initially, CRS-like algorithms used ordinary elliptic curves, but Castryck et al.
discovered that the group action can be evaluated much more efficiently using
supersingular elliptic curves instead [15]. The group action is a versatile tool for
building cryptographic protocols, including signature schemes [22, 11], but the
group action also comes at a cost: there is a generic quantum subexponential-
time algorithm that given E and E′ can find the ideal class [a] such that
[a] ? E = E′. This means that in order to be secure against powerful quantum
computers, the prime p used in the CRS setting needs to be asymptotically
larger than in the SIDH setting, which can make the scheme less efficient.

2.2.3 Hash-based assumptions

Cryptographic hash functions are functions that can take bitstrings of arbitrary
length as input, and output a fixed-length digest. They have many direct
applications, such as password hashing and verifying the integrity of messages
and files, but they are also frequently used for building more advanced
cryptographic algorithms and protocols. In particular, it is possible to build
hash-based digital signature schemes, that are secure as long as the underlying
hash function has some security property similar to second preimage resistance.
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Definition 2.5 (Second preimage resistance (informal)). A hash function
H : {0, 1}? → {0, 1}λ is second preimage resistant if given an input x1 ∈ {0, 1}?
it is hard to find a different input x2 ∈ {0, 1}? such that H(x1) = H(x2).

Cryptographic hash functions such as SHA-3 [33] are well studied and widely
believed to be preimage resistant5, which is why we can have high confidence in
the security of hash-based signatures using SHA-3.

On a very high level, a public key for a hash-based signature consists of a hash
digest of many secret strings. To sign a message, the signer releases a subset of
the secret strings. This is why for some hash-based signatures a user is only
allowed to sign a certain number of messages with each secret key because
otherwise too much secret information is revealed and the scheme becomes
insecure. These schemes are called stateful signature schemes because the signer
needs to keep track of a state (i.e., how many signatures have been signed
already). Stateless hash-based signatures also exists, these have so much secret
information that in reasonable applications the signer will not produce enough
signatures to make the scheme insecure. For example, the stateless SPHINCS+
algorithm (one of the algorithms still in the NIST standardization project) is
designed to be still secure after signing 264 messages (e.g. 6 trillion signatures
per second during the span of 100 years).

2.2.4 Code-based assumptions

Already in 1978, during the early years of public-key cryptography, McEliece
proposed the first public-key encryption scheme based on error-correcting codes.
Error-correcting codes are a widely used technique that allows one to reliably
send messages over an unreliable channel. To do this, the sender transforms
the message into a codeword before sending it, and the receiver decodes the
codeword to recover the message. Error-correcting codes are useful because
even if a limited number of errors is introduced in the codeword, the receiver
will still be able to recover the original message.

Most error-correcting codes, including the codes used in code-based cryptogra-
phy, are linear, meaning that the messages and the codewords are interpreted
as vectors over a finite field Fq, and that the encoding function is a linear
function. Specifically, if the messages are vectors of length k, and the codeword
are vectors of length n, the encoding function is represented by a so-called
generator matrix G ∈ Fk×nq with k rows and n columns, and the encoding of a

5Preimage resistance is a rather weak requirement of a hash function, usually cryptographers
have stronger requirements such as collision resistance, which says it is hard to find two
messages x and x′ such that H(x) = H(x′).
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message m is simply Enc(m) = mG. If a random matrix G is used, it seems
a computationally hard problem to decode a noisy codeword, and code-based
cryptography assumes that this problem is indeed hard.

Definition 2.6 (Generic decoding problem). The generic decoding problem
asks, given a generator matrix G ∈ Fk×nq and a noisy codeword c = mG + e,
where e has small Hamming weight6, to find the message m.

Even though the generic decoding problem seems computationally hard, coding
theorists have worked hard to find specific codes for which very efficient decoding
algorithms exist. Goppa codes are one such family of codes, which are also the
codes that are used in the McEliece cryptosystem, which goes as follows:

Key Generation. To generate a key pair the user constructs the generator
matrix G for a random Goppa code, for which we know there exist efficient
decoding algorithms. Then it computes a randomized version of the generator
matrix G′ = SGP by multiplying it with a random invertible linear map
S ∈ GL(k, q), and a permutation matrix P ∈ Sn. The public key is now G′,
and the secret key is S,G, and P

Encryption. The encryption of a message m is simply c = mG′ + e, where
e ∈ Fnq is a randomly chosen ‘noise’ vector, which only has a few nonzero entries.
That is, a ciphertext is just the encoding of the message with the generator
matrix G′ with some noise added to it.

Decryption. If the receiver knows the secret key S,G, P , he can decode the
noisy codeword c ∈ Fnq in three steps. First he computes cP−1, which is a noisy
encoding of mS under G, because

cP−1 = (mG′ + e)P−1 = mSG+ eP−1 .

Second, he uses the efficient decoding algorithm for G to find mS and finally,
he recovers the original message by multiplying with S−1.

The hope is that the randomized code G′ is indistinguishable from a code chosen
uniformly at random because that would mean (assuming decoding in random
codes is hard) that an eavesdropper who learns c = mG′ + e, cannot decode
the codeword to recover the message m.

Trapdoor signatures

While code-based encryption is reasonably straightforward (McElieces paper
was only 2 pages long), it proved to be more difficult to construct digital

6The Hamming weight of a vector is the number of non-zero entries.
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signature algorithms from code-based assumptions. A natural approach is to
try to sign a message m ∈ Fnq by “decoding” it. A signature for the message
would then be a pair (x, e) ∈ Fkq × Fnq with e a vector of small Hamming
weight such that xG′ + e = m. Unfortunately, this is not so easy, because the
probability that a message is close enough to a codeword xG in order for the
Goppa decoding algorithm to work is very small. Moreover, even if you got
this to work, special care needs to be taken to prevent the signature (x, e) from
leaking information about the secret key. These obstacles were finally overcome
in 2019 [25], resulting in the WAVE signature scheme.

Zero-knowledge-based signatures

There are alternative approaches to build code-based signature schemes, based
on non-interactive zero-knowledge proofs of knowledge. A zero-knowledge proof
of knowledge allows a prover to convince a verifier that he knows a solution to
some problem, without revealing anything about the solution itself. This can
be used to create digital signature algorithms as follows:

Key Generation. The user generates a computational problem related to
error-correcting codes. The public key is the description of the problem, and
the secret key is a solution. For example, the problem could be an instance of
the decoding problem. The public key is then a generator matrix G and a noisy
codeword c = mG+ e, where e has small Hamming weight, and the secret key
would be m.

Signing. To sign the message, the signer creates a non-interactive zero-
knowledge proof of knowledge of a solution to the problem, while incorporating
the message to be signed in the proof in such a way that altering the message
would invalidate the proof.

Verification. To verify the signature, the user simply checks if the proof is
valid.

The zero-knowledge property guarantees that signing messages does not leak
information about the secret key, and if the proof system is sound, then this
implies that it is impossible to forge signatures without knowing the secret key.
Zero-knowledge-based signatures typically have small public keys, but large
signature sizes and slow signing times. Examples are the Stern scheme [68],
which is based on the decoding problem, and the LESS scheme [12], which is
based on the code equivalence problem instead.
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√
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Figure 2.2: This picture shows parts of two 2-dimensional lattices. The left
lattice consists of all integer combinations of (1, 0) and (0, 1/2), the right lattice
is consists of the integer combinations of (0, 1) and (

√
3/2, 1/2).

2.2.5 Lattice-based assumptions

Last but not least, we consider lattice-based problems. A lattice is a discrete
subgroup of Rn, which means a non-empty set of vectors L ⊂ Rn such that:

• if you add or subtract7 any two vectors in L you get a vector in L
(subgroup), and

• there is a minimum distance d > 0, 8 such that any two vectors in the
lattice are at least at distance d from each other (discrete).

Figure 2.2 shows two lattices of dimension 2. Given a lattice L, we can ask
which vector is the closest to 0 (except zero itself). This is called the Shortest
Vector Problem (SVP). This problem might seem very easy to solve. Looking
at Fig 2.2, it is easy to spot the two shortest vectors in the lattice on the left
((0,±1/2) ), and the 6 shortest vectors in the lattice on the right ((0,±1) and
(±1/2,±

√
3/2)). However, perhaps surprisingly, the problem seems to become

very difficult when the dimension increases. The problem even remains hard if
we relax the problem to finding a vector that is “not too much” longer than the
shortest vector (a problem known as approximate SVP).

7Addition and subtraction are performed coordinate-wise, e.g., (0, 0, 1.5) − (1, 0, 0.5) =
(−1, 0, 1).

8We use the usual Euclidean distance d(x, y) =
√∑n

i=1(xi − yi)2 .
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Cryptographers typically do not build cryptography directly on the SVP problem.
Instead, they use the Learning with Errors (LWE) and/or Short Integer Solutions
(SIS) problem, which have reductions from approximate SVP, which means
LWE and SIS they are at least as hard to solve as approximate SVP [2]. The
LWE and SIS problems are defined as follows:

Definition 2.7 (LWE). The learning with errors problem asks to learn a vector
s ∈ Znq , given access to arbitrarily many noisy linear combinations of the entries
of s. More precisely, to find s you are given arbitrarily many samples of the
form (ai, bi = ai · s + ei) ∈ Znq × Zq, where the ai ∈ Znq are chosen uniformly at
random and where the errors ei are drawn from some known error distribution
χ.

Definition 2.8 (SIS). The short integer solution problem asks to find a non-
zero integer solution s ∈ Zn to a system of linear equations sA = t mod q,
where A is a matrix in Zn×mq with m > n, such that the solution s has short
length, i.e., ||s||2 ≤ β, for some bound β ∈ R.

Lattice-based digital signatures

Similar to MQ and code-based cryptography, there are two methods of
constructing lattice-based signature schemes: one can use lattice trapdoors or
zero-knowledge proofs.

In a trapdoor-based approach, the signer somehow generates a matrix A ∈ Zn×mq

for which only the signer can solve the SIS problem, but such that for outsiders
the SIS problem remains hard. To sign a message t ∈ Znq , the signer uses the
trapdoor to find a solution s such that sA = t. Care needs to be taken to make
sure that using the trapdoor does not leak the secret key. Falcon [58], one of the
three remaining finalists in the NIST PQC project, is a trapdoor-based lattice
signature scheme with relatively compact signatures (666 bytes at SL I) and
key size (897 bytes) and good signing and verification performance (e.g. more
than 10 000 signatures per second on a modern CPU).

In the zero-knowledge-based approach, the signer creates an instance of a lattice
problem for which only the signer knows the solution, (for example, an LWE
instance, consisting of a number of samples (ai, bi = ai · s + ei) ∈ Znq × Zq),
and to sign a message he creates a zero-knowledge proof to prove that he
knows the solution. Dilithium [48], another finalist in the NIST PQC project,
is a zero-knowledge-based lattice signature scheme. Dilithium also has good
performance, but slightly larger signature and key sizes compared to Falcon,
for example 1.3 KB keys and 2.4 KB signatures at the lowest security level.
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Contribution 1: Diversifying hardness assumptions

The previous section shows that there are post-quantum digital signature
schemes based on a variety of assumptions. However, despite substantial
progress in isogeny-based and code-based signatures, only the lattice-based,
hash-based, and multivariate-based signatures are currently considered to be
somewhat mature and practical, and even these signature schemes are less
practical than the existing RSA and ECC signatures that are in use today in
terms of key and signature sizes. The security of hash-based signatures seems to
be sound, but the security of lattice-based and especially multivariate signatures
seems to be on shakier grounds, as indicated by the recent attacks on both of
the remaining multivariate signature schemes still in the NIST PQC project.
Therefore, it is important to keep looking for new assumptions and new ways
of building digital signature algorithms, in the hope of finding more efficient
algorithms, and to have viable options to fall back to when lattice-based and/or
multivariate signatures are found to be insecure.

This section of the thesis deals with my contributions towards the objective
of diversifying the set of hardness assumptions from which we can build post-
quantum digital signatures. I designed two digital signature algorithms based
on the assumed hardness of the Permuted Kernel Problem, which is an old
combinatorial problem that was first proposed to be used in cryptography in
’89 but never gained much traction. In collaboration with my co-authors, I
also investigated the security of the Legendre PRF, a pseudo-random function
family based on the Legendre symbol and higher-power residue symbols. Then, I
designed the first digital signature scheme based on the security of the Legendre
PRF and higher-power residue character PRFs.

C1.A Permuted Kernel Problem.

The Permuted Kernel Problem is similar to the SIS problem and the decoding
problem in the sense that the goal is to find a solution s to an underdetermined
system of linear equations sA = t that satisfies some additional constraints.
In the SIS problem, the additional constraint is that the solution has small
Euclidean norm ||s||2 ≤ β. To decode a codeword c = mG+ e, we look for the
error vector e that satisfies He = Hc, where H is the parity check matrix of
the code. In other words, the problem is to find a solution to the linear system
He = Hc, with the additional constraint that e has low Hamming weight. In
the Permuted Kernel Problem, the task is to find a solution s to sA = 0 that
satisfies the additional constraint that s is a permutation of a known vector v
(i.e., that entries of s are the same as the entries of v, but in a different order).
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For a vector v of length n and a permutation π ∈ Sn, we denote by vπ the
vector obtained by applying π to the entries of v, i.e., vπ = [vπ(i)]i∈[n].
Definition 2.9. Given a matrix A ∈ Fn×mq and a vector v ∈ Fnq , the Permuted
Kernel Problem (PKP) asks to find a permutation π ∈ Sn, such that vπA = 0.

Shamir proposed to use the assumed hardness of the permuted kernel problem
as a basis for an identification scheme in 1989 [64], but neither the scheme nor
the hardness assumption gained much traction, presumably because the scheme
was not competitive with RSA signatures. No efficient quantum algorithms are
known for solving the permuted kernel problem, and since the permuted kernel
problem is NP-hard, it is considered very unlikely that an efficient worst-case
quantum algorithm exists. This makes the permuted kernel problem suitable
for post-quantum cryptography.

PKP-DSS

Chapter 6 presents a research paper I coauthored which revisits Shamir’s
identification protocol from 1989. We present concrete parameter choices for
the permuted kernel problem, and we improve Shamir’s protocol to reduce the
key size and the communication size. We then turn this identification protocol
into a digital signature algorithm with the Fiat-Shamir transform [35]. This
resulted in the PKP-DSS signature scheme with a key size of 20.4 KB, and a
key size of 59 bytes. We also provided a constant-time software implementation
of PKP-DSS with reasonably good performance (±1 ms for a signing operation
on a modern CPU). We submitted PKP-DSS to the post-quantum competition
organised by the Chinese Association for Cryptology Research (CACR), where
it won a third prize worth 60 000 Chinese yuan.

SUSHSYFISH

I designed a more efficient zero-knowledge protocol for proving knowledge of a
solution to a PKP instance in my paper of Chapter 14. Shamir’s identification
protocol uses 5 rounds of communication and has a soundness error of q

2q−2 ≈
1/2, which means that the protocol must be repeated roughly 128 times to get
128 bits of security. The FS transform for 5 round protocols does not perfectly
preserve soundness, which means that to make a signature scheme with 128
bits of security even more repetitions are needed (e.g. 157 repetitions in the
case of PKP-DSS).

My new protocol has a soundness error of 1/q, which means that the protocol
only needs to be repeated 128/ log(1/q) times. Moreover, the new protocol
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uses only 3 rounds of communication, which means no additional iterations
are required to keep the non-interactive signature scheme secure. While an
execution of the new protocol is more expensive than Shamir’s protocol, the
reduced number of iterations makes the new protocol more efficient overall.
The new signature scheme is called SUSHSYFISH, and has a signature size
of 12.1 KB and a key size of 72 bytes (to be compared with 20.4 KB and 59
bytes for PKP-DSS). The new protocol follows the sigma-protocol-with-helper
framework that I introduced, and that will be discussed in more detail in the
Section 4.3

C1.B Legendre PRF.

Cryptanalysis of the Legendre PRF

The Legendre Pseudo-Random Function (PRF) is a relatively unknown and
little-used piece of cryptography based on the Legendre symbol, which was
introduced by Legendre in 1798. For each odd prime p, the Legendre symbol
mod p is the function

(
a

p

)
=





1 if a is a quadratic residue mod p and a 6= 0 mod p ,

−1 if a is not a quadratic residue mod p ,
0 if a = 0 mod p .

A sequence of Legendre symbols
(
k
p

)
,
(
k+1
p

)
,
(
k+2
p

)
, . . . ,

(
k+l
p

)
looks very

much like a uniformly random sequence of 1s and −1s, which is why in 1988
Damgård proposed to use the Legendre symbol to construct a pseudo-random
function family. Concretely, he proposed to use the set of function {LK}K∈Fp

,
defined as

LK(x) :=
⌊((

a+K

p

)
+ 1
)
/2
⌋
.

This family of functions is conjectured to be pseudo-random, meaning that it
is hard to distinguish the input-output behavior of LK for a random choice of
K ∈ Fp from a uniformly random function from Fp to {0, 1}.
In the paper of Chapter 7, I investigated the security of this PRF in collaboration
with Beyne, Udovenko, and Vitto. We found new attacks that given access to a
function LK , can recover the key K. If we are allowed to make M queries to the
PRF, our attack runs in time O(M2 + p log2 p/M2), which is much better than
the best previously known attack which took time O(M + p log p/M). Initially,
our interest in the Legendre PRF was motivated by the fact that the Ethereum
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foundation was planning to use the Legendre PRF in their Ethereum 2.0 proof-
of-custody mechanism, and that they were awarding bounties to whomever
could find more efficient attacks and solve challenges9. However, the Legendre
PRF (and its generalisation to higher-power residues) also turned out to be
useful as a basis for efficient post-quantum signatures.

Signature schemes based on the Legendre PRF

I designed LegRoast and PorcRoast, two MPC-in-the-head signature schemes
based on the assumed one-wayness of the Legendre PRF, and the power-residue
PRF, which were published in the paper of Chapter 8, which I co-wrote with
Delpech de Saint Guilhem. The secret key for LegRoast is a value K ∈ Fp,
and the public key consists of the evaluation of LK at a small number of
publicly known inputs a1, . . . , aL. We prove that LegRoast is secure if given
the evaluations LK(a1), . . . , LK(aL), it is hard to find the key K ∈ Fp, which
is a weaker assumption than the security of the Legendre PRF. LegRoast is the
first digital signature scheme based on this assumption, has a key size of 4 KB,
and a signature size of 12.2 KB. PorcRoast is a variant of LegRoast that relies
on the hardness of the same computational problem if we replace the Legendre
symbol with a higher-power residue symbol. That is, instead of

(
a
p

)
(which is

equal to a(p−1)/2 mod p), we use the k-th power residue symbol
(
a

p

)

k

:= a(p−1)/k mod p ,

for some integer k, and a large prime p = 1 mod k. In comparison to LegRoast,
PorcRoast has smaller keys and signatures, for example 0.5 KB keys and 7.4 KB
signatures at NIST SL 1.

2.3 Conclusion

In this chapter, we saw that there exists a large number of post-quantum
digital signature schemes whose security is based on a variety of hardness
assumptions. The most important and widely used hardness assumptions are
related to multivariate systems of polynomials, error-correcting codes, isogenies
between elliptic curves, hash functions, and lattices. These assumptions give
rise to reasonably efficient signature schemes, but there still is a significant
gap between the performance of post-quantum schemes and the RSA and ECC

9Our work led to 2000 USD and 3 ETH in prize money.
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digital signatures that are in use today in terms of key and signature sizes (see
Table 2.2). An exception is the SQISign scheme, but currently, this scheme has
slow signing times and its security is not yet fully understood. Therefore, it is
good to keep investigating new assumptions, in the hope that they can be the
basis of more efficient post-quantum signature algorithms.

This chapter briefly introduces two such ‘new’ hardness assumptions: the
hardness of the Permuted Kernel Problem and the security of the Legendre
PRF. I cryptanalysed the LegendrePRF in Chapter 7, and I designed three
signature schemes based on these assumptions: PKP-DSS, SUSHSYFISH, and
LegRoast/PorcRoast. The designs are published in the papers in Chapters 6,14,
and 8 respectively. Currently, the performance of these new schemes is
comparable to existing post-quantum signature schemes. Future research will
tell if the signature schemes can be made more efficient, or if the assumptions
can be attacked more efficiently, in which case larger parameters are required,
leading to less efficient signature schemes
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Table 2.2: A list of hardness assumptions we can build digital signature
algorithms from. The assumptions are listed in three groups: first, we have two
assumptions that are not post-quantum secure, then the five most common
post-quantum hardness assumptions, followed by two new post-quantum
assumptions. For each hardness assumption, we chose one or two digital
signatures, targeting 128 bits of security, to give an idea of how large the public
keys and signatures typically are.

Hardness Assumption Signature scheme Public Key Signature
Factoring RSA-2048 256 B 256 B
DLOG ECDSA (256 bit) 32 B 64 B

MQ Rainbow 158 KB 66 B
MUDFISH 38 B 14 KB

Isogenies CSI-FiSh 512 B 956 B
SQISign 64 B 207 B

Hash functions SPHINCS+ 32 B 8 KB
Codes WAVE 3.2 MB 1.6 KB

Lattices Dilithium 1.3 KB 2.4 KB
Falcon 897 B 666 B

Permuted Kernels PKPDSS 57 B 20 KB
SUSHSYFISH 72 B 12 KB

Legendre Symbols PorcRoast 0.5 KB 7.4 KB



Chapter 3

Cryptanalysis

Codemaking is a science, and codebreaking is an art.

– Adi Shamir. RSAC 2015 Cryptographers’ panel

The previous chapter mentioned security reductions, which can be a useful tool
for studying the security of a cryptographic algorithm. But ultimately, the
only way to gain confidence in the security of a cryptographic algorithm is by
subjecting the algorithm to the analysis of the best cryptographers around. If
after many years no vulnerabilities or attacks are found, then it is plausible
that the scheme is secure and suitable to be used in practice. This scrutiny of
cryptographic algorithms is called cryptanalysis.

This chapter will introduce my contributions towards the cryptanalysis of post-
quantum digital signature schemes, but first, we need to formally define what it
means for a digital signature scheme to be (in)secure.

3.1 Security definitions for signature schemes

3.1.1 Notation, challengers, and adversaries

Notation. If X is a finite set, we write x ← X to denote that x is sampled
uniformly at random from X. If A is a (randomized) algorithm, we write
y ← A(x) to denote that y is assigned the output of A, after running it on

35
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input x. If A is an interactive algorithm, then y ← AB(x) means that y is the
output of A after running it on input x, and interacting with algorithm B.
Challengers and Adversaries. A security property usually demands that
a certain task can not be performed by a certain type of algorithm. These
statements are formalized with a challenger algorithm C that interacts with
an adversary A and outputs 1 if A succeeds in doing the task, and outputs 0
if A fails. The security property is then usually a statement of the form “For
every adversary A in some class of algorithms, Pr[CA(λ) = 1] is small”, where
smallness can be defined in a number of ways. This thesis mostly deals with
concrete security, so we will opt for concrete security definitions, where we say
a primitive has n bits of security (or 2n-security), if every algorithm that runs
in time t, 1 has a success probability Pr[CA(λ) = 1] of at most 2n/t.

3.1.2 Universal unforgeability under key-only attacks

A signature scheme S = (KeyGen,Sign,Verify) is insecure if there exists an
efficient algorithm that, given a message m and a public key pk, outputs a
signature such that Verify(m, sig, pk) = accept. Conversely, we might be tempted
to say that a signature scheme is secure if no such algorithm exists. To formalize
this first attempt, we define a challenger algorithm that generates a public key
pk using KeyGen, picks a random message m, gives both to the adversary A
and outputs 1 only if the output of A is a valid signature for the message m
under the public key pk.

CAS,UUF−KOA :
(pk, sk)← KeyGen()
m← {0, 1}128

sig← A(pk,m)
return Verify(pk,m)

We can then say a digital signature scheme is secure if there are no efficient
algorithms that win this game with a large probability. This security notion is
known as UUF-KOA security, which stands for universal unforgeability under
key-only attacks.2

Definition 3.1 (UUF-KOA). A signature scheme S = (KeyGen,Sign,Verify)
has n bits of UUF-KOA security, if for every A that runs in time t and has
success probability Pr[CAS,UUF−KOA() = 1] = ε, we have t

ε > 2n.
1We implicitly assume some model of computation, such as the RAM model.
2Universal refers to the fact that the attacker can forge a signature for any message, and

key-only refers to the fact that the attacker only learns the public key, but no additional
information.
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UUF-KOA is a very weak security property, and is generally not sufficient in
practice. To illustrate this, consider the following toy signature scheme, which
uses a hash function H : {0, 1}? → {0, 1}128, which we assume to be preimage
resistant:

• KeyGen(): Pick a random bit string sk of length 128 as secret key, and let
pk = H(sk) be the public key.

• Sign(m, sk): Return sk as a signature.

• Verify(m, sig, pk): Accept the signature if H(sig) = pk, regardless of the
message m.

In the UUF-KOA game, the adversary is given a public key pk, and to win the
game A needs to output a string sig such that H(sig) = pk. If we assume that
there are no algorithms for finding preimages in H that are better than a brute-
force search, then this toy signature scheme has 128 bits of UUF-KOA security.
But the toy signature scheme is totally insecure in practice! An attacker can
arbitrarily change a signed message without invalidating the signature. This
attack is not captured by the UUF-KOA security definition, which means we
need stronger definitions.

3.1.3 Existential unforgeability under chosen message attacks

We can strengthen the UUF-KOA definition in two ways. Firstly, we will assume
that the adversary has access to an oracle that will sign arbitrary messages for
him. It is not completely realistic that an attacker has access to such a service,
but in practice, the attacker is often able to obtain signatures for messages that
he can partly choose. For example, by browsing to a secure website, a person
can obtain a signature on a session id that the user can influence. An attack that
makes use of such a service is called a chosen message attack. Secondly, instead
of letting the challenger choose the message that A has to forge a signature for
(i.e., universal forgery), we will let A choose a message himself (this is called an
existential forgery). The adversary does not win the security game if he outputs
a signature for a message that he signed using the signing oracle, otherwise, it
would be trivial to win the security game and the security definition would be
useless. With these enhancements we can formulate the EUF-CMA challenger
CS,EUF−CMA as follows.
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CAS,EUF−CMA :
(pk, sk)← KeyGen()
M← {}
(m, sig)← AOSign(pk)
return Verify(pk,m) and m 6∈ M

OSign(m) :
M←M∪ {m}
return Sign(pk,m)

Definition 3.2 (EUF-CMA). A signature scheme S = (KeyGen,Sign,Verify)
has n bits of EUF-CMA security, if for every A that runs in time t and has
success probability Pr[CAS,EUF−CMA() = 1] = ε, we have t

ε > 2n.

EUF-CMA is the most commonly used security definition for digital signature
schemes, although even stronger definitions exist, such as strong unforgeability
under chosen message attacks (SUF-CMA).

Strong unforgeability. The security game of SUF-CMA is as follows:

CAS,SUF−CMA(λ) :
(pk, sk)← KeyGen(λ)
Q ← {}
(m, sig)← AOSign(pk)
return Verify(pk,m) and (m, sig) 6∈ Q

OSign(m) :
sig← Sign(pk,m)
Q ← Q∪ {(m, sig)}
return sig

The game is identical to the EUF-CMA game, except that the adversary is
allowed to output a message-signature pair (m, sig) for a message m on which
he queried the signing oracle, as long as sig is not the signature returned by the
signing oracle. For example, an attacker who queries OSign for a signature sig
on a message m, and output a modified signature sig′ that is still valid for the
same message m is a valid SUF-CMA attack, but not a valid EUF-CMA attack.

3.2 NIST Security Levels

The above definitions depend heavily on the model of computation that is
used. This is problematic because a large number of cost models are used in
practice. Some authors count the number of bit operations or gates, while others
count the number of multiplications or the number of calls to a cryptographic
primitive such as a block cipher. Some authors neglect the cost of accessing
memory, while others assign a cost of c1 log(M) or even c2

√
M to each access

to a memory element of size M . This means that n bits of security could mean
widely different things, depending on who you ask.

In an attempt to provide a common yardstick for measuring the security of
submissions to the PQC competition, NIST defined five security levels. These
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Table 3.1: An overview of the five NIST PQC security levels, with the symmetric
primitive they are based on, and estimates of the gate count and quantum gate
count of the attacks [55], where dmax < 296 denotes the maximal allowed depth
of the attacking circuit.

Security Level Symmetric primitive classical gates quantum gates
I 128-bit block cipher 2143 2170/dmax
II 256-bit hash function 2146

III 192-bit block cipher 2207 2233/dmax
IV 384-bit hash function 2210

V 256-bit block cipher 2272 2298/dmax

security levels are based on the security of symmetric-key primitives. For
example, the first security level is defined as “Any attack that breaks the
relevant security definition must require computational resources comparable to
or greater than those required for key search on a block cipher with a 128-bit key
(e.g., AES128)”. Security levels I, III, and V are based on a key search against
128, 192, and 256-bit block ciphers respectively, and Security levels II and IV
are based on a collision search on a 256 or 384-bit hash function respectively.
Table 3.1 contains NIST’s estimates of the gate count of a classical or quantum
attack against the five security levels [55]. Since Grover’s algorithm does not
parallelize well, the gate count of a quantum attack depends on the maximal
allowed depth dmax of the circuit. If the attacker is limited to shallower circuits,
then the attack will require more gates. No estimates are provided for the size
of a quantum circuit attacking security levels II and IV because there currently
are no known quantum algorithms for finding hash collisions that outperform
classical algorithms (in realistic cost models).

3.3 Implementation Security

Until now, our focus was entirely on theoretical security properties of
abstract digital signature algorithms, but in practice, these algorithms need
to be implemented by some physical device, and then the security of the
implementation becomes as important as the security of the algorithm
itself. Unfortunately, a correct implementation of a secure algorithm is not
automatically secure. For example, it is common that the signing algorithm runs
faster or slower if a certain situation occurs during the execution of the signing
algorithm. Even though the implementation will output signatures correctly,
an attacker can pay attention to this timing variability to learn what happened
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during the execution of the algorithm, which can leak enough information to
make the system insecure. Timing information and other types of side-channels
(e.g., power consumption or cache usage) often lead to vulnerabilities that can
be exploited in practice (see e.g., [45, 46]), unless the algorithm and/or its
implementation is carefully designed to prevent leakages. A thorough discussion
about implementation security and side-channel attacks is beyond the scope of
this thesis.

Contribution 2: Cryptanalysis of post-quantum
signature schemes

This section introduces three of my contributions to the cryptanalysis of post-
quantum digital signature algorithms. It was very convenient that the beginning
of my PhD research aligned with the start of the NIST PQC standardization
project because this meant that there was suddenly a large number of post-
quantum digital signature schemes with concrete parameter sets and reference
implementations whose security needed to be analysed.

C2.A Cryptanalysis of WalnutDSA

WalnutDSA is one of the digital signature algorithms submitted to the NIST
PQC standardization project [5]. WalnutDSA is owned by Veridify, a corporation
that develops and licenses public-key cryptosystems for low resource processors.
Veridify aims for widespread adoption of WalnutDSA in the Internet-of-Things
and automotive industries, which makes WalnutDSA a particularly important
target for cryptanalysis.

WalnutDSA is not based on the hardness of any of the hard problems described
in Chapter 2, but instead on mathematical problems related to braid groups. A
braid is a mathematical object that describes a collection of intertwined strings.
Braids can be inverted, and braids with the same number of strings can be
concatenated, which makes the set of braids with n strings (up to equivalence)
into a group Bn.

In the paper of Chapter 9, I showed that WalnutDSA (as it was submitted to
NIST) is totally insecure. The paper describes three distinct practical attacks
against the signature scheme. The most powerful of the three attacks is a
UUF-KOA attack, meaning that the attack can forge signatures for arbitrary
messages, given only a public key. For the NIST security level I parameters of
WalnutDSA, the attack runs in just 1 second on a modern CPU. (Needless to
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say that this is much faster than a key search on a 128-bit block cipher, which
even the most powerful supercomputers in existence today could not complete
during the lifetime of the Sun.) For the NIST level V parameter set the attack
runs in one minute. NIST did not select WalnutDSA to proceed to the second
round of the NIST PQC project, but Veridify is still pursuing market adoption
for updated versions of WalnutDSA through partnerships with manufacturers
like Intel and STMicroelectronics and by providing free toolkits for popular
low-end platforms.

C2.B Cryptanalysis of Code Equivalence Problems

LESS [12] is a new code-based signature scheme. Unlike most code-based
cryptosystems, LESS does not rely on the hardness of the generic decoding
problem. Instead, it relies on the assumed hardness of Code Equivalence
Problems. These problems ask, given two permutationally (resp. linearly)
equivalent Fq-linear codes C1 and C2, to find a permutation π ∈ Sn (or monomial
map3 µ ∈Mn) such that π(C1) = C2 (or µ(C1) = C2 respectively).

A public key for LESS is a pair of equivalent codes C1, C2, and the corresponding
secret key is the equivalence π (or µ) such that π(C1) = C2 (or µ(C1) = C2).
This means that if one can solve the code equivalence problems, one can recover
the secret key from a public key and use it to sign arbitrary messages (this is
a UUF-KOA attack). Conversely, the authors of LESS proved that the code
equivalence problems can be reduced to the security of the LESS scheme (i.e.,
they showed that if one can break LESS, one can also solve the code equivalence
problems efficiently). This means that LESS is secure if and only if the code
equivalence problem is hard, which is exactly what I investigated in my paper
of Chapter 10.

I found new algorithms to solve the code equivalence problems which are
more efficient than the existing algorithms in the setting used by the LESS
cryptosystem. The algorithms work very well in practice: It can recover the
secret key of LESS-I (which uses linear equivalence) and LESS-III (which uses
permutation equivalence) in 25 seconds and 2 seconds respectively, which stands
in sharp contrast to the claim that LESS-I and LESS-III provide 128 bits of
EUF-CMA security. The next version of LESS is in the making, which will use
larger codes to make the code equivalence problem more difficult. Even though
using larger codes will hurt performance, the next version of LESS can still be
very competitive with existing code-based signature schemes.

3A monomial map is a linear isometry for the Hamming metric. One can show that these
maps are the composition of a permutation and a map that multiplies all the entries of a
vector by (possibly distinct) non-zero values.
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C2.C Cryptanalysis of UOV and Rainbow

One of the three remaining candidates of the NIST PQC project is Rainbow,
a multivariate quadratic signature scheme. Rainbow was proposed in 2005
by Ding and Schmidt [31] as a more efficient variant of the UOV signature
scheme that was invented in 1997 by Patarin [57]. UOV and Rainbow are both
trapdoor-based schemes, where the public key is a trapdoored multivariate
quadratic map P : Fnq → Fmq , and a signature (s, salt) is valid for the message m
if P(s) = H(m, salt). The cryptanalysis of UOV and Rainbow has been stable
since 2008, which seemingly makes them good candidates for standardization.

However, I discovered two new attacks against the UOV and Rainbow signature
schemes. These attacks are described in detail in the paper of Chapter 11. The
first attack, which works against both UOV and Rainbow, constructs a system
of overdetermined quadratic equations (i.e., the system has more equations
than variables). The new system is guaranteed to have a solution, and finding
the solution will reveal enough information about the secret key to make a
key recovery possible. Since solving overdetermined systems is generally more
efficient than solving underdetermined systems, this attack is more efficient
than finding a signature s by solving the system P(s) = H(m, salt) directly.

The second attack, which only works against the Rainbow scheme, reduces key
recovery to the MinRank problem. The attacker converts the public key P into
a list of n-by-m matrices L1, · · · , Ln, in such a way that there are guaranteed
to be linear combinations

∑
i yiLi that have exceptionally low rank. Moreover,

if one can find one of those linear combinations this gives enough information
to efficiently recover the secret key. The problem of, given a list of matrices,
finding a low-rank linear combination is called the MinRank problem. This
problem has been studied extensively because its hardness is important for
both multivariate-based and code-based cryptosystems. Recently an improved
method for solving the MinRank problem was discovered [7]. Using this method
to solve the MinRank instance derived from the Rainbow public key results
in a key recovery attack that is more efficient than previous attacks against
Rainbow. Focusing on the parameter sets submitted to the final round of the
NIST competition targeting SL I, III, and V, the estimated cost of the attack
is 2127, 2177, and 2226 gates, which is lower than the requirements set out by
NIST (see Table 3.1) by a factor of 216, 230, and 246 respectively.
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3.4 Conclusion

This chapter introduced security notions for digital signature schemes: UUF-
KOA security means there is no efficient attacker algorithm that can forge
signatures for arbitrary messages, given only the public key, while the more
advanced EUF-CMA security property says there are no attacker algorithms
that can output even just a single forgery for a message chosen by the attacker,
even if the attacking algorithm is allowed to make arbitrarily many queries to a
signing oracle.

Then, we summarized some new attacks I discovered against three post-quantum
digital signature schemes. I found that the WalnutDSA scheme, which was
submitted to the NIST PQC project, turned out to be completely breakable: the
supposedly 128-bit secure parameters can be broken in less than a second and the
256-bit secure parameters could be broken in less than a minute. Unfortunately,
Veridify, the corporation that owns WalnutDSA, is still pushing WalnutDSA to
applications in the IoT and automotive industries, in part through partnerships
with big players in the semiconductor industry such as STMicroelectronics and
Intel. I also found that the LESS signature scheme was completely broken in
practice, however with a new choice of parameters the scheme still has potential
to be secure and efficient compared to other code-based signature schemes.
Finally, I attacked Rainbow, one of the three finalist signature schemes in the
NIST competition. Rainbow is one of the more mature MQ signature schemes,
and hence it is not surprising that the break is less severe. The attacks are still
too expensive to execute in practice with the resources available to me, but
the attack is nonetheless more efficient than existing attacks by a wide margin
(e.g., a factor 220 for the NIST SL I parameters). Referring to my attacks
on Rainbow, NIST requested community feedback on whether to standardize
SPHINCS+ (one of the schemes chosen as alternative candidates) or to open
up the NIST competition for a new round of signature schemes, suggesting that
Rainbow will not be selected for standardization. As such, my research likely
prevented a weak signature algorithm from being standardized and potentially
achieving widespread adoption.





Chapter 4

Designing Secure and
Efficient Signature Algorithms

There’s a fool born every minute, and anyone who tries to
write their own crypto algorithms definitely falls into this
category.

Comment on “Schneier on Security” blogpost

If others had not been foolish, we should be so.

William Blake, Proverbs of Hell

In this chapter, we will finally talk about how to construct digital signature
schemes. There are two commonly used approaches to construct signature
schemes: the full-domain-hash approach (FDH), which converts a trapdoor
function into a signature scheme, and the Fiat-Shamir approach that converts a
zero-knowledge proof into a signature scheme. Nearly all the signature schemes
we encountered in this thesis use one of these approaches. The trapdoor-based
signature schemes include RSA (which uses modular exponentiation as trapdoor
function), as well as Rainbow, WAVE, and Falcon. The zero-knowledge based
signatures include ECC signature schemes, Dilithium1, CSI-FiSh, and LESS.

1Dilithium uses the more general technique of Fiat-Shamir with aborts.

45
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Figure 4.1: A trapdoor function f : X → Y

After introducing these two paradigms with their advantages and disadvantages,
I will briefly describe a number of signature schemes that I designed during
my PhD research. The designs rely on existing hardness assumptions as much
as possible, such that we can have some confidence in their security based on
the lessons learned from cryptanalysing earlier algorithms. However, the new
signatures improve over existing signatures in terms of speed, key size, and/or
signature size, which makes them more suitable for practical applications.

4.1 Trapdoor-based signature algorithms

4.1.1 Trapdoor functions

A trapdoor function is a function f that is easy to compute (i.e., given x we can
compute y = f(x)), but for which it is hard to compute preimages (i.e., given
y, compute x such that y = f(x)), unless you have some secret information
called the trapdoor (see Fig. 4.1). In the case of RSA signatures, the trapdoor
functions are modular exponentiation maps:

fe,N : ZN → ZN : x 7→ xe mod N ,

where N is a product of two large primes p and q. These functions can be
computed efficiently with the square-and-multiply algorithm, but it is believed
to be hard (at least for classical computers) to compute x, given e,N , and xe
mod N . However, if you know the factorization of N , then one can efficiently
compute x using the Chinese remainder theorem.
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Where do trapdoor functions come from?

Often, a trapdoor function is constructed starting from some easy instance of a
problem, and then somehow randomizing it to make it look like a random (and
hopefully hard to solve) instance. We saw two examples of this in Chapter 2:
in multivariate cryptography, one starts with some special multivariate map
F for which one can efficiently sample preimages, and then it is randomized
by composing it with linear maps S and T from both sides to get the actual
trapdoor function P = S ◦ F ◦ T . Similarly, the McEliece cryptosystem uses
a code with a generator matrix G that can be decoded efficiently, and this is
randomized by multiplying G with an invertible matrix S and a permutation
matrix P to get the trapdoored code with generator matrix G′ = SGP .

4.1.2 Full Domain Hash signatures

Given a family of surjective trapdoor functions, it is relatively straightforward
to build a signature scheme with the Full Domain Hash approach (FDH), which
uses a hash function H that maps messages into the range of the trapdoor
functions.

Key Generation. The user generates a trapdoor function f , along with the
trapdoor information that allows him to compute preimages. The public key is
f , and the trapdoor information is the secret key.

Signing. To sign a message m ∈ {0, 1}∗, the signer hashes the message to
obtain a digest h = H(M). Then, using the trapdoor information, the signer
generates a preimage for h, i.e., a value sig such that f(sig) = h. This value sig
is the signature.

Verification. To verify if a signature sig is valid for message m under public
key f , the verifier checks if f(sig) = H(m).

In the UUF-KOA game the adversary is given f , and a message m, and he needs
to output a signature sig such that f(sig) = H(m). Therefore, if we model the
hash function as a function that for each message m outputs a random element
H(m) in the co-domain of f , then the signature is UUF-KOA secure if and only
if the function f is hard to invert without knowledge of the trapdoor. However,
EUF-CMA security (which we care about in practice), is not guaranteed from
the assumption that f is a secure trapdoor function alone.

It is possible that by signing messages, the signer leaks information about the
trapdoor, and that after seeing enough signed messages, an attacker has enough
information to be able to forge signatures. Many signature schemes have fallen
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prey to this kind of attack (e.g., [53, 71]), so when designing or cryptanalysing
a trapdoor-based signature scheme special care needs to be taken to ensure that
signatures do not leak exploitable information about the secret key.

In some cases, it can be proven that the signatures do not leak information.
For example, if the trapdoor function is a permutation2, or more generally if
the trapdoor is preimage sampleable (see [40]). The RSA trapdoor functions
are permutations, so RSA signatures are not vulnerable to this kind of attack.

4.2 Zero-Knowledge-based signature algorithms

4.2.1 Zero-knowledge proofs of knowledge.

Zero-knowledge proofs are a wonderful tool, introduced by Goldwasser, Micali,
and Rackoff in ‘89 [41], that allow someone to prove a statement is true, without
revealing any information about why it is true. This seemingly impossible task
can in fact be done using clever cryptographic protocols, for a wide variety of
statements (ZK proofs exists for all languages in PSPACE if one-way functions
exist). For the purpose of digital signatures, we are interested in zero-knowledge
proofs of knowledge, where the prover convinces a verifier that he knows a
solution to some computational problem, without revealing anything about the
solution itself.

We want zero-knowledge proofs of knowledge to have three important properties:
completeness, knowledge soundness and zero-knowledge. Completeness means
that a prover can make the verifier accept the proof if he really knows a solution.
Knowledge soundness means that if the protocol succeeds, then the verifier
is convinced that the prover knows a solution to the computational problem.
Zero-knowledge means that the verifier does not learn any information about
the solution itself.

ZK proof for graph isomorphisms. A classical example is a zero-knowledge
protocol to prove knowledge of an isomorphism between two graphs G1 and
G2. A simple graph consists of a set of vertices V , and a set of edges E, which
consists of unordered pairs of distinct elements in the vertex set V . Two graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if there exists a bijection
φ : V1 → V2, such that (v1, v2) ∈ E if and only if (φ(v1), φ(v2)) ∈ E2 for all
v1, v2 in V (see Fig 4.2 for an example).

2A function f : X → Y is a permutation if for every y ∈ Y there exists a unique x ∈ X
such that f(x) = y.
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Figure 4.2: Example of two isomorphic graphs. An isomorphism is given by the
map φ that sends 1 to A, 2 to B, and so on.

G1 G2φ

G′

ρ φ ◦ ρ−1

Figure 4.3: The classic zero-knowledge proof of knowledge of a graph
isomorphism.

Suppose the prover P wants to convince a verifier V that he knows an
isomorphism φ between two graphs G1 = (V1, E1) and G2 = (V2, E2). To
do this they can follow the following 3-round protocol.

• Commitment phase. The prover picks a random bijection ρ from V1
to a new vertex set {1, . . . , l} of size l = |V1| = |V2|. Then he computes a
new set of edges

E′ = {(ρ(x), ρ(y)) | ∀(x, y) ∈ E1} .

He sends the new graph G′ = (V ′, E′) to the verifier.

• Challenge phase. The verifier chooses a random challenge bit c ∈ {0, 1}
and sends it to the prover.

• Response phase. If c = 0 the prover sends ρ, otherwise the prover sends
ρ′ = φ ◦ ρ−1.

• Verification. The verifier accepts the proof if ρ(G1) = G′ in case c = 0,
and he accepts if ρ′(G′) = G2 in case c = 1.

Completeness. It is clear that if the prover does know a valid graph
isomorphism φ : G1 → G2, then if both parties follow the protocol honestly,
then the verifier will accept the proof with probability 1.
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Knowledge soundness. During the protocol, the prover sends a graph G′

to the verifier. By doing this, the prover implicitly claims that he knows an
isomorphism from G1 to G′ (namely ρ), and an isomorphism from G′ to G2
(namely ρ′ = φ ◦ ρ−1). If both claims are correct, then the prover must also
know an isomorphism ρ′ ◦ ρ = φ from G1 to G2. The verifier is allowed to
challenge one of the two claims, so if the prover was cheating, then he will be
caught with a probability of at least 1/2. If the protocol is repeated k times,
then the probability that a cheating prover manages to pass all the challenges
is (1/2)k, so by repeating the protocol a number of times, the verifier can be
convinced that P knows an isomorphism except for an exponentially small
probability. This property of the protocol is called knowledge soundness (with
error3 of 1/2).

Zero-Knowledge. Interestingly, the protocol does not reveal any information
about the isomorphism φ. When the challenge bit is b = 0, the verifier gets to
see the bijection ρ, and the graph G′. The bijection ρ was chosen uniformly
at random, so this does not carry any information about φ, and G′ can be
computed from G1 and ρ, so this does not contain any additional information.
Similarly, in the case b = 1, the bijection ρ′ is uniformly random, and G′ can
be computed from G2 and ρ′ so this case also reveals no information about φ.
This property is called zero-knowledge.

Sigma protocols. The graph isomorphism proof of knowledge is an example
of a sigma protocol, which is a class of zero-knowledge proofs of knowledge
introduced by Cramer [21] with the following properties:

1. There are three rounds of communication: First the prover sends a
commitment com, then the verifier sends a challenge c, which is chosen
uniformly at random from some challenge space C, and then the prover
sends a response rsp.

2. Given accepting responses to two different challenges for the same
commitment, it is possible to extract a solution to the problem. This
property is called special soundness because it implies that the protocol
is sound with error 1/|C|.

3. Anyone can create transcripts of executions of the protocol that are
indistinguishable from real executions of the protocol. This property is
called honest verifier zero-knowledge.

3The soundness error is the maximal probability with which a dishonest prover can convince
the verifier.
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Sigma protocols are very common in cryptography. We are interested in them
because a sigma protocol for a hard problem can be transformed into a digital
signature algorithm with the so-called Fiat-Shamir transform.

4.2.2 Fiat-Shamir Signatures.

If you have a sigma protocol for a hard problem, you can use it to authenticate
yourself. You generate an instance of the problem, which you use as public
key, and you keep the solution to yourself as secret key. Since the problem is
hard, attackers will not be able to find a solution to your problem. Then, when
you want to authenticate yourself, you execute the sigma protocol sufficiently
many times to convince a verifier that you have a solution to your problem,
which means that you must be authentic. Identification protocols are similar to
signature schemes, but they are interactive, meaning that both parties need to be
online at the same time, which makes them impractical for certain applications.

In ‘86, Fiat and Shamir found a method to get rid of the interaction, and
convert a sigma protocol into a digital signature algorithm [35]. Interaction
is only required to let the verifier choose the random challenges, so the
solution is rather simple: instead of letting the verifier choose the random
challenges, the signer determines the challenges himself, by hashing the public
key pk, the commitments com, and the message m that needs signing with
a cryptographic hash function H. That is, the challenges are derived as
c(1), . . . , c(k) ← H(pk||com||m) (k is the number of executions of the sigma
protocol). The intuition is that the prover has no control over what the hash
function outputs, so it should not make too much of a difference whether the
challenges were chosen by the verifier or by the hash function. More formally, it
can be proven that this transformation results in a EUF-CMA-secure signature
scheme if the underlying problem is hard, and if we model the hash function H
as a random oracle. Concretely, a Fiat-Shamir signature goes like this:

Key Generation. The user generates an instance of a hard problem, for which
there is an efficient sigma protocol. The instance serves as the public key pk,
the solution to the problem serves as the secret key sk.

Signing. The signer executes k independent executions of the first phase of the
Sigma protocol to produce k commitments com(1), . . . , com(k). Then he hashes
the commitments with the public key and the message H(pk, com,m) to obtain
a list of challenges c(1), . . . , c(k) ∈ Ck. Finally, the prover executes the response
phase of the sigma protocol k times to produce responses rsp(1), . . . , rsp(k). The
signature is now sig = (com(1), . . . , com(k), rsp(1), . . . , rsp(k)).

Verification. The verifier hashes H(pk, com,m) to obtain the same challenges
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c(1), . . . , c(k) ∈ Ck, and verifies for each i from 1 to k if (com(i), c(i), rsp(i)) is
a valid transcript of an execution of the sigma protocol using the verification
phase of the sigma protocol.

4.3 Comparison of trapdoor-based and ZK-based
signatures

Signature size. Since a trapdoor-based signature consists of only a single
preimage for H(m), the signature size is typically small. For example, the
Rainbow and Falcon signature schemes have a signature size of only 66 Bytes
and 666 Bytes at NIST SL 1. In comparison, the size of ZK-based signatures is
often much larger, because the signature is essentially a zero-knowledge proof,
which can be complicated and large. For example, if the signature is based on a
sigma protocol with soundness error 1/2, the base protocol needs to be repeated
128 times to reach a security level of 128 bits, which blows up the signature size
by a factor 128.

Public key size. For ZK-based signatures the public key is some instance of a
hard problem. Usually, most of this instance can be generated pseudo-randomly
from a seed value. For example, in the case of Multivariate cryptography,
the problem is to find a solution s such that P(s) = t, for some multivariate
quadratic map P. In this case, the coefficients of P can be generated pseudo-
randomly from a seed value seed. The user then picks a random s and computes
t = P(s). The public key is then represented by only seed and t, which is very
compact (e.g., 38 bytes for MUDFISH). Since public keys for trapdoor-based
signature schemes need to hide some secret trapdoor structure, it is typically
not possible to use this trick, which can make the public key very large (e.g.,
158 KB for Rainbow and 3.2 MB for WAVE).

Provable security. ZK-based signatures are very amenable to provable security.
One usually chooses a clean, random instance of an assumed hard problem as
public key, and the knowledge soundness and ZK property of the zero-knowledge
proof allow one to formally prove that breaking the security of the system is as
hard as breaking that hard problem. In contrast, it is harder to give security
proofs for trapdoor-based signature algorithms. Often, the trapdoor hides some
structure, and it might not be possible to prove that this structure cannot be
exploited, which leads to less natural hardness assumptions. For example, the
RSA assumption4 is less natural than the assumption that integer factorization

4The RSA assumption states that it is hard to find s given N, e, and se mod N . In other
words, the assumption is just that schoolbook RSA signatures are UUF-KOA secure.
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is hard. Moreover, it is not always possible to prove that the signatures do not
leak information about the secret key.

Contribution 3: Designing secure and efficient
signature algorithms

This section deals with some of the signature schemes I designed during my
PhD research. In particular, we will briefly discuss LUOV, a trapdoor-based
multivariate signature scheme that I submitted to the NIST PQC project,
CSI-FiSh a Fiat-Shamir signature scheme based on isogenies, and MUDFISH
and SUSHSYFISH, two signature schemes that use a new framework of sigma
protocols with helper, based on the permuted kernel problem and the MQ
problem respectively.

C3.A: LUOV

As mentioned before, trapdoor-based multivariate signature schemes tend to
have very large public keys, because a public key consists of a multivariate
quadratic map P : Fnq → Fmq , which requires O(mn2) coefficients to describe.
There is a trade-off between the size of the finite field and the dimensions m and
n. If q is small, we need to compensate with larger m and n to make the MQ
problem hard enough, and vice versa. The optimal choice of q still results in
public keys of more than 50 KB for UOV, one of the oldest and best understood
MQ signature schemes.

The LUOV scheme, which stands for Lifted UOV, breaks this trade-off by
simultaneously defining the public key P over a small finite field (F2) and
choosing small dimensions n and m. Usually, this would make the problem of
solving P(s) = t for s too easy, but the main idea is to define t over a large
extension field, which forces the attack to look for s in an extension field, which
makes the attack much more expensive. This, in combination with some other
optimizations, reduced the public key size dramatically. At NIST SL I the
public key size of LUOV was only 4.7 KB, which is an order of magnitude
smaller than plain UOV. The details of the LUOV scheme are given in the
paper of Chapter 13.

The central assumption for this to be secure was that solving a system P(s) = t
for s with P defined over F2 and t defined over a large extension field F2r is
equally difficult as solving a system where also P is defined over the extension
field F2r . Unfortunately, Ding et al. showed in two papers [32, 30] that this
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assumption is not valid for sufficiently underdetermined systems (i.e if n is
sufficiently larger than m). This resulted in powerful attacks that were much
more efficient than the NIST process required, and for one of the proposed
parameter sets the attack could even be demonstrated in practice. As such,
LUOV was not selected to proceed to the third round of the NIST project.
However, the field lifting technique could still be used in the future to reduce the
key size of MQ signature schemes. Quoting the NIST report: “The development
of the aforementioned attacks shows that the lifting innovation is too new to be
incorporated into a standard at this time; however, there is room for growth
in this area. [...] LUOV has already inspired the application of field lifting for
other schemes, and while it is premature to either trust or discard the lifting
construction, NIST believes there is value in the development of the science in
this direction.” [4]

C3.B: CSI-FiSh

CSI-FiSh is a signature scheme I developed with Vercauteren and Kleinjung.
It is based on a very simple sigma protocol that is very similar to the graph-
isomorphism protocol we discussed earlier. In fact, the graph isomorphism
protocol directly generalizes to any group action. For an action ? of a finite
group G on a set X, the generalized protocol allows to prove knowledge of a
group element g such that g ? x = y for given x, y ∈ X, in zero-knowledge.

There is a problem when trying to apply this protocol to the CSIDH group
action (see Sect. 2.2.2) though. The acting group in question is the ideal class
group C`(O) of an endomorphism ring O of a supersingular curve E0. We know
a set of generators of this group whose action we can evaluate efficiently, but the
relations between these generators are hard to compute, which makes it hard
to sample group elements at random and represent group elements uniquely,
which is a requirement for the sigma protocol to work. De Feo and Galbraith
worked around these problems with the Fiat-Shamir with aborts technique [22].
However, this comes at a cost in terms efficiency.

Our contribution was to compute the structure of the class group for a specific
choice of parameters. This was a record-breaking computation: the previous
record was the computation of a class group for an imaginary quadratic
field with a 130-digit discriminant, while our computation corresponds to
an imaginary quadratic field with a 154-digit discriminant. The computation
took an estimated effort of 52 core-years. With the class group known, it
becomes possible to sample elements of the class group uniformly at random
and represent them uniquely. This makes it possible to use the simple graph-
isomorphism-like sigma protocol. After some optimizations, this resulted in
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the first somewhat practical isogeny-based signature scheme, which we called
CSI-FiSh (Commutative Supersingular Isogeny Fiat-Shamir). For 128 bits
of classical security (which is currently the only security level available), a
sign/verify operation takes 390 ms and the signature size is 263 bytes, which is
faster than earlier isogeny-based signatures by a factor 300, and more compact
by a factor 3.

In addition to efficient signatures, the computation of the class group structure
has made it possible to construct more advanced cryptographic primitives from
the CSIDH action, such as (linkable) ring signatures and threshold signatures [10,
24].

C3.C: MUDFISH/SUSHSYFISH

In this last section, I will introduce a framework of sigma protocols with helper
that I developed in the paper of Chapter 14. These are the same as the sigma
protocols from Sect. 4.2.1, except that in addition to the prover and the verifier,
there is an additional trusted helper party, that does a setup at the beginning
of each execution of the protocol and then goes to sleep for the remainder of the
protocol. Trusted parties are hard to come by, so sigma protocols with helper
might not seem very useful. However, there is a transformation to remove the
helper and transform the sigma protocol with helper into a standard sigma
protocol, which can in turn be transformed into a signature scheme with the
Fiat-Shamir transform. It turns out that first constructing a sigma protocol
with helper, and then converting it into a standard sigma protocol can result
in more efficient protocols, compared to existing ZK-proofs. For example, we
construct new sigma protocols for the MQ problem and the permuted kernel
problem, which have a soundness error of 1/q, which is much better than the
existing protocols which have a soundness error of (1 + q)/2q ≈ 1/2. This
means that the base protocol needs to be repeated fewer times, which makes
the overall protocol more efficient. By applying the Fiat-Shamir transform to
the new sigma protocol we also obtain more efficient signature schemes.

MUDFISH. The new signature scheme based on the sigma protocol for the MQ
problem is called the MUltivariate quaDratic FIat-SHamir scheme (MUDFISH).
MUDFISH is EUF-CMA secure in the quantum random oracle model, assuming
the hardness of the MQ problem. Compared to MQDSS, the signature scheme in
the NIST competition which is based on the exact same assumption, MUDFISH
is more efficient: the MUDFISH signature size of 14 KB, which is a factor 2
improvement over the signature size of MQDSS, and our implementation of
MUDFISH is twice as fast as the optimized implementation of MQDSS that
was submitted to the NIST PQC project.
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SUSHSYFISH. The signature scheme based on the PKP proof is called the
ShUffled Solution to Homogeneous linear SYstem FIat-SHamir (SUSHSYFISH).
This scheme is EUF-CMA secure in the QROM assuming the permuted kernel
problem is hard. SUSHSYFISH was a significant improvement over PKP-DSS,
a signature scheme based on the same hardness assumption (see Sect 2.2.5).
However, since then an optimized variant of PKP-DSS appeared on ePrint [59],
whose signature size if only slightly larger than that of SUSHSYFISH (e.g.,
13 KB versus 12 KB at NIST SL I), but which should be significantly faster
(even though no implementation is available yet). This new variant of PKP-DSS
would likely be a better choice compared to SUSHSYFISH for most applications.

4.4 Conclusion

This chapter discussed and compared the two most prominent strategies for
constructing digital signature schemes: trapdoor-based schemes, and zero-
knowledge-based schemes. Then, we introduced some of the schemes I designed
during my PhD research. The intention behind these schemes was to use existing
hardness assumptions and to build signature schemes that are more efficient
from these assumptions. The exception was LUOV, a trapdoor-based scheme
which achieved a very significant improvement in public key size over existing
MQ schemes, but at the cost of a new hardness assumption related to systems
of multivariate quadratic polynomials with certain coefficients restricted to
a subfield. This assumption was cryptanalysed by Ding et al., resulting in
more powerful attacks. The other schemes introduced in this chapter CSI-FiSh,
MUDFISH, and SUSHSYFISH, are based on zero-knowledge proofs, and have
security reductions from more established hardness assumptions. These new
schemes made significant performance improvements over existing schemes that
relied on the same hardness assumptions.



Chapter 5

Conclusion

Harder, Better, Faster, Stronger.
Our work is never over.

– Daft Punk

Given the fast-paced progress in quantum computing technology, it is necessary
to design, standardize and deploy post-quantum digital signatures to protect our
IT infrastructure from attackers with access to quantum computers. This thesis
discussed three important aspects of post-quantum digital signatures. Chapter 2
introduced some hard computational problems that post-quantum signatures
can be built from, including some less common assumptions that I worked on.
Chapter 3 deals with the cryptanalysis of these assumptions and the systems
built on them, including some definitions of what it means for a digital signature
scheme to be (in)secure. In particular, we discuss some of the vulnerabilities that
I discovered in existing post-quantum signature schemes. Chapter 4 discusses
the two most common strategies to construct digital signature algorithms,
and my efforts to make these algorithms more efficient. In this chapter, we
summarize some conclusions and contributions regarding each of these aspects,
and we discuss some directions for future research.

Objective 1: Diversifying hardness assumptions

Post-quantum digital signature schemes can be built from a number of hardness
assumptions. However, we have yet to find a silver bullet. The existing
assumptions lead to signature schemes that are less efficient than existing pre-
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quantum signature schemes, and their security is often much less understood.
Therefore, it is important to diversify the set of hardness assumptions by looking
at new problems, in the hope that these could lead to secure and more efficient
signature schemes in the long term.

I contributed to this objective by studying two relatively unknown hardness
assumptions: the hardness of the permuted kernel problem and the security of
the Legendre PRF. On one hand, my research showed that reasonably efficient
signatures algorithms can be built based on these hardness assumptions. One of
the signature schemes based on the permuted kernel problem won a third prize
in the Chinese post-quantum cryptography competition. On the other hand, I
improved our understanding of the security of these schemes by cryptanalysing
the Legendre PRF. Even though some more efficient attacks are found, these
attacks did not threaten the new signature scheme. More recent quantum
analysis of the security of the Legendre PRF seems to suggest that the Legendre
PRF holds up well against quantum cryptanalysis [37].

Future work. Firstly, more (quantum) cryptanalysis of the Permuted Kernel
Problem and the Legendre PRF is necessary to gain more confidence in the
security of signature schemes based on these problems. Secondly, it would be
interesting to construct more primitives or more efficient signature schemes
from these new assumptions. Independent researchers have already optimized
the PKP-DSS scheme, resulting in significant performance improvements [59].
PorcRoast seems to be running into the limitations of the MPC-in-the-head
framework, since only 1/3 of the signature size is related to the verification of
the power residue symbols, and the rest is overhead from the MPC-in-the-head
construction (this overhead mostly consists of seed and commitment values).
Therefore, it would be interesting to construct zero-knowledge proofs outside
the MPC-in-the-head framework to make even more efficient signature schemes
based on power residue symbols.

Objective 2: Cryptanalysis

While the security of hash-based signatures is well understood and robust, the
security analysis of the other families of post-quantum cryptography is less
stable. For example, on the front of lattice-based cryptography, there is steady
progress in lattice reduction algorithms (both in theory and practice), and new
results regarding the impact of algebraic structure of lattices on security are
found regularly. In the other branches of post-quantum signatures, the situation
is also unstable.

This thesis presented three attacks against post-quantum digital signature
schemes. Two of the attacks are powerful enough to break schemes claiming
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128 bits of security in practice: I found that the WalnutDSA algorithm, which
was submitted to the NIST PQC project and which is being used in practice,
could be broken in under a second. Similarly, using a new technique to find out
if two error-correcting codes are equivalent or not, the LESS signature scheme
could also be broken in mere seconds. This new technique will help assess the
security of future signature algorithms based on the code equivalence problem.

I also improved the cryptanalysis of UOV and Rainbow, two of the oldest
and most studied signature schemes in multivariate quadratic cryptography.
Rainbow is one of the three remaining finalist signature schemes in the NIST
PQC project. My new attacks are more efficient than the existing attacks by
a factor 220, 240 and 255 for the NIST security levels I, III, and V respectively.
In order to protect against the attacks, Rainbow needs significantly larger
parameters, which eliminates the small performance advantage that Rainbow
had over UOV. The response of NIST following my attack on Rainbow seems
to indicate that Rainbow will not be selected for standardisation. As such, my
research might have prevented a weak cryptosystem from being standardized
and being used by millions of users.

Future work. All the branches of post-quantum cryptography could benefit
from more cryptanalysis, but one particularly interesting target for cryptanalysis
is the MinRank problem. This problem appears in attacks against Multivariate-
based and code-based cryptosystems, so a more thorough understanding of this
problem is required to have confidence in the security of these cryptosystems. A
recent breakthrough result [7] drastically improved algorithms for solving this
problem, so further improvements might be within reach. A different direction is
the cryptanalysis of the SQISign scheme. This isogeny-based signature scheme
has remarkably short key and signature sizes. However, the scheme is based
on rather complex mathematical assumptions, so independent cryptanalysis is
needed.

Objective 3: Design of efficient signature schemes

An important objective is to make post-quantum signature schemes faster and
the keys and signatures more compact. This will make the necessary transition
to post-quantum cryptography go smoother, which means a larger share of
applications will be protected when the first quantum computers capable of
breaking RSA and ECC are constructed.

This thesis presented a number of signature schemes I (co)-designed that
are more efficient than other signature schemes based on the same hardness
assumptions. A striking example is CSI-FiSh, a new isogeny-based signature
scheme that is faster than earlier isogeny-based signatures by a factor 300, and
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more compact by a factor 3. A second example is MUDFISH, which is a factor
2 faster and a factor 2 smaller than MQDSS, a digital signature scheme based
only on the hardness of the MQ problem. Despite substantial progress, there
is still a significant gap in the performance of post-quantum digital signatures
and the pre-quantum alternatives they have to replace.

Future work. Post-quantum cryptography is still in its infancy, so there are
still plenty of opportunities to make faster, more secure, and more compact
signature schemes. I will only mention a few directions that I aspire to work
on in the future. Since we have high confidence in the security of hash-based
signatures, performance improvements for these algorithms would be of much
practical interest. Significant improvements can be achieved by using an optimal
encoding function in the Winternitz OTS building block, and by doing a more
thorough parameter search. A different direction is multivariate quadratic
signatures. I believe the new insights on the UOV trapdoor that I obtained
from my cryptanalysis work, can help build more secure and more efficient
multivariate-quadratic signature schemes. Moreover, it should be possible to
prove the EUF-CMA security of the new signature scheme, based on natural
mathematical problems.
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Abstract. In this document, we introduce PKP-DSS: a Digital Signa-
ture Scheme based on the Permuted Kernel Problem(PKP) [23]. PKP is
a simple NP-hard [10] combinatorial problem that consists of finding a
kernel for a publicly known matrix, such that the kernel vector is a per-
mutation of a publicly known vector. This problem was used to develop
an Identification Scheme (IDS) which has a very efficient implementa-
tion on low-cost smart cards. From this zero-knowledge identification
scheme, we derive PKP-DSS with the traditional Fiat-Shamir transform
[9]. Thus, PKP-DSS has a security that can be provably reduced, in the
(classical) random oracle model, to the hardness of random instances
of PKP (or, if wanted, to any specific family of PKP instances). We
propose parameter sets following the thorough analysis of the State-of-
the-art attacks on PKP presented in [17]. We show that PKP-DSS is
competitive with other signatures derived from Zero-Knowledge iden-
tification schemes. In particular, PKP-DSS-128 gives a signature size
of approximately 20 KBytes for 128 bits of classical security, which
is approximately 30% smaller than MQDSS. Moreover, our proof-of-
concept implementation shows that PKP-DSS-128 is an order of mag-
nitude faster than MQDSS which in its turn is faster than Picnic2,
SPHINCS,...
Since the PKP is NP-hard and since there are no known quantum at-
tacks for solving PKP significantly better than classical attacks, we
believe that our scheme is post-quantum secure.

Keywords: public-key cryptography, Fiat-Shamir, post-quantum cryp-
tography, 5-pass identification scheme, Public-key Signature, Permuted
Kernel Problem.
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1 Introduction

The construction of large quantum computers would break most public-key
cryptographic schemes in use today because they rely on the discrete loga-
rithm problem or the integer factorization problem. Even though it isn’t clear
when large scale quantum computation would be feasible, it is important to
anticipate quantum computing and design new public key cryptosystems that
are resistant to quantum attacks. Therefore, there currently is a large research
effort to develop new post-quantum secure schemes, and a Post-Quantum Cryp-
tography standardization process has been initiated by the American National
Institute of Standards and Technology (https://www.nist.gov/). Because of
this, there has been renewed interest in constructing signature schemes by ap-
plying the Fiat-Shamir transform [9] to Zero-Knowledge Identification Schemes.
In particular, we are interested in post-quantum cryptographic schemes whose
security relies on the quantum hardness of some NP-Hard problem [2]. One
of those problems is the Permuted Kernel Problem: the problem of finding a
permutation of a known vector such that the resulting vector is in the kernel
of a given matrix. This is a classical NP-Hard combinatorial problem which
requires only simple operations such as basic linear algebra and permuting the
entries of a vector. For quite some time, no new attacks on PKP have been dis-
covered, which makes it possible to confidently estimate the concrete hardness
of the problem.

In 1989, Shamir [23] introduced a five-pass ZK-Identification scheme, based
on the PKP. This work uses the Fiat-Shamir transform [9] on this identifica-
tion scheme to develop a signature scheme that is provably secure in the Ran-
dom Oracle Model (ROM). However, since our goal is to have a post-quantum
scheme, we should also consider attackers in the Quantum Random Oracle
Model (QROM). The security of the Fiat-Shamir transform in the QROM has
been studied in [27,26,25], where the authors of [27,25] explain that the Fiat-
Shamir transform might not be secure against quantum computers. Thus, new
techniques with extra properties (such as ”lossy IDS”) were developed to ob-
tain a quantum-secure transform. However, more recently, a number of works
have proven the Fiat-Shamir construction secure in the QROM[26,13] under
very mild conditions. So far, none of these works apply to five-round protocols
(which is the kind of protocol we are considering in this work), but it is conceiv-
able that the results can be generalized to five-pass protocols, including ours.
We consider this an important open problem in post-quantum cryptography.

Previous work and State-of-the-art. Since quantum computers are ex-
pected not to be capable of solving NP -Hard problems in sub-exponential time

2
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(in worst case), Zero-knowledge Identification schemes based on such problems
are interesting candidates for Post-Quantum Cryptography. The Fiat-Shamir
transform [9] is a technique that can convert such a zero-knowledge authenti-
cation scheme into a signature scheme. This approach was taken by Chen et al.
[7], who applied the Fiat-Shamir transform to a 5-pass identification scheme
of Sakumoto et al. [22]. This identification scheme relies on the hardness of
the (NP -Hard) problem of finding a solution to a set of multivariate quadratic
equations. Chen et al. proved that, in the random oracle model, applying the
Fiat-Shamir transform to this 5-pass identification scheme results in a secure
signature scheme. A concrete parameter choice and an efficient implementation
of this signature scheme (which is called MQDSS) were developed, and this was
one of the submissions to the NIST PQC standardization project. At a security
level of 128 bits, the MQDSS scheme comes with a public key of 46 Bytes, a
secret key of 16 Bytes and a signature size of approximately 28 Kilobytes.

A different line of work resulted in the Picnic signature scheme. Chase et al. [6]
constructed this digital signature scheme by applying the Fiat-Shamir trans-
form to an identification scheme whose security relies purely on symmetric
primitives. At the 128-bit security level Picnic has a public key of 32 Bytes, a
secret key of 16 Bytes and signatures of approximately 33 Kilobytes. There is
a second version of this signature scheme, where the signatures are only 13.5
Kilobytes, but Picnic2 is 45 times slower than the original Picnic for signing
and 25 times slower for verification.

Main results. The main contribution of this paper is to present PKP-DSS,
a new post-quantum secure signature scheme. Similar to the approaches cited
above, we use the Fiat-Shamir transform to construct a signature scheme from
the 5-pass PKP identification scheme by Shamir [23]. Following the complexity
analysis of the PKP [17], we choose secure parameter sets of the signature
scheme for 128/192/256 of classical security level. To date, there are no known
quantum algorithms for solving PKP (other than combining Grover search
with the classical algorithms), so we claim that our signatures achieve the
NIST security levels I/III and V respectively. However, we recognize that the
(quantum) hardness of PKP deserves more research, and we hope that this
work will inspire researchers to investigate this topic further.

We have developed a constant-time C implementation of the new signature
scheme. By constant-time we mean that the running time and the memory
access pattern of the implementation are independent of secret material, there-
fore blocking attacks from timing side channels. The resulting signature scheme
compares well with MQDSS and Picnic/Picnic2. Our scheme is much faster
than MQDSS and Picnic/Picnic2 in terms of signing and verification, we have

3
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small public and private keys, and the signature sizes of our scheme are compa-
rable to those of MQDSS and Picnic2. This makes our signature scheme based
on PKP competitive with state of the art post-quantum signature schemes.

2 Preliminaries

2.1 The Permuted Kernel Problem (PKP)

The Permuted Kernel Problem (PKP) [23,10] is the problem on which the
security of PKP-DSS is based. PKP is a linear algebra problem which asks to
find a kernel vector of a given matrix under a vector-entries constraint. It’s a
generalization of the Partition problem [10, pg.224]. More precisely, it is defined
as follows:

Definition 1 (Permuted Kernel Problem). Given a finite field Fp, a ma-
trix A ∈ Fm×np and a n-vector v ∈ Fnp , find a permutation π ∈ Sn such that
Avπ = 0, where vπ = (vπ(1), · · · , vπ(n))

A reduction of the 3-Partition problem proves PKP to be NP-Hard [10]. More-
over, solving random instances of PKP seems hard in practice. In fact, this is
the fundamental design assumption of PKP-DSS. The hardness of PKP comes
from, on the one hand, the big number of permutations, on the other hand,
from the small number of possible permutations that satisfy the kernel equa-
tions. Note that, to make the problem more difficult, the n-vector v should
have distinct coordinates. Otherwise if there are repeated entries, the space of
permutations of v gets smaller. In the next section, we give the best known
algorithm to solve the PKP problem.

Best known algorithms for solving PKP The implementation’s efficiency
of the first IDS, proposed by Shamir [23], based on PKP problem has led to sev-
eral solving tools. There are various attacks for PKP, which are all exponential.
We will not describe them here. Instead, we refer to [17] for further details. To
estimate the concrete security of PKP, the authors of [17] review and compare
the efficiency of the best known attacks in terms of the number of operations
performed, for different finite fields. They bring together the Patarin-Chauvaud
attack [21] and Poupard’s algorithm [18] to provide an accurate program. The
paper gives security estimates that we used to pick secure parameters sets for
the Permuted Kernel Problem.
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2.2 Commitment schemes

In our protocol, we use a commitment scheme Com : {0, 1}λ × {0, 1}? →
{0, 1}2λ, that takes as input λ uniformly random bits bits, where λ is the
security parameter, and a message m ∈ {0, 1}? and outputs a 2λ bit long
commitment Com(bits,m). In the description of our protocols, we often do
not explicitly mention the commitment randomness. We write S ← Com(m),
to denote the process of picking a uniformly random bit string r, and setting
C← Com(r,m). Similarly, when we write check C = Com(m), we actually mean
that the prover communicates r to the verifier, and that the verifier checks if
C = Com(r,m).

We assume that Com is computationally binding, which means that no com-
putationally bounded adversary can produce a r, r′,m,m′ with m 6= m′ such
that Com(r,m) = Com(r′,m′). We also assume that Com is computationally
hiding, which means that for every pair of messages m,m′, no computationally
bounded adversary can distinguish the distributions of Com(m) and Com(m′).

2.3 2q-Identification schemes and 2q-extractors

In this paper, we will describe a so-called 2q-Identification Scheme [24]. This
is a 5-round identification scheme, where the first challenge is drawn uniformly
at random from a challenge space of size q, and the second challenge is a ran-
dom bit. Therefore, a transcript of an execution of a 2q-protocol looks like
(com, c, rsp1, b, rsp2). We now state the properties of a 2q-protocol more for-
mally:

Definition 2 (2q-Identification scheme,[24]). A 2q-Identification scheme
is a canonical five-pass identification scheme (KeyGen,P,V) with challenge spaces
Ch1 and Ch2 for which it holds that |Ch1| = q and |Ch2| = 2. Moreover, we
require that the probability that the commitment com take a certain value is a
negligible function of the security parameter.

Definition 3 (Completeness). An Identification scheme (KeyGen,P,V) is
called complete if when both parties follow the protocol honestly, the verifier
accepts with probability 1. That is, we have

Pr

[
(pk, sk)← KeyGen(1λ)
〈P(sk),V(pk)〉 = 1

]
= 1 ,

5
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where 〈P(sk),V(pk)〉 stands for the common execution of the protocol between
P with input sk and V with input pk.

Definition 4 (Soundness with soundness error κ). An identification sche-
me (KeyGen,P,V) is called Sound with soundness error κ, if for any probabilis-
tic polynomial time adversary A, we have

Pr

[
(pk, sk)← KeyGen(1λ)
〈A(1λ, pk),V(pk)〉 = 1

]
≤ κ+ ε(λ) ,

for some negligible function ε(λ).

Definition 5 ((computational) Honest-Verifier Zero-Knowledge). We
say an identification scheme (KeyGen,P,V) is HVZK if there exists a proba-
bilistic polynomial time Simulator S that outputs transcripts that are computa-
tionally indistinguishable from transcripts of honest executions of the protocol.

Finally, we define the notion of a 2q-extractor, which is an algorithm that can
extract the secret key from 4 transcripts that satisfy some properties. This is
useful because when there exists a 2q-extractor for a 2q-Identification scheme,
this implies that the identification scheme has soundness with knowledge error
at most q+1

2q . Moreover, this implies that applying the Fiat-Shamir transform
to the identification scheme results in a secure signature scheme.

Definition 6 (2q-extractability). We say a 2q-identification scheme
(KeyGen, P, V) has 2q-extractability, if there exists a polynomial-time algorithm

that given four transcripts (com, c(i), rsp
(i)
1 , b(i), rsp

(i)
2 ) for i from 1 to 4, such

that

c(1) = c(2) 6= c(3) = c(4)

rsp
(1)
1 = rsp

(2)
1 rsp

(3)
1 = rsp

(4)
1

b(1) = b(3) 6= b(2) = b(4)

can efficiently extract a secret key.

Theorem 7 ([24], Theorem 3.1 and Theorem 4.3). A 2q-extractable 2q-
identification scheme is sound with knowledge error at most q+1

2q . Moreover,
applying the Fiat-Shamir transform to such an identification scheme results in
a EUF-CMA secure signature scheme in the Random Oracle Model.

6
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3 Identification scheme (IDS) based on PKP

In this section, we first present the 5-pass Zero-Knowledge Identification Scheme
(ZK-IDS) based on the computational hardness of PKP [23,19], noted here
PKP-IDS. Then, we introduce our optimized version of PKP-IDS and we prove
that the optimized identification scheme is secure.

3.1 The original 5-pass PKP IDS

In this section, we present the original PKP-IDS [23,19], and we propose its
slightly modified version. It consists of three probabilistic polynomial time al-
gorithms IDS =

(
KeyGen, P, V

)
which we will describe now.

Generation of the public key and secret key in PKP-IDS. The users
first agree on a prime number p, and on n,m, the dimensions of the matrix A.
The public-key in PKP-IDS is an instance of PKP, a solution to this instance is
the secret-key. Thus, the prover picks a (right) kernel-vector w ∈ Ker(A), then
randomly generates a secret permutation of n elements sk = π and finishes by
computing v = wπ−1 . We summarize the key generation algorithm in Alg. 1.

Algorithm 1 KeyGen(n,m,p)

A
$←− Fm×np

w
$←− Ker(A)

π
$←− Sn

v← wπ−1

Return (pk = (A,v), sk = π)

5-pass identification protocol: Prover P and Verifier V.
The prover and verifier are interactive algorithms that realize the identification
protocol in 5 passes. The 5 passes consist of one commitment and two responses
transmitted from the prover to the verifier and two challenges transmitted from
the verifier to the prover. The identification protocol is summarized in Alg. 2.

Theorem 8. PKP-IDS is complete, moreover, if the used commitment scheme
is computationally hiding then PKP-IDS is computationally honest-verifier zero-
knowledge and if the commitment scheme is computationally binding, then
PKP-IDS is sound with soundness error κ = p+1

2p .

7
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Algorithm 2 The original 5-pass PKP identification protocol

P(sk, pk) V(pk)

σ
$←− Sn

r
$←− Fnp

C0 ← Com(σ,Ar)
C1 ← Com(πσ, rσ)

C0,C1−−−−→
c

$←− Fp

z← rσ + cvπσ

c←−−−−

z−−−−→
b

$←− {0, 1}

if b = 0 then
rsp← σ

else
rsp← πσ

end if

b←−−−−

rsp−−→
if b = 0 then

accept if C0 = Com(σ,Azσ−1)
else

accept if C1 = Com(πσ, z−cvπσ)
end if

8
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Proof. We refer to [23] for the complete proof.

In such ZK-IDS, it is usually possible to cheat if a cheater can correctly guess
some challenges, so there is a nonzero probability (called the soundness error)
that the verifier accepts the proof, even though the prover does not know the
witness. In the case of PKP-IDS, this soundness error is p+1

2p . Thus, it is nec-
essary to repeat the protocol several times to reduce the probability of fraud.
Sequentially repeating the zero-knowledge proof N times results in an Iden-
tification scheme with knowledge error κrepeated = κN , hence it suffices to
repeat the protocol dλ/ log2( 2p

p+1 )e times to get a soundness error κ ≤ 2−λ.
The systems are constructed such that executing the protocol does not reveal
any secrets (Zero-knowledge).

3.2 The modified version of PKP-IDS

We now describe several optimizations to reduce the communication cost of
the identification scheme, as well as the computational cost of the algorithms.
We will start by explaining a few standard optimizations that are common for
identification protocols based on zero-knowledge proofs. Then, we will explain
some novel optimizations that apply to the specific context of PKP-IDS.

Hashing the commitments. In the commitment phase of the protocol,

instead of transmitting all the 2N commitments C
(1)
0 ,C

(1)
1 , · · · ,C(N)

0 ,C
(N)
1 the

prover can just hash all these commitments together with a collision resistant

hash function H and only transmit the hash h = H(C
(1)
0 , · · · ,C(N)

1 ). Then, the

prover includes the N commitments C
(i)
1−bi in the second response. Since the

verifier can reconstruct the Cibi himself, he now has all the 2N commitments,
so he can hash them together and check if their hash matched h. With this
optimization, we reduce the number of communicated commitments from 2N
to N , at the cost of transmitting a single hash value.

Use seeds and PRG. Instead of directly choosing the permutation σ at ran-
dom, we can instead choose a random seed of λ bits and use a PRG to expand
this seed into a permutation σ. This way, instead of transmitting σ, we can just
transmit the λ-bit seed. This reduces the communication cost per permutation
from log2(n!) bits to just λ bits. For example for 128-bits of security, we have
n = 69, so the communication cost per permutation drops from log2(69!) ≈ 327
bits to just 128 bits.

9
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Matrix A in systematic form. Now we get to the PKP-IDS-specific opti-
mizations. With high probability, we can perform elementary row operations on
A to put it in the form

(
Im A′

)
, for some (n−m)-by-m matrix A′. Since row

operations do not affect the right kernel of A, we can just choose the matrix A
of this form during key generation, without affecting the security of the scheme.
This makes the protocol more efficient because multiplying by a matrix of this
form requires only (n−m) ∗m multiplications instead of n ∗m multiplications
for a general matrix multiplication.

Optimizing key generation. It is of course not very efficient to include
in the public key the matrix A =

[
cAi , i ∈ {1, · · · ,n}

]
, where cAi is the i-th

column of A. The first idea is to just pick a random seed, and use a PRG to
expand this seed to obtain the matrix A. The public key then consists of a
random seed, and the vector v of length n. However, we can do slightly better
than this. We can use a seed to generate A* which is formed by the first
n − 1 columns cA1 , · · · , cAn−1 of A and the vector v. Then we pick a random
permutation π, and we solve for the last column cAn of A such that vπ is in
the right kernel of A. Now the public key only consists of a seed and a vector
of length m (instead of a vector of length n). Another important advantage of
this approach is that we do not need to do Gaussian elimination this way (and
if fact this was the motivation behind this optimization). The optimized key
generation procedure is given in Alg. 3.

Algorithm 3 KeyGen(n,m,p)

sk.seed←− Randomly sample λ bits
(seedπ, pk.seed)←− PRG0(sk.seed)
π ←− PRG1(seedπ)
(A∗,v)←− PRG2(pk.seed)
Compute cAn from A∗ and vπ
sk←− sk.seed
pk←− (pk.seed, cAn )
Return (pk, sk)

Sending seeds instead of permutations. Because of the second optimiza-
tion, we can send a λ-bit seed instead of σ, if the challenge bit b = 0. However,
in the case b = 1, we still need to send the permutation πσ, because we cannot
generate both σ and πσ with a PRG. However, this problem can be solved. We
can generate rσ with a PRG, and then we can send this seed instead of πσ.

10
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This seed can be used to compute πσ, because if the verifier knows z and rσ,
then he can compute z− rσ = cvπσ. And since v and c are known, it is easy to
recover πσ from cvπσ (we choose the parameters such that the entries of v are
all distinct, so there is a unique permutation that maps v to vπσ). Moreover,
sending the seed for rσ does not reveal more information than sending πσ, be-
cause given z and πσ it is trivial to compute rσ, so this optimization does not
affect the security of the scheme. However, there is a problem: If c = 0, then
the cvπσ = 0, and so the verifier cannot recover πσ. To solve this problem we
just restrict the challenge space to Fp \ {0}. This increases the soundness error
to p

2p−2 (instead of p+1
2p ), but this is not a big problem. An important advan-

tage of this optimization is that the signature size is now constant. Without
this optimization, a response to the challenge b = 0 would be smaller than a
response to b = 1. But with the optimization, the second response is always a
random seed, regardless of the value of b. We summarize the one round of the
optimized IDS modified version in Algorithm 4.

3.3 Security proof of the optimized Scheme

Theorem 9. – The modified version of PKP-IDS is complete.
– If the commitment scheme is computationally binding, then the scheme is

sound with soundness error κ = p
2p−2 .

– If the used commitment scheme is computationally hiding and the output
of PRG1 and PRG2 is indistinguishable from uniform randomness, then the
scheme is computationally honest-verifier zero-knowledge.

Proof. Completeness. In the case b = 0, if the prover acts honestly, then the
commitment check will succeed if Ar = Az−1σ = A(r + vπσσ−1), which holds
if and only if Avπ = 0. Therefore, if π is a solution to the PKP problem, then
the verifier will accept the transcript. In an honest execution with b = 1 the
verifier will always accept, regardless of whether π was a solution to the PKP
problem or not.

Soundness. First, we prove that the scheme has a q2-extractor [24]. That is,
we show that, given four accepted transcripts (C0,C1, c

(i), z(i), b(i), rsp(i)) for i
from 1 to 4, such that

c(1) = c(2) 6= c(3) = c(4)

z(1) = z(2) z(3) = z(4)

b(1) = b(3) 6= b(2) = b(4)

11
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Algorithm 4 The modified 5-pass of PKP-IDS

P(sk, pk) V(pk)

seed0, seed1
$←− {0, 1}λ

σ ←− PRG1(seedσ)
rσ ←− PRG2(rσ.seed)
C0 ← Com(σ,Ar)
C1 ← Com(πσ, rσ)

C0,C1−−−−→
c

$←− Fp \ {0}

z← rσ + cvπσ

c←−−−−

z−−−−→
b

$←− {0, 1}

rsp← seedb

b←−−−−

rsp−−→
if b = 0 then
σ ← PRG1(rsp)
accept if C0 = Com(σ,Azσ−1)

else
rσ ← PRG2(rsp)
if z − rσ is not a permutation of
cv then

Return reject
else

Let ρ ∈ Sn such that cvρ = z −
rσ.

end if
accept if C1 = Com(ρ, rσ)

end if

12
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one can efficiently extract a solution for the PKP problem.

By relabeling the transcripts if necessary, we can assume that b(1) = b(3) = 0
and b(2) = b(4) = 1. Let us first look at transcripts 1 and 3. Let σ = PRG1(rsp(1))

and σ′ = PRG1(rsp(3)), and let x = Az
(1)
σ−1 and x′ = Az

(3)
σ′−1 . Then, because

both transcripts are accepted, we have

C0 = Com(σ,x) = Com(σ′,x′).

Therefore, the computationally binding property of Com implies that with over-
whelming probability we have σ = σ′ and x = x′.

Now, lets look at transcripts 2 and 4. Let y = PRG2(rsp(2)) and y′ = PRG2(rsp(4)).
Since both transcripts are accepted, we know that z(2) − y and z(4) − y′ are
permutations of c(2)v and c(4)v respectively. Let ρ and ρ′ be the permutations
such that c(2)vρ = z(2) − y and c(4)v′ρ = z(4) − y′. Since both transcripts are
accepted, we have

C1 = Com(ρ, y) = Com(ρ′, y′) ,

so the computationally binding property of Com implies that with overwhelm-
ing probability we have ρ = ρ′ and y = y′. Now, we put everything together
to get

0 = A(z
(1)
σ−1 − z

(3)
σ−1)

= A(z
(2)
σ−1 − z

(4)
σ−1)

= A(c(2)vρσ−1 − yσ−1 − c(4)vρσ−1 + yσ−1)

= (c(2) − c(4))Avρσ−1 .

Since c(2)− c(4) is nonzero, this means that ρσ−1 is a solution to the permuted
kernel problem. Moreover the extractor can efficiently extract this solution,
because he can extract ρ from either transcript 2 or 4, and he can extract σ
from either transcript 1 or 3.

It is known that 2q-extractability implies soundness with error q+1
2q , where q is

the size of the first challenge space [22,24]. In our case, the first challenge space
has p− 1 elements, so the optimized IDS has soundness error p

2p−2 .

Honest-Verifier Zero-knowledge. To prove Honest-Verifier Zero-Knowle-
dge we construct a simulator that outputs transcripts that are computation-
ally indistinguishable from transcripts of honest executions of the identification
scheme. First, the simulator picks a uniformly random value c ∈ Fp \ {0} and
a uniformly random bit b. We treat the cases b = 0 and b = 1 separately.

13
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Case b = 0 : The simulator picks a random seed seed0, a uniformly random
vector z, and computes σ = PRG1(seed0) and C0 = Com(σ,Az). The simu-
lator also commits to a dummy value to get C1. Now the simulator outputs
(C0,C1, c, z, b, seedσ).

This distribution is indistinguishable from honestly generated transcripts with
b = 0. Indeed, the values c, z, seed0 are indistinguishable from uniformly random
in both the simulated transcripts and the honest transcripts (here we use the
assumption that the output of PRG2 is indistinguishable from the uniform
distribution). The first commitment C0 = Com(σ,Azσ−1) is a function of seed0
and z, so it also has the same distribution in the simulated and the honest
transcripts. Finally, the commitment C1 is never opened, so the computational-
ly hiding property of Com guarantees that C1 in the simulated transcript is
computationally indistinguishable from the C1 in an honest transcript.

Case b = 1 : The simulator picks a uniformly random seed seed1 and a uni-
formly random permutation ρ and computes rσ = PRG2(seed1), z = cvρ + rσ
and C1 = Com(). The simulator also commits to a dummy value to produce a
commitment C0, then the simulator outputs the transcript (C0,C1, c, z, b, seed1).

We now show that the simulated transcripts are indistinguishable from hon-
estly generated transcripts with b = 1. It is clear that c and seed1 are uniformly
random in both the simulated transcripts and the honestly generated tran-
scripts. Moreover, in both the simulated and the real transcripts, z is equal to
PRG2(seed1)+cvρ, and C1 = Com(ρ,PRG2(seed1)) where ρ is indistinguishable
from a uniformly random permutation (here we need the assumption that the
output of PRG1 is indistinguishable from a uniformly random permutation).
Therefore z and C1 have the same distribution in the simulated and the honest
transcripts. Finally, the computationally hiding properties of Com guarantee
that the value of C0 in the simulated transcripts is indistinguishable from that
of C0 in honestly generated transcripts.

3.4 Communication cost

We can now provide the communication complexity of N rounds of the modified

IDS, of which the soundness error is
(

p
2p−2

)N
. The commitment consists of a

single hash value, which is only 2λ bits. The first response consists of N vectors
of length n over Fp, so this costs Nndlog2 pe bits of communication. Lastly, the
second responses consist of N random λ-bit seeds, N commitments (which
consist of 2λ bits each) and N commitment random strings (which consist of λ

14
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bits each), so this costs 4Nλ bits of communication. In total, the communication
cost (ignoring the challenges) is

2λ+N (ndlog2 pe+ 4λ) .

4 Digital signature scheme (DSS) based on PKP

We present here the main contribution of this work which is to construct a
digital signature scheme, based on the PKP problem, from the optimized IDS
defined in Section 3. This is simply a direct application of the well-known Fiat
Shamir transformation [9].

The key generation algorithm is identical to the key generation algorithm for
the identification scheme. To sign a message m, the signer executes the first
phase of the commitment scheme to get a commitment com. Then he derives the
first challenge c = (c1, · · · , cN ) from m and com by evaluating a hash function
H1(m||com). Then he does the next phase of the identification protocol to get
theN response vectors rsp1 = (z(1), · · · , z(N)). Then he uses a second hash func-
tion to derive b = (b1, . . . , bN ) from m, com and rsp1 as H2(m||com, rsp1). Then
he finishes the identification protocol to obtain the vector of second responses
rsp2 = (rsp(1), · · · , rsp(N)). Then, the signature is simply (com, rsp1, rsp2).

To verify a signature (com, rsp1, rsp2) for a message m, the verifier simply uses
the hash function H1 and H2 to obtain c and b respectively. Then, he verifies
that (com, c, rsp1,b, rsp2) is a valid transcript of the identification protocol.

The signing and verification algorithms are displayed in Algorithm 5 and 6 in
more detail.

We then get the same security result as Th. 5.1 in [7], with the same proof.

Theorem 10. PKP-DSS is Existential-Unforgeable under Chosen Adaptive
Message Attacks (EU-CMA) in the random oracle model, if

– the search version of the Permuted Kernel problem is intractable,
– the hash functions and pseudo-random generators are modeled as random

oracles,
– the commitment functions are computationally binding, computationally

hiding, and the probability that their output takes a given value is negli-
gible in the security parameter.
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Algorithm 5 Sign(sk,m)

1: derive A,v and π from sk.
2: for i from 1 to N do
3: pick λ-bit seeds seed

(i)
0 and seed

(i)
1 uniformly at random

4: σ(i) ← PRG1(seed
(i)
0 )

5: r
(i)
σ ← PRG2(seed

(i)
1 )

6: C
(i)
0 = Com

(
σ(i),Ar(i)

)
,

7: C
(i)
1 = Com

(
πσ(i), r

(i)
σ

)
.

8: end for
9: com := Hcom

(
C
(1)
0 , C

(1)
1 , · · · ,C(N)

0 , C
(N)
1

)

10: c(1), · · · , c(N) ← H1

(
m||com

)
. ci ∈ Fp \ {0}

11: for i from 1 to N do
12: z(i) ← r

(i)
σ + c(i)vπσ(i)

13: end for
14: rsp1 ← (z(1), · · · , z(N))
15: b(1), · · · , b(N) ← H2(m||com||rsp1)
16: for i from 1 to N do
17: rsp

(i)
2 ← (seed

(i)

b(i)
||C(i)

1−b(i))

18: end for
19: rsp2 ← (rsp2

(1), · · · , rsp2(N))
20: Return (com, rsp1, rsp2)

Algorithm 6 Verify(m, pk, σ = (com, rsp1, rsp2))

1: c(1), · · · , c(N) ← H1

(
m||com

)
.

2: b(1), · · · , b(N) ← H2(m||com||rsp1)
3: Parse rsp1 as z(1), · · · , z(N)

4: Parse rsp2 as seed(1), · · · , seed(N),C
(1)

1−b(1) , · · · ,C
(N)

1−b(N)

5: for i from 1 to N do
6: if b(i) = 0 then
7: σ(i) ← PRG1(seed(i))

8: C
(i)
0 ← Com(σ(i),Az

σ(i)−1)
9: else

10: r
(i)
σ ← PRG2(seed(i))

11: if z(i) − rσ is not a permutation of cv then
12: Return reject
13: else
14: πσ(i) ← the permutation that maps cv to z(i) − rσ.
15: end if
16: C

(i)
1 ← Com(πσ(i), r

(i)
σ )

17: end if
18: end for
19: com′ := Hcom

(
C
(1)
0 , C

(1)
1 , · · · ,C(N)

0 , C
(N)
1

)

20: Return accept if and only if com = com′
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4.1 Generic attack

If the number of iterations N is chosen such that ( p
2p−2 )N ≤ 2−λ, then the

cheating probability of the identification protocol is bounded by 2−λ. However,
a recent attack by Kales and Zaverucha on MQDSS reveals that this does not
meant that the Fiat-Shamir signature scheme has λ bits of security [16]. They
give a generic attack that also applies to PKP-DSS. The attack exploits the
fact that if an attacker can guess the first challenge or the second challenge,
he can produce responses that the verifier will accept. The idea is to split up
the attack in two phases. In the first phase, the attacker guesses the values of
the N first challenges, and uses this guess to produce commitments. Then, he
derives the challenges from the commitment and he hopes that at least k of his
N guesses are correct. This requires on average

Cost1(N, k) =

N∑

i=k

(
1

p− 1

)k (
p− 2

p− 1

)N−k (
N

k

)

trials. In the second phase, the attacker guesses the values of second challenges,
and uses these guesses to generate a response. Then he derives the second
challenges with a hash function and he hopes that his guess was correct for
the N − k rounds of the identification protocol where he did not guess the first
challenge correctly. This requires on average 2N−k tries. Therefore, the total
cost of the attack is

min
0≤k≤N

Cost1(N, k) + 2N−k .

5 Parameter choice and Implementation

5.1 Parameter choice

The PKP-DSS is mainly affected by the following set of parameters: (p, n,m).
We now explicitly detail the choice of these parameters. Recall that firstly
the IDS [23] was designed to suit small devices. Thus, Shamir proposed p =
251. To have an efficient implementation we choose p to be a prime number
close to a power of 2, such as 251, 509 and 4093. A solution of a random
instance of PKP is to find a kernel n-vector (vπ) with distinct coordinates in
Fp. Hence, the probability to find such a vector shouldn’t be too small. The
probability of an arbitrary vector to be in the kernel of the matrix A ∈Mm×n
whose rank is equal to m, is p−m. Moreover, if the n-vector v has no repeated
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entries, its orbit under the possible permutations π contains n! vectors. Thus,
to get on average one solution, we have the following constraint: n! ≈ pm.
And finally, using the complexity of Poupard’s algorithm [18] combined with
Patarin-Chauvaud’s method (See Section 2.1), triplets of (p, n,m) were selected
matching the security requirements and optimizing the size of the signature.
With these parameter choices, the scheme is secure against all the attacks
described in [17]. We pick the value of N just large enough such that

min
0≤k≤N

Cost1(N, k) + 2N−k ≥ 2λ ,

such that the scheme is secure against the generic attack of Kales and Za-
verucha [16]. The chosen parameter sets for three different security levels are
shown in Table 1.

Parameter Security p n m Iterations Attack
Set level N cost

PKP-DSS-128 128 251 69 41 157 2130

PKP-DSS-192 192 509 94 54 229 2193

PKP-DSS-256 256 4093 106 47 289 2257

Table 1. PKP-DSS Parameters sets

5.2 Key and signature sizes

Public key. A public key consists of the last column cAn of A and a random
seed pk.seed, which is used to generate A* which is formed by all but the
last column of A and the vector v. Therefore, the public key consist of λ +
mblog2(p)c bits.

Secret key. A secret key is just a random seed pk.seed that was used to seed
the key generation algorithm, therefore it consists of only λ bits.

Signature. Finally, a signature consists of a transcript of the identification
protocol (excluding the challenges, because they are computed with a hash
function). In Sect 3.4 we calculated that a transcript can be represented with
2λ+N (ndlog2 pe+ 4λ) bits, so this is also the signature size.

In Table 2 we summarize the key and signature sizes for the parameter sets
proposed in the previous section.
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Security Parameters |sk| |pk| |sig|
level (p, n,m,N) Bytes Bytes Kilobytes

128 (251, 69, 41, 157) 16 57 20.4
192 (509, 94, 54, 229) 24 85 45.2
256 (4093, 106, 47, 289) 32 103 81.1

Table 2. Key and signature sizes for PKP-DSS with the three proposed parameter
sets.

5.3 Implementation

To showcase the efficiency of PKP-DSS and to compare the performance to
existing Fiat-Shamir signatures we made a proof-of-concept implementation in
plain C. The code of our implementation is available on GitHub at [4]. We
have used SHA-3 as hash function and commitment scheme, and we have used
SHAKE128 as extendable output function. The running time of the signing and
verification algorithms is dominated by expanding seeds into random vectors
and random permutations. This can be sped up by using a vectorized imple-
mentation of SHAKE128, and using vector instructions to convert the random
bitstring into a vector over Fp or a permutation in Sn. We leave this task for
future work.

Making the implementation constant time. Most of the key generation
and signing algorithms is inherently constant time (signing branches on the
value of the challenge bits b, but this does not leak information because b
is public). The only problem was that applying a secret permutation to the
entries of a vector, when implemented naively, involves accessing data at secret
indices. To prevent this potential timing leak we used the “djbsort” constant
time sorting code [3]. More specifically, (see Alg. 7) we combine the permutation
and the vector into a single list of n integers, where the permutation is stored
in the most significant bits, and the entries of the vector are stored in the
least significant bits. Then we sort this list of integers in constant time and
we extract the permuted vector from the low order bits. Relative to the naive
implementation this slows down signing by only 11%. There is no significant
slowdown for key generation.

5.4 Performance results

To measure the performance of our implementation we ran experiments on a
laptop with a i5-8250U CPU running at 1.8 GHz. The C code was compiled
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Algorithm 7 Constant time computation of v′ = vσ
1: Initialize a list of integers L← ∅
2: L :=

[
σ[1] ∗B + v[1], · · · , σ[n] ∗B + v[n]

]
, where B > n is a constant

3: sort L in constant time
4: v′ :=

[
L[1] mod B, · · · , L[n] mod B

]

5: Return v′

with gcc version 7.4.0 with the compile option -O3. The cycle counts in Table 3
are averages of 10000 key generations, signings, and verifications.

Security Parameters KeyGen Sign Verify
level (p, n,m,N) 103 cycles 103 cycles 103 cycles

128 (251, 69, 41, 157) 72 2518 896
192 (509, 94, 54, 229) 121 5486 2088
256 (4093, 106, 47, 289) 151 7411 3491

Table 3. Average cycle counts for key generation, signing and verification, for our
implementation of PKP-DSS with the three proposed parameter sets.

5.5 Comparison with existing FS signatures

In Table 4, we compare PKP-DSS to MQDSS, Picnic, and Picnic2. We can
see that for all the schemes the public and secret keys are all very small. The
main differences are signature size and speed. When compared to MQDSS, the
signature sizes of PKP-DSS are roughly 30% smaller, while being a factor 14
and 30 faster for signing and verification respectively. Compared to Picnic, the
PKP-DSS signatures are roughly 40% smaller, and signing and verification are
4 and 9 times faster respectively. Compared to Picinc2 our scheme is 153 and
170 times faster for signing and verification, but this comes at the cost of 50%
larger signatures. Finally, compared to SUSHSYFISH [12], a different scheme
based on the Permuted Kernel Problem, our scheme is 3.4 and 6.6 times faster,
but at the cost of 45% larger signatures.
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Security Scheme Secret key Public key Signature Sign Verify
level (Bytes) (Bytes) (KBytes) 106 cycles 106 cycles

PKP-DSS-128 16 57 20.4 2.5 0.9
MQDSS-31-48 16 46 28.0 36 27

128 Picnic-L1-FS 16 32 33.2 10 8.4
Picnic2-L1-FS 16 32 13.5 384 153
SUSHSYFISH-1 16 72 14.0 8.6 6

PKP-DSS-192 24 85 45.2 5.5 2.1
MQDSS-31-64 24 64 58.6 116 85

192 Picnic-L3-FS 24 48 74.9 24 20
Picnic2-L3-FS 24 48 29.1 1183 357
SUSHSYFISH-3 24 108 30.8 22.7 16.5

PKP-DSS-256 32 103 81.1 7.4 3.5
256 Picnic-L5-FS 32 64 129.7 44 38

Picnic2-L5-FS 32 64 53.5 2551 643
SUSHSYFISH-5 32 142 54.9 25.7 18

Table 4. Comparison of different post-quantum Fiat-Shamir schemes

6 Conclusion

We introduced a new post-quantum secure signature scheme PKP-DSS, which
is based on a PKP Zero-knowledge identification scheme [23]. We optimized this
identification scheme, and to make it non-interactive, we used the well-known
Fiat-Shamir transform.

We developed a constant-time implementation of PKP-DSS and we conclude
that our scheme is competitive with other Post-Quantum Fiat-Shamir signa-
ture schemes such as MQDSS, Picnic/Picnic2, and SUSHSYFISH. The main
advantages of our scheme are that signing and verification are much faster
than existing Fiat-Shamir signatures and that the scheme is very simple to
implement. Our implementation takes only 440 lines of C code.
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Chapter 7

Cryptanalysis of the Legendre
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Abstract. The Legendre PRF relies on the conjectured pseudorandomness
properties of the Legendre symbol with a hidden shift. Originally proposed
as a PRG by Damgård at CRYPTO 1988, it was recently suggested as
an efficient PRF for multiparty computation purposes by Grassi et al. at
CCS 2016. Moreover, the Legendre PRF is being considered for usage in
the Ethereum 2.0 blockchain.
This paper improves previous attacks on the Legendre PRF and its higher-
degree variant due to Khovratovich by reducing the time complexity
from O(p log p/M) to O(p log2 p/M2) Legendre symbol evaluations when
M ≤ 4

√
p log2 p queries are available. The practical relevance of our

improved attack is demonstrated by breaking three concrete instances
of the PRF proposed by the Ethereum foundation. Furthermore, we
generalize our attack in a nontrivial way to the higher-degree variant of
the Legendre PRF and we point out a large class of weak keys for this
construction.
Lastly, we provide the first security analysis of two additional generaliza-
tions of the Legendre PRF originally proposed by Damgård in the PRG
setting, namely the Jacobi PRF and the power residue PRF.
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· Collision attack
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1 Introduction

The Legendre symbol is a multiplicative function modulo an odd prime number
p that assigns to an element a ∈ Fp the value 1, 0 or −1 depending on whether
or not a is a square. Specifically,

(
a

p

)
=





1 if a = b2 for some b ∈ F×p ,

0 if a = 0 ,
−1 otherwise .

The distribution of Legendre symbols has been a subject of study for number
theorists at least since the early 1900s [Ala96,vS98,Jac06,Dav31,Dav39]. In
particular, it follows from the Weil bound [Wei48] that the number of occurrences
of a fixed pattern of l nonzero Legendre symbols among the integers 1, 2, . . . , p−1
modulo p is

p

2l +O(√p) ,
as p→∞. In other words, the distribution of fixed length substrings of Legendre
symbols converges to the uniform distribution.

In 1988, Damgård [Dam90] conjectured pseudorandom properties of the sequence
(
k

p

)
,

(
k + 1
p

)
,

(
k + 2
p

)
, . . . ,

where k has been sampled from Fp uniformly at random. He proposed to use
this construction as a pseudorandom number generator. More recently, Grassi et
al. [GRR+16] have proposed the same construction as a candidate pseudoran-
dom function and have shown that it can be evaluated very efficiently in the
secure multiparty computation setting. Concretely, the Legendre pseudorandom
function Lk(x) is defined by mapping the Legendre symbol with a secret shift
k to {0, 1}:

Lk(x) =
⌊

1
2

(
1−

(
k + x

p

))⌋
,

where p is a public prime number.

Damgård’s work additionally considers several generalizations of the Legendre
PRG that could be more efficient and/or more secure. One of these is to replace
the Legendre symbols above by Jacobi symbols. In this case, the public modulus
n is taken to be a product

∏
i pi of odd primes. Recall that the Jacobi symbol

of a ∈ Fp is defined as (a
n

)
=
∏

i

( a
pi

)
.

2
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Damgård argues that Jacobi symbols are more secure by showing that the
Jacobi generator is strongly unpredictable if the Legendre generator is weakly
unpredictable. Further, he notes that calculating Jacobi symbols is more efficient
because computing them reduces to computing Legendre symbols modulo each
of the smaller prime factors. A second generalization proposed by Damgård is
the use of higher power residue symbols instead of quadratic residue symbols.
Concretely, for a prime p with p ≡ 1 mod r, he proposes to use the r-th power
residue symbol a 7→ a(p−1)/r mod p. This potentially increases the throughput
of the PRF, because we now obtain log2 r bits of output per PRF call rather
than a single bit.

Very recently, the Legendre PRF was proposed to be used in the Ethereum
2.0 proof-of-custody mechanism [Fei19b]. In this context, several cryptanalysis
bounties were announced by the Ethereum foundation during the CRYPTO
2019 rump session [Fei19a]. Among the proposed challenges, there are concrete
instances of the Legendre PRF with expected security levels ranging from 44 to
128 bits of security. For each instance, 220 sequential output bits are given and
the goal is to recover the secret key.

Despite the longevity of Damgård’s pseudorandomness conjecture and the
recent surge of application-oriented interest in the Legendre PRF, relatively few
cryptanalytic results are available. It is known that, given quantum query access
to Lk, the key k can be recovered with a single query to Lk and in quantum
polynomial time [vDH00]. No subexponential attacks are known in the classical
setting or the setting where a quantum adversary is only allowed to query Lk
classically.

The best cryptanalytic results in the classical setting are due to Khovratovich
[Kho19], who gives a memoryless birthday-bound attack. His attack recovers
the key with a computational cost of O(√p log p) Legendre symbol evaluations
when given √p log p queries to Lk. Khovratovich also considers a higher-degree
variant of the Legendre PRF, where the output is computed as the Legendre
symbol of a secret polynomial in the input. Similar to the Jacobi symbol
generalization, the higher-degree Legendre PRF potentially offers security and
efficiency benefits.

Contributions. This paper aims to advance the state-of-the-art in the crypt-
analysis of the Legendre PRF by improving upon Khovratovich’s attacks on the
one hand, and by providing the first security analysis of the Jacobi and power
residue symbol generalizations on the other hand. Table 1 provides a summary
of our main results. The main improvement stems from the fact that, unlike

3
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earlier work, we manage to exploit the multiplicative property of the Legendre
symbol. The practical relevance of our attacks is demonstrated by our solution
of the first three concrete Legendre PRF challenges proposed by the Ethereum
foundation [Fei19b]. These were expected to correspond to a security level of
44 and 54 bits, but our attacks imply that the actual security levels for these
challenges are significantly lower.

After introducing the necessary preliminaries in Section 2, we show how the
Khovratovich attack can be significantly improved in the low-data setting. In
particular, for M ≤ 4

√
p queries, the attack in Section 3 of this paper recovers

the key with a time-complexity of O(p log2 p/M2) Legendre symbol evaluations
and a memory cost of O(M2). In Section 4, the attack from Section 3 is
generalized to the higher-degree case. As before, this amounts to a significant
improvement in the low-data setting. In addition, for d ≥ 3 and with M = p
queries, we gain a factor of p in time-complexity compared to Khovratovich’s
results. Furthermore, in Section 4, a large class of weak keys for the higher-
degree Legendre PRF is shown to exist. For keys in this class, key-recovery
requires roughly O(pdd/2ed log p) operations with only ddlog pe queries to the
PRF. This attack requires O(pbd/2cd log p) bits of memory, but trade-offs are
available using Van Oorschot-Wiener golden collision search. We also give a
reduction to the unique k-XOR problem, which results in further time-memory
trade-offs.

The first of Damgård’s generalizations is discussed in Section 6. Specifically, it
will be shown that the Jacobi PRF can be broken with cost proportional to the
cost of breaking the Legendre PRF for each of the prime factors of the modulus
separately. The power residue symbol generalization is analyzed in Section 7.
Besides the straightforward generalization of the attack from Section 3 to the
r-th power residue symbol PRF, we additionally provide a more efficient attack
for the case where r is large.

Finally, concrete implementation results are provided in Section 8. We report
on the specific amount of time and memory that was necessary to solve the
first three Legendre PRF challenges of the Ethereum foundation. These results
showcase the practical relevance of our attacks.

Concurrent work. Days after this work first appeared on ePrint, Kaluđerović et
al. [KKK20] solved the next Legendre PRF challenge. Their attack uses sim-
ilar ideas to our attack, but with an improved complexity of O(M2/ log p +
p log p log log p/M2) operations on a machine with word size Θ(log p).

4
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Table 1: Query, time and memory requirements of previous and new attacks
on the Legendre PRF. The reported time and memory values are asymptotic
upper bounds (O-notation) and assume a machine with word size Θ(log p), `
and s denote the time-complexity of computing a Legendre and power residue
symbol respectively. The attack strategy for composite moduli from Section 6
can be combined with any of the attacks in this table.

Reference Queries Time Memory

Legendre PRF

Randomized [Kho19] log p `p log p log p
Khovratovich [Kho19] √

p log p `
√
p log p log p

Section 3.1 M M + `p log p/M M log p
Section 3.3 M M2 + `p log2 p/M2 M2

Section 3.4 M M2 + p log2 p/M2 M2/ log p

Degree d ≥ 2
Legendre PRF

Randomized [Kho19] log p `pd d log p d log p
Khovratovich [Kho19] p `pd−1d log p d log p
Section 4 M M2 + `pdd2 log2 p/M2 M2

Section 5 d log p pdd/2ed log p pbd/2cd log p

r-th power-
residue PRF

Section 7.2 M M2 + sp log2 p/(M2 log2 r) M2 log r
Section 7.3 M M + sp log2 p/(Mr log2 r) M log r

2 Preliminaries

After introducing the Legendre PRF and some related notation in Section 2.1,
Section 2.2 recalls how Legendre and power residue symbols can be computed
efficiently. Finally, Sections 2.3 and 2.4 discuss Khovratovich’s attacks on the
Legendre PRF and its higher degree variant.

2.1 Legendre PRF

Definition 1 (Legendre function). For a given odd prime p, we consider the
function

l : Fp → F2

x 7→
⌊

1
2

(
1−

(
x

p

))⌋

which maps quadratic residues modulo p to 0 ∈ F2 and quadratic non-residues
to 1 ∈ F2.

Definition 2 (Legendre PRF). Let p be an odd prime and d a positive integer.
The degree d-Legendre PRF over Fp is a family of functions Lk : Fp → F2 such

5
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that for each k ∈ Fdp,

Lk(x) = l
(
xd +

∑d−1
i=0 ki+1 x

i
)
.

Remark 1. For any given field Fp, the Legendre symbol is multiplicative, i.e.
(
ab

p

)
=
(
a

p

)(
b

p

)
for all a, b ∈ Fp.

In terms of the Legendre function l, multiplication of inputs corresponds to
addition in F2 of the respective images. Indeed

l(ab) = l(a)⊕ l(b) for all a, b ∈ F×p ,

where ⊕ denotes addition in F2.

In our analysis, we will often consider sequential evaluations of a given degree d
Legendre PRF Lk starting from a point a with an additive or multiplicative
step b. We call such vectors L-sequences.

Definition 3 (L-sequences). Let p be an odd prime, m a positive integer and
a, b ∈ Fp. For a given Lk over Fp, we define the arithmetic L-sequence of length
m with starting point a and stride b as the Fm2 -vector

Lk(a+ b [m]) := (Lk(a), Lk(a+ b), . . . , Lk(a+ (m− 1)b) ).

Similarly, we define the geometric L-sequence of length m with starting point a
and common ratio b as the Fm2 -vector

Lk(a · b[m]) := (Lk(a), Lk(a · b), . . . , Lk(a · bm−1 )).

To justify the correctness of our attack, the following property of Lk will be
assumed.

Assumption 1. Let p be an odd prime and d a positive integer. Let m =
ddlog pe. For all k ∈ Fdp, then as p→∞, there exist at most O(1) keys k′ ∈ Fdp
such that Lk′([m]) = Lk([m]).

2.2 Evaluating Legendre and Power Residue Symbols

Using the law of quadratic reciprocity, i.e. for odd coprime integers p and q
(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

6
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Legendre symbols (and more generally Jacobi symbols) can be computed at
essentially the same cost as a GCD computation. Using the Euclidean al-
gorithm, the cost of a Legendre symbol computation is O(log p) arithmetic
operations, or O(log2 p log log p) bit operations. Brent and Zimmerman [BZ10]
give an asymptotically better algorithm with complexity O(log p log2 log p).
Power residue symbols can be computed via modular exponentiation in time
O(log p log(p/r) log log p). In the remainder of this paper, we will often re-
fer to the cost of an algorithm in terms of the number of Legendre symbol
computations or power residue symbol computations.

2.3 Attacks on the Linear Legendre PRF

Khovratovich [Kho19] describes a chosen plaintext attack for the linear Legendre
PRF Lk that recovers k ∈ Fp with O(√p log p) queries to Lk. The attack is
based on a memoryless collision search between two specific functions and can
be briefly summarized as follows.

Letm = dlog pe and consider the functions x 7→ Lk(x+[m]) and x 7→ L0(x+[m]).
Note that the L-sequence Lk(x + [m]) is available by querying the Legendre
PRF, whereas L0(x+ [m]) does not depend on k. By Assumption 1, a collision
between x 7→ Lk(x+ [m]) and x 7→ L0(x+ [m]) yields k with high probability.
Indeed, let a, b ∈ Fp be such that Lk(a+ [m]) = L0(b+ [m]). We have

L0(a+ k + [m]) = L0(b+ [m]).

In accordance with Assumption 1, the number of superfluous candidates for k
satisfying the above equality is expected to be at most O(1).

Collisions between x 7→ Lk(x + [m]) and x 7→ L0(x + [m]) can be found
with a generic memoryless collision search method [MOM92,vW94] in O(√p)
evaluations of both functions. Since computing each L-sequence requires m =
O(log p) calls to Lk, the overall complexity sums up to O(√p log p) queries to
Lk and L0. More generally, if only M queries to Lk are allowed, a collision can
be found with O(p log2 p/M) queries to L0. This will be discussed in detail in
Section 3.1.

We note that Khovratovich’s original attack builds sequences of length m using
arbitrary evaluations of the Legendre function Lk rather than consecutive ones.
This difference does not affect the overall attack complexity, but by using
L-sequences we will be able to reduce the data complexity in Section 3.

7
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2.4 Attacks on the Higher-Degree Legendre PRF

Khovratovich [Kho19] also presents a generalization of the chosen plaintext
attack from Section 2.3 to the quadratic case and, ultimately, to arbitrary
degrees.

Let k = (k1, k2) ∈ F2
p and consider the associated quadratic Legendre PRF Lk.

Choose any r ∈ F×p . From the multiplicative property of the Legendre symbol
we get that for any a ∈ Fp and j ∈ Z,

L(r2j k1,rj k2)(a) = l(r2j)⊕ L(k1,k2)(ar−j) = Lk(ar−j), 1

since r2j is clearly a quadratic residue modulo p. Let m = 2dlog pe. If we find a
k′ ∈ F2

p and a j ∈ Z such that

Lk′(r · r[m]) = Lk(r1−j · r[m]),

then we successfully recover k by letting k1 = k′1r
−2j and k2 = k′2r

−j . As for
the linear case, such a collision can be found memorylessly with O(p) queries
to Lk and O(p) Legendre symbol computations.

For the general case, consider the degree-d Legendre PRF Lk. Similarly to the
quadratic case, we have for each a ∈ Fp and j ∈ Z that

Lk1rdj ,k2r(d−1)j ,...,kdrj (a) = l(rdj)⊕ Lk(ar−j).

By guessing the coefficients k3, . . . , kd, it is possible to attack the remaining
coefficients k1 and k2 using geometric L-sequences of length ddlog pe similar to
the quadratic case. It follows that k can be recovered using O(pd−2 ·p ·d log p) =
O(pd−1d log p) Legendre symbol evaluations, given O(p) queries to Lk.

3 Improved Attack on the Linear Legendre PRF

In this section, we show how Khovratovich’s attack (Section 2.3) on the Legendre
PRF can be improved when the total number of available queries is less than√
p. Although, in its simplest form, our method requires additional memory,

we discuss several techniques to reduce memory requirements while keeping the
same overall time complexity.

1This equation, and many other equations in this paper, only holds if none of the involved
Legendre symbols evaluate to zero. Since this does not pose a problem in practice we choose
to ignore this issue for notational convenience.

8
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3.1 Table-Based Collision Search

We first transform the attack by Khovratovich into a table-based collision search.

LetM be the allowed number of queries to the oracle Lk, where log p�M <
√
p.

Let m = dlog pe and let M̃ = M −m+ 1. The attack proceeds as follows:

1. Store in a table T the pairs (Lk(a+ [m]), a) for all a ∈
{

0, . . . , M̃ − 1
}
.

2. Sample b uniformly at random from Fp until (L0(b + [m]), a) ∈ T for
some a ∈ {0, . . . , M̃ − 1}. For each a corresponding to such a collision, a
candidate key k̃ is recovered as k̃ = b− a. By Assumption 1, the number
of candidate keys is at most O(1). Candidate keys k̃ can be tested by
comparing one or more entries of T with the corresponding arithmetic
L-sequences with starting point k̃.

Regarding the time and memory complexity of this attack, we note that the
first step requires M queries to Lk, from which we obtain M̃ arithmetic L-
sequences that are stored using O(M log p) memory. The second step requires
O(p log p/M) evaluations of the Legendre symbol and no additional memory is
needed. Hence, the overall computational cost of the attack is O(M+p log p/M).

Note that this variant of the attack already reduces the query and time com-
plexities by a log p factor compared to the memoryless collision search, although
a significant amount of memory is employed.
Remark 2. The above attack can be made deterministic by choosing b ∈ {0, . . . ,
bp/M̃c} and considering the sequences v = L0(bM̃ + [m]) in the second step
of the attack. Indeed, it is easy to see that for any k ∈ Fp, the arithmetic
L-sequence at offset M̃

⌈
k/M̃

⌉
will be computed in both steps of the attack and

the correct key is guaranteed to be recovered after at most O(M + p log p/M)
Legendre symbol evaluations.

3.2 Expanding the Number of L-Sequences

We now show that the table can be expanded without increasing the number
of queries M . The key idea is to exploit the multiplicative property of the
Legendre symbol.

Lemma 1. Let m be a positive integer and k ∈ Fp. For any b ∈ F×p and a ∈ Fp

9
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it holds that

Lk/b(a/b+ [m]) = (l(b), . . . , l(b))⊕ Lk(a+ b[m]).

Proof. Immediate by the multiplicative property of l.

Lemma 2. Let k ∈ Fp and m ≤M positive integers. Then from the arithmetic
L-sequence Lk([M ]), it is possible to extract ∼M2/m arithmetic L-sequences
of the form Lk/b(a/b+ [m]) for distinct pairs (a, b) ∈ Fp × F×p .

Proof. Let b a positive integer such that b ≤ bM/mc. By Lemma 1, we get

Lk(a+ b[m]) = (l(b), . . . , l(b))⊕ Lk/b(a/b+ [m])

for any a ∈ [0,M − bm + 1), thus each b yields a total of M − bm + 1 L-
sequences of length m. Moreover, since Lk(a− b[m]) is equal to the sequence
Lk(a−b(m−1)+b[m]) = Lk(a′+b[m]) written in reverse order, we can consider
negative values for b too, thus doubling the total number of sequences. Hence,
the total number of arithmetic L-sequences of length m that can be extracted
from Lk([M ]) equals

2
bM/mc∑

b=1
(M − bm+ 1) ∼ 2M2

m
−m

M/m∑

b=1
b ∼ 2M2

m
− M2

m
= M2

m
.

3.3 An Improved Table-Based Collision Search

The observations from Section 3.2 will now be used to improve the table-based
collision search from Section 3.1.

As before, let M be the allowed number of queries to the oracle Lk, where
log p�M <

√
p. Let m = dlog pe. The attack proceeds as follows:

1. Query the sequence Lk([M ]) and extract ∼M2/m sequences of the form
Lk/b(a/b + [m]) from it. This is possible by Lemma 2. Store all of the
triples (Lk/b(a/b+ [m]), a, b) in a table T .

2. Sample c uniformly at random from Fp until (L0(c + [m]), a, b) ∈ T for
some a and b. For each pair (a, b) corresponding to such a collision, a
candidate key k̃ is recovered as k̃ = bc− a. By Assumption 1, the number
of candidate keys is at most O(1). As before, the correctness of candidate
keys k̃ can easily be verified.

10
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The first step of the attack requires M queries to Lk and ∼ M/m Legendre
symbol evaluations. Storing the table T requires O(M2) memory. In the second
phase, an average of ∼ mp/M2 samples must be tested before a collision is
found. Hence, the computational cost of this step is dominated by O(pm2/M2)
Legendre symbol evaluations.

It follows that the overall cost of the attack is dominated by the extraction
of O(M2/m) sequences, the evaluation of O(M/m + p log2 p/M2) Legendre
symbols and a memory requirement of O(M2). For M <

√
p, this is always an

improvement over the attack from Section 3.1 – possibly after discarding some
of the data.

3.4 Additional Optimizations

This section describes a number of additional optimizations that allow a further
reduction of both the time and the memory complexity of the attack by a factor
Ω(log p).

Using Consecutive Values of c

The second step of the attack from Section 3.3 can be optimized by choosing
consecutive values of c rather than uniform random samples. This approach
allows us to reuse most of the Legendre symbol computations since, for example,
L0(c + [m]) and L0(c + 1 + [m]) overlap almost completely. A priori, this
allows reducing the number of Legendre symbol computations by a factor of
Ω(m). However, there is an important caveat: since the guesses for c are not
independent, the expected number of iterations of the second step is no longer
pm/M2. To see why this is the case, recall that for any c, the algorithm will
output the correct key k if there exists (∗, a, b) ∈ T such that k = bc− a. Since
the table contains an entry (∗, a, b) for all sufficiently small values of a and b, it
is clear that if the table contains (∗, a, b) such that k = bc− a it is likely to also
contain (∗, a′ = a+ b, b) such that k = b(c+ 1)− a′. Therefore, if c is a good
guess, then c+ 1 is also likely to be a good guess. Since the “good” values of c
are clustered together in groups of size O(m), we expect the required number of
iterations to be O(pm2/M2), which means that the factor Ω(m) that we saved
by using consecutive guesses for c is lost again. However, we can still use this
idea to reduce the memory complexity of the algorithm: by only storing one
entry (∗, a, b) for each cluster of good c’s, i.e. we only store the triples (∗, a, b)
such that |a| < |b|, the size of the table can be reduced by a factor of Ω(m)

11
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without impacting the time complexity of the attack.

Expanding the Number of L-Sequences in the Second Step

The idea outlined in Section 3.2 can be used to create new L-sequences from those
computed during the second step of the attack. Indeed, after computing a large
number of w = Ω(m) consecutive Legendre symbols L0(c+ [w]), it is possible to
extract Ω(w2/m2) arithmetic subsequences of the form L0(c+ c′ + d[m]) such
that |c′| < |d|, with no need to compute additional Legendre symbols. Using
the property that

L0(c+ c′ + d[m]) = L0((c+ c′)/d+ [m])⊕ L0(d)

we can then do Ω(w2/m2) table lookups. Asymptotically, this allows to amortize
away the cost of computing Legendre symbols, so the time complexity is
dominated by the extraction of O(pm2/M2) subsequences rather than by the
computation of O(pm2/M2) Legendre symbols.

Not Storing Reverse Sequences

Since the sequence a+b[m] is just the reverse of the sequence a+b(m−1)−b[m],
there is some redundancy in the lookup table. Indeed, for each entry (s, a, b) ∈ T ,
the reverse sequence corresponding to the entry (s′, a + b(m − 1),−b) is also
stored. If, instead, we only store either the sequence or its reverse (e.g. by
storing the lexicographically smallest sequence), then the memory requirements
are reduced by a factor of two without affecting the overall time-complexity just
by looking up either the sequence L0(c+ [m]) or its reverse in T , depending
which comes first lexicographically.

4 Application to the Higher-Degree Legendre PRF

In this section we generalize the attack described in Section 3 to Legendre
PRFs of degree d > 1. In Section 4.1 it is shown how to expand the number
of L-sequences in the higher-degree setting. The resulting attack is detailed in
Section 4.2.

12
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4.1 Expanding the Number of L-Sequences

In order to generalize Lemma 2, we need to extend Lemma 1 to the higher-degree
case. This is the object of Lemma 3.

Lemma 3. For any positive integer m, b ∈ F×p and a ∈ Fp, there exists an
invertible affine transformation Ta,b such that for any k ∈ Fdp,

LTa,b(k)([m]) = (l(bd), . . . , l(bd))⊕ Lk(a+ b[m]).

Moreover, for any choice of (a, b) ∈ Fp × F×p , the transformation Ta,b can be
efficiently computed.

Proof. Lef f be the monic degree d polynomial with coefficient vector k, and let
Ta,b(k) be the coefficient vector of the monic polynomial f(a+ bx)/bd. Then,
by the multiplicative property of the Legendre symbol, we have that

LTa,b(k)([m]) = (l(bd), . . . , l(bd))⊕ Lk(a+ b[m]).

Furthermore, it is not hard to see that Ta,b is invertible, affine and that it can
be computed efficiently.

Lemma 4. Let k ∈ Fdp and m ≤M positive integers. Then from the arithmetic
L-sequence Lk([M ]), it is possible to extract ∼M2/m arithmetic L-sequences
of the form Lk′([m]) with k′ as defined in Lemma 3 for distinct pairs (a, b) ∈
Fp × F×p .

Proof. The proof is completely analogous to that of Lemma 2.

4.2 An Improved Table-Based Collision Search

The attack proceeds in essentially the same way as described in Section 3.3 for
the linear case. Let M be the allowed number of consecutive queries to the
oracle Lk. Let m = d dlog pe. The attack comprises the following steps:

1. Query the sequence Lk([M ]) and extract ∼M2/m sequences of the form
Lk′([m]) from it. This is possible by Lemma 4. Store all of the triples
(Lk′([m]), a, b) in a table T .

13
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2. Sample k′ uniformly at random from Fdp until (Lk′([m]), a, b) ∈ T for some
a and b. For each pair (a, b) corresponding to such a collision, a candidate
key k̃ can be recovered from k, a and b as in Lemma 3. By Assumption 1,
the number of candidate keys is at most O(1). As before, the correctness
of candidate keys can easily be verified.

As in Section 3.3, the computational cost of the first step is dominated by the
extraction of O(M2/m) sequences. For the second step, at most O(pdm2/M2)
Legendre symbols are expected to be evaluated. Hence, the total compu-
tational cost of the attack consists of O(M2/m) sequence extractions and
O(pd d2 log2 p/M2) Legendre symbol evaluations. The attack requires O(M2)
memory.

For d ≥ 3, the time-complexity is minimized for M = p. The time complexity is
then O(pd−2d2 log2 p) Legendre symbol computations. Hence, we gain a factor
of p in time relative to the attacks by Khovratovich [Kho19].

5 Weak Keys in the Higher-Degree Legendre PRF

In this section, we exhibit a large class of weak keys for the higher-degree
Legendre PRF. Our attacks are based on the observation that for some keys,
the corresponding monic polynomial factors as a product of polynomials of
lower degree.

5.1 A Birthday-Bound Attack for Some Keys

Consider the Legendre PRF of degree d ≥ 2 over Fp for a prime p. Recall
that the key k ∈ Fdp of the PRF corresponds to the monic polynomial f(x) =
xd+

∑d−1
i=0 ki+1x

i ∈ Fp[x]. The attack in this section is based on the observation
that, with high probability, the polynomial f has a factor of degree t = bd/2c.
In this case, there exist two monic polynomials g, h ∈ Fp[x] with deg g = t and
deg h = d− t such that f = gh.

Assume that we are given the outputs of the PRF on m = ddlog pe arbitrary
inputs, for example the sequence Lk([m]). Then, by the multiplicative property

14
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of the Legendre symbol2,

Lk([m]) = l(g([m]))⊕ l(h([m])).

Hence, the problem of finding the secret key k ∈ Fdp reduces to a simple collision
search:

1. Query the sequence Lk([m]) from the PRF. For each monic polynomial g
of degree t, store the pair (Lk([m])⊕ l(g([m])), g) in a table T .

2. Sample monic polynomials h of degree d− t until (l(f([m])), g) ∈ T for
some monic polynomial g of degree t. For each such g, recover a candidate
key from the coefficients of gh. By Assumption 1, the number of candidate
keys will be at most O(1).

For t = bd/2c, this attack requires O(pbd/2cd log p) bits of memory and its time
complexity is dominated by O(pdd/2ed log p) operations. The attack requires
only m = O(d log p) queries to the PRF. We use the fact that all Legendre
symbols modulo p can be precomputed in O(p) operations.

Using Van Oorschot-Wiener golden collision search [vW94], an improved time-
memory trade-off can be obtained: given M bits of memory, the key can
be recovered with a time-complexity of O(d log p

√
p3d/2/M) Legendre symbol

evaluations.

Even if the polynomial f does not have a factor of degree exactly bd/2c, it might
still have a factor of large degree t < bd/2c. In this case, the same strategy
results in an attack with time complexity O(pd−td log p) and memory complexity
O(ptd log p). This gives a trade-off between more efficient attacks on a smaller
fraction of keys (when t is large) or less efficient attacks on a larger fraction of
the keys (when t is small). This trade-off is illustrated in Figure 1. The figure
shows the time-complexity of the attack for a desired fraction of attackable
keys. The construction of Figure 1 is based on the following fact [Tao15]: the
fraction of monic degree-d polynomials whose factorization has exactly ci monic
irreducible factors of degree i is 1/

∏d
i=1 ci! ici as p → ∞. By summing these

probabilities over all integer partitions of d that allow a (t, d− t) split, we obtain
the probability that a uniformly random key is weak.

We conclude that if the key is chosen uniformly at random, the higher-degree
Legendre PRF has security only up to the birthday bound. To completely

2For convenience, we extend our notation for arithmetic L-sequences (Definition 3) to
arbitrary functions on Fp. In particular, l(g([m])) = (l(g(0)), . . . , l(g(m − 1))).
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Figure 1: The complexity of the attack, measured as a power of p, as a function
of the degree of f and the desired fraction of keys we want to attack.

prevent this class of attacks, one can choose the key k such that the corresponding
polynomial f is irreducible.

5.2 Reduction to the Unique k-XOR Problem

More generally, the secret polynomial could factor into k polynomials of degree
roughly d/k. For example, if d is divisible by k and f =

∏k
i=1 fi with deg fi =

d/k, we have

Lk([m]) =
k⊕

i=1
l(fi([m])).

That is, it suffices to find a solution to a variant of the k-XOR problem.
Specifically, since each list has length pd/k, a unique solution is expected. This
makes Wagner’s approach [Wag02] inapplicable, but some improvements over
the attack in Section 5.1 are nevertheless possible.

In particular, for k = 4, the algorithm of Chose, Joux and Mitton [CJM02]
leads to a time complexity Õ(pd/2) with only Õ(pd/4) memory. Corresponding
time-memory trade-offs can also be obtained.

Finally, we mention that there exist asymptotically better quantum algorithms
for the unique k-XOR problem. Bernstein et al. [BJLM13] give an Õ(p0.3d)
algorithm requiring Õ(p0.2n) quantum-accessible quantum memory for k = 4.
For any k ≥ 3, Naya-Plasencia and Schrottenloher [NPS19] give algorithms
running in time Õ(pβkd) where βk = (k + dk/5e)/(4k) using Õ(p0.2n) quantum-

16
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accessible quantum memory. For k = 3, there is an algorithm using Õ(pd/3)
time and Õ(pd/3) quantum-accessible classical memory.

6 Jacobi Symbol PRF

The Jacobi pseudorandom generator was proposed by Damgård [Dam90] as
a variation on the Legendre PRG. As discussed by Damgård [Dam90, §5],
it is potentially more efficient because it can be computed as the exclusive-
or of several Legendre PRGs with a relatively small modulus. In addition,
Damgård showed that if the Legendre generator is weakly unpredictable, then
the Jacobi generator is strongly unpredictable. A generator is defined to be
weakly unpredictable if, for all polynomials f , there exist only finitely many
integers m ≥ 0 such that the next output bit in a sequence of length m can be
predicted with probability greater than 1− 1/f(m). Similarly, the generator
is said to be strongly unpredictable if the probability of successful prediction
exceeds 1/2 + 1/f(m) for only finitely many m. For a more formal definition,
see [Dam90, §3] and references therein.

This section investigates the security of the Jacobi PRF in the chosen-plaintext
setting. Whereas the unpredictability result of Damgård could be regarded as a
positive result related to the security of the Jacobi PRF, it remains inconclusive
concerning its concrete security. Indeed, strong unpredictability is a weaker
property than PRF-security and, in addition, it is only an asymptotic notion of
security.

Clearly, the cost of a key-recovery attack on the Jacobi PRF is at least the cost
of attacking a Legendre PRF corresponding to a prime factor of the modulus.
Below, a chosen-plaintext key-recovery attack on the Jacobi PRF is given which
nearly attains this lower bound. Hence, for most purposes, the Jacobi PRF
offers little benefit over the Legendre PRF.

Let n =
∏m
i=1 pi with p1, . . . , pm distinct odd primes. Note that it may be

assumed that the prime factors of n are distinct, since

(
x+ k

n

)
=
(

x+ k∏m
i=1 p

ei
i

)
=

m∏

i=1
ei odd

(
x+ k

pi

)
.
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Let λj =
∏m
i=1
i 6=j

pi and denote the inverse of λj modulo pj by λ′j . Then

(
λj x+ k

n

)
=

m∏

i=1

(
λj x+ k

pi

)
=
(
λj
pj

)(
k

n/pj

)(
x+ λ′j k

pj

)
.

Hence, in the chosen-plaintext setting, the key-recovery attack on the Legendre
PRF from Section 3 can be used to recover the key modulo pj . The factor(

k
n/pj

)
is not known to the attacker, but it is constant so the cost of the attack

is increased by a factor of at most two. Given the value of the key modulo
each prime factor of n, the Chinese remainder theorem yields the value of
the key modulo n. Hence, key recovery for the Jacobi symbol costs at most
O(mM2 +

∑m
i=1 pi log2 pi/M

2) Legendre symbol evaluations. The same strategy
is applicable to the higher-degree case and can also be combined with the attacks
in Section 7 below. Note that a distinguishing attack on the Jacobi PRF reduces
to a distinguishing attack on the Legendre PRF corresponding to the smallest
prime factor of the modulus.

7 Attacks on the Power Residue PRF

The MPC protocol of Grassi et al. [GRR+16] for computing the Legendre PRF
requires only three rounds of communication, which makes the Legendre PRF
superior among the PRF constructions investigated by Grassi et al. in terms of
latency. However, since the Legendre PRF only produces one bit of output, it
compares less favorably in terms of throughput than e.g. MiMC [AGR+16], a
block cipher that outputs full field elements.

To mitigate this limitation of the Legendre PRF we can, as proposed by
Damgård [Dam90], consider higher power residue symbols rather than quadratic
residue symbols. If r divides p− 1, the r-th power residue symbol of x ∈ Fp is
defined as (

x

p

)

r

:= x
p−1

r mod p.

Jointly computing r-th power residue symbols in the MPC setting can be done
at essentially the same cost as computing Legendre symbols with the advantage
that log r bit outputs are produced instead. Therefore, this modification has
the potential to significantly increase the throughput of the Legendre PRF at
essentially no cost – keeping in mind that r should not be too large, since the
corresponding power residue PRF might lose its security (e.g. r = p− 1). In
this section we provide the first security analysis of the power residue PRF. We
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show that there exists an attack with time complexity O(p log2 p/(Mr log2 r)),
given M ≤ √p queries to the PRF.

7.1 Power Residue PRF

By generalising the Legendre function and the Legendre PRF to higher power
residues, we obtain the following definitions:

Definition 4 (r-th power residue function). Let p be a prime congruent to 1
mod r and g a generator of F×p . Then we define the r-th power residue function
l(r) : Fp → Zr as

l(r)(a) =
{
k if a 6≡ 0 mod p and a/gk is an r-th power mod p
0 if a ≡ 0 mod p

Definition 5 (r-th power residue PRF). Let p be a prime congruent to 1 modulo
r. The power residue PRF over Fp is a family of functions L(r)

k : Fp → Zr such
that for each k ∈ Fp,

L
(r)
k (x) = l(r)(k + x).

7.2 Generalising our Attack to the Power Residue PRF

The attacks described in Section 3 and Section 4 do not use any properties of
the Legendre symbol other than its multiplicativity. Therefore, they trivially
generalize to any multiplicative function with a hidden shift, including the r-th
power residue function.

Unlike the quadratic case, the r-th power residue function can take r distinct
values, so it suffices to consider L-sequences of length log p/ log r. It follows that
a straightforward generalization of our attack to r-th power residue Legendre
PRFs requires O(p log2 p/(M2 log2 r)) power residue symbol evaluations and
O(M2 log r) memory. However, for large values of r, there exists a better attack
which is detailed in the next section.
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7.3 Attacks for Large r

We first describe a very simple attack on the linear r-th power residue Legendre
PRF that requires O(p/r) power residue symbol evaluations. In the following,
denote the subgroup of (p− 1)/r-th roots of unity of F×p by G. That is,

G = {x ∈ F×p | x(p−1)/r = 1}.

Remark that G is generated by gr, where g is any generator of F×p .

By querying L(r)
k (0), the attacker immediately learns l(r)(k), the power residue

symbol of k ∈ Fp. We observe that this single query already narrows down
the set of possible values for k to at most (p − 1)/r elements of Fp. Indeed,
from Definition 4, k is contained in the coset gsG, where g is any generator of
F×p and s is equal to l(r)(k). Therefore, an attacker can just go through all of
these elements and check each candidate. Since, on average, only O(1) power
residue symbols must be computed to check the validity of a candidate key, the
attack requires O(p/r) power residue symbols evaluations. The attack requires
a generator g, which can be precomputed in probabilistic subexponential time
by factoring p− 1.

We now explain a more general attack that requires O(p log2 p/(Mr log2 r))
power residue symbol evaluations and O(M log r) memory. The attack is similar
to the table-based collision search from Section 3.1. A speed-up of a factor r is
obtained by querying the PRF at more carefully chosen arithmetic L-sequences.
Let m = dlog p/ log re and M < p/r. The attack proceeds as follows:

1. For M/m distinct values a ∈ G, store each pair (L(r)
k (a[m]), a) in a table

T . Furthermore, query the PRF to get the value s = L
(r)
k (0).

2. Sample x uniformly at random from the coset gsG until (L(r)
0 (x+[m]), a) ∈

T for some value a. For each entry (L(r)
0 (x+ [m]), a) ∈ T corresponding

to such a collision, a candidate key is recovered as k̃ = xa. By a variant
of Assumption 1, the number of such candidate keys will be at most O(1).

The first step of the above attack uses M = m · (M/m) queries to L(r)
k and

needs O(M log r) memory to store the table T . The key k is found when, in
the second step, the attacker samples an x such that k/x is one of the a-values
stored in the table. On average, |G|/(M/m) = O(pm/(Mr)) iterations of the
second step are required in order to find a candidate key. Since each iteration
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requires m power residue symbol computations to evaluate L(r)
0 (x + [m]), it

follows that the total time-complexity of the attack consists of O(M) storage
operations and O(pm2/(Mr)) = O(p log2 p/(Mr log2 r)) power residue symbol
evaluations.

8 Implementation Results

This section discusses several aspects of our implementation of the attack
from Section 3.3 that we applied to the key recovery puzzles proposed by the
Ethereum foundation [Fei19b]. Using the attack from Section 3, we managed to
solve three out of six challenges (including the test instance with a 40-bit prime).
A summary of the instance parameters and the time and memory requirements
of the attack is given in Table 2.

The source code of our implementation is publicly available at

https://github.com/cryptolu/LegendrePRF

Table 2: Parameters of the concrete challenges proposed by the Ethereum
foundation [Fei19b]. For all instances, the first M = 220 consecutive PRF
outputs were given. For the first three instances, the running time and peak
memory usage is given, for the three hardest instances an estimation of time
is provided (marked by †). All experiments were performed on a Dell C6420
server with two Intel Xeon Gold 6132 CPUs clocked at 2.6 GHz and 128 GB of
RAM.

p
Security level3

(bits)
Time

(core-hours)
Memory / thread

(GB) Key

240 − 87 20 < 0.001 < 1 4e2dea1f3c
264 − 59 44 1.5 3 90644c931a3fba5
274 − 35 54 1500 3 384f17db02976dcf63d
284 − 35 64 221† 3
2100 − 15 80 237† 3
2148 − 167 128 265† 3

3Expected security level (conservative estimate) prior to this work.
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We compiled our C++ implementation of the attack using Clang 6.0.0 and
executed it on a Dell C6420 server with two Intel Xeon Gold 6132 CPUs
clocked at 2.6 GHz (28 cores) and 128 GB of RAM. The optimizations described
in Section 3.4 allow to significantly reduce the required memory and the number
of evaluations of the Legendre symbol. As a result, the table lookups are the
bottleneck in our implementation. On average, a single thread required 0.08µs
to compute and check a single 64-bit sequence. As discussed below, we expect
to compute p/228 sequences on average before the key is recovered. Hence, the
required core time to solve a challenge with a prime p and 220 bits of PRF
output can be estimated as p/228 × 0.08µs. The required memory is 1 GB per
server and an additional 3 GB per thread. The parameters can be modified to
reduce the memory without significantly decreasing the performance.

For the first three instances we successfully recovered the secret key of the PRF
in a timespan close to our estimation. The corresponding keys are given in
Table 2. The third instance was solved in under two hours using a cluster of 40
nodes with the described configuration. Further details about the main steps of
the attack are provided below.

Step 1: Processing the PRF Output

As a first step we compute the set T consisting of all arithmetic sequences
extracted from the sequence Lk([220]) given in the challenge. We chose to store
sequences of length m = 64 since this length provides an acceptable rate of false-
positives and enables to efficiently process sequences as 64-bit words. As a result,
the set T contains approximately M2/(2m2) = 227 of such words-sequences.

A straightforward way to implement a set is by using a hash table, which has
a constant amortized time-complexity for membership testing. However, this
constant time may be quite large in practice, especially in the case of large
tables. Random memory accesses are often the main bottleneck. In our case,
the set T is never modified after its creation. To exploit this fact, we sort the
elements of T and we store them in an array. Then, we compute membership
queries in batches. First, we collect a large number of membership queries
and we sort them. Then, we scan through the two sorted arrays checking for
collisions. The bottleneck in this approach is represented by the sorting step
of each batch of membership queries. The described set T contains 227 64-bit
words and the corresponding sorted array requires 1 GB of memory. An extra 1
GB of memory is used to store information required for the key recovery. Note
that the set T and the extra information are shared among all threads that are
used to parallelize the workload of the next step.
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Step 2: Random Sampling

The second and main step of the attack consists of sampling sequences L0(c+[m])
for randomly chosen c and checking if they collide with an entry of T . Note that
the reversed sequence L0(c+ [m]) is checked if it is lexicographically smaller.

For a uniformly chosen c ∈ Fp we compute a long sequence L0(c + [t]) and
we extract a large number of m-bit sequences from it. More precisely, for all
b ∈ {1, 2, . . . , 28} and a ∈ {0, 1, . . . , t−1−b(m−1)}, we extract L0(c+a+b[m]).
The upper-bound for b is chosen as 28 since it is enough to make the time spent
on computing Legendre symbols negligible. Furthermore, all these sequences
can be computed on the fly by storing only the last sequence per pair (b, a).
Indeed, for a large enough i ∈ Z, after expanding the computed sequence
L0(c + [i − 1]) by one Legendre symbol L0(c + i) we obtain a new sequence
L0(c+ i− b(m− 1) + b[m]) for each b. In other words, we obtain 28 sequences
from each single consequent Legendre symbol computation.

As described above, the computed sequences are accumulated and checked in
batches for a collision with the set T . Each batch is sorted using base-28 radix
sort and collisions are checked using a linear scan through the sorted batch and
the sorted array of T . In the case of a collision, a key candidate is recovered
and checked against extra bits from the given PRF output.

Note that this step can be efficiently parallelized. Each thread starts with a
uniformly random a ∈ Fp and proceeds as described above. After a predeter-
mined amount of steps, a new value for a can be chosen to ensure a sufficiently
uniform coverage of the possible offsets of the sequences.

9 Conclusions

In Section 3, a new attack on the Legendre PRF was presented. It is of
particular interest in the low-data setting. Specifically, given M ≤ 4

√
p queries,

our attack recovers the key using O(p log2 p/M2) Legendre symbol evaluations.
The practical relevance of this result was demonstrated by solving the first two
Legendre PRF challenges set out by the Ethereum foundation [Fei19b]. Several
aspects of our implementation of the attack were discussed in Section 8.

In Section 4, it was shown how the technique from Section 3 yields improved
attacks on the higher-degree generalization of the Legendre PRF. Further attacks
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on the higher-degree case were given in Section 5, where a large class of weak
keys was revealed. Keys from this class can be recovered using O(pdd/2ed log p)
operations and O(pbd/2cd log p) bits of memory. Further improvements to the
memory usage, based on a reduction to the unique k-XOR problem, were also
discussed. These weak key attacks can be prevented by choosing the key such
that the corresponding monic polynomial is irreducible.

In addition to the above, we provided the first security analysis of the Jacobi
and power-residue generalizations of the Legendre PRF. These extensions were
first suggested – for the Legendre pseudorandom generator – at CRYPTO
1988 by Damgård [Dam90]. It was demonstrated in Section 6 that the key
of a Jacobi PRF can be recovered with time-complexity proportional to the
time-complexity of key-recovery on the Legendre PRF for each of the prime
factors of the modulus separately. This result eliminates the potential efficiency
benefits offered by Jacobi symbols.

Power residue symbols were considered in Section 7. The low-data attack from
Section 3 equally applies in this setting, but we provide an additional attack
that preforms better for large power residue symbols. Specifically, for r-th power
residue symbols and given M ≤ √p queries, our key-recovery attack requires
O(p log2 p/(rM log2 r)) power residue evaluations and O(M) memory.
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Chapter 8

LegRoast and PorcRoast

Comme les quantités analogues à N
c−1

2 se rencontreront fréquemment
dans le cours de nos recherches, nous emploierons le caractère abrégé(

N
c

)
pour exprimer le reste que donne N

c−1
2 divisé par c; reste qui,

suivant ce qu’on vient de voir, ne peut être que +1 ou −1.

– Adrien-Marie Legendre, Essai sur la théorie des nombres, 1798
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LegRoast: Efficient post-quantum signatures
from the Legendre PRF

Ward Beullens1 and Cyprien Delpech de Saint Guilhem1,2

1 imec-COSIC, KU Leuven, Belgium
2 Dept Computer Science, University of Bristol, U.K.

Abstract. We introduce an efficient post-quantum signature scheme
that relies on the one-wayness of the Legendre PRF. This “LEGen-
dRe One-wAyness SignaTure” (LegRoast) builds upon the MPC-in-the-
head technique to construct an efficient zero-knowledge proof, which is
then turned into a signature scheme with the Fiat-Shamir transform.
Unlike many other Fiat-Shamir signatures, the security of LegRoast can
be proven without using the forking lemma, and this leads to a tight
(classical) ROM proof. We also introduce a generalization that relies
on the one-wayness of higher-power residue characters; the “POwer
Residue ChaRacter One-wAyness SignaTure” (PorcRoast).

LegRoast outperforms existing MPC-in-the-head-based signatures (most
notably Picnic/Picnic2) in terms of signature size and speed. Moreover,
PorcRoast outperforms LegRoast by a factor of 2 in both signature
size and signing time. For example, one of our parameter sets targeting
NIST security level I results in a signature size of 7.2 KB and a sign-
ing time of 2.8ms. This makes PorcRoast the most efficient signature
scheme based on symmetric primitives in terms of signature size and
signing time.
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1 Intoduction

In 1994, Shor discovered a quantum algorithm for factoring integers and solving
discrete logarithms in polynomial time [26]. This implies that an adversary with
access to a sufficiently powerful quantum computer can break nearly all public-
key cryptography that is deployed today. Therefore, it is important to look
for alternative public-key cryptography algorithms that can resist attacks from
quantum adversaries. Recently, the US National Institute of Standards and
Technology (NIST) has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms [22]. One
of the 9 signature schemes that advanced to the second round of the NIST
project is Picnic [7,19,27], a signature scheme whose security only relies on
symmetric-key primitives.

Indeed, a key pair for Picnic consists of a random secret key sk and the cor-
responding public key pk = F (sk), where F is a one-way function which can
be computed with a low number of non-linear binary gates [7]. To sign a mes-
sage m the signer then produces a non-interactive zero-knowledge proof of
knowledge of sk such that F (sk) = pk in a way that binds the message m to
the proof. These zero-knowledge proofs (whose security relies additionally only
on a secure commitment scheme) are constructed using the MPC-in-the-head
paradigm [17]. This results in a signature scheme whose signatures are 33 KB
large for 128 bits of security. Later, Katz et al. developed Picnic2 [19], which
reduces the signature size to only 14 KB by moving from a 3-party MPC pro-
tocol in the honest majority setting to an n-party protocol with preprocessing
secure in the dishonest majority setting. However, this increased number of
parties slows down the signing and verification algorithms. Picnic and Picnic2
are round 2 candidates in the NIST project [27]. To study the effect of selecting
a different function F , Delpech de Saint Guilhem et al. constructed the BBQ
scheme using MPC protocols for arithmetic secret sharing to base the signa-
tures on the security of the AES algorithm instead of the less scrutinized block
cipher LowMC [24].

Contributions. In this work we propose to use the Legendre PRF [9], denoted
by LK(·), as one-way function, instead of LowMC or AES. The Legendre PRF
is a promising alternative since it can be computed very efficiently in the MPC
setting [15]. However, a major limitation of the Legendre PRF is that it only
produces one bit of output, which means that the public key should consist
of many PRF evaluations LK(i1), . . . ,LK(iL), at some fixed arbitrary list I =
(i1, · · · , iL) of L elements of Fp, to uniquely determine the secret key K. Hence,
the zero-knowledge proof needs to prove knowledge of a value K ′ such that
LK′(i) = LK(i) for all i ∈ I simultaneously, which results in prohibitively

2
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large signatures. Luckily, we can relax the relation to overcome this problem.
Instead of proving that the signer knows a K ′ such that LK′(i) = LK(i) for all
i ∈ I, we let a prover prove knowledge of a K ′ such that this holds for a large
fraction of the i in I. We show that the relaxed statement allows for a much
more efficient zero-knowledge proof. This allows us to establish LegRoast, an
MPC-in-the-head based scheme with a signature size of 12.2 KB and with much
faster signing and verification algorithms than the Picnic2 and BBQ schemes.
To further improve the efficiency of LegRoast, we propose to use higher-power
residuosity symbols instead of just the quadratic one (i.e. the Legendre symbol)
in a second scheme called PorcRoast. This results in signatures that are only
6.3 KB large and in signing and verification times that are twice faster than
LegRoast.

A comparison between the signature size and signing time of LegRoast and
PorcRoast versus existing signatures based on symmetric primitives (Picnic [27]
and SPHINCS+ [16]) is shown in Figure 1. Even though LegRoast and Porc-
Roast do not have an AVX optimized implementation yet, we see that LegRoast
has faster signing times than both Picnic and SPHINCS+, and that PorcRoast
is even faster than LegRoast. We conclude that PorcRoast is the most effi-
cient post-quantum signature scheme based on symmetric primitives in terms
of signature size and signing time.

However, note that there are several other branches of post-quantum signa-
tures, such as lattice-based (e.g. Dilithium and Falcon [12,21,23]), Multivariate
signatures (e.g., Rainbow, LUOV, MQDSS, MUDFISH [11,10,5,6,25,2]) and
isogeny-based signatures (e.g. CSI-FISH [4]), some of which result in more ef-
ficient signature schemes.

Roadmap. After some preliminaries in Section 2, we introduce a relaxed PRF
relation in Section 3. We then sketch an identification scheme in Section 4 which
we formalize as a signature scheme in Section 5. We finally discuss parameter
choices and implementation results in Section 6.

2 Preliminaries - the Legendre and power residue PRFs

For an odd prime p the Legendre PRF is conjectured to be a pseudorandom
function family, indexed by a key K ∈ Zp, such that LK takes as input an
element a ∈ Fp and outputs the bit

LK(a) =

⌊
1

2

(
1−

(
K + a

p

))⌋
∈ Z2,

3
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Fig. 1. Signature sizes and timings of post-quantum signature schemes based only on
symmetric primitives.

where (ap ) ∈ {−1, 0, 1} denotes the quadratic residuosity symbol of a mod p. We

note that the function LK above is defined such that L0(a · b) = L0(a) +L0(b)
for all a, b ∈ F×p . (Note also that LK(a) = L0(K + a).)

The seemingly random properties of quadratic residues have been the subject
of study for number theorists at least since the early twentieth century, which
is why Damg̊ard proposed to use this construction in cryptography [9]. Since
then, the security of the Legendre PRF has been studied in several attack mod-
els. In the very strong model where a quantum adversary is allowed to query the
PRF in superposition, a key can be recovered in quantum polynomial time [8].
If the adversary is only allowed to query the PRF classically, there is a memo-
ryless classical attack that requires computing O(p1/2 log p) Legendre symbols
and making O(p1/2 log p) queries to the PRF [20]. Finally, if the adversary is
restricted to querying only L Legendre symbols, the best known attack requires
computing O(p log2 p/L2) Legendre symbols [3].

Damg̊ard also considers a generalisation of the Legendre PRF, where instead of

using the quadratic residue symbol (ap ) = a
p−1
2 mod p, the PRF uses the k-th

power residue symbol defined as (ap )k = a
p−1
k mod p, for some k that divides

p − 1. We define the power residue PRF, analogous to the Legendre PRF, as
the keyed function LkK : Fp → Zk, where for an odd prime p ≡ 1 mod k, LkK(a)

4
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is defined as

LkK(a) =

{
i if (a+K)/gi ≡ hk mod p for some h ∈ F×p
0 if (a+K) ≡ 0 mod p

,

where g is a fixed generator of F×p . We see that the function Lk0 is a homomor-
phism of groups from F×p to Zk.

Note that for k = 2, this notation coincides with the original Legendre PRF.
In this paper, we use the generic notation and we separate the k = 2 and k > 2
cases only in the experimental sections to highlight the advantages gained by
using k > 2. One advantage of the power residue PRF is that it yields log k
bits of output, instead of a single bit. The best known attack against the power
residue PRF in the setting where an attacker is allowed to query the PRF L
times requires computing O(p log2 p/(kL log2 k)) power residue symbols [3].

3 The (relaxed) power residue PRF relation

In this section, we define NP-languages RLk for the Legendre PRF (k = 2)
and higher power residue PRF (k > 2), which consist of the symbol strings of
outputs of the Lk PRF for a given set of inputs. We also define a relaxed version
of these languages RβLk , which consist of the strings that are very close (up to
addition by a scalar in Zk) to a word in RLk , where the Hamming distance dH
is used and β parameterizes the slack.

For properly chosen parameters, it follows from the Weil bound that the relaxed
version is as hard as the exact relation, but the relaxed relation will lead to much
more efficient signature schemes. To simplify notation, for a list I = (i1, · · · , iL)
of L arbitrary elements of Zp, we denote a length-L Legendre / k-th power
residue PRF as:

F kI : Fp → ZLk
K 7→ (LkK(i1), . . . ,LkK(iL)).

Definition 1 (Legendre / k-th power residue PRF relation). For an
odd prime p, a positive integer k | p − 1 and a list I of L elements of Zp we
define the Legendre / k-th power residue PRF relation RLk with output length
L as

RLk = {(F kI (K),K) ∈ ZLk × Fp | K ∈ Fp} .

5
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Definition 2 (β-approximate PRF relation). For β ∈ [0, 1], an odd prime
p, a positive integer k | p − 1 and a list I of L elements of Zp we define the
β-approximate PRF relation RβLk with output length L as

RβLk = {(s,K) ∈ ZLk × Fp | ∃a ∈ Zk : dH(s+ (a, . . . , a), F kI (K)) ≤ βL}

where dH(·, ·) denotes the Hamming distance.

It follows from the Weil bound for character sums that if β is sufficiently small
and L is sufficiently large, then the β-relaxed power residue relation is equally
hard as the exact power residue relation, simply because with overwhelming
probability over the choice of I = (i1, · · · , iL) every witness for the relaxed re-
lation is also a witness for the exact relation. The proof is given in Appendix A.

Theorem 1. Let B(n, q) denote the binomial distribution with n samples each
with success probability q. Take K ∈ Fp, and take s = F kI (K). Then with
probability at least 1 − kp · Pr

[
B(L, 1/k + 1/

√
p+ 2/p) ≥ (1− β)L

]
over the

choice of I, there exist only one witness for s ∈ RβLk , namely K, which is also
a witness for the exact relation RLk .

4 Identification scheme

In this section, we establish a Picnic-style identification scheme from the Leg-
endre / k-th power residue PRF. We first sketch a scheme very close to the
original Picnic construction [7] and gradually add more optimizations, pre-
senting each in turn. Even though the final goal is to construct a signature
scheme, we use the language of identification schemes in this section to relate
the scheme to existing constructions. We delay the security proof to the next
section, where we first apply the Fiat-Shamir transform [13] before we prove
that the resulting signature scheme is tightly secure in the ROM. The proof of
security of the interactive identification scheme presented here can be derived
from the one provided in the next section.

Starting point. To begin, we take the Picnic2 identification scheme and re-
place the LowMC block-cipher by the PRF F kI . The key pair is then sk = K
and pk = F kI (K) ∈ ZLk . From a high-level view, the protocol can be sketched
as in Figure 2 where the prover runs an MPC-in-the-head proof with N parties
on a secret sharing of K, to prove to the verifier that he knows K such that

6
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Secret Public

P : K

(
LkK(ij)

)
j∈[L]

MPC-
in-the-
head

Fig. 2. Picnic-stye identification scheme

Secret Public

P : K
V : {I(j)}Bj=1

(
LkK(I(j))

)
j∈[B]

MPC-
in-the-
head

Fig. 3. Checking only B symbols

((K+i1
p ), . . . , (K+iL

p )) is equal to the public key. We also use the more efficient

method recently proposed by Baum and Nof [1] based on sacrificing rather than
the cut-and-choose technique.

Relaxing the PRF relation. As a first optimization, rather than computing
all of the L residue symbols with the MPC protocol, we only check a fixed
number B of them. To do so, the verifier chooses random inputs I(1), . . . , I(B)

in I at which the Lk PRF is evaluated to check the witness. It is crucial that the
verifier sends his choice of I(j)s after the prover has committed to his sharing
of K, because if a malicious prover knows beforehand which symbols are going

to be checked, he can use a fake key K ′ such that (K
′+I(j)

p ) = pkI(j) only for

j ∈ [B]. This probabilistic method of selecting which circuit will be executed
with the MPC-in-the-head technique is similar to the “sampling circuits on the
fly” technique of Baum and Nof [1].

This is now an identification scheme for the β-approximate Legendre PRF
relation; a prover that convinces the verifier with probability greater than (1−
β)B + (1 − (1 − β)B)/N could be used to extract a β-approximate witness
following the formalism presented in [1, Section 4]. This protocol is sketched in
Figure 3.

Computing residue symbols in the clear. Since computing residue sym-
bols is relatively expensive, we avoid doing it within the MPC protocol. We
use an idea similar to that of Grassi et al. to make this possible [15]. First, we
let the prover create sharings of B uniformly random values r(1), . . . , r(B) ∈ F×p
and commit to their residue symbols by sending s(j) = Lk0(r(j)) to the verifier.
Then, the MPC protocol only outputs o(j) = (K + I(j))r(j). Since K + I(j) is
masked with a uniformly random value with known residue symbol, o(j) does

7
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not leak information about K (except for the residue symbol of K + I(j)).
The verifier then computes Lk0(o(j)) himself in the clear, and verifies whether
it equals pkI(j) + s(j). The correctness of this check follows from the facts that
Lk0 : F×p → Zk is a group homomorphism.

Note that the prover can lie about the values of s(j) = Lk0(r(j)) that he sends
to the prover. This is not an issue because he has to commit to these values
before the choice of I(j) is revealed. This is the reason why we defined K ′ to
be an β-approximate witness for pk if F kI (K ′) is close to pk = F kI (K) up to
addition by a scalar. This identification protocol is sketched in Figure 4.

Verifying instead of computing multiplications. Instead of using the
MPC protocol to compute the products o(j), the prover can just send these
products directly to verifier. We then use the MPC-in-the-head protocol to
instead verify that o(j) = (K + I(j)) · r(j) for all j ∈ [B]. A big optimization
here is that rather than verifying these B equations separately, it is possible to
just check a random linear combination of these equations:

After the prover sends the o(j) values, the verifier chooses random coefficients
λ(1), . . . , λ(B) for the linear combination. Then, the MPC protocol is used to
compute the error term E defined as

E =

B∑

j=1

λ(j)
(

(K + I(j))r(j) − o(j)
)

= K ·
B∑

j=1

λ(j)r(j) +

B∑

j=1

λ(j)(I(j)r(j) − o(j)).

Clearly, if all the o(j) are correct, then E = 0. Otherwise, if one or more of the
o(j) are wrong, then E will be a uniformly random value. Therefore, checking if
E = 0 proves to the verifier that all the o(j) are correct, with a soundness error
of 1/p. Moreover, since the λ(j), o(j) and I(j) are public values, we see that E
can be computed with only a single nonlinear operation! This means we can
compute E extremely efficiently in MPC. The identification scheme with this
final optimization is sketched in Figure 5.

We note that a single execution of the interactive identification scheme is not
enough to achieve negligible soundness error (e.g. the prover has probability
1/N to cheat in the MPC verification protocol). To resolve this, M executions
must be run in parallel.

8
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Secret Public

P : K, {r(j)}Bj=1

V : {I(j)}Bj=1

(
(K + I(j))r(j)

)
j∈[B]

MPC-
in-the-
head

Fig. 4. Computations in the clear.

Secret Public

P : K, {r(j)}Bj=1

V : {I(j)}Bj=1

P : {o(j)}Bj=1

V : {λ(j)}Bj=1

E

MPC-
in-the-
head

Fig. 5. The final scheme.

5 LegRoast and PorcRoast signature schemes

We now formalize the signature schemes LegRoast (with k = 2) and PorcRoast
(with k > 2) which are constructed from the identification scheme of Section 4
with the Fiat-Shamir transform [13], by generating the challenges using three
random oracles H1,H2 and H3. The message is combined with a 2λ-bit salt
and bound to the proof by hashing it together with the messages of the prover.

Parameters. Our new signature schemes are parametrized by the following
values. Let p be a prime number and let k ≥ 2 be an integer such that k | p−1.
Let L be an integer determining the length of the public key, I a pseudo-
randomly chosen list of L elements of Zp and let B ≤ L denote the number of
k-th power residue symbols in the public key that will be checked at random.
Let N denote the number of parties in the MPC verification protocol and
let M denote the number of parallel executions of the identification scheme.
These values are grouped under the term params.

Key generation, signing and verifying. The KGen(1λ, params) algorithm sam-

ples sk = K
$←− Fp uniformly at random and computes the public key pk =

F kI (K). The Sign(params, sk,m) algorithm, for message m ∈ {0, 1}∗ is presented
in Figure 6. The Vf(params, pk,m, σ) algorithm is presented in Figure 7.

Security. The EUF-CMA security [14] of the LegRoast and PorcRoast signature
schemes follows from a tight reduction from the problem of finding a witness for
the RβLk -relation, which is equally hard as a key recovery on the power residue
PRF for our parameters. The proof of Theorem 2 is included in Appendix B.
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Theorem 2. In the classical random oracle model, the LegRoast and Porc-
Roast signature schemes defined as above are EUF-CMA-secure under the as-
sumption that computing β-approximate witnesses for a given public key is hard.

6 Parameter choices and implementation

This section shows how to choose secure parameters for the LegRoast and
PorcRoast signature schemes, and what the resulting key and signature sizes
are. We also go over some of the implementation details and the performance
of our implementation.

6.1 Parameter choices

Choosing p, L and I. We choose p and L such that the problem of finding
a β-approximate witness for the PRF relation has the required security level.
To do this, we first choose p and L such that the problem of recovering the
exact key from L symbols of output is hard. For our proposed parameters we
choose L such that the public key size is 4KB, (i.e. L = 32768/ log(k)). Different
trade-offs are possible (see remark 1). Then, we set β such that

k · p · Pr[B(L, 1/k + 1/
√

(p) + 2/p) > (1− β)l] ≤ 2−λ .

With this choice, Theorem 1 says that with overwhelming probability, finding a
β-approximate key is equivalent to finding the exact key. Section 2 gives a short
overview of attacks on the Legendre PRF for various attack models. However,
in the setting of attacking LegRoast and PorcRoast, the adversary is restricted
even more than in the weakest attacker model considered in the literature: an
attacker learns only a few evaluations of the Legendre PRF on pseudorandom
inputs over which the attacker has no control. If the L inputs are chosen at
random, the best known attack is a brute force search which requires computing
O(p/k) power residue symbols, and the attack complexity becomes independent
of L. For Legroast, we propose to use a prime p of size roughly 2λ, where λ
is the required security level. We choose the Mersenne prime p = 2127 − 1 to
speed up the arithmetic. For PorcRoast, we use the same prime and k = 254
such that a power residue symbol can efficiently be represented by a single
byte. For k > 2, computing a power residue symbol corresponds to a modular
exponentiation, which is much more expensive than an AES operation, so even

10
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Sign(params, sk,m) :
Phase 1: Commitment to sharings of K, randomness and triples

1: Pick a random salt: salt← {0, 1}2λ.
2: for e from 1 to M do
3: Sample a root seed: sde

$←− {0, 1}λ.
4: Build binary tree from sde with leaves sde,1, . . . , sde,N .
5: for i from 1 to N do
6: Sample shares: Ke,i, r

(1)
e,i , . . . , r

(B)
e,i , ae,i, be,i, ce,i ← Expand(sde,i).

7: Commit to seed: Ce,i ← Hsd(salt, e, i, sde,i).

8: Compute witness offset: ∆Ke ← K −∑N
i=1 Ke,i.

9: Adjust first share: Ke,1 ← Ke,1 +∆Ke.
10: Compute triple: ae ←

∑N
i=1 ae,i, be ←

∑N
i=1 be,i and ce ← ae · be.

11: Compute triple offset: ∆ce ← ce −
∑N
i=1 ce,i.

12: Adjust first share: ce,1 ← ce,1 +∆ce.
13: for j from 1 to B do
14: Compute residuosity symbol: s

(j)
e ← Lk0(r

(j)
e ) where r

(j)
e ←

∑N
i=1 r

(j)
e,i .

15: Set σ1 ← ((Ce,i)i∈[N ], (s
(j)
e )j∈[B],∆Ke,∆ce)e∈[M ].

Phase 2: Challenge on public key symbols

1: Compute challenge hash: h1 ← H1 (m, salt, σ1).

2: Expand hash: (I
(j)
e )e∈[M ],j∈[B] ← Expand(h1), where I

(j)
e ∈ I.

Phase 3: Computation of output values

1: for e from 1 to M and for j from 1 to B do
2: Compute output value: o

(j)
e ← (K + I

(j)
e ) · r(j)

e .

3: Set σ2 ← (o
(1)
e , . . . , o

(B)
e )e∈[M ].

Phase 4: Challenge for sacrificing-based verification

1: Compute challenge hash: h2 ← H2 (h1, σ2).

2: Expand hash (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2), where εe, λ

(j)
e ∈ Zp.

Phase 5: Commitment to views of sacrificing protocol

1: for e from 1 to M do
2: for i from 1 to N do
3: Compute shares: αe,i ← ae,i + εeKe,i and βe,i ← be,i +

∑B
j=1 λ

(j)
e r

(j)
e,i .

4: Compute values: αe ←
∑N
i=1 αe,i and βe ←

∑N
i=1 βe,i.

5: for i from 1 to N do
6: Compute product shares: ze,i ←

∑B
j=1−λ

(j)
e r

(j)
e,i I

(j)
e .

7: if i
?
= 1 then ze,i ← ze,i +

∑B
j=1 λ

(j)
e o

(j)
e .

8: Compute check value shares: γe,i ← αebe,i + βeae,i − ce,i + εeze,i.

9: Set σ3 ← (αe, βe, (αe,i, βe,i, γe,i)i∈[N ])e∈[M ].

Phase 6: Challenge on sacrificing protocol

1: Compute challenge hash h3 ← H3 (h2, σ3).
2: Expand hash (̄ie)e∈[M ] ← Expand(h3), where īe ∈ [N ].

Phase 7: Opening the views of sacrificing protocol

1: for e from 1 to M do
2: seedse ← {log2(N) nodes in tree needed to compute sde,i for i ∈ [N ] \ ī}.
3: Output: σ = (salt, h1, h3, (∆Ke,∆ce, o

(1)
e , . . . , o

(B)
e , αe, βe, seedse,Ce,̄ie)e∈[M ]).

Fig. 6. Signature scheme from proof of knowledge of k-th power residue PRF pre-
image.
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Vf(params, pk,m, σ):

1: Parse σ = (salt, h1, h3, (∆Ke,∆ce, o
(1)
e , . . . , o

(B)
e , αe, βe, seedse,Ce,̄ie)e∈[M ]).

2: Compute h2 ← H2(h1, (o
(j)
e )e∈[M ],j∈[B]).

3: Expand challenge hash 1: (I
(1)
e , . . . , I

(B)
e )e∈[M ] ← Expand(h1), where I

(j)
e ∈ I.

4: Expand challenge hash 2: (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2).

5: Expand challenge hash 3: (̄ie)e∈[M ] ← Expand(h3).
6: for e from 1 to M do
7: Use seedse to compute sde,i for i ∈ [N ] \ īe.
8: for i from 1 to īe − 1 and from īe + 1 to N do
9: Sample shares: Ke,i, r

(1)
e,i , . . . , r

(B)
e,i , ae,i, be,i, ce,i ← Expand(sde,i).

10: if i
?
= 1 then

11: Adjust shares: Ke,i ← Ke,i +∆Ke and ce,i ← ce,i +∆ce.

12: Recompute commitments: C∗e,i ← H(salt, e, i, sde,i)

13: Recompute shares: α∗e,i ← ae,i+εeKe,i and β∗e,i ← be,i+
∑B
j=1 λ

(j)
e r

(j)
e,i .

14: Recompute product shares: ze,i ←
∑B
j=1−λ

(j)
e r

(j)
e,i I

(j)
e .

15: if i
?
= 1 then

16: ze,i ← ze,i +
∑B
j=1 λ

(j)
e o

(j)
e .

17: Recompute check value shares: γ∗e,i ← αebe,i + βeae,i − ce,i + εeze,i.

18: Compute missing shares: α∗e,̄ie ← αe −
∑
i 6=ī α

∗
e,i and β∗e,̄ie ← βe −∑

i6=ī β
∗
e,i.

19: Compute missing check value share: γ∗e,̄ie = αeβe −
∑
i 6=ī γ

∗
e,i.

20: for j from 1 to B do
21: Recompute residuosity symbols: s

(j)∗
e ← Lk0(o

(j)
e )− pk

I
(j)
e

.

22: Check 1: h1
?
= H1(m, salt, ((C∗e,i)i∈[N ], (s

(j)∗
e )j∈[B],∆Ke,∆ce)e∈[M ])

23: Check 2: h3
?
= H3(h2, (αe, βe, (α

∗
e,i, β

∗
e,i, γ

∗
e,i)i∈[N ])e∈[M ])

24: Output accept if both checks pass.

Fig. 7. Verifying algorithm for LegRoast and PorcRoast.

though an attacker has on average only to compute 2127/k ≈ 2119 power residue
symbols, we claim that this still provides approximately 128-bits of security. We
stress that the quantum polynomial-time key recovery attack on the Legendre
PRF does not apply on our scheme, because the adversary can not make queries
to the instance of the Legendre PRF (and certainly no quantum queries) [8].

Choosing B, N and M . Our security proof shows that, unless an attacker
can produce a β-approximate witness, his best strategy is to query H1 on many
inputs and then choose the query for which

Lk0((Ke + I(j)
e )r(j)

e ) = s(j)
e + pk

I
(j)
e

for all j ∈ [B]
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holds for the most executions. Say this is the case for M ′ out of M execu-
tions. He then makes one of the parties cheat in the MPC protocol in each of
the M −M ′ remaining executions and queries H3 in the hope of getting an
output {̄ie}e∈[M ] that asks him to open all the other non-cheating parties; i.e.
the attacker attempts to guess īe for each e. This succeeds with probability
N−M+M ′ .

Therefore, to achive λ bits of security, we take parameters B,N = 2n and M
such that

min
M ′∈{0,...,M}

(
Pr[B(M, (1− β)B) ≥M1]−1 +NM−M ′

)
≥ 2λ , (1)

which says that for each value of M ′, the adversary is expected to do at least
2λ hash function evalutations for the attack to succeed. To choose parameters,
we fix N to a certain value and compute which values of B and M minimize
the signature size while satisfying Equation (1). The choice of N controls a
trade-off between signing time and signature size. If N is large, the soundness
error will be small, which results in a smaller signature size, but the signer and
the verifier need to simulate an MPC protocol with a large number of parties,
which is slow. On the other hand, if N is small, then the signature size will
be larger, but signing and verifying will be faster. Some trade-offs achieving
128-bits of security for LegRoast and PorcRoast are displayed in Table 1.

Remark 1. The parameter L controls a trade-off between public key size and
signature size. For example, we can decrease the public key size by a factor 8
(to 0.5KB), at the cost of an increase in signature size by 21% (to 7.6 KB).
(L = 512, k = 254, β = 0.871, n = 256, B = 10,M = 20).

Parameters Signature Size Signing time
N M B (KB) (ms)

LegRoast 16 54 9 16.0 2.8
k = 2 64 37 12 13.9 6.0

β = 0.449 256 26 16 12.2 15.7

PorcRoast 16 39 4 8.6 1.2
k = 254 64 27 5 7.2 2.8
β = 0.967 256 19 6 6.3 7.9

Table 1. Parameter sets for LegRoast and PorcRoast for NIST security level I. For
all parameter sets we have p = 2127 − 1, a secret key size of 16 Bytes and a public
key size of 4 KB (L = 32768 and 4096 for LegRoast and PorcRoast respectively). The
verification time is similar to the signing time.
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6.2 Implementation

In our implementation, which is publicly available at

https://github.com/WardBeullens/LegRoast.

we replace the random oracles and the Expand function by the SHA-3 and
SHAKE128 hash functions. The signing algorithm can easily be implemented
in a constant time manner, except for computing Legendre symbols, which
when implemented with the usual GCD strategy, leaks timing information on
its argument. Therefore, in our implementation, we chose to adopt the slower
approach of computing Legendre symbols as an exponentiation with fixed ex-
ponent (p − 1)/2, which is can be implemented in constant time more easily.
Higher-power residue symbols are also calculated as an exponentiation with
fixed exponent (p − 1)/k. The signing-time of our implementation, measured
on an Intel i5-8400H CPU, running at 2.50GHz, is displayed in Table 1.
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A Proof of theorem 1

We will use the following version of the Weil bound for character sums [18].

Theorem 3. Let p be a prime and χ a non-trivial multiplicative character
of F×p of order d > 1. If f ∈ Fp[X] has m distinct roots and is not a d-th
power, then ∣∣∣∣∣∣

∑

x∈Fp
χ (f(x))

∣∣∣∣∣∣
≤ (m− 1)

√
p .

The following lemma immediately follows:

Lemma 1. Let p be a prime and k | p− 1. For any K 6= K ′ ∈ Fp and a ∈ Zk,
let IK,K′,a be the set of indices i such that Lk(K + i) = Lk(K ′ + i) + a. Then
we have

p

k
−√p− 1 ≤ #IK,K′,a ≤

p

k
+
√
p+ 2 .

Proof. Let χ : F×p → Zp be the restriction of Lk to F×. Note that (unlike Lk)

χ is a group homomorphism. Define f(i) = (i + K)(i + K ′)k−1 and let φ(a)

16



142 LEGROAST AND PORCROAST

be the number of i such that i + K and i + K ′ are non-zero and χ(f(i)) = a.

Clearly we have φ(a) ≤ #IK,K′,a ≤ φ(a) + 2. Let φ̂ : Ẑk → C be the fourier
transform of φ. Then we have

φ̂(ρ) =
∑

a∈Zk
ρ(a)φ(a) =

∑

a∈Zk
ρ(a)

∑

i∈Fp,i6=K,i 6=K′

{
1 if χ(f(i)) = a

0 otherwise

=
∑

i∈Fp,i6=K,i6=K′
ρ ◦ χ(f(i))

Observe that ρ ◦ χ is a multiplicative character of F×p , and that ρ ◦ χ is trivial

if and only if ρ is trivial. Clearly φ̂(1) = p − 2, and for non-trivial ρ, the Weil

bound says that |φ̂(ρ)| ≤ √p. Therefore, if follows from the inverse Fourier
trasnform formula that

φ(a) =
1

|Zk|
∑

ρ∈Ẑk

ρ(a)φ̂(ρ) ≤ p− 2

k
+
k − 1

k

√
p ≤ p

k
+
√
p .

and similarly that p
k −
√
p− 1 ≤ φ(a). ut

Now we can prove Theorem 1.

Proof. Accurding to lemma 1, For any K ′ 6= K and a ∈ Zk, for a uniformly
random set of inputs I, the distance dH(F kI (K ′) + (a, . . . , a), s) is distributed
as B(L, 1 − α), for some α ∈ [1/k − 1√

p − 1
p , 1/k + 1√

p + 2
p ]. Therefore, the

probability that for a tuple (K ′, a) we have dH(F kI (K ′) + (a, . . . , a), s) ≤ βL is
at most

Pr[B(L, 1/k +
1√

p+ 2/p
) > (1− β)L] .

Since there exists only (p − 1)k possibile values for (K ′, a), the probability
that there exists a non-trivial witness for the β-relaxed relation is at most
Pr[B(L, 1/k + 1√

p+2/p ) > (1− β)L](p− 1)k. ut

B Security proof

To prove Theorem 2, we first reduce the EUF-KO security to the β-approximate
PRF relation (Lemma 2); we then reduce the EUF-CMA security to the EUF-
KO security (Lemma 3). For two real random variables A,B, we write A ≺ B
if for all x ∈ (−∞,+∞) we have Pr[A > x] ≤ Pr[B > x].
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Lemma 2 (EUF-KO security). Let Hsd,H1,H2 and H3 be modeled as ran-
dom oracles and fix a constant β ∈ [0, 1]. If there exists a PPT adversary A
that makes qsd, q1, q2 and q3 queries to the respective oracles, then there exists a
PPT B which, given pk = F kL(K) for a random K ∈ Fp outputs a β-approximate

witness for pk with probability at least AdvEUF-KO
A (1λ)− e(qsd, q1, q2, q3), with

e(qsd, q1, q2, q3) =
MN(qsd + q1 + q2 + q3)2

22λ
+ Pr[X + Y + Z = M ] ,

where X = max(X1, . . . , Xq1), Y = max(Y1, . . . , Yq2) and Z = max(Z1, . . . , Zq3),
the Xi are i.i.d as B(M, (1− β)B), the Yi are i.i.d. as B(M −X, 2

p ) and the Zi

are i.i.d. as B(M −X − Y, 1
N ).

Proof. The algoritm B receives a statement s = F kL(K) and forwards it to A as
pk. Then, B simulates the random oracles Hsd,H1,H2 and H3 by maintaining
initially empty lists of querries Qsd,Q1,Q2,Q3. Moreover, B keeps initially
empty tables Ts, Ti and To for shares, inputs, and openings. If A queries one
of the random oracles on an input that it has queried before, B responds as
before; otherwise B does the following:

– Hsd: On new input (salt, sd), B samples x
$←− {0, 1}2λ. If x ∈ BadH, then B

aborts. Otherwise, B adds x to BadH , ((salt, sd), x) to Qsd and returns x.

– H1: On new inputQ = (m, salt, σ1), with σ1 = ((Ce,i)i∈[N ], (s
(j)
e )j∈[B], ∆Ke,

∆ce)e∈[M ]), then B adds Ce,i to BadH for all e ∈ [M ] and i ∈ [N ]. For any
(e, i) ∈ [M ] × [N ] for which there exist sde,i such that ((salt, sde,i),Ce,i) ∈
Qsd define

ke,i, ae,i, be,i, ce,i, r
(1)
e,i , · · · , r

(B)
e,i ← Expand(sde,i) for all j ∈ [N ]

and add Ts[Q, e, i] = (ke,i, ae,i, be,i, ce,i, r
(1)
e,i , . . . , r

(B)
e,i )j∈[N ]. If Ts[Q, e, i] is

defined for all i ∈ [N ] for some e ∈ [M ], then we define

(ke, ae, be, ce, r
(1)
e , . . . , r(B)

e )←
∑

i∈[N ]

(ke,i, aei , be,i, ce,i, r
(1)
e,i , . . . , r

(B)
e,i )

(ke, ce)← (ke +∆ke, ce +∆ce)

and add Ti[Q, e] = (ke,i, aei , be,i, ce,i, r
(1)
e,i , . . . , r

(B)
e,i ). Finally, B samples x

$←−
{0, 1}2λ. If x ∈ BadH then abort. Otherwise, B adds (Q, x) to Q1 and x to
BadH and returns x.

– H2: On new input Q = (h1, σ2), where σ2 = (o
(j)
e )e∈[M ],j∈[B], B adds h1

to BadH and samples x
$←− {0, 1}2λ. If x ∈ BadH then abort. Otherwise, B

18



144 LEGROAST AND PORCROAST

adds (Q, x) to Q2 and x to BadH. If there exists (Q1, h1) ∈ Q1, then B does

the following: let (εe, λ
(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(x). For each e ∈ [M ]

such that Ti(Q1, e) is defined, compute

αe = ae + εeke, βe = be +
∑

j∈[B]

λ
(j)r(j)e
e and

γe = −ce + αebe + βeae + εi
∑

k∈[B]

λ
(k)
i (o(j)

e − I(j)
e r(j)

e )

and add To[Q2, e] = (αe, βe, γe). Finally B returns x.

– H3: On new input Q = (h2, σ3), B adds h2 to BadH and samples x
$←−

{0, 1}2λ. If x ∈ BadH then B aborts. Otherwise, B adds (Q, x) to Q3, x to
BadH and returns x.

When A terminates, B goes through Ti and for each (Ke, . . . ) ∈ Ti, B checks
if Ke is a β-approximate witness. If it is, then B outputs Ke. If no entry in Ti
contains a witness, B outputs ⊥. Clearly, if A runs in time T , then B runs in
time T +O(qsd + q1 + q2 + q3).

In the rest of the proof, we show that if A wins the EUF-KO game with
probability ε, then B outputs a β-approximate witness with probability at least
ε− e(qsd, q1, q2, q3) as defined in the statement of Lemma 2.

Cheating in the first phase. Let (Qbest1 , hbest1) ∈ Q1 be the “best” query-
response pair that A received from H1, by which we mean the pair that max-

imizes #G1((Q, h)) over all (Q, h) ∈ Q1, where G1(Q, h = {I(j)
e }e∈[M ],j∈[B]) is

defined as the set of “good executions” e ∈ [M ] such that Ti(Q, e) is defined
and

Lk((Ke + I(j)
e )r(j)

e ) = s(j)
e + pk

I
(j)
e

for all j ∈ [B]. (2)

We show that, if B outputs ⊥, then the number of good indices is bounded.
More precicely, we prove that #G1(σbest1 , hbest1)|⊥ ≺ X, where X is as defined
in the statement of Lemma 2.

Indeed, for each distinct query to H1 of the form Q = (m, salt, σ1), with

σ1 = ((Ce,i)i∈[N ], (s
(j)
e )j∈[B], ∆Ke, ∆ce)e∈[M ]) and for all e ∈ [M ], let β

(j)
e (Q) =

dH(F kL(Ke)+(Lk(r
(j)
e ), . . . ,Lk(r

(j)
e )), s

(j)
i +pk) if Ti(Q, e) is defined and β

(j)
e (Q) =

1 otherwise. The event ⊥ implies that none of the Ke in Ti is a β-approximate

witness, which means that β
(j)
e (Q) > β for all Q ∈ Q1, e ∈ [M ] and j ∈ [B].
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Since the response h = {I(j)
e }e∈[M ],j∈[B] is uniform, the probability that for

a certain e, Equation (2) holds is
∏
k∈[B](1 − β

(k)
i ) ≤ (1 − β)B . Therefore,

we have that #G1(Q, h)|⊥ ≺ XQ, where XQ ∼ B(M, (1 − β)B). Finally, since
G1(Qbest1 , hbest1) is the maximum over at most q1 values of G1(Q, h), it follows
that #G1(Qbest1 , hbest1)|⊥ ≺ X, with X as in the statement of Lemma 2.

Cheating in the second round. We now look at the best query-response pair
(Qbest2 , hbest2) that A received from H2. This is the pair for which #G2(Q2, h2)

is maximum, where G2(Q2 = (h1, (o
(j)
e )e∈[M ],j∈[B]), h2) is the set of “good”

executions defined as follows: if there exists no Q1, such that (Q1, h1) ∈ Q1,
then all indices are bad (because this query can not lead to a valid signature).

Otherwise, let Q1 = (m, salt, ((Ce,i)i∈[N ], (s
(j)
e )j∈[B], ∆Ke, ∆ce)e∈[M ])). If there

exist (e, j) ∈ [M ]× [B] such that

Lk(o(j)
e ) 6= s(j)

s + pk
I
(j)
e
, (3)

then this query can also not result in a valid signature, so we define G2(Q2, h2) =
{}. Otherwise, we say G2(Q2, h2) is the set of executions e ∈ [M ] for which
To[Q2, e] = (αe, βe, γe) is defined and such that αeβe = γe.

Again, we prove that in the case that B outputs ⊥, the number of good indices is
bounded: #G2(Qbest2 , hbest2)|⊥ ≺ X+Y, where Y is defined as in the statement
of Lemma 2.

Note that for fixed ae, be, ce,Ke, r
(1)
e , . . . , r

(B)
e and o

(1)
e , . . . , o

(B)
e the function

αe(εe)βe(λ
(j)
e )−γe(εe, λ(j)

e ) is a quadratic polynomial in εe, λ
(1)
e , . . . , λ

(B)
e . More-

over, this is the zero-polynomial if and only if ce = aebe and o
(j)
e = (Ke +

I
(j)
e )r

(j)
e for all j ∈ [B].

LetQ = (h1, {o(j)
e }e∈[M ],j∈[B]) be a query toH2. If there exists no (Q1, h1) ∈ Q1

then G2(Q, h2) = {} with probability 1. Otherwise, either e 6∈ G1(σ1, h1), then

either o
(j)
e = (Ke+I

(j)
e )r

(j)
e for all (e, j) ∈ [M ]× [B], in which case Equation (3)

does not hold, so G2(Q, h2) = {} with probability 1, or o
(j)
e 6= (Ke+I

(j)
e )r

(j)
e for

some j ∈ [B] in which case αeβe − γe is a non-zero quadratic polynomial in εe
and λ

(j)
e , so the Schwartz-Zippel lemma says that for a uniformly random choice

of h2 = {εe, λ(j)
e }e∈[M ],j∈[B] ∈ FM(1+B)

p the probability that e ∈ G2(Q2, h2) is at
most 2/p. Therefore, we have that #G2(σ2, h2)|#G1(σ1,h1)=M ′1

≺M1+Y ′Q, where
Y ′q ∼ B(M −M ′1, 2/p). Since for integers a ≤ b and p ∈ [0, 1] we have B(b, p) ≺
a+B(b−a, p), this implies that #G2(σ2, h2)|#G1(statebest,1)=M1

≺M1+YQ, where
YQ ∼ B(M −M1, 2/p). Since #G2(statebest,2) is the maximum over at most q2
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values of #G2(state) it follows that #G2(statebest,2)|M1=#G1(statebest,1) ≺M1 +Y.
Finally, by conditioning on ⊥ and summing over all M1, we get

#G2(statebest,2)|⊥ ≺ #G1(statebest,1)|⊥ + Y ≺ X + Y.

Cheating in the third round. Finally, we can bound the probability that A wins
the EUF-KO game, conditioned on B outputting ⊥. Without loss of generality,
we can assume that A outputs a signature σ such that, if Q1, Q2 and Q3 are the
queries that the verifier makes to H1,H2 and H3 to verify σ, then A has made
these queries as well. (If this is not the case, then we can define A′ that only
outputs a signature after running the verification algorithm on A’s output.)
Now, for each query Q = (h2, ({αe, βe}e∈M , {αe,i, βe,i, γe,i}e∈[M ],i∈[N ])) that A
makes to H3, we study the probability that this leads A to win the EUF-KO

game. If there does not exist Q′ = (o
(j)
e )e∈[M ],j∈[B] such that (Q′, h2) ∈ Q2

then this query cannot result in a win for A, because A would need to find
such a Q′ at a later point, and B would abort if this happens. Take e ∈ [M ] \
G2(Q′, h2), then either e 6∈ G2(Q′, h2) because there exists (e′, j) ∈ [M ] × [B]

such that `ko
(j)
e′ 6= s

(j)
e′ + pk

I
(j)

e′
, in which case, independent of h3, σ4, we have

that Vf(σ) = 0. Or otherwise e 6∈ G2(Q′, h2) because αe, βe and γe are not
defined or αeβe 6= γe. In this case, the query can only result in a win if exactly
N − 1 of the parties “behave honestly” in the MPC protocol. By this we mean
that for exactly N−1 values of i ∈ [N ] we have that there exists sde,i such that

(sde,i,Ce,i) ∈ Qsd and, if we put Ke,i, ae,i, be,i, ce,i, {r(j)
e,i }j∈[B] = Expand(sde,i),

then

αe,i = ae,i + εeKe,i, βe,i = be,i +
∑

k

λ(j)
e r

(j)
e,i ,

γe,i = −ce,i + αebe,i + βeae,i + εe
∑

j∈[B]

λ(j)
e (o(j)

e − I(j)
e r

(j)
e,i ).

Indeed, if there are less than N−1 honest parties, σ4 cannot reveal N−1 honest
views. In contrast if all the N parties act honestly, then we have γe 6= αeβe,
so the signature verification will also fail. The state (σ1, h1, σ2, h2, σ3) can only
result in a win if h3 = {ie}e∈N is such that ie is the index of the dishonest
party. Since h3 ∈ [N ]M is chosen uniformly at random, the probability that
this happens for all the e 6∈ G2(Q, h3) is

(
1

N

)M−#G2(Q′,h2)

≤
(

1

N

)M−#G2(Qbest,2,hbest,2)

.

The probability that this happens for at least one of the at most q3 queries is

Pr[AWins|#G2(statebest,2) = M2] ≤ 1−
(

1−
(

1

N

)M−M2
)q3

.
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Conditioning on B outputting ⊥ and summing over all values of M2 yields

Pr[AWins | ⊥] ≤ Pr[X + Y + Z = M ] .

To conclude. We now show that if A wins the EUF-KO game with probabil-
ity ε, then B outputs a β-approximate witness with probability ε−e(qsd, q1, q2, q3).
Indeed, B either aborts outputs ⊥ or outputs a β-approximate witness. The
reduction B only aborts if one of the random oracles outputs one of the at most
qsd +MNq1 + q2 + q3 bad values. Therefore, we have

Pr[ E aborts ] ≤ MN(qsd + q1 + q2 + q3)2

22λ
.

By the law of total probability we have

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ ⊥]

+ Pr[A wins ∧ B outputs witness]

≤ Pr[B aborts] + Pr[A wins |⊥] + Pr[B outputs witness]

≤ e(qsd, q1, q2, q3) + Pr[B outputs witness].

Lemma 3. Modeling the commitment scheme as a random oracle, if there is
an adversary A that wins the EUF-CMA security game against LegRoast with
advantage ε, then there exists an adversary B that, given oracle access to A, and
with a constant overhead factor, wins the EUF-KO security game agains Leg-

Roast with probability at least ε− qs(qs+q3)
22λ − qsd

2λ
, where qs, qsd and q3 are the

number of queries that A makes to the signing oracle, Hsd and H3 respectively.

Proof. Let A be an adversary against the EUF-CMA security of LegRoast, we
construct an adversary B against its EUF-KO security. When B is run on input
pk, it starts A also on input pk. We first describe how B deals with random
oracle queries and signature queries, then argue that its signature simulations
are indistinguishable from real ones, and finally show that EUF-KO security
implies EUF-CMA security.

Simulating random oracles. For each random oracle B maintains a table of
input output pairs. When A queries one of the random oracles, B first checks if
that query has been made before. If this is the case, B responds to A with the
corresponding recorded output. If not, B returns a uniformly random output
and records the new input-output pair in the table.

22
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Signing oracle simulation. When A queries the signing oracle, B simulates a
signature σ by sampling a random witness and cheating in the MPC verifi-
cation phase to hide the fact it has sampled the witness as random. It then
programs the last random oracle to always hide the party for which it has
cheated. Formally, B simulates the signing oracle as follows:

1. To simulate σ1, B follows Phase 1 as in the scheme with one difference:
For each e ∈ [M ], it samples ∆Ke uniformly, effectively sampling Ke at
random. B aborts if it picked a salt that was used in one of the earlier
simulated signatures.

2. B simulates the random oracle to obtain h1 ← H1(m, salt, σ1).

3. To simulate σ2, B samples o
(j)
e ∈ F∗p for each j ∈ [B] and e ∈ [M ] in such a

way that Lk(o
(j)
e )− s(j)

e = pk
I
(j)
e

.

4. B simulates the random oracle to obtain h2 ← H2(h1, σ2).
5. To simulate σ3, B must cheat during the sacrificing protocol to ensure that
γe = αeβe for all executions. To do so, for each e ∈ [M ], B first samples
īe ∈ [N ] at random. Then it computes Phase 5 honestly except for γe,̄ie ;
for that value, it instead sets γe,̄ie ← αeβe −

∑
i6=īe γe,i. Finally it sets σ3

as in the scheme using the alternative γe,̄ie value.
6. If (h2, σ3) has already been queried to H3, then B aborts. If not, B sets
h3 = (̄i1, . . . , īM ) with the values it sampled previously and then programs
its own random oracle H3 such that h3 ← H3(h2, σ3).

7. B follows the scheme to simulate σ4 and the final signature σ.

Finally, when A outputs a forgery for its EUF-CMA game, B forwards it as its
forgery for the EUF-KO game.

Simulation indistinguishability. If B doesn’t abort, the simulation of the ran-
dom oracles is perfect. Moreover, if B doesn’t abort we show that A’s can
only distinguish a real signing oracle from the simulated oracle with advantage
qsd/2

λ, where qsd is the number of queries to Hsd.

The simulated signatures follow the exact same distribution as genuine signa-
tures, with the only exception that in a genuine signature the (Ce,ie)e∈[m] are

equal to Hsd(salt, e, ie, sde,ie) for a value of sde,ie that expands to a consistent
view of a party in the MPC protocol, whereas in the simulated case, sde,ie
expands to the view of a cheating party. Since Hsd is modelled as a random
oracle, each of the qs ·M values of Ce,ie that A gets to see is just a random
value, uncorrelated with the rest of the view of A, unless A has querried Hsd

on (salt, e, ie, sde,ie). Since the (salt, e, ie) is unique per commitment (B aborts
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if a salt is repeated) and each seed has λ bits of min-entropy each query that A
makes to Hsd has a probability of at most 2−λ of distinguishing the simulated
signature oracle form a genuine signing oracle. Therefore, an adversary that
makes qsd queries to Hsd has a distinguishing advantage bounded by qsd/2

λ.

EUF-KO security implies EUF-CMA security. Finally, we establish B’s ad-
vantage against the EUF-KO security game. There are two moments at which
B could abort: In phase 1 if a salt is repeated which happens with probabil-
ity bounded by q2

s/2
2λ (recall that a salt consists of 2λ random bits) and in

phase 6, if B fails to program the oracle H3, which happens with probabil-
ity bounded by qsq3/2

2λ, since h2 has 2λ bits of min entropy. Therefore, we

have Pr [B aborts] ≤ qs(qs+q3)
22λ , where qs and q3 denotes the number of sign-

ing queries and queries to H3 made by A respectively. Conditional on B not
aborting, replacing the genuine oracles for the simulated oracles decreases the
winning probability of A by at most qsd/2

λ. Therefore, given that the winning
conditions for the EUF-KO and EUF-CMA games are identical, we have:

AdvEUF-KO
B (1λ) ≥ AdvEUF-CMA

A (1λ)− qs(qs + q3)

22λ
− qsd

2λ
.
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Cryptanalysis of WalnutDSA

’Tis but a scratch!
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Abstract. Recently, NIST started the process of standardizing quantum-
resistant public-key cryptographic algorithms. WalnutDSA, the subject
of this paper, is one of the 20 proposed signature schemes that are be-
ing considered for standardization. Walnut relies on a one-way function
called E-Multiplication, which has a rich algebraic structure. This paper
shows that this structure can be exploited to launch several practical
attacks against the Walnut cryptosystem. The attacks work very well
in practice; it is possible to forge signatures and compute equivalent
secret keys for the 128-bit and 256-bit security parameters submitted
to NIST in less than a second and in less than a minute respectively.

Keywords: WalnutDSA, NIST PQC, post-quantum digital signatures,
cryptanalysis, group based cryptography

1 Introduction

As more and more progress is being made towards building large scale quantum
computers, the need for cryptography that can withstand cryptanalysis from
these machines has become increasingly urgent. In recognition of this fact, NIST
has started the Post-Quantum Cryptography standardization project [20] and
made a call for quantum-resistant public-key cryptographic algorithms for stan-
dardization. The community has answered this call by submitting 20 proposals
for signature schemes and 49 proposals for encryption schemes. One of the
submitted signature schemes is the Walnut digital signature algorithm [5, 8],
submitted by D. Atkins and owned by SecureRF. SecureRF is a corporation
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founded in 2004 that develops and licenses public-key security tools for the
low-resource processors powering the Internet of Things (IoT) [1]. SecureRF
received the ARM Techcon 2017 “Best contribution to IoT security” award for
the Walnut signature scheme and their “Key Agreement Protocol”. SecureRF
wants to achieve widespread usage of the Walnut signature scheme in the boom-
ing IoT market through standardization, partnerships with manufactures like
Intel and STMicroelectronics and by providing free toolkits for popular low end
platforms. Because of this potential for widespread use, it is crucial to analyze
the Walnut scheme for potential weaknesses.

Related work. For its security, Walnut relies on problems taken from the the-
ory of infinite non-commutative groups (more precisely, problems based on an
action of a braid group on a finite set via the coloured Burau representation).
The idea of using infinite groups in cryptography goes back at least as far as
Wagner and Magyarik [26] in 1985; see González Vasco and Steinwandt [25]
for an attack on this proposal. Problems in braid groups have been proposed
as hard problems for cryptographic primitives for about 20 years now: key
agreement protocols due to Ko et al. [18] and Anshel, Anshel and Goldfeld [3]
(which is in a more general setting) are the best known examples. The Alge-
braic Eraser [4] is a more recent proposal, also promoted by SecureRF, which
uses many of the same algebraic techniques as Walnut. Early cryptanalyses
of these schemes used length-based attacks [15, 16], but the most convincing
attacks [11, 10, 12, 17, 23] have generally been based on representation theory
(where ‘linearisation’ techniques reduce the underlying security to a problem
in linear algebra). Walnut is interesting because these linearisation techniques
do not seem to apply.

The first attack on (an earlier version of) Walnut [6] is due to Hart et al. [14].
The attack forges signatures in minutes for the suggested parameters, but the
resulting signatures are significantly longer than legitimately produced signa-
tures. So the Hart et al. attack can be blocked by imposing a length limit on
valid signatures. In their submission to NIST, the designers of Walnut impose
such a length limit in order to block the Hart et al. attack, but also modify the
scheme in a significant way (in particular changing the form of the public and
private keys) in an attempt to block the attack altogether.

Contributions. In this paper we present three independent practical attacks
on the Walnut signature scheme. The first attack is a modification of the attack
of [14] that applies to the adapted version of Walnut that was supposed to resist
this attack. This first attack is practical, but has the same limitation as the

2
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original attack by Hart et al: the forged signatures are very long. This attack
demonstrates that the modifications intended to completely block the Hart et
al. attack are not effective, but the attack can be blocked (as before) by impos-
ing a length limit on signatures. The other two attacks presented in this paper
produce forgeries whose lengths are the same or even shorter than those of
legitimate signatures. The second attack in this paper constructs pairs of mes-
sages with the same signature; the attacker can choose a large amount of the
structure of these messages. Our third attack directly constructs equivalent se-
cret keys. We are able to forge signatures and compute equivalent secret keys in
under one second for 128-bit security parameters, and in less than a minute for
256-bit security parameters. This shows that the parameter sets submitted to
the NIST PQC standardization project are totally insecure, and that the corre-
sponding implementation (which was freely available on the SecureRF website
before we notified them of our attacks) should not be used. Our attacks exploit
various algebraic properties of the one-way function called E-Multiplication,
which is fundamental for the Walnut scheme (and other SecureRF methods).
In fact, we give a practical algorithm to break the one-wayness of this function
for the parameters submitted to NIST. In order to avoid the attacks given here,
the parameters of Walnut need to be increased significantly (see the conclusion
at the end of the paper for details). However, with these increased parameter
sizes, it seems that Walnut loses its performance advantage over other post-
quantum signature schemes such as lattice-based, code-based, multivariate and
hash-based signatures.

Outline. In Sect. 2 we explain some necessary preliminaries such as distin-
guished point collision finding, a very short introduction to braid groups, and
an explanation of E-Multiplication and the workings of the Walnut signature
scheme. The following sections, Sections 3, 4 and 5, each introduce a practical
attack against the Walnut scheme and discusses the feasibility of countermea-
sures. Sect. 3 contains an adaptation of the factorization attack of [14] that
applies to the updated version of Walnut that was submitted to NIST. Sect. 4
describes an attack where we use a generic distinguished point collision finding
method to find two documents d1 and d2 such that a signature that is valid for
d1 is automatically valid for d2 and vice versa. In Sect. 5 we give an algorithm
that breaks the one-wayness of the E-Multiplication map. This algorithm can
be used to forge signatures and compute equivalent secret keys, even for the
256 bits of security parameters. The last section presents the conclusions of the
paper.

3
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2 Preliminaries

2.1 Distinguished point collision finding

The attacks introduced in this paper rely on a collision finding algorithm that
is able to find a collision in any function f : D → D which maps a domain
D to itself. Our algorithm of choice is the distinguished point method of van
Oorschot and Wiener [24]. Finding a single collision with this method has the
same O(

√
|D|) time complexity as Pollard’s rho method with cycle finding [21,

22], but it can be parallelized more efficiently. Moreover, the method of van
Oorschot and Wiener is much more efficient for finding multiple collisions; the
number of collisions found grows quadratically with the time spent.

The algorithm repeatedly chooses a random starting point x1 ∈ D and iter-
atively applies the function f to obtain a chain of values x1, x2, · · · , where
xi = f(xi−1) for all i > 1. This process continues until a distinguished value xk
is reached. This is a value which satisfies some easily verified property, such as
having a fixed number of leading zero bits. This property is chosen such that it
is satisfied by a fraction ϑ of the elements of D. When the distinguished point
is reached the starting point x1, the distinguished point xk and the length k of
the chain is stored in a table. Assuming f behaves like a random function, after
an expected number of O(

√
|D|) function calls the current chain will collide

with one of the previously computed chains. From this point on we will follow
the same chain and we will end up at the same distinguished point. We read
the starting poins x1, x

′
1 and the corresponding chain lengths k, k′ from the

table. Without loss of generality, we assume that k ≥ k′. We then know that
for some i < k′

xk−k′+i 6= x′i and f(xk−k′+i) = f(x′i) ,

unless the starting point x′0 appears in the chain starting at x0 (which only
happens with a very small probability). This collision can be extracted with
k− k′+ 2i function calls. If we require more than one collision we can continue
the process, maintaining the contents of the table. Since over time the table
will contain more and more chains, the rate at which collisions are found will
also increase.

2.2 Braid groups

Informally, the braid group on N strands is a group whose elements are rep-
resented by a configuration of N non-intersecting vertical strands in three di-
mensional space, where 2 configurations are considered equal if one can be

4
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transformed continuously into the other configuration without intersecting the
strands. The group multiplication is defined as the concatenation of the strands.
E. Artin [9] showed that there is an equivalent definition of braid groups, given
by the presentation

〈
b1, · · · , bN−1

∣∣∣∣
bibj = bjbi for 1 ≤ i < j < N and j − i ≥ 2

bibi+1bi = bi+1bibi+1 for 1 ≤ i < N − 1

〉
.

Here, the Artin generator bi represents the braid where the i-th strand crosses
over the (i+1)-th strand. The relations bibj = bjbi for |i− j| ≥ 2 correspond to
the fact that crossings that involve different strands are free to move past each
other. The relations bibi+1bi = bi+1bibi+1 correspond to moving one strand over
the crossing of two other strands. The Artin generators and their relations are
graphically represented in Fig. 1, 2 and 3.

Fig. 1. The three Artin
generators b1, b2 and b3
that generate B4.

=

Fig. 2. Crossings that do not share strands com-
mute, i.e. b1b3 = b3b1

=

Fig. 3. The first strand moves over the crossing of
strand 2 and 3, i.e. b1b2b1 = b2b1b2.

5
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There is a natural homomorphism σ : BN → SN from the braid group on N
strands to the symmetric group of order N that maps each braid to the permu-
tation obtained by following the strands. This map sends an Artin generator
bi to the transposition σ(bi) = (i i+ 1). Elements in the kernel of this homo-
morphism are called pure braids, the kernel itself is called the pure braid group
on N strands and is denoted by PN .

The braid group B2 on two strands is the infinite cyclic group, so this group
is its own center. For N > 2 the center of the braid group on N strands is
generated by the full-twist braid which is obtained by grabbing the ends of the
strands of the identity braid and rotating them by 360 degrees [13]. This braid
is commonly denoted by ∆2 and is depicted in Fig. 4.

Fig. 4. The full-twist braid ∆2 in the braid group on 4 strands.

2.3 The colored Burau representation and E-multiplication

The Walnut digital signature algorithm relies heavily on a group action called
E-Multiplication. To define this group action we need the colored Burau Repre-
sentation (see, for example, Anshel et al. [2]) which is a homomorphism from the
braid group BN to the colored Burau group GLN (Z[t±11 , · · · , t±1N ]) o SN . This
group is defined as a semidirect product, by letting the symmetric group SN
act on GLN (Z[t±11 , · · · , t±1N ]) by permuting the variables ti. More concretely,
the elements of the colored Burau group are pairs (A(t1, · · · , tN ), π) where
π ∈ SN is a permutation and where A(t1, · · · , tN ) is an invertible N ×N ma-
trix whose entries lie in Z[t±11 , · · · , t±1N ]. Multiplication in the colored Burau
group is defined by

(A(t1, · · · , tN ), π) · (B(t1, · · · , tN ), τ) ..= (A(t1, · · · , tN ) · π(B(t1, · · · , tN )), πτ)

6
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= (A(t1, · · · , tN ) ·B(tπ(1), · · · , tπ(N)), πτ).

The colored Burau representation CB : BN → GLN (Z[t±11 , · · · , t±1N ]) o SN is
defined at each Artin generator as CB(bi) = (CBM(i), σ(bi)), where CBM(i)
is a matrix and σ(bi) is a permutation, defined as follows. The permutation
σ(bi) is the transposition (i i + 1). We define CBM(b1), the colored Burau
matrix of b1, as

CBM(b1) =



−t1 1 0
0 1 0

0 0 1N−2


 ,

where 1N−2 is the (N − 2) × (N − 2) identity matrix. For i > 1 the colored
Burau matrix of bi is defined as

CBM(bi) =




1i−2 0 0 0 0
0 1 0 0 0
0 ti −ti 1 0
0 0 0 1 0

0 0 0 0 1N−i−1



.

This definition of CB(bi) is compatible with the relations of the braid group,
so it can be extended to define a homomorphism on the entire group BN . For a
braid b, the matrix component of CB(b) is called the colored Burau matrix of
b and is denoted by CBM(b), the permutation component of CB(b) is simply
equal to σ(b). This implies that pure braids are mapped into the subgroup
GLN (Z[t±11 , · · · , t±1N ]) ⊂ GLN (Z[t±11 , · · · , t±1N ]) o SN .

Now we fix a finite field Fq, and for any integer k with 1 < k ≤ N we define
Ak to be the group of invertible N -by-N matrices of the form

Ak =







X Y 0
0 1 0
0 0 1N−k


 |X ∈ GLk−1(Fq), Y ∈ Fk−1q



 .

Let T = [τ1, · · · , τN ] be a list of N non-zero values in a finite field Fq. The
evaluation M ↓T of a matrix M(t1, · · · , tn) at T is computed by replacing each
occurence of variable ti by τ :

M ↓T ..= M(τ1, · · · , τN ) .

This map is a well-defined homomorphism on the image im(CB) of CB. For
a list T containing N non-zero finite field elements, we can now define a right
group action, called E-Multiplication and denoted by ?, of the braid group BN
on the set AN × SN . A braid b acts on the first component of the pair (M,π)
by multiplying from the right with a matrix obtained from the colored Burau

7
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matrix of b by permuting the variables ti using π and then evaluating at T .
The second component of the action is obtained by multiplying on the right by
σ(b). Written out symbolically, this is

(M,π) ? b ..= (M · π(CBM(b)) ↓T , πσ(b)) .

The fact that this defines a group action follows from the fact that the colored
Burau representation is a homomorphism of groups. In practice, when calcu-
lating (M,π) ? b, the action is calculated one Artin generator at a time (see
Alg. 1). Given the sparsity of the colored Burau matrices CBM(bi), acting with
an Artin generator requires only a few column operations on M and one swap
on π, so this is very efficient. This action was first introduced in [4], where it
was used to build a key agreement protocol. More recently, E-Multiplication
has been used as the basic building block for a cryptographic hash function [7]
and the Walnut digital signature scheme [5].

Algorithm E-Multiplication

input: (M,π) — a pair in AN × SN to act on
s — a braid to act with
T = {τ1, · · · , τN} — a list of T-values

output: (M,π) — the resulting pair

1: while |s| > 0 do
2: b±1

i ||s← s . split the first generator b±1
i from the rest of s

3: N ← CBM(bi)
±1 . The CB Matrix of bi, inverted if necessary.

4: N ← N(τπ(i)) . Evaluate in τπ(i)
5: M ←M ·N
6: π ← π ◦ σ(bi)
7: end while
8: return (M,π)

Alg. 1. The algorithm for computing the E-Multiplication action.

By letting BN act on (1N , e) ∈ AN × SN we define a map P

P : BN → AN × SN : s 7→ (1N , e) ? s .

When restricted to the subgroup of pure braids PN , the second component of P
always maps to the identity permutation, so we can think of it as a map P|PN

:
PN → AN . The map P|PN

is actually a homomorphism because it is the com-
position of the colored Burau representation CB : PN → GLN (Z[t±11 , · · · , t±1N ])
and the evaluation homomorphism |T : im(CB)→ AN . Moreover, if we further

8
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restrict P to the subgroup Pk of pure braids where only the first k strands
cross over each other, i.e. the intersection of PN with the subgroup generated
by b1, · · · , bk−1, the homomorphism P|Pk

: Pk → Ak maps into the subgroup
Ak. This fact will be exploited in the attack of Sect. 5.

2.4 The Walnut signature scheme

We now introduce the Walnut signature scheme, which is the subject of our
cryptanalysis. Before we describe the key generation, signing and verification
algorithms (Alg. 2, 4 and 5) in detail we will summarize the scheme very briefly:
the secret key consists of two braids s1, s2 and the public key is (M1, π1) =
P(s1) and M2 = mat(P(s2)), the matrix component of P(s2). To sign or verify
a document d it is hashed and encoded as a pure braid E(d) with an encoding
mechanism E. The Walnut design [5] defines a braid sig to be a valid signature
for the document d if and only if the verification equation

mat(P(s1) ? sig) = mat(P(E(d))) ·M2 (1)

is satisfied. However, this equation is equal to the matrix component of

P(s1) ? sig = P(E(d)) ? s2 , (2)

and the permutation component of equation (2) is also satisfied by all the
legitimately produced signatures. In this document we define a valid signature
as a braid sig that satisfies the stronger verification equation (2). It is clear
that sig = s−11 E(d)s2 would be a valid signature. In order to prevent length-
based attacks [16, 19] cloaking elements, namely braids that do not affect E-
Multiplication, are inserted into the signature and the braids are put through
a rewriting algorithm so that (it is hoped) s1 and s2 cannot easily be extracted
from the signature.

Parameters. The scheme is parametrized by:

– The number N of strands of the braid group that is being used (which is
equal to the dimension of the associated square matrices).

– The size q of a finite field Fq.
– A rewriting algorithm R : BN → BN .
– L and l, the length of certain random braid words.
– A hash function H.

3 Signatures have variable length. The reported signature size is an average, using
the BKL + Dehornoy rewriting method.

9



CRYPTANALYSIS OF WALNUTDSA 161

Table 1. The Walnut parameter sets submitted to the NIST Post Quantum Cryp-
tography project, and the corresponding public key and signature sizes.

claimed security level 128-bit 256-bit

N 8 8
q 25 28

L 15 30
l 132 287
H SHA2-256 SHA2-512

Public key length 83 Bytes 128 Bytes
Signature length3 ≈646 Bytes ≈ 1248 Bytes

Key generation. The private key consists of two randomly chosen braids
s1, s2 ∈ BN of length l. The braids are chosen such that their underlying
permutations σ(s1) and σ(s2) are distinct and not equal to the identity permu-
tation e. The public key contains a list T = {τ1 = 1, τ2 = 1, τ3, · · · , τn} ∈ FNq
of N elements of the finite field Fq such that the first two elements are equal to
1, and such that the remaining values are non-zero and different from 1. The
public key also contains P(s1) and the matrix component of P(s2).

Algorithm GenerateKeys

input: random bits to generate s1, s2 and τi
output: pk — a public key

sk — a corresponding secret key
1: s1, s2 ← a randomly chosen braid words of length l.
2: τ1, τ2 ← 1
3: for i from 3 to N do
4: τi ← a randomly chosen field element, not equal to 0 or 1
5: end for
6: T ← {τ1, · · · , τN}
7: (M1, π1)← P(s1)
8: (M2, π2)← P(s2)
9: return pk = (T,M1,M2, π1) and sk = (s1, s2)

Alg. 2. The Walnut key pair generation algorithm

Encoding a document. In order to sign a document d or verify a signature
the document is converted to a pure braid E(d) ∈ PN . This conversion consists
of two stages. First, a hash digest of d is computed with a standard hash

10



162 CRYPTANALYSIS OF WALNUTDSA

function (SHA2-256 or SHA2-512), then this hash is converted to a braid. To
make the second conversion 4 pure braids g1, g2, g3, g4 are fixed such that they
generate a free subgroup of PN . The Walnut specification document [8] defines

g1 = bNbN−1 · · · b2 · b21 · b−12 · · · b−1N−1b−1N
g2 = bNbN−1 · · · b4 · b23 · b−14 · · · b−1N−1b−1N
g3 = bNbN−1 · · · b6 · b25 · b−16 · · · b−1N−1b−1N
g4 = bNbN−1 · · · b8 · b27 · b−18 · · · b−1N−1b−1N .

The encoding process starts from the trivial braid. Two bits are taken from the
hash digest to choose one gi of the 4 generators, and the next two bits of the
digest define an exponent e ∈ {1, 2, 3, 4}. Then gei is appended to the braid, and
four bits are removed from the digest. This is repeated until the entire hash
output is consumed.

Algorithm EncodeDocument

input: A document d
output: b — a pure braid

1: h← H(d)
2: b← e
3: for a from 0 to |h|/4− 1 do
4: i← h[4a : 4a+ 1] . Select index
5: e← h[4a+ 2 : 4a+ 3]+1 . Select exponent
6: b← b · gei
7: end for
8: return b

Alg. 3. The document encoding mechanism.

Signing algorithm. The signing algorithm produces a signature which is a
braid word of the form

sig′ = v1 · s−11 · v · E(d) · s2 · v2 ,

11
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where v1, v and v2 are so called cloaking elements, which are braids in the
stabilizer of P(s1), (1N , e) and P(E(d)s2) respectively. Therefore we have

(1N , e) ? s1 · sig′ = P(s1) ? s−11 · v · E(d) · s2 · v2
= (1N , e) ? v · E(d) · s2 · v2
= P(E(d)s2) · v2
= (1N , e) ? E(d) · s2 ,

so sig′ is a valid signature. To hide the secret key s1 and s2 which are substrings
of sig′ one of three proposed rewriting algorithms (BKL + Dehornoy, Stochastic
+ Dehornoy or Stochastic) is used to produce a different braid word sig which
represents the same braid as sig′. The various rewriting algorithms differ in
performance and in the length of the signatures that are produced.

The cloaking elements are generated using the following lemma.

Lemma 1. Suppose that τ1 = τ2 = 1. Take any pair (M,π) ∈ AN × SN , an
Artin generator bi, and any braid w such that

π ◦ σ(w)(i) = 1 and π ◦ σ(w)(i+ 1) = 2 .

Then the braid v = w · b2i · w−1 is in the stabilizer of (M,π).

To produce a cloaking element for P(s1), (1N , e) or P(E(d)s2) we first pick
a random integer i such that 1 < i < N , then we choose a random braid w
satisfying the conditions of Lemma 1 and we set v = wb2iw

−1. For the details
of how w is chosen (which depends on the parameter L) and the details on
how the various rewriting algorithms work we refer to the WalnutDSA NIST
submission [8].

Verification Algorithm. Given a document d, a public key pk = (T,M1,M2, π1)
and a signature sig. The verification algorithm simply calculates the encoding
of the message E(d) and the matrix components of (M1, π1) ? sig and P(E(d)).
It then accepts the signature if the computed matrices satisfy the equation

mat((M1, π1) ? sig) = mat(P(E(d))) ·M2 .

12
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Algorithm Sign

input: d — a document to sign
sk = (s1, s2) — a secret key

output: sig — a signature for document d

1: v1 ← GetCloakingElement(σ(s1))
2: v ← GetCloakingElement(e)
3: v2 ← GetCloakingElement(σ(s2))
4: Ed ← EncodeDocument(d)
5: sig′ ← v1 · s−1

1 · v · Ed · s2 · v2
6: sig←R(sig′)
7: return sig

Alg. 4. The Walnut signature generation algorithm

Algorithm Verify

input: d — a document
pk = (T,M1,M2, π1) — a secret key
sig — a signature

output: True if sig is a valid signature for d, False otherwise

1: Ed ←EncodeDocument(d)
2: LHS ← mat( E-Multiplication((M1, π1), sig, T ))
3: RHS ← mat( E-Multiplication((1N , e), Ed, T )) ·M2

4: if LHS equals RHS then
5: return True
6: end if
7: return False

Alg. 5. The Walnut signature verification algorithm

13



CRYPTANALYSIS OF WALNUTDSA 165

3 A factorization attack

This section describes an adaptation of the factorization attack of Hart et
al. [14] on an earlier version of Walnut [6]. This earlier version is a special case
of the newer construction where the two secret braids s1 and s2 are equal.
This means that the secret key essentially consists of only a single braid s,
and that the public key is a single matrix-permutation pair (M,π) = P(s).
The signing and verification algorithms of the earlier version are the same as
the algorithms described in the previous section after substituting s for s1 and
s2, and substituting M for M1 and M2. The attack of Hart et al. exploits the
following malleability property:

Theorem 1. (for the earlier version of Walnut with s1 = s2) Suppose
d, d1, d2 are three documents. Let h, h1, h2 be the matrix part of P(E(d)),P(E(d1))
and P(E(d2)) respectively. Then we have

1. If h = h−11 and sig1 is a valid signature for d1, then sig−11 is a valid signature
for d.

2. If h = h1 · h2 and sig1, sig2 are valid signatures for d1 and d2 respectively,
then sig1sig2 is a valid signature for d.

This opens up the following strategy to attack the signature scheme. First
we collect a set of valid document-signature pairs (di, sigi) and we let hi =
mat(P(E(di))). Then, if we want to forge a signature for a document d with

h = mat(P(E(d))) it suffices to write h as a product
∏k
j=1 h

ej
ij

of the hi. Once we

have this, a valid signature for d is given by
∏k
j=1 sig

ej
ij

. This reduces breaking
the signature scheme to breaking the factorization problem in AN :

Factorization problem in a group G. Given a list of elements g1, · · · , gk
that generate the group G and a target element g, write the target g as a
(preferably short) product of the gi and their inverses.

The paper of Hart et al [14] proposes an algorithm to solve the factorization
problem in AN , exploiting a chain of subgroups. This allows them to forge
signatures in minutes, but the factorizations that are found by the algorithm
are very long, so this results in very long signatures. The forged signatures
are many orders of magnitude longer than legitimate signatures, so the Walnut
scheme can be saved by imposing an upper limit to the length of the signatures.

The Walnut signature scheme was adapted to destroy the malleability property
of Theorem 1. In the remainder of this section we prove that an adapted version
of the maleability property still holds for the new WalnutDSA scheme and we
show how the property can be used to reduce breaking Walnut to solving the
factorization problem in AN , which can be solved with the techniques of [14].

14
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3.1 Signature malleability of Walnut

Walnut has the following malleability property, which is a generalization of the
property discovered by Hart et al. (Theorem 1).

Theorem 2. Suppose d, d1, d2 are three documents. Let h, h1, h2 be the matrix
part of P(E(d)),P(E(d1)) and P(E(d2)) respectively. Let s1, s2, s3 ∈ BN be
three braids. Then

1. If h = h−11 and sig1 is a valid signature for d1 under the public key
(P(s1),P(s2)), then sig−11 is a valid signature for d under the public key
(P(s2),P(s1)).

2. If h = h1 · h2 and sig1, sig2 are valid signatures for d1 and d2 under the
public keys (P(s1),P(s2)) and (P(s2),P(s3)) respectively, then sig1 · sig2 is
a valid signature for d under the public key (P(s1),P(s3)).

Proof. We start by proving 1. Since sig1 is a valid signature for d1 we have

P(s1) ? sig1 = P(E(d1)) ? s2.

Acting on this by sig−11 and using the definition of P we get

(1N , e) ? s1 = (h1, e) ? s2 · sig−11 ,

where we have used the fact that E(d1) is a pure braid. Multiplying the matrix
part of this equality by h−11 from the left (multiplying on the left by a matrix
commutes with ?), we get

(h−11 , e) ? s1 = (1N , e) ? s2 · sig−11 ,

or equivalently

P(E(d)) ? s1 = P(s2) ? sig−11 ,

which shows that sig−11 is a valid signature for d for the public key (P(s2),P(s1)).

To prove 2 we start by acting with sig2 on the verification equation for sig1 to
get

P(s1) ? sig1 · sig2 = P(E(d1)) ? s2 · sig2
= (h1 · CBM(s2)↓T ·σ(s2) (CBM(sig2))↓T , σ(s2) ◦ σ(sig2)) .

Using the fact that sig2 is a valid signature for d2 under the public key (P(s2),P(s3)),
we see that

P(s1) ? sig1 · sig2 = (h1 · h2 · CBM(s3)↓T , σ(s3))

= (h1 · h2, e) ? s3
= P(E(d)) ? s3 ,

which shows that sig1 · sig2 is a valid signature for d under the public key
(P(s1),P(s3)).

15
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3.2 The factorization attack

Given an oracle Of (which can be instantiated by the algorithm of [14]) that
solves the factorization for the group AN , we can now break Walnut as follows.
Suppose we want to forge a signature for a document d under the public key
(P(s1),P(s2)). Let h be the matrix part of P(E(d)). We start by collecting
a number of document-signature pairs (d1, sig1), · · · , (dk, sigk) that are valid
under the same public key, and we compute the matrix part hi of each pair
P(E(di)). Now it suffices to find a factorization h = hi1 ·h−1i2 ·hi3 · · ·h

−1
im−1

·him
whose factors have powers that alternate between 1 and −1. Indeed, combin-
ing properties of Theorem 2 we see that sigi1 · sig

−1
i2

is a valid signature for

any document d′ such that mat(P(E(d′))) = hi1 · h−1i2 under the public key

(P(s1),P(s1)). Adding an extra factor, we get that sigi1 · sig
−1
i2
· sigi3 is a valid

signature for an appropriate document under the public key (P(s1),P(s2)).
Continuing the same argument for the odd number m of factors of the product
we get that sigi1 · sig

−1
i2
· sigi3 · · · sig

−1
im−1

· sigim is a valid document for d under

the desired public key (P(s1),P(s2)).

We can use the oracleOf to find the factorization h = hi1 ·h−1i2 ·hi3 · · ·h
−1
im−1
·him .

We construct the list of generators

gens = {hi · h−1j | i 6= j ∈ {1, · · · , k}}

and call the oracle Of to obtain a factorization for h · h−11 with factors in this
set of generators. Appending the factor h1 to the resulting factorization we
then get a factorization of h of the desired form.

3.3 Implications and countermeasures

The factorization algorithm of [14] has a time complexity of O
(
q

N−1
2

)
and for

the 128 bit security parameters of Walnut (i.e. N = 8, q = 25) the algorithm
finds a factorization in minutes. However, these factorizations contain roughly
225 factors, so the forged signatures are the concatenation of roughly 225 legit-
imate signatures. This implies that the forged signatures are many orders of
magnitude longer than legitimate signatures and so they can be detected easily
by the verifier. To protect against this attack it suffices to impose a limit on the
length of signatures. Interestingly, when the WalnutDSA scheme was updated
to counter the attack of [14], no such upper limit was included in the design.
Our adaptation of the attack shows that this limit is necessary for the security
of the scheme, because long forgeries can be produced in a matter of minutes.

16
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The implementation submitted to the NIST PQC standardization project im-
plicitly imposes such an upper limit by specifying that the length of the signa-
ture (measured by the number of Artin generators) be encoded by two bytes.
This effectively limits the signature braids to be at most 216 Artin generators
long. Therefore the attack cannot be used to break the NIST implementation
of WalnutDSA.

4 A collision search attack

From the verification equation

P(s1) ? sig = P(E(d)) ? s2

it is clear that the only dependence on the document d is through the encoding
mechanism E and the mapping P. This implies that if d1 and d2 are two
documents such that P(E(d1) = P(E(d2)), then any signature that is valid for
d1 is automatically valid for d2 and vice versa. Therefore breaking EUF-CMA
security reduces to finding such a pair of documents. Once an attacker has
found two such documents he can ask the signing oracle to produce a signature
sig for d1, and return (sig, d2) to win the EUF-CMA game. Since the first step
of the encoding function E is the application of a cryptographically secure hash
function to the document d we cannot reasonably expect to have a more efficient
way of finding collisions than with a generic collision search. A generic collision
search requires roughly |P(E({0, 1}∗))|1/2 evaluations of P ◦ E. In the rest of
this section we give an upper bound for this quantity and we demonstrate with
computer experiments that a collision attack is practical.

4.1 Sizes of orbits of E-multiplication

To estimate the time complexity of the collision search attack we need to
find the size of P(E({0, 1}∗)). Without much motivation the designers of Wal-
nutDSA claim that qN(N−3)N ! is a conservative lower bound on the number
values that P can take [5]. For 128-bit and 256-bit security parameters this
number is roughly 2216 and 2336 respectively, which means that finding a colli-
sion should require roughly 2108 and 2168 evaluations of P ◦ E. Note that this
is already significantly less than the claimed security levels. Moreover, an el-
ementary analysis will reveal that this “conservative lower bound” is actually
much larger than the true value of |P(BN )|. Even worse, when P is restricted
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to the set of braids that can be produced by the encoding mechanism E, the
number of values that can be reached is much smaller still.

We know that P, when restricted to the subgroup of pure braids, is a ho-
momorphism from PN to AN . This implies that the full twist braid ∆2 (see
Sect. 2.2) which generates the center of PN is mapped to a matrix in the center
of P(PN ). It can be verified that the only matrix in the center of AN is the
identity matrix, but for a randomly chosen set of T-values P(∆2) is typically
not the identity matrix. This means that P(AN ) sits inside the centralizer of
P(∆2), which is typically a proper subspace of 〈AN 〉. This begs the question of
what the dimension of 〈P(PN )〉 is. From computer experiments we can conclude
that for randomly chosen T-values this is equal to the dimension of the central-
izer of P(∆2), which is equal to (N − 1)2 + 1 (since P(∆2) has one eigenspace
of dimension N − 1 and one of dimension 1). However, if we impose the extra
condition that the first two T-values are equal to one, P(PN ) is contained in an

affine subspace of dimension (N−2)2+1, so |P(PN )| is at most q(N−2)
2+1. Our

computer experiments suggest that this upper bound is reasonably tight, and
so we estimate |P(PN )| ≈ q(N−2)

2+1. Since PN is a subgroup of BN of index

N ! we have |P(BN )| < q(N−2)
2+1N !. Note that this upper bound is strictly

lower than the lower bound which was claimed by the designers of Walnut.

Any braid output by the encoding mechanism E is a product of the generators
g1, g2, g3, g4. From computer experiments we conclude that when applying P
to braids of this form we end up with matrices in an affine subspace of sur-
prisingly low dimension. We found that they live in a subspace of dimension
13, independent of the values of q or N (provided that N2 > 13). This means
that |P(E({0, 1}∗))| is at most q13, and that finding a collision cannot take
much more than q13/2 evaluations of P ◦ E. For 128-bit security parameters
this number is as low as 232.5, and for 256-bit security parameters this is 252.

4.2 Implementation

We implemented the generic collision finding algorithm of van Oorschot and
Wiener [24] (briefly explained in Sect. 2.1) and used it to find collisions for the
function g ◦ P ◦ E, where g is a function that takes the ouput of P, and con-
verts it to some plausible document d. Even though the method is completely
generic, it is still efficient enough to find colliding documents in practice. It took
approximately 232.2 evaluations of f (which agrees very well with the expected
value of 232.5) or one hour on a standard desktop PC to find the following pair
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of colliding documents.

d1 ="I would like to receive 9156659270109667494 free samples

of chocolate chip cookies."

d2 ="I would like to receive 10213941738370235726 free samples

of gluten-free raisin cookies."

The documents can be cunningly crafted such that a victim would be eager
to sign the first document with his/her secret key. However, by producing a
signature for this document, the victim would unknowingly also sign the second
document, which might lead to unsavory consequences.

4.3 Implications and countermeasures

This practical attack shows that the Walnut signature scheme should not be
used with the parameters that are submitted to the NIST PQC project.

Increasing q to raise q13/2 to the required security level would lead to q = 220

and q = 240 for 128-bit and 256-bit security parameters respectively. For 256-
bit security parameters this would increase the size of the public key by a factor
of 5 and we estimate that this would slow down the verification algorithm by
a factor of 25. A better approach would be to change the encoding algorithm
to output pure braids that are not restricted to the subgroup generated by
g1, g2, g3, g4 (or any other proper subgroup). Since P(PN ) is contained in an
affine subspace of dimension (N − 2)2 + 1, this would lead to an upper bound

on the complexity of the attack of
√
q(N−2)2+1 evaluations of P ◦E. We would

then only need a slight increase in the parameters. For example, 256 bits of
security would be achieved (against this attack) by the parameters q = 28 and
N = 10, leading to an increase of the key size of roughly 50% and the signature
size by at least 25%.

5 Reversing E-multiplication

A fundamental hard problem underlying the Walnut signature scheme is the
“Reversing E-Multiplication” (REM) problem. This problem asks, given a pair
(M,σ) ∈ AN × SN , such that (M,σ) = (1N , e) ? s for some braid s ∈ BN ,
to find a braid s′ ∈ BN such that (1N , e) ? s

′ = (M,σ). In other words, the
problem is to break the one-wayness of the function

P : BN → AN × SN : s 7→ (1N , e) ? s.
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The secret key in Walnut consists of two braids s1, s2 ∈ BN . The corresponding
public key is P(s1) and the matrix part of P(s2). The fact that the permuta-
tion part of P(s2) is not available to the attacker is not a problem, because
given a single signature sig which is valid for any message (which might be
unknown to the attacker), the attacker can deduce the permutation of s2 from
the permutation component of the verification equation (2)

σ(s1) ◦ σ(sig) = σ(s2).

After solving the REM problem to get s′1, s
′
2 such that P(s1) = P(s′1) and

P(s2) = P(s′2), an attacker can use the pair (s′1, s
′
2) as a secret key to sign any

message. Alternatively, instead of solving two instances of the REM problem
to obtain an equivalent secret key, it is also possible to solve a single instance
of the REM problem to obtain a signature for a document which can be chosen
freely.

In this section we give an algorithm that solves the REM problem in practice
for the parameters that are proposed for Walnut. First, we describe a generic
birthday attack that can reverse any group action. Then, we introduce an al-
gorithm that exploits the subgroup structure of BN and is much more efficient.

5.1 Birthday attack

A brute force attack would repeatedly pick a random s ∈ BN , compute (1N , e)?
s and check if this is equal to the target (M,σ). This attack would take
O(|P(BN )|) attempts, where |P(BN )| is the size of the orbit of (1N , e). A
more efficient approach is to look for s1, s2 ∈ BN such that

(M,σ) ? s1 = (1N , e) ? s2 .

If such s1 and s2 are found, the solution to the REM problem is given by
s2s
−1
1 . A naive way of finding s1 and s2 is to compute a large table containing√
|P(BN )| values of s1 and the corresponding values of (M,σ) ? s1 and check

for random values of s2 whether (1N , e)?s2 lies in this table. This method takes
O(
√
|P(BN )|) E-Multiplications, but requires a lot of memory. The problem

can be reduced to collision finding for a function f : P(BN ) → P(BN ). Then,
distinguished point methods (see Sect. 2.1) can solve the REM problem with
the same time complexity as the naive approach but with constant memory
complexity. Concretely, suppose b : P(BN )→ {0, 1} and s : P(BN )→ BN are
hash functions that take a matrix and a permutation from the orbit of (1N , e)
as input, and output a bit or a braid respectively. Then we can define

f(x) =

{
(1N , e) ? s(x) if b(x) = 0,

(M,σ) ? s(x) if b(x) = 1.
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If s outputs sufficiently long braids such that P(s(x)) is distributed uniformly
in the orbit of (1N , e), then the distinguished point method will yield collisions
f(x1) = f(x2) such that b(x1) 6= b(x2) with probability 1/2. Once such a
collision is found, a solution to the REM problem is given by s(x1)s(x2)−1 or
s(x2)s(x1)−1 when b(x1) is 0 or 1 respectively. For the security parameters
aiming for 128 bits of security, the size of the orbit P(BN ) is bounded by 2200

(see Sect. 4.1), so the number of E-multiplications required to solve REM is not
much more than 2100, considerably less than 2128 but still far from practical.
For the 256 bit security parameters the number of E-multiplications is not much
more than 2157.

5.2 Subgroup chain attack

We next propose a practical method for solving the REM problem that improves
the attack above by exploiting the following chain of subgroups of BN :

{e} = P1 ⊂ P2 ⊂ · · · ⊂ PN ⊂ BN .

The map P sends a braid to an element of AN × SN and, when restricted to
Pi it is a homomorphism to Ai (see Sect. 2.3). Therefore we have the following
commuting diagram:

{e} P2 · · · PN BN

{(1N , e)} A2 · · · AN AN × SN
P P P P

The meet-in-the-middle attacks in the previous subsection attempt to find a
braid s such that (M,σ)?s = (1N , e) in one step. Given this subgroup structure,
it is more efficient to solve REM in several steps. The first step is to find a
braid s′ ∈ BN such that (M,σ) ? s′ = (M ′, e) ∈ AN . This is trivial because
any s′ ∈ BN whose underlying permutation is σ−1 will do the job. The next
step is to find a pure braid sN ∈ PN such that (M ′, e) ? sN ∈ AN−1. Then, one
continues iteratively to find si ∈ Pi such that (M,σ) ? s′sN · · · si ∈ Ai−1. After
the last step we have found s′sN · · · s2 such that (M,σ) ? s′sN · · · s2 = (1N , e),
so (s′sn · · · s2)−1 is a solution to the REM problem.

One caveat when using this method is that, a priori, it is possible to get stuck.
After each step, we get a new target (M,σ) ? s′sN · · · si which is sampled ran-
domly from P(Pi) ∩ Ai−1. However, from that point on, we will only act on
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this target with pure braids from Pi−1. This means that if the new target is
not in P(Pi−1) we will not be able to complete the attack. If we assume for
each i that

P(Pi) ∩Ai−1 = P(Pi−1) ,

then the attack is guaranteed to work. In practice, this assumption seems to
hold with large probability for the parameter sets that are proposed, because
the algorithm works without having to backtrack. We encounter this problem
when instantiating the Walnut scheme with a smaller finite field such as F5.
Then, it occurs for a small but noticeable fraction of the choices of T-values
that for some small i all the generators of P(Pi−1) have determinant 1 or -1,
while the subgroup P(Pi)∩Ai−1 contains matrices with any determinant. This
problem is unlikely to occur in large finite fields and with large i, because then
there are many generators of P(Pi−1) that all have to map to a matrix with
determinant ±1.

Each step can be solved with a collision search in the space Ai−1P(Pi)\Ai−1
of cosets of Ai−1 in Ai−1P(Pi). Let b : Ai−1P(Pi)\Ai−1 → {0, 1} and s :
Ai−1P(Pi)\Ai−1 → Pi be hash functions that take a right coset and output
a bit or a pure braid respectively. Then we can define f : Ai−1P(Pi)\Ai−1 →
Ai−1P(Pi)\Ai−1 as

f(x) =

{
Ai−1P(s(x)) if b(x) = 0,

Ai−1M ′P(sN · · · si+1s(x)) if b(x) = 1.

The distinguished point method can find collisions f(x1) = f(x2) at a cost
of roughly

√
|Ai−1P(Pi)\Ai−1| E-Multiplications. Under the assumption we

made earlier that P(Pi)∩Ai−1 = P(Pi−1) this is equal to
√
|P(Pi)|/|P(Pi−1)|

E-Multiplications.

If we plug the estimate of |P(Pi)| ≈ q(i−2)
2+1 from Sect. 4.1 into this formula,

we get an estimate of

√
q(i−2)2+1

q(i−3)2+1
= qi−5/2 E-Multiplications to find si. The

runtime of the algorithm is dominated by the step that searches for sN , which is
estimated to require qN−5/2 E-Multiplications. For 128-bit security parameters
this number is 227.5 and this agrees very well with our computer experiments.
For 256-bit security parameters, the required number of E-Multiplications is
estimated to be 244.

5.3 Representing and manipulating cosets of Ak.

In order to implement the hash functions b and s we need to be able to uniquely
represent right cosets with respect to Ak. We give a method to do this efficiently
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in this subsection. Suppose, X,Y are two matrices in AN , that are in the
same right coset of AN−1. That is, there exists a matrix A ∈ AN−1 such that
AX = Y. If we split up the matrices to make their structure visible we get:




A1 A2 0
0 1 0
0 0 1






X1 X2

X3 X4

0 1


 =




Y1 Y2

Y3 Y4

0 1


 .

From this it is obvious that the (N − 1)-th row of X and Y are identical, and
that the first (N − 1) rows of X and Y span the same (N − 1)-dimensional
subspace. It is easily checked that the converse also holds, which implies that the
right coset of AN−1 that contains a matrix X ∈ AN is completely determined
by the (N − 1)-th row of X and the subspace spanned by the first N − 1 rows
of X. In turn, this subspace is uniquely represented by the row reduced echelon
form of the upper (N − 1)-by-N submatrix of X, which will be of the form

(
IN−1 v

)

for some v ∈ FN−1. Therefore, the coset containing X is completely determined
by the (N − 1)-th row of X, and the last column of the first N − 1 rows of
X after putting it in row reduced echelon form. More generally, we have the
following lemma.

Lemma 2. A right coset of Ak\Ak−1 with representative X ∈ Ak is completely
determined by the pair of vectors (v1,v2) ∈ FNq ×Fk−1q , where v1 is the (k−1)-
th row of X and v2 is the k-th column of the matrix X′, which is obtained from
X by taking the first k− 1 rows and putting them in row reduced echelon form.

This lemma gives a method for deciding whether two matrices X and Y are in
the same coset. One simply computes the pair of vectors for both matrices X
and Y and checks whether they are equal. To run the algorithm we also need
a way to act on cosets by multiplying on the right by matrices. One way to
do this is to work with a representative from the coset and carry out a matrix
multiplication to get a representative from the next coset. It is more efficient to
compute directly with the two-vector representation of the coset. The following
lemma gives a way to do this.

Lemma 3. Suppose M is a matrix in Ak for some k with 1 < k ≤ N . Let
A ∈ GLk−1(Fq) and b ∈ Fk−1q be submatrices of M such that

M =




A b 0
0 1 0
0 0 1N−k


 .
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If (v1,v2) is the representation of a coset S as in Lemma 2, then the represen-
tation of the coset SM is given by (v1M,A−1(b + v2)).

Proof. It is clear that if v1 is the (k − 1)-th row of a representative of S, then
v1M is the (k − 1)-th row of a representative SM. For the second vector,
suppose that the subspace spanned by the first k − 1 rows of a representative
of S is the row subspace of (

1 v2 0
)
.

Then there is a representative of SM whose first k− 1 rows span the rowspace
of

(
1 v2 0

)
M =

(
A b + v2 0

)
.

Putting this in row reduced echelon form we get

(
1 A−1(b + v2) 0

)
,

which shows that the second vector in the representation of SM is equal to
A−1(b + v2).

5.4 Permuting T-values to improve the attack

From Sect. 4.1 we know that the size of P(PN ) is influenced by the fact that the
first two T-values are chosen to be equal to 1. This also impacts the performance
of the subgroup chain attack, since at each step we carry out a search in the
space of cosets P(Pk)\P(Pk + 1). In the first column of Tab. 2 we see that
if the T-Values would have been chosen randomly, the most expensive step
would have been the first step, where we would have to perform a collision
search in a set of at most q13 elements. However, Walnut fixes the two first
T-values to be 1, so the most expensive step consists of a collision search in a
space of at most q11 elements. In the last column of Tab. 2 we see that if the
designers had chosen to fix the last two T-values to one instead, the complexity
of the subgroup chain attack would be reduced: the most expensive step would
have been a collision search in a space with only at most q9 elements. It turns
out that we can first apply a transformation to the REM instance to reduce
it to an instance of the REM problem where the final two T-values are set
to one. Solving this REM instance then only takes

√
q9 E-Multiplications, so

this approach reduces the amount of work by a factor of q. For general values
of N , the new method requires approximately qN−7/2 E-Multiplications. The
reduction relies on the following lemma.
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Lemma 4. Let s1, s2 be braids, let (M,π) be a matrix-permutation pair and
let T be a set of T-values. Then s1s2 is a solution for the REM problem for the
pair (M,π) with respect to the list of T-values T if and only if s2 is a solution
for the REM problem for the pair ((CBM(s1) ↓T )−1M,σ(s1)−1π) with respect
to the permuted list of T-values σ(s1)(T ).

Proof. By applying the definition of E-Multiplication we find that

(1N , e) ?T s1s2 = (CBM(s1) ↓T ·σ(s1)(CBM(s2) ↓T ), σ(s1s2)) .

By multiplying from the left by CBM(s1) ↓−1T and σ(s1)−1 we see that the
value above is equal to (M,π) if and only if

(σ(s1)(CBM(s2) ↓T ), σ(b2)) = ((CBM(s1) ↓T )−1M,σ(s1)−1π) .

The main insight is that permuting the variables ti 7→ tσ(b1)(i) and then eval-
uating at the values of T leads to the same result as evaluating at the set of
permuted values σ(s1)(T ). Therefore the left hand side is equal to

(CBM(s2) ↓σ(b1)(T ), σ(s2)) = (1N , e) ?σ(s1)(T ) s2 .

Given this lemma, the reduction is straightforward. In order to solve the REM
problem for (M,π) we fix a “transport braid” s1 = b2b3 · · · bN−1b1b2 · · · bN−2
whose underlying permutation transports the first two entries to the back of
the list. Then we calculate the pair ((CBM(s1) ↓T )−1M,σ(s1)−1π) and use
our REM solving algorithm with respect to the permuted T-values σ(s1)(T )
on this pair to find s2. This is now faster by a factor q because the last two
T-values are equal to one. Then s1s2 is a solution to the original REM problem.

Table 2. The dimension of the subspaces containing various subgroups, depending
on the T-Values

generic First two T-values Last two T-values
T-values are equal to 1 are equal to 1

dim ∆ dim ∆ dim ∆

P(P2) 1 1 0 0 1 1
P(P3) 4 3 2 2 4 3
P(P4) 9 5 5 3 9 5
P(P5) 16 7 10 5 16 7
P(P6) 25 9 17 7 25 9
P(P7) 36 11 26 9 31 6
P(P8) 49 13 37 11 37 6
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5.5 Using a finer chain of subgroups

With a complexity of O(qN/2), the factorization algorithm of Hart et al. is
more efficient (asymptotically) than the REM solving algorithm that we have
described so far. This is due to the fact that Hart et al. use a finer chain of
subgroups, which leads to smaller spaces of cosets to search in. In the next
paragraph we describe a faster variant of our REM solving algorithm that uses
a finer chain of subgroups, similar to the chain used by Hart et al. This variant
is much faster than the previous REM solver, but yields solution braids that
are longer.

In each step of our REM solving algorithm we have a matrix M ∈ Ai and we are
looking for a braid si ∈ Pi such that mat((M, e)?si) lies in Ai−1. To speed this
process up, we can split each step in two substeps. Let Ci−1 be the subgroup
of invertible N -by-N matrices that only differ from the identity matrix in the
upper left (i− 1)-by-(i− 1) submatrix. This is a proper subgroup of Ai, which
itself contains Ai−1 as a proper subgroup. To solve the step of the REM solving
algorithm we can first search for an s′i ∈ Pi such that mat((M, e)?s′i) lies in the
intermediate group Ci−1, then we search for a braid s′′i such that mat((M, e) ?
s′is
′′
i ) lies in Ai−1. The first substep of finding s′i can be carried out with a meet

in the middle search. In order to be able to complete the second substep we
start by searching for a list of braids c1, c2, · · · , ck such that mat(P(ci)) ∈ C1.
Then, to solve the second substep, we search for a braid s′′i in the subgroup
generated by the braids ci such that mat((M, e) ? s′is

′′
i ) lies in Ai−1.

5.6 Implications and countermeasures

With this method we split each step into two much easier substeps, which
greatly improves the efficiency of the algorithm. The downside is that the solu-
tions to the REM problem that are produced are longer than those produced
by the original algorithm. This is because the solution now contains braids s′′i
which are themselves a concatenation of several slightly longer braids ci. To
avoid inflating the size of the output signature needlessly, it is best to only use
this technique for solving the most expensive steps. For 128-bit security param-
eters the signatures output are longer than legitimately produced signatures,
but still small enough to be accepted by the NIST implementation. For 256-bit
security parameters, the forged signatures are smaller than some legitimately
produced signatures, depending on which variant of the signing algorithm is
used. Hence, we cannot defend Walnut against this attack by imposing an up-
per limit on the length of the signatures. Note that it is trivial to convert a
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short signature into a longer signature, so imposing a lower bound does not
help either.

With this method the most expensive step of the algorithm requires only qN/2−1

E-Multiplications. The attack is very efficient in practice. We can produce a
forgery for 128-bit security parameters in less than one second. Even for 256-bit
security parameters we can forge signatures for any document in less than a
minute.

The attack benefits from the fact that two of the T-values are equal to one (see
Sect. 5.4), so the attack would be slightly less efficient if the Walnut scheme can
be adapted to avoid this. If all T-values are chosen randomly the complexity
of the attack becomes dominated by the first step, which requires now roughly√
kq(N−1)/2 E-multiplications (k, the number of braids produced in the first

step is chosen to be 60 in our implementation). Other than this there does
not seem to be a better way to block the attack other than just increasing the
parameters to ensure that qN/2−1 is higher than the desired security level. One
way to do this is to take N = 10, q = 232 to achieve 128 bits of security, and
N = 10, q = 264 for 256 bits of security.

6 Conclusion

In this paper we presented three different practical methods to break the Wal-
nut digital signature scheme (See Table 3). All three attacks are made possible
because of the rich algebraic structure of the E-Multiplication map, which is
central to the Walnut scheme (and other protocols developped by SecureRF).
The first method exploits a signature malleability property of Walnut, and ex-
pands on the work of [14] which attacks an earlier version of the Walnut scheme.
The second attack is purely generic. It is much more efficient that expected be-
cause E-Multiplication maps a certain subgroup of PN into a subspace of very
low dimension. The last attack exploits the fact that E-Multiplication, when
restricted to pure braids, is a homomorphism of groups and that this homo-
morphism maps the chain of subgroups P2 ⊂ P3 ⊂ · · · ⊂ PN to a nice chain of
subgroups of GLN (Fq). Some poor design choices such as adopting an encoding
mechanism that produces matrices in a low dimensional subspace and a failed
attempt to block the attack of Hart et al. [14] seem to be symptomatic of a
lack of understanding of the algebraic structure of E-Multiplication. It is the
opinion of the authors that E-Multiplication can not be credibly used as a basis
for cryptography until this structure and its implications for cryptography are
better understood.
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Table 3. An overview of the attacks introduced in this paper, compared with the
legitimate signing algorithms.

Complexity 128 bits of security 256 bits of security
(in number of Length of Length of

E-Mults or Time signature Time signature
Mat mults) (# generators) (# generators)

Signing:

BKL < 1 sec ≈ 1480 < 1 sec ≈ 2661
Stochastic < 1 sec ≈ 2788 < 1 sec ≈ 5260

Attacks:

factorization q(N−1)/2 5 min > 232 — —

collision 4 q13/2 68 min ≈ 1480 — —

subgroup chain qN−7/2 4 sec 899 58 hours 1374

fine chain qN/2−1 < 1 sec 4534 39 sec 4525

The security of the parameter sets submitted to the NIST PQC project is
completely broken by the attacks (see Table 3). It is possible to forge signa-
tures or compute equivalent secret keys in under a second for 128-bit security
parameters. Even for 256-bit security parameters this takes less than a minute.

In response to the various attacks, the designers have announced a number
of changes to Walnut and increased the parameters (see Table 4) to resist all
known attacks. An upper bound of 214 on the number of Artin generators of
a signature is imposed, the encoding mechanism is changed so that it outputs
braids that map into a larger subspace and the method of producing cloaking
elements is changed such that two of the T-values are no longer required to be
equal to 1.

Increasing the parameters to resist the attacks introduced in this paper in-
creases the public key by a factor of 10 and the signature sizes by roughly
80%. The updated scheme uses arithmetic in much larger finite fields (e.g.
F261−1 instead of F28). This has a relatively small impact on the efficiency of
the implementation for high-end processors submitted to NIST (roughly 50%
slower signing and 80% slower verification). However, the large finite fields
make the scheme more difficult to implement on the low-resource processors
that SecureRF is targeting. With the new parameter choices Walnut no longer
stands out for its small key and signature sizes relative to other post-quantum
signature schemes such as lattice-based, hash-based and multivariate signa-
ture schemes. For example, Walnut used to be the signature scheme with the

4 Has exactly the same length distribution as legitimately produced signatures
5 Average signature length, computed over 1000 signatures generated with the BKL

signing method.
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Table 4. Comparison of the original parameter choices with the new parameter
that resist the attacks introduced in this paper. Our timing experiments use the
implementations that were submitted to NIST, and were run on a Dell OptiPlex 3050
Micro desktop machine.

Original parameters New Parameters Increase

128-bit

N 8 10
q 25 231 − 1

Public key length 83 Bytes 780 Bytes ×9.4
Signature length5 713 Bytes 1308 Bytes +83%

Signing time 39.5 ms 59.2 ms +50%
Verification time 0.05 ms 0.09 ms +80%

256-bit

N 8 10
q 28 261 − 1

Public key length 128 Bytes 1552 Bytes ×12.1
Signature length5 1296 Bytes 2409 Bytes +86%

Signing time 155.2 ms 223.1 ms +44%
Verification time 0.07ms 0.20 ms ×2.7

smallest combined size of a public key and a signature out of all the 19 signa-
ture schemes submitted to NIST, but this is no longer the case with the new
parameters.
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Not enough LESS: An improved algorithm for
solving Code Equivalence Problems over Fq

Ward Beullens1

imec-COSIC, KU Leuven
ward.beullens@esat.kuleuven.be

Abstract. Recently, a new code based signature scheme, called LESS,
was proposed with three concrete instantiations, each aiming to pro-
vide 128 bits of classical security [3]. Two instantiations (LESS-I and
LESS-II) are based on the conjectured hardness of the linear code equiv-
alence problem, while a third instantiation, LESS-III, is based on the
conjectured hardness of the permutation code equivalence problem for
weakly self-dual codes. We give an improved algorithm for solving both
these problems over sufficiently large finite fields. Our implementation
breaks LESS-I and LESS-III in approximately 25 seconds and 2 seconds
respectively on an Intel i5-8400H CPU. Since the field size for LESS-
II is relatively small (F7) our algorithm does not improve on existing
methods. Nonetheless, we estimate that LESS-II can be broken with
approximately 244 row operations.

Keywords: permutation code equivalence problem, linear code equivalence
problem, code-based cryptography, post-quantum cryptography

1 Introduction

Two q-ary linear codes C1 and C2 of length n and dimension k are called per-
mutation equivalent if there exists a permutation π ∈ Sn such that π(C1) = C2.
Similarly, if there exists a monomial permutation µ ∈ Mn = (F×q )n n Sn such

This work was supported by CyberSecurity Research Flanders with reference num-
ber VR20192203 and the Research Council KU Leuven grants C14/18/067 and
STG/17/019. Ward Beullens is funded by FWO SB fellowship 1S95620N.
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that µ(C1) = C2 the codes are said to be linearly equivalent (a monomial per-
mutation acts on vectors in Fnq by permuting the entries and also multiplying
each entry with a unit of Fq). The problem of finding π ∈ Sn (or µ ∈Mn) given
equivalent C1 and C2 is called the permutation equivalence problem (or linear
equivalence problem respectively)1.

Definition 1 (Permutation Code Equivalence Problem). Given genera-
tor matrices of two permutation equivalent codes C1 and C2, find a permutation
π ∈ Sn such that C2 = π(C1).

Definition 2 (Linear Code Equivalence Problem). Given generator ma-
trices of two linearly equivalent codes C1 and C2, find a monomial permutation
µ ∈Mn such that C2 = µ(C1).

The hardness of the permutation equivalence problem is relevant for the se-
curity of the McEliece and Girault post-quantum cryptosystems [10,7]. More
recently, Biasse, Micheli, Persichetti, and Santini proposed a new code-based
signature scheme whose security only relies on the hardness of the linear code
equivalence problem or permutation code equivalence problem. The public key
consists of generator matrices for two equivalent codes C1 and C2, and a sig-
nature is a zero-knowledge proof of knowledge of an equivalence µ ∈ Mn (or
π ∈ Sn) such that µ(C1) = C2 (or π(C1) = C2 respectively). In the case of per-
mutation equivalence, the codes C1 and C2 are chosen to be weakly self-dual,
because otherwise π can be recovered in polynomial time [12]. Table 1 shows
the proposed parameter sets for LESS, aiming for 128 bits of security.

Parameter set n k p equivalence

LESS-I 54 27 53 Linear
LESS-II 106 45 7 Linear
LESS-III 60 25 31 Permutation

Table 1. Proposed parameter sets for the LESS signature scheme.

1 There also exists a more general notion of equivalence called semi-linear equiv-
alence. Our methods generalize to semi-linear equivalences, but since this is not
relevant for the security of LESS, we do not elaborate on this.
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1.1 Previous work

We will briefly go over some of the algorithms that have been proposed for the
permutation and linear code equivalence problems below. The state of the art
for the permutation code equivalence problem is that random instances can be
solved in polynomial time with the Support Splitting Algorithm (SSA), but that
instances with codes that have large hulls require a runtime that is exponential
in the dimension of the hull. Weakly self-dual codes (these are codes C such
that C ⊂ C⊥) have hulls of maximal dimension dim(H(C)) = dim(C) and are
believed to be the hardest instances of the permutation equivalence problem.
The state of the art for the linear code equivalence problem is that instances
over Fq with q ≤ 4 can be solved in polynomial time with the SSA algorithm
via a reduction to the permutation equivalence problem, but for q > 4 this
reduction results in codes with a large hull, which means the SSA algorithm is
not efficient. Hence, the linear code equivalence problem is conjectured to be
hard on average for q > 4 [13].

Leon’s Algorithm. Leon’s algorithm [9] for finding linear and permutation
equivalences relies on the observation that applying a permutation or a mono-
mial permutation does not change the hamming weight of a codeword. There-
fore, if we compute the sets X1 and X2 of all the minimal-weight codewords of
C1 and C2 respectively, then it must be that X2 = π(X1) or X2 = µ(X1) in the
case of permutation equivalence or linear equivalence respectively. Leon gives
an algorithm to compute a µ ∈Mn that satisfies X2 = µ(X1) with a time com-
plexity that is polynomial in |X1|. Usually, the sets X1 and X2 have “enough
structure”, such that if µ satisfies X2 = µ(X1), then also C2 = µ(C1) with non-
negligible probability. If this is not the case, then one can also consider larger
sets X ′1 and X ′2 that contain all the codewords in C1 and C2 respectively whose
weight is one more than the minimal weight. Since the sets X1 and X2 are
usually small, the complexity of the algorithm is dominated by the complexity
of computing X1 and X2.

Feulner gives an algorithm that computes a canonical representative of an
equivalence class of codes. The complexity of this algorithm is close to that
of Leon’s algorithm [6].

Support Splitting Algorithm. The Support Splitting Slgorithm (SSA) of
Sendrier [12] defines the concept of a signature. A signature is a property of
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a position in a code that is invariant for permutations. More precicely, it is
a function S that takes a code C and a position i ∈ {1, · · · , n} as input and
outputs an element of an output space P , such that for any permutation π ∈ Sn
we have

S(C, i) = S(π(C), π(i)) .

We say that a signature is totally discriminant for C if i 6= j implies that
S(C, i) 6= S(C, j). If a signature S is efficiently computable and totally dis-
criminant for a code C1, then one can easily solve the permutation equivalence
problem by computing S(C1, i) and S(C2, i) for all i ∈ {1, · · · , n} and compar-
ing the outputs. Even if the signature is not totally discriminant, a sufficiently
discriminant signature can still be used to solve the permutation equivalence
Problem by iteratively refining the signature.

The SSA uses the concept of the hull of a code to construct an efficiently
computable signature. The hull of a code C is the intersection of the code
with its dual: H(C) = C ∩ C⊥. This concept is very useful in the context of
the permutation equivalence problem because taking the hull commutes with
applying a permutation2

H(π(C)) = π(C) ∩ π(C)⊥ = π(C ∩ C⊥) = π(H(C)) .

The SSA defines a signature as S(C, i) := W (H(Ci)), where Ci is the code C
punctured at position i, and W (C) denotes the weight enumerator polynomial
of the code C. While this signature is typically not fully discriminant, it is still
discriminant enough to efficiently solve the permutation equivalence Problem
for random matrices. However, a limitation of the SSA algorithm is that com-
puting the enumerator of the hull is not efficient when the hull of C is large.
For random codes this is not a problem because typically the hull is small.

Algebraic approach. The code equivalence problems can be solved alge-
braically, by expressing the condition π(C1) = C2 or µ(C1) = C2 as a system
of polynomial equations, and trying to solve this system with Gröbner basis
methods [11]. Similar to the SSA algorithm, this solves the permutation code
equivalence problem for random instances in polynomial time, but the com-
plexity is exponential in the dimension of the hull. The approach also works
for the linear code equivalence problem, but it is only efficient for q ≤ 4.

2 This is not the case for monomial permutations: H(µ(C)) is not necessarily equal
to µ(H(C)) for µ ∈ Mn. This is why the SSA can not be directly applied to find
linear equivalences.



188 CRYPTANALYSIS OF LESS

Not enough LESS: An improved algorithm for Code Equivalence Problems 5

1.2 Our contributions

In this paper, we propose an improvement on Leon’s algorithm for code equiv-
alence that works best over sufficiently large finite fields. If x ∈ C1 and y =
π(x) ∈ C2, then the multiset of entries of x matches the multiset of entries
of y. Our algorithm is based on the observation that if the size of the finite
field is large enough then the implication also holds in the other direction with
large probability: If x ∈ C1 and y ∈ C2 are low-weight codewords with the same
multiset of entries, then with large probability π(x) = y. Our algorithm does a
collision search to find a small number of such pairs (x,y = π(x)), from which
one can easily recover π. We also give a generalization of this idea that works
for the linear equivalence problem.

We implemented our algorithm and used it to break the LESS signature scheme.
In the LESS-I and LESS-III parameter sets the finite field is large enough for
our algorithm to improve on Leons’s algorithm. We show that we can recover
a LESS-I or LESS-III secret key in only 25 seconds or 2 seconds respectively.
We estimate that recovering the secret key is also possible in practice with
Leon’s algorithm, but it would be significantly more costly. LESS-II works over
F7, which is too small for our algorithm to improve on Leon’s algorithm: We
estimate that our algorithm requires approximately 250.4 row operations, while
Leon’s algorithm would take only 243.9 row operations.

2 Preliminaries

2.1 Notation.

For a q-ary linear code C of length n and dimension k we say a matrix G ∈ Fk×nq

is a generator matrix for C if C = 〈G〉, where 〈G〉 denotes the span of the rows

of G. Similarly, we say that a matrix H ∈ F(n−k)×n
q is a parity check matrix for

C if C⊥ = 〈H〉, where C⊥ = {x ∈ Fnq |x ·y = 0∀y ∈ C} is the dual code of C. For
a vector x ∈ Fnq we denote by Supp(x) the set of indices of the nonzero entries
in x, i.e. Supp(x) = {i |xi 6= 0}. We define the support Supp(C) of a code C to
be the union of the supports of the codewords in C. We let wt(x) = |Supp(x)| be
the Hamming weight of x. We denote by Bn(w) the Hamming ball with radius
w, i.e. the set of vectors in x ∈ Fnq with wt(x) ≤ w. For a permutation π ∈ Sn
and a vector x of length n, we write π(x) for the vector obtained by permuting
the entries of x with the permutation π, that is we have (π(x))i = xπ(i) for all
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i ∈ {1, · · · , n}. For a monomial permutation µ = (ν, π) ∈Mn = (F×q )nnSn and
a vector x ∈ Fnq , we write µ(x) to denote the vector obtained by applying µ to
the entries of x. Concretely, we have (µ(x))i = νi · xπ(i) for all i ∈ {1, · · · , n}.
For a code C and π ∈ Sn (or µ ∈Mn), we denote by π(C) (or µ(C)) the code that
consist of permutations (or monomial permutations respectively) of codewords
in C.

2.2 Information set decoding.

The algorithms in this paper will make use of information set decoding to
find sparse vectors in q-ary linear codes. In particular, we will use the Lee-
Brickell algorithm with parameter p = 2. To find low-weight codewords in a
code C = 〈M〉 the algorithm repeatedly computes the echelon form of M with
respect to a random choice of k pivot columns. Then, the algorithm inspects
all the linear combinations of p = 2 rows of the matrix. Given the echelon form
of the matrix, we are guaranteed that all these linear combinations have weight
at most n− k + 2, but if we are lucky enough we will find codewords that are
even more sparse. We repeat this until a sufficiently sparse codeword is found.

Complexity of the algorithm. The complexity of the algorithm depends on
the length n and the dimension k of the code, target weight w, and whether
we want to find a single codeword, all the codewords, or a large number N of
codewords. First, suppose there is a distinguished codeword x ∈ C with weight
w that we want to find. For a random choice of pivot columns, the Lee-Brickell
algorithm will output x if the support of x intersects the set of pivot columns
(also known as the information set) in exactly 2 positions. The probability that
this happens is

P∞(n, k, w) :=

(
n−k
w−2

)(
k
2

)
(
n
w

) .

Therefore, since the cost of each iteration is k2 row operations for the Gaussian
elimination and

(
k
2

)
q row operations to iterate over all the linear combinations

of 2 rows (up to multiplication by a constant), the algorithm will find x after
approximately

C∞(n, k, w) =

(
k2 +

(
k

2

)
q

)
P (n, k, w)−1 = O

(
q
(
n
w

)
(
n−k
w−2

)
)

row operations. Heuristically, for random codes we expect the support of the
different codewords to behave as if they are “independent”, so if there exist
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(q−1)N codewords of weight w (i.e. N different codewords up to multiplication
by a scalar), then we expect the probability that one iteration of the Lee-Brickell
algorithm succeeds to be

P1(n, k, w) = 1− (1− P∞(n, k, w))N .

Thus, if N is small enough, we have P1(n, k, w) ≈ NP∞(n, k, w), and the com-
plexity of finding is a single weight-w codeword is C1(n, k, w) ≈ C∞(n, k, w)/N .

Finally, if the goal is to find L out of the N distinct weight-w codewords (up
to multiplication by a scalar), the cost of finding the first codeword is C1 =
C∞(n, k, w)/N , the cost of finding the second codeword is C∞(n, k, w)/(N −
1), the cost of finding the third codeword is C∞(n, k, w)/(N − 2) and so on.
Summing up these costs, we get that the cost of finding L distinct codewords
is

CL(n, k, w) ≈ C∞(n, k, w) ·
(
L−1∑

i=0

1

N − i

)
.

Therefore, if L << N , we can estimate CL ≈ C∞L/N , and if the goal is to
find all the codewords, we get CN ≈ C∞ ln(N), where ln denotes the natural

logarithm, because
∑N
i=1 1/i ≈ ln(N).

3 New algorithm for Permutation Equivalences over Fq

In this section, we introduce an algorithm for the permutation equivalence
Problem over sufficiently large fields Fq (which is the case of the LESS-III
parameter set). The complexity of the algorithm is independent of the size of
the hull of the equivalent codes. Therefore, our algorithm can be used to find
equivalences when the hull is so large that using the SSA algorithm becomes
infeasible. The complexity of the algorithm is better than Leon’s algorithm
when the size of the finite field is sufficiently large.

Main idea. Leon’s algorithm computes the sets X1 = C1 ∩ Bn(wmin) and
X2 = C2∩Bn(wmin), where wmin is the minimal weight of codewords in C1 and
solves the Code equivalence problem by looking for π ∈ Sn such that π(X1) =
X2. The bottleneck of Leon’s algorithm is computing X1 = C1 ∩Bn(wmin) and
X2 = C2 ∩ Bn(wmin), so if we want to improve the complexity of the attack
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we need to avoid computing all of X1 and X2. An easy observation is that
permuting a codeword x does not only preserve its Hamming weight, but also
the multiset of entries of x. Therefore, if there is an element x ∈ X1 with a
unique multiset, then one can immediately see to which vector y = π(x) ∈ X2

it gets mapped. For example, if X1 contains the vector

x =
(
0 4 0 0 7 4 0 0 0 14

)
,

and if X2 contains the vector

y =
(
0 4 7 0 0 14 0 4 0 0

)
,

then assuming there are no other vectors in X1 and X2 with the same multi-
set of entries, we know that π(x) = y. In particular we know that π(5) = 3,
π(10) = 6 and π(2), π(6) ∈ {2, 8}.

Instead of computing all of X1 and X2, our algorithm will search for a small
number of such pairs (x,y = π(x)), which will give enough information to
determine π. This approach will not work if Fq is too small, because then X1

will contain a lot of vectors with the same multiset of entries. (E.g. in the case
q = 2, all the vectors with the same weight have the same multiset of entries.)

If we compute only Θ(
√
|X1| log n) elements of X1 and X2, then we expect

to find Θ(log n) pairs (x,y = π(x)), which suffices to recover π. This speeds
up the procedure by a factor Θ(

√
|X1|/ log n), which is only a small factor.

We can improve this further by considering larger sets X ′1 = C1 ∩ Bn(w) and
X ′2 = C2∩Bn(w) for a weight w that is not minimal. In the most favorable case
where the multisets of the vectors in X ′i are still unique for w = n−k+ 1, then
we can sample from X ′1 and X ′2 in polynomial time using Gaussian elimination,

and we get an algorithm that runs in time Õ
(√(

n
k−1
))

, where Õ is the usual

big-O notation but ignoring polynomial factors.

Description of the algorithm. The algorithm works as follows:

1. Let w be maximal subject to n!
(n−w)!q

−n+k < 1
4 logn and w ≤ n− k + 1.

2. Repeatedly use information set decoding to generate a list L that contains√
|Bn(w)| · q−n+k−1 · 2 log n pairs of the form (x, lex(x)), where x ∈ C1 ∩

Bn(w) and where lex(x) is the lexicographically first element of the set
{π(αx)|π ∈ Sn, α ∈ F×q }.
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3. Initialize an empty list P and repeatedly use information set decoding
to generate y ∈ C2 ∩ Bn(w). If there is a pair (x, lex(x)) in L such that
lex(x) = lex(y), then append (x,y) to P . Continue until P has 2 log(n)
elements.

4. Use a backtracking algorithm to iterate over all permutations π that satisfy
〈π(x)〉 = 〈y〉 for all (x,y) ∈ P until a permutation is found that satisfies
π(C1) = C2.

Heuristic analysis of the algorithm. Heuristically, we expect that for
x ∈ C1 ∩ Bn(w) the probability that there exists x′ ∈ C1 ∩ Bn(w) such that
〈x′〉 6= 〈x〉 and lex(x) = lex(x′) to be bounded by n!

(n−w)!q
−n+k, because there

are at most n!
(n−w)! values of x′ (up to multiplication by a unit) for which

lex(x′) = lex(x), (namely all the permutations x), and each of these vectors is
expected to be in C1 with probability q−(n−k). In step 1 of the algorithm we
choose w such that the probability estimate that x is part of such a collision
in lex is at most 1/(4 log n).

We have lex(C1∩Bn(w)) = lex(C2∩Bn(w)) and heuristically the size of this set
is close to |C1 ∩ Bn(w)|/(q − 1) ≈ |Bn(w)|/qn−k+1 since lex is almost (q − 1)-
to-one. Therefore, it takes roughly |Bn(w)|2 log n/qn−k+1|L| iterations of step
3 until 2 log n pairs (x,y) with lex(x) = lex(y) are found. We chose the list size
|L| =

√
|Bn(w)|2 log n/qn−k+1 so that the work in step 2 and step 3 is balanced.

The last part of the algorithm assumes that for each pair (x,y) found in step 3
we have 〈π(x)〉 = 〈y〉. This can only fail with probability bounded by 1/4 log n,
because this implies that π(x) and y ∈ C2∩Bn(w) form a collision for lex. Sum-
ming over all the 2 log n pairs we get that the probability that 〈π(x)〉 = 〈y〉
holds for all the pairs in P is at least 1/2. If this is the case then there are
typically very few permutations σ (most of the time only one) that satisfy
〈σ(x)〉 = 〈y〉 and the true code equivalence π must be one of them.

The complexity of the attack is dominated by the cost of the ISD algorithm to
find |L| weight-w codewords in C1 and C2 in step 2 and 3, which is

2 · C|L|(n, k, w)



CRYPTANALYSIS OF LESS 193

10 Ward Beullens

In our implementation we have used the Lee-Brickell algrithm [8] with p = 2
to instantiate the ISD oracle3. In this case, the number of row-operations used
by the ISD algorithm can be approximated (see section 2.2) as

2 · C|L|(n, k, w) ≈ C∞
|L|

|C1 ∩Bn(w)|/(q − 1)
= O

( (
n
w

)√
log n(

n−k
w−2

)
·
√
|Bn(w)|q−n+k

)
.

The algorithm in practice. An implementation of our algorithm in C, as
well as a python script to estimate the complexity of our attack is made publicly
available at

www.github.com/WardBeullens/LESS_Attack.

We used this implementation to break the LESS-III parameter set. The public
key of a LESS-III signature consist of two permutation equivalent codes C1 and
C2 of length n = 60 and dimension k = 25 over F31. The codes are chosen to be
weakly self-dual. From experiments, we see that the weakly self-dual property
does not seem to affect the complexity or the success rate of our attack.

For these parameters, the maximal value of w that satisfies

n!

(n− w)!
q−n+k <

1

4 log n

is w = 30, so we use the Lee-Brickell algorithm to find codewords in C1 and C2
with Hamming weight at most 30. The list size is

√
|Bn(w)| · q−n+k−1 · 2 log n,

which is close to 25000. With these parameter choices, the algorithm runs in
about 2 seconds on a laptop with an Intel i5-8400H CPU at 2.50GHz. The
rate at which pairs are found closely matched the heuristic analysis of the
previous section: The analysis suggests that we should have to do approximately
214.7 Gaussian eliminations, while the average number of Gaussian eliminations
measured in our experiments is 214.6. However, we find that the heuristic lower
bound of 1/2 for the success probability is not tight: The algorithm terminates
successfully in all of the executions. This is because in our heuristic analysis we
used n!/(n−w)! as an upper bound for the number of permutations of a vector
x of weight w. This upper bound is only achieved if all the entries of x are
distinct. For a random vector x the number of permutations is much smaller,

3 One can also use more advanced ISD algorithms such as Stern’s algorithm [14], but
since we will be working with relatively large finite fields we found that this does
not offer a big speedup. To simplify the analysis and the implementation we have
chosen for the Lee-Brickell algorithm.
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which explains why the observed probability of a bad collision is much lower
than our heuristic upper bound.

Remark 1. If we use the algorithm for longer codes the list L will quickly be so
large that it would be very costly to store the entire list in memory. To avoid
this we can define 2 functions F1 and F2 that take a random seed as input, run
an ISD algorithm to find a weight w codeword x in C1 or C2 respectively and
output lex(x). Then we can use a memoryless claw-finding algorithm such as the
Van Oorschot-Wiener algorithm [16] to find inputs a, b such that F1(a) = F2(b).
This makes the memory complexity of the algorithm polynomial, at essentially
no cost in time complexity. Since memory is not an issue for attacking the LESS
parameters we did not implement this approach.

Comparison with Leon’s algorithm and new parameters for LESS. We
expect recovering a LESS-III secret key with Leon’s algorithm would require
224.5 iterations of the Lee-Brickell algorithm, significantly more than the 214.6

iterations that our algorithm requires. Figure 1 shows how the complexity of
our attack and Leon’s attack scales with increasing code length n. The left
graph shows the situation where the field size q and the dimension k increases
linearly with the code length, while the graph on the right shows the case where
q = 31 is fixed. In both cases, our algorithm outperforms Leon’s algorithm, but
since our algorithm can exploit the large field size, the gap is larger in the
first case. The sawtooth-like behavior of the complexity of Leon’s algorithm is
related to the number of vectors of minimal weight, which oscillates up and
down. We see that in order to achieve 128 bits of security (i.e. an attack needs
2128 row operations) we can use a q-ary code of length n = 280, dimension
k = 117 and q = 149. Alternatively, if we keep q = 31 fixed, we could use
a code of length n = 305 and dimension k = 127. This would result in an
average signature size of 18.8 KB or 21.1 KB respectively. This is almost a
factor 5 larger than the current signature size of 3.8 KB 4. The public key
size would increase from 0.53 KB 5 to 16.8 KB or 13.8 KB for the q = 149 or
q = 31 parameter set respectively, an increase of more than a factor 25. The
fact that our algorithm performs better in comparison to Leon’s algorithm for
larger finite fields is illustrated in fig. 2, where we plot the complexity of both
algorithms for n = 250, k = 104 and for various field sizes.

4 The LESS paper claims 7.8 KB. but 4 KB of the signature consists of commitments
that can be recomputed by the verifier, so this does not need to be included in the
signature size.

5 The LESS paper claims 0.9 KB public keys, but the generator matrix can be put
in normal form, which reduces the size from k×n field elements to k× (n−k) field
elements.
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Fig. 1. Complexity of Leon’s algorithm and our algorithm for finding permutation
equivalences in function of the code Length. In the left graph the field size scales
linearly with the code length, in the right graph the field size q = 31 is fixed. In both
cases the rate of the code is fixed at k/n = 5/12.

0 20 40 60 80 100
Field size q

40

60

80

100

120

140

se
cu

rit
y 

le
ve

l (
bi

ts
)

our algorithm
Leon's algorithm

Fig. 2. Complexity of Leon’s algorithm and our algorithm for finding permutation
equivalences in function of the finite field size for random linear codes of length
n = 250 and dimension k = 104.

4 New algorithm for Linear Equivalences over Fq

In this section, we generalize the algorithm from the previous section to the
linear equivalence Problem. The main obstacle we need to overcome is that it
does not seem possible given sparse vectors x ∈ C1 and y ∈ C2 to verify if µ(x) =
y, where µ ∈Mn is the monomial transformation such that µ(C1) = C2. In the
permutation equivalence setting, we could guess that if the multiset of entries of
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x equals the multiset of entries of y then π(x) = y. If the size of the finite field
was large enough, then this was correct with large probability. This strategy
does not work in the linear equivalence setting, because monomial permutations
do not preserve the multiset of entries. In fact, monomial transformations do
not preserve anything beyond the hamming weight of a vector, because for any
two codewords x and y with the same weight there exists µ ∈ Mn such that
µ(x) = y.

Main Idea. To overcome this problem, be will replace sparse vectors by 2-
dimensional subspaces with small support. Let

X1(w) = {V ⊂ C1|dim(V ) = 2 and |Supp(V )| ≤ w}

be the set of 2 dimensional linear subspaces of C1 with support of size at most
w and similarly we let X2(w) be the set of 2-spaces in C2 with support of size
w. If µ ∈Mn is a monomial permutation such that µ(C1) = C2, then for all V ∈
X1(w) we have µ(V ) ∈ X2. Analogously with the algorithm from the previous
section, we will sample 2-spaces from X1(w) and from X2(w) in the hope of
finding spaces V ∈ X1(w) and U ∈ X2(w) such that µ(V ) = W . Then, after
finding Ω(log(n)) such pairs we expect to be able to recover the equivalence µ.
To detect if µ(V ) = W we define lex(V ) to be the lexicographically first basis
of a 2-space in the Mn-orbit of V . Clearly, if µ(V ) = W , then the Mn-orbits
of V and W will be the same and hence lex(V ) = lex(W ). Moreover, since the
dimension of V and W is only 2, it is feasible to compute lex(V ) and lex(W )
efficiently.

Computing lex(V ). To compute lex(V ) we can simply consider all the bases
x,y that generate V (there are (q2 − 1)(q2 − q) of them) and for each of them
find the monomial transformation µ such that µ(x), µ(y) comes first lexico-
graphically, and then take the permuted basis that comes first out of these
(q2 − 1)(q2 − q) options. Given a basis x,y, finding the lexicographically first
value of µ(x), µ(y) is relatively straightforward: First make sure that µ(x) is
minimal, and then use the remaining degrees of freedom to minimize µ(y).
The minimal µ(x) consists of n − wt(x) zeroes followed by wt(x) ones, which
is achieved by multiplying the non-zero entries of x (and the corresponding
entries of y) by their inverse and permuting x such that all the ones are in
the back. The remaining degrees of freedom of µ can be used to make the first
n − wt((x) entries of µ(y) consist of a number of zeros followed by a number
of ones and to sort the remaining entries of µ(y) in ascending order.
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A basis x,y for V can only lead to the lexicographicallt first µ(x), µ(y) if the
hamming weight of x is minimal among all the vectors in V . Therefore, we only
need to consider bases x,y where the hamming weight of x is minimal. When
the first basis vector is fixed, choosing the second basis vector and minimizing
the basis, can be on average done with a constant number row operations, so
the average cost of the algorithm is q+1+O(N) = O(q) row operations, where
the q + 1 operations stem from finding the minimal weigth vectors in V , and
N is the number of such vectors.

Example 1. The following is an example what lex(V ) could look like:

V =

〈(
19 3 21 36 17 44 0 47 34 19 48 3 0 47 0 38 27 8 49 18 8 0 0 31 26 52 7 30 37 47
35 24 13 0 50 40 0 52 6 19 37 28 0 13 0 49 34 20 24 30 24 45 0 39 42 0 18 17 28 36

)〉

lex(V ) =

(
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 1 1 2 3 4 5 9 9 11 13 15 19 20 21 23 27 32 33 34 36 37 39

)

Description of the algorithm. The algorithm works as follows:

1. Let w be maximal subject to n!
(n−w)!q

w−1+2k−2n < 1
4 logn and w ≤ n−k+2.

2. Repeatedly use information set decoding to generate a lists L that con-

tains
√(

n
w

)
· q2(−n+k+w−2) · 2 log n pairs of the form (V, lex(V )), where V ∈

X1(w).
3. Initialize an empty list P and repeatedly use information set decoding to

generate W ∈ X2. If there is a pair (V, lex(V )) in L such that lex(V ) =
lex(W ), then append (V,W ) to P . Continue until P has 2 log(n) elements.

4. Use a backtracking algorithm to iterate over all monomial permutations µ
that satisfy µ(V ) = W for all (V,W ) ∈ P until a monomial permutation is
found that satisfies µ(C1) = C2.

Heuristic analysis of the algorithm. The heuristic analysis of this algo-
rithm is very similar to that of our permutation equivalence algorithm. This
time the size of a M2-orbit of a 2-space V with |Supp(V )| ≤ w is bounded

by n!
(n−w)! (q − 1)w−1 and a random 2-space has probability of (qk−1)(qk−q)

(qn−1)(qn−q) ≈
q2(k−n) of being a subspace of C1. So, if we pick w such that n!

(n−w)!q
w−1+2k−2n <
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1
4 logn we expect the probability of finding a “bad” pair (V,W ) (i.e. lex(V ) =

lex(W ) but µ(V ) 6= W ) is bounded by 1/2. The size of X1(w) and X2(w) is

expected to be at most
(
n
w

) (qw−1)(qw−q)
(q2−1)(q2−q) q

−2(n−k) ≈
(
n
w

)
q2(w−2−n+k), because

for each of the
(
n
w

)
supports S of size w, there are (qw−1)(qw−q)

(q2−1)(q2−q) 2-spaces whose

support is included in S, and we expect one out q2(n− k) of them to lie in C1.

Therefore, if we set the list size to
√(

n
w

)
· q2(−n+k+w−2) · 2 log n then we expect

the third step of the algorithm to terminate after roughly |L| iterations. (We
are counting the subspaces V with |Supp(V )| < w multiple times, so X1(w)
is slightly smaller than our estimate. This is not a problem, because it means
that the third step will terminate slightly sooner than our analysis suggests.)

The complexity of the algorithm consists of the ISD effort to sample |L| el-
ements from X1(w) and X2(w) respectively, and the costs of computing lex.
We have to compute lex an expected number of 2|L| times; once for each of
the 2-spaces in the list L and once for each 2-space found in step 3. Since
the number of row operations per lex is O(q), the total cost of computing lex
is O(q|L||). To sample the 2-spaces we use asn adaptation of the Lee-Brickell
algorithm: We repeatedly put a generator matrix of C1 in echelon form with
respect to a random choice of pivot columns, and then we look at the span of
any 2 out of k rows of the new matrix. Given the echelon form of the matrix,
the support of these 2-spaces has size at most n − k + 2, and if we are lucky
the size of the support will be smaller than or equal to w. The complexity of
this algorithm is very similar to that of the standard Lee-Brickell algorithm for
finding codewords (see section 2.2).

For a 2-space V ∈ X1(w), the Lee-Brickell algorithm will find V if the random
choice of pivots intersects Supp(V ) in 2 positions, which happens with probabil-
ity P∞(n, k, w) =

(
n−k
w−2

)(
k
2

)
/
(
n
w

)
. The cost per iteration is O(k2 +

(
k
2

)
) = O(k2)

row operations for the Gaussian elimination and for enumerating the 2-spaces,
so the expected number of row operations until we find |L| elements in X1(w)
and X2(w) is

O

(
k2
(
n
w

)
|L|(

n−k
w−2

)(
k
2

)
|X1(w)|

)
≈ O




√(
n
w

)
· log n

(
n−k
w−2

) q−w+2+n−k


 .
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4.1 The algorithm in practice.

We have implemented the algorithm and applied it to the LESS-I parameter set.
The public key of a LESS-I signature consist of two linearly equivalent codes C1
and C2 chosen uniformly at random of length n = 54 and dimension k = 27 over
F53. The largest value of w satisfying n!

(n−w)!q
w−1+2k−2n < 1

4 logn is w = 28,

so we use the Lee-Brickell algorithm to generate
√(

n
w

)
· q2(−n+k+w−2) · 2 log n

subspaces of C1 and C2 with support of size at most 28, which comes down to
approximately 2800000 subspaces of each code. From our implementation we
see that this takes on average about 220.6 Gaussian eliminations, which matches
the heuristic analysis of the previous section very well. The attack takes in total
about 230.9 row operations, which amounts to about 25 seconds on a laptop
with an Intel i5-8400H CPU at 2.50GHz. Approximately 12 seconds are spent
computing the spaces V , the remaining time is spent computing lex(V ).

Remark 2. Similar to the Permutation equivalence case, it is possible to use a
memoryless collision search algorithm to remove the large memory cost of the
attack at essentially no runtime cost.

Comparison with Leon’s algorithm and new parameters for LESS.
We expect Leon’s algorithm (using the Lee-Brickell algorithm to instantiate
the ISD oracle) to require 238.3 row operations, which is significantly more than
the 230.9 operations that our algorithm requires. Figure 3 shows the complexity
of our algorithm and Leon’s algorithm for increasing code length. If the size of
the finite field increases linearly with the code length, then the gap between our
algorithm and Leon’s algorithm increases exponentially. In contrast, if the field
size is fixed, then Leon’s algorithm will eventually outperform our algorithm.
Figure 4 shows that our algorithm exploits the large field size so well, that in
some regimes increasing the field size hurts security. Therefore, when picking
parameters for LESS, it is best not to pick a field size that is too big. To achieve
128 bits of security against our algorithm and Leon’s algorithm one could use
linearly equivalent codes of length 250 and dimension 125 over F53. This results
in a signature size of 28.4 KB, more than 3 times the original LESS-I signature
size of 8.4 KB. The public key size would be 11.4 KB, more than 22 times the
original public key size of 0.5 KB. We found that for the LESS-II parameter set,
the finite field F7 is too small for our algoritm to improve over Leon’s algoritm,
which we estimate would take about 244 row operations.
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Fig. 3. Complexity of Leon’s algorithm and our algorithm for finding linear equiva-
lences in function of the code Length. In the left graph the field size scales linearly
with the code length, in the right graph the field size q = 53 is fixed. In both cases
the rate of the code is fixed at k/n = 1/2.
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Fig. 4. Estimated complexity of Leon’s algorithm and our algorithm for finding linear
equivalences in function of the finite field size for random weakly self-dual codes of
length n = 250 and dimension k = 125.
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5 Conclusion

We have introduced a new algorithm for finding permutation equivalences and
linear equivalences between codes that improves upon Leon’s algorithm for suf-
ficiently large field sizes. Leon’s algorithm requires computing the set of all the
codewords of minimal length, in contrast, to find permutation equivalences our
algorithm only requires to compute a small (square root) fraction of the code-
words that have a certain (non-minimal) weight. To find linear equivalences we
compute a small fraction of the 2-dimensional subspaces of the code with small
(but not minimal) support. We implement the algorithm and use it to break
the recently proposed LESS system. We show that the LESS-I and LESS-III
parameter sets can be broken in only 25 seconds and 2 seconds respectively.
We propose larger parameters that resist our attack and Leon’s original attack
that come at the cost of at least a factor 3 increase in signature size and a
factor 22 increase in key size. We compare the new parameters of LESS to
some other code-based signature schemes in table 2. Despite the significant
increase in signature size and key size, LESS still has smaller signatures than
other zero-knowledge based signatures in the Hamming metric, such as Stern’s
protocol [15], Veron’s protocol [17] and the CVE scheme [4]. For example, we
estimate that with some straightforward optimizations, the Fiat-Shamir trans-
formed version of CVE identification protocol has a signature size of 38 KB at
128 bits of security. However, the smaller signature size of LESS comes at the
cost of larger public keys. Compared to cRVDC [2], a recent zero-knowledge-
based proposal using the rank metric, the signature size of LESS is very sim-
ilar, but the LESS public keys are much larger. Compared to the Durandal
scheme [1], LESS has a similar public key size, but larger signatures. Finally,
compared to WAVE [5] LESS has much smaller public keys, but also much
larger signatures.

CVE [15] cRVDC [2] Durandal [1] Wave [5] LESS-I LESS-III

Metric Hamming Rank Rank Hamming Hamming
Type FS FS FS w/ abort Trapdoor FS

Public Key 104 B 152 B 15 KB 3.2 MB 11 KB 17 KB
Signature 38 KB 22 KB 4.0 KB 1.6 KB 28 KB 19 KB

Table 2. Comparison of the new LESS parameters with some other code-based
signature schemes.
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Improved cryptanalysis of UOV and Rainbow

Ward Beullens

imec-COSIC, KU Leuven, Belgium

Abstract. The contributions of this paper are twofold. First, we sim-
plify the description of the Unbalanced Oil and Vinegar scheme (UOV)
and its Rainbow variant, which makes it easier to understand the
scheme and the existing attacks. We hope that this will make UOV and
Rainbow more approachable for cryptanalysts. Second, we give two new
attacks against the UOV and Rainbow signature schemes; the intersec-
tion attack that applies to both UOV and Rainbow and the rectangular
MinRank attack that applies only to Rainbow. Our attacks are more
powerful than existing attacks. In particular, we estimate that com-
pared to previously known attacks, our new attacks reduce the cost
of a key recovery by a factor of 217, 253, and 273 for the parameter
sets submitted to the second round of the NIST PQC standardization
project targeting the security levels I, III, and V respectively. For the
third round parameters, the cost is reduced by a factor of 220, 240, and
255 respectively. This means all these parameter sets fall short of the
security requirements set out by NIST.

1 Introduction

The Oil and Vinegar scheme and its Rainbow variant are two of the oldest
and most studied signature schemes in multivariate cryptography. The Oil and
Vinegar scheme was proposed by Patarin in 1997 [17]. Soon thereafter, Kipnis
and Shamir discovered that the original choice of parameters was weak and
could be broken in polynomial time [15]. However, it is possible to pick param-
eters differently, such that the scheme resists the Kipnis-Shamir attack. This
variant is called the Unbalanced Oil and Vinegar scheme (UOV), and has with-
stood all cryptanalysis since 1999 [14].

The rainbow signature scheme can be seen as multiple layers of UOV stacked
on top of each other. This was proposed by Ding and Schmidt in 2005 [9]. The
design philosophy is that by iterating the UOV construction, the Kipnis-Shamir

∗ This work was supported by CyberSecurity Research Flanders with reference num-
ber VR20192203, and by the Research Council KU Leuven grant C14/18/067 on
Cryptanalysis of post-quantum cryptography. Ward Beullens is funded by FWO
SB fellowship 1S95620N.
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attack becomes less powerful, which enables the use of more efficient param-
eters. However, the additional complexity opened up more attack strategies,
such as the MinRank attack, the Billet-Gilbert attack [4], and the Rainbow
Band Separation attack [10]. Even though our understanding of the complex-
ity of these attacks has been improving over the last decade, there have been
no new attacks since 2008.

Multivariate cryptography is believed to resist attacks from adversaries with
access to large scale quantum computers, which is why there has been renewed
interest in this field of research during recent years. Seven out of the nineteen
signature schemes that were submitted to the NIST post-quantum cryptogra-
phy standardization project were multivariate signature schemes. From those
seven schemes, four were allowed to proceed to the second round [3, 5, 18, 8],
and only the Rainbow submission was selected as a finalist. The UOV scheme
was not submitted to the NIST PQC project.

Contributions. As a first contribution, we simplify the description of the UOV
and Rainbow schemes. Traditionally, the public key is a multivariate quadratic
map P, and the secret key is a factorization P = S ◦F ◦ T where S and T are
invertible linear maps, and F is a so-called central map. Our description avoids
the use of a central map and only talks about properties of P instead. This new
perspective makes it easier to understand the scheme and the existing attacks.

Secondly, we introduce two new key-recovery attacks: the intersection attack
and the rectangular MinRank attack. The intersection attack relies on the idea
behind the Kipnis-Shamir attack and applies to both the UOV scheme and the
Rainbow scheme. The rectangular MinRank attack reduces key recovery to an
instance of the MinRank problem. In this problem the task is, given a number
of matrices, to find a linear combination of these matrices with exceptionally
low rank. When Ding and Schmidt designed the Rainbow scheme in 2005 they
were already aware that Rainbow was susceptible to MinRank attacks. How-
ever, our new attack shows that there was another instance of the MinRank
problem lurking in the Rainbow public keys that went undiscovered until now.
We call our attack the rectangular MinRank attack because unlike previous
attacks, the matrices in the new MinRank instance are rectangular instead of
square.

Roadmap. After giving some necessary background in Sect. 2, we introduce
our simplified description of the Oil and Vinegar scheme and the existing at-
tacks in Sect. 3. In Sect. 4 we introduce our intersection attack on UOV. In
Sect. 5 we give a simplified description of the Rainbow scheme, and we review
the existing attacks. The following sections 6 and 7 introduce the intersection
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attack for Rainbow and the rectangular MinRank attack respectively. We con-
clude in Sect. 8 with an overview of our attack complexities and new parameter
sets for UOV and Rainbow.

2 Preliminaries

2.1 Notation.

For a vector space V ⊂ Kn over a field K, we define its orthogonal complement
V ⊥ as the space of vectors that are orthogonal to all the vectors in V , i.e.
V ⊥ = {w|〈w,v〉 = 0 ,∀v ∈ V }. For a linear subspace W ⊂ V , we denote by
V/W the quotient space of V by W . This is the vector space whose elements
are the cosets of W in V :

V/W = {x := x +W |x ∈ V } .

Let x = x1, · · · , xnx
and y = y1, · · · , yny

be two groups of variables in Fq.
We denote by M(a, b) the number of monomial functions of degree a in the x
variables and degree b in the y variables. We denote byM(a, b) the number of
monomial functions of degree at most a in x and at most b in y. If a and b are
lower than q we have

M(a, b) =

(
a+ nx − 1

a

)(
b+ ny − 1

b

)
and M(a, b) =

(
a+ nx
a

)(
b+ ny
b

)

2.2 Multivariate quadratic maps

The central object in Multivariate Quadratic cryptography is the multivariate
quadratic map. A multivariate quadratic map P with m components and n
variables is a sequence p1(x), · · · , pm(x) of m multivariate quadratic polyno-
mials in n variables x = (x1, · · · , xn), with coefficients in a finite field Fq.

To evaluate the map P at a value a ∈ Fn
q , we simply evaluate each of its

component polynomials in a to get a vector b = (b1 = p1(a), · · · , bm = pm(a))
of m output elements. We denote this by P(a) = b.

MQ problem The main source of computational hardness for multivariate
cryptosystems is the Multivariate Quadratic (MQ) problem. Given a multi-
variate quadratic map P : Fn

q → Fm
q , and given a target t ∈ Fm

q , the MQ
problem asks to find a solution s such that P(s) = t. This problem is NP-hard,
and it is believed to be exponentially hard on average, even for quantum ad-
versaries. Currently, the best algorithms to solve instances of this problem (for
cryptographically relevant parameters) are algorithms such as F4/F5 or XL
that use a Gröbner-basis-like approach [11, 6].
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Polar forms. For a multivariate quadratic polynomial p(x), we can define its
polar form

p′(x,y) := p(x + y)− p(x)− p(y) + p(0) .

Similarly, for a multivariate quadratic map P(x) = p1(x), · · · , pm(x), we define
its polar form as P ′(x,y) = p′1(x,y), · · · , p′m(x,y). This polar form will allow
us to simplify the descripion of the UOV and Rainbow schemes, and will play
a major role in the attacks on UOV and Rainbow. The multivariate quadratic
maps of interest in this paper are homogenous, so we will often omit the P(0)
term.

Theorem 1. Given a multivariate quadratic map P(x) : Fn
q → Fm

q , its polar
form P ′(x,y) : Fn

q × Fn
q → Fm

q is a symmetric and bilinear map.

Proof. We can write p(x) = x>Qx + v · x + c, where Q is an upper triangular
matrix that contains the coefficients of the quadratic terms of p, where v con-
tains the coefficients of the linear terms of p(x), and where c is the constant
term of p(x). Then we have

p′(x,y) := p(x + y)− p(x)− p(y) + p(0)

= (x + y)>Q(x + y)− y>Qy − x>Qx + v · (x + y)− v · x− v · y
= x>Qy + y>Qx

= x>(Q+Q>)y .

2.3 Solving MinRank with Support Minors Modeling

The MinRank problem asks, given k matrices L1, · · · , Lk with n rows and m
columns and a target rank r, to find coefficients yi ∈ Fq for i from 1 to k, not

all zero, such that the linear combination
∑k

i=1 yiLi has rank at most r.

Recently, Bardet et al. introduced the Support Minors Modeling algorithm for
solving this problem [1]. Let y ∈ Fk

q be a solution, and let C be a matrix

whose rows form a basis for the rowspan of Ly =
∑k

i=1 yiLi. For each subset
S ⊂ {1, · · · ,m} of size |S| = r, let cS be the determinant of the r-by-r subma-
trix of C whose columns are the columns of C with index in S.

The Support Minors Modeling approach considers for each j ∈ {1, · · · , n} the
matrix

Cj =

(
rj
C

)
,

where rj is the j-th row of Ly. Then the rank of Cj is at most r, which implies
that all its (r + 1)-by-(r + 1) minors vanish. Using cofactor expansion on the
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first row, each minor gives a bilinear equation in the yi variables and the cS
variables. The Support Minors Modeling algorithm then uses the XL algorithm
to find a solution to this system of n

(
m
r+1

)
bilinear equations.

Analysis. The attack constructs the Macaulay matrix Mb at bi-degree (b, 1),
a large sparse matrix, whose columns correspond to the monomials of degree b
in the yi variables, and of degree 1 in the cS variables. So at degree (b, 1), the
matrix has M(b, 1) columns. The rows of the matrix contain the degree (b, 1)
polynomials of the form µ(y) ·f(y, c), where µ(y) is a monomial of degree b−1,
and f(y, c) is one of the bilinear equations of the Support Minors Modeling
system. The goal of the attack is then to use the Wiedemann algorithm to find
a non-trivial solution to the linear system Mbx = 0, so that x reveals a solution
to the MinRank problem. This approach works if the rank of Mb isM(b, 1)−1,
so that there is only a one-dimensional solution space that corresponds to the
unique (up to a scalar) solution of the MinRank problem.

Bardet et al. calculate that whenever b < r + 2, the rank of the Macaulay
matrix is

Rk,n,m,r(b) =

b∑

i=1

(−1)i+1

(
m

r + i

)(
n+ i− 1

i

)(
k + b− i− 1

b− i

)
, (1)

unless Rk,n,m,r(b′) > M(b′, 1) − 1 for some b′ ≤ b, in which case the rank is
equal toM(b, 1)−1. This allows to calculate for which b the attack will succeed.

If bmin is the smallest integer for which the attack will succeed, then solving
the XL system with the Wiedemann algorithm requires

3M(bmin, 1)2(r + 1)k

field multiplications. Bardet et al. found that it is often advantageous to ignore
a number of columns of the Li matrices and only consider the first m′ columns
of the matrices, for some optimal value of m′ in the range [r+ 1,m]. For more
details on the Support Minors Modeling algorithm, we refer to [1].

3 The UOV signature scheme

The Oil and Vinegar signature scheme, introduced in 1997 by Patarin [17], is
based on an elegant MQ-based trapdoor function. The trapdoor function is a
multivariate quadratic map P : Fn

q → Fm
q for which it is assumed that finding

preimages (i.e. solving the MQ problem) is hard. However, if one knows some
extra information (called the trapdoor), then it is easy to find preimages for any
arbitrary output. Originally, Patarin proposed to use the system with n = 2m.
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This parameter choice was cryptanalysed by Kipnis and Shamir [15], which is
why current proposals use n > 2m. This is known as the Unbalanced Oil and
Vinegar (UOV) signature scheme. The conservative recommendation is to use
n = 3m or even n = 4m, but more aggressive and (more efficient) parameter
sets have been proposed that use n ≈ 2.35m [7].

The UOV signature scheme is created from the UOV trapdoor function with
the Full Domain Hash approach: The public key is the trapdoor function P :
Fn
q → Fm

q , the secret key contains the trapdoor information, and a signature
on a message M is simply an input s such that P(s) = H(M ||salt), where H
is a cryptographic hash function that outputs elements in the range of P and
where salt is a fixed-length bit string chosen uniformly at random for every
signature. Therefore, to understand the UOV signature scheme, we only need
to understand how the UOV trapdoor function works.

3.1 UOV trapdoor function

The UOV trapdoor function is a multivariate quadratic map P : Fn
q → Fm

q that
vanishes on a secret linear subspace O ⊂ Fn

q of dimension dim(O) = m, i.e.

P(o) = 0 for all o ∈ O .

The trapdoor information is nothing more than a description of O. To generate
the trapdoor function one first picks the subspace O uniformly at random and
then one picks P uniformly at random from the set of multivariate quadratic
maps with m components in n variables that vanish on O. Note that on top of
the qm “artificial” zeros in the subspace O, we expect roughly qn−m “natural”
zeros that do not lie in O.

Given a target t ∈ Fm
q , how do we use this trapdoor to find x ∈ Fn

q such
that P(x) = t? To do this, one picks a vector v ∈ Fn

q and solves the system
P(v + o) = t for a vector o ∈ O. This can simply be done by solving a linear
system for o, because

P(v + o) = P(v)︸ ︷︷ ︸
fixed by choice of v

+P(o)︸ ︷︷ ︸
=0

+ P ′(v,o)︸ ︷︷ ︸
linear function of o

= t .

With probability roughly 1 − 1/q over the choice of v the linear map P ′(v, ·)
will be non-singular, in which case the linear system P(v+o) = t has a unique
solution. If this is not the case, one can simply pick a new value for v and try
again.
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3.2 Traditional description of UOV

Traditionally, the UOV signature is described as follows: The secret key is
a pair (F , T ), where T ∈ GL(n, q) is a random invertible linear map, and
F : Fn

q → Fm
q is the so-called central map, whose components f1, · · · , fm are

chosen uniformly at random of the form

fi(x) =

n∑

i=1

n−m∑

j=i

αi,jxixj .

Note that the second sum only runs from i to n−m. So all the terms have at
least one variable in x1, · · · , xn−m.

The public key that corresponds to (F , T ) is the multivariate quadratic map
P = F ◦ T . To sign a message M , the strategy is to first solve for s′ ∈ Fn

q such
that F(s′) = H(M ||salt), and then the final signature is s = T −1(s′), such that
P(s) = F(s′) = H(M ||salt).

The description in Sect. 3.1 is just a slightly different way of thinking about the
same scheme. In particular, the distribution of public keys for this signature
scheme is the same: The central map F is chosen uniformly from the set of maps
that vanish on the m-dimensional space of vectors O′ that consists of all the
vectors whose first n−m entries are zero, i.e. O′ = {v | vi = 0 for all i ≤ n−m}.
After composing with T , we get a public key P = F ◦T that vanishes on some
secret linear subspace O = T −1(O′).

3.3 Attacks on UOV

A straightforward approach to attack the UOV signature scheme is to com-
pletely ignore the existence of the oil subspace and directly try to solve the
system P(x) = H(M ||salt) to produce a signature for the message M . This can
be done with a Gröbner basis-like approach such as XL or F4/F5 [11, 6]. This
is called a direct attack.

More interestingly, the attacker can first try to find the oil space O. After O is
found, the attacker can sign any message as if he was a legitimate signer. Two
attacks in the literature take this approach.

Reconciliation attack. The reconciliation attack was developed by Ding et
al. as a stepping stone towards the Rainbow Band Separation (RBS) attack
on Rainbow [10]. As an attack on UOV, the reconciliation attack is not very
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useful, since it never outperforms a direct attack on UOV for properly chosen
parameters. Nevertheless, we describe the attack here, since it can also be seen
as a precursor to our intersection attack of Sect. 4.

The attack tries to find a vector o ∈ O by solving the system P(o) = 0. We
know that dim(O) = m, so if we impose m affine constraints on the entries of
o, we still expect a unique solution o ∈ O.

If n−m ≤ m, then we expect P(o) = 0 to have a unique solution after fixing
m entries of o. This is a system of m equations in fewer than m variables, so
solving this system is more efficient than a direct attack.

If n − m > m then P(o) = 0 will have a lot of solutions, only one of which
corresponds to an o ∈ O. Enumerating all the solutions is too costly, and the
attack will not outperform a direct attack. We can try to solve the following
system to find multiple vectors o1, · · · ,ok in O simultaneously:

{
P(oi) = 0 ∀i ∈ {1, · · · , k}
P ′(oi,oj) = 0 ∀i < j ∈ {1, · · · , k} .

However, this increases the number of variables that appear in the system, and
therefore the attack will usually not outperform a direct attack.

Once a first vector in O is found, finding subsequent vectors is much easier. If
o is the first vector that we found, then a second vector o′ ∈ O will satisfy

{
P(o′) = 0

P ′(o,o′) = 0
,

which means we get m linear equations on o′ for free. Therefore, the complexity
of the attack is dominated by the complexity of finding the first vector in O.

Kipnis-Shamir attack. Historically, the first attack on the OV signature
scheme was given by Kipnis and Shamir [15]. The basic version of this attack
works when n = 2m, which was the case for the parameter sets initially pro-
posed by Patarin.

Attack if n = 2m. The attack looks at the m components of P ′(x,y). Each
component p′i(x,y) = pi(x + y)− pi(x)− pi(y), defines a matrix Mi such that
p′i(x,y) = x>Miy. Kipnis and Shamir observed the following useful property
of Mi.

Lemma 2. For each i ∈ {1, · · · ,m}, we have that MiO ⊂ O⊥. That is, each
Mi sends O into its own orthogonal complement O⊥.



214 CRYPTANALYSIS OF UOV AND RAINBOW

Improved cryptanalysis of UOV and Rainbow 9

Proof. For any o1,o2 ∈ O we need to prove that 〈o2,Mio1〉 = 0. This follows
from the assumption that pi vanishes on O:

〈o2,Mio1〉 = o>2 Mio1 = p′i(o1,o2) = pi(o1 + o2)− pi(o1)− pi(o2) = 0 .

If n = 2m, then dim(O⊥) = n−m = m, so if Mi is nonsingular (which happens
with high probability1), then Lemma 2 turns into an equality MiO = O⊥. This
means that for any pair of invertible Mi,Mj , we have that M−1

j MiO = O, i.e.

that O is an invariant subspace of M−1
j Mi. It turns out that finding a common

invariant subspace of a large number of linear maps can be done in polynomial
time, so this gives an efficient algorithm for finding O. For more details we refer
to [15]

Remark 3. Note that, as a map from Fn
q to itself, Mi implicitly depends on a

choice of basis for Fn
q . A more natural approach would be to define Mi as a

map from Fn
q to its dual Fn

q
∨ given by x 7→ p′i(x, ·). Lemma 2 would then say

MiO ⊂ O0, where O0 ⊂ Fn
q
∨ is the annihilator of O. We chose not to take this

approach to avoid the dual vector space and annihilators, which some readers
might not be familiar with.

Fn
q Fn

q

O O⊥
M1

M2

Fn
q Fn

q

O
O⊥M1O

M2O

M1

M2

Fig. 1. Behavior of O under M1 and M2, in case n = 2m (on the left) and 2m < n <
3m (on the right).

Attack if n > 2m. If n > 2m, then it is still the case that Mi sends O into
O⊥, but because dim(O⊥) = n−m > m = dim(O) the equality MiO = MjO

1 In fields of characteristic 2 and in case n is odd, the Mi are never invertible, because
Mi is skew-symmetric and with zeros on the diagonal and therefore has even rank.
(Recall that Mi = Qi + Q⊥i as in the proof of Theorem 1.) To avoid this case we
can always set one of the variables to zero. This has the effect of reducing n by one
(which gets us back to the case where n is even), and it also reduces the dimension
of O by one, which makes the attack slightly less powerful. Since this trick is always
possible, we will assume that n is even in the remainder of the paper.
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may no longer hold. Therefore, M−1
i Mj is no longer guaranteed to have O as

an invariant subspace and the basic attack fails. However, even though in gen-
eral MiO 6= MjO, they still have an unusually large intersection (see Figure 1):
MiO and MjO are both subspaces of O⊥, so their intersection has dimension
at least dim(MiO)+dim(MjO)−dim(O⊥) = 3m−n. Kipnis et al. [14] realized
that this means that vectors in O are more likely to be eigenvectors of M−1

j Mi.

Heuristically, for x ∈ O, the probability that it gets mapped by Mi to some
point in the intersection MiO ∩MjO is approximately

|MiO ∩MjO|
|MiO|

= q2m−n .

If this happens, then the probability that M−1
j maps Mix back to a multiple

of x is expected to be (q− 1)/|O| ≈ q1−m. Therefore, we can estimate that the
probability that a vector in O is an eigenvector of M−1

j Mi is approximately

q1+m−n, and the expected number of eigenvectors in O is therefore q1+2m−n.

The same analysis holds when you replace Mi and Mj by arbitrary invertible
linear combinations of the Mi. The attacker can repeatedly compute the eigen-
vectors of F−1G, where F and G are random invertible linear combinations
of the Mi. After qn−2m attempts he can expect to find a vector in O (he can
verify whether a given eigenvector x is in O by checking that P(x) = 0). The
complexity of the attack is Õ(qn−2m), so the attack runs in polynomial time
if n = 2m, but quickly becomes infeasible for unbalanced instances of the OV
construction2. For more details on the attack, we refer to [14].

4 Intersection attack on UOV

In this section, we introduce a new attack that uses the ideas behind the Kipnis-
Shamir attack, in combination with a system-solving approach such as in the
reconciliation attack. We first describe a basic version of the attack that works
as long as n < 3m. Then we also give a more efficient version of the attack that
works if n < 2.5m.

4.1 Attack if n < 3m

Like in the Kipnis-Shamir attack, we consider for each i ∈ {1, · · · ,m} the
matrix Mi such that p′i(x,y) = x>Miy, and we choose two indices i, j ∈
{1, · · · ,m} such that Mi and Mj are invertible matrices. The goal of our at-
tack is to find a vector x in the intersection MiO ∩MjO. Recall from Sect. 3.3

2 The Õ-notation ignores polynomial factors.
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that this intersection has dimension at least 3m − n, so non-trivial solutions
exist if n < 3m.

If x is in the intersection MiO ∩MjO, then both M−1
i x and M−1

j x are in O.
Therefore, x is a solution to the following system of quadratic equations





P(M−1
i x) = 0

P(M−1
j x) = 0

P ′(M−1
i x,M−1

j x) = 0

. (2)

Since there is a 3m−n dimensional subspace of solutions, we can impose 3m−n
affine constraints on x, so that we expect a unique solution. The attack is then
to simply use the XL algorithm to find a solution to this system of 3m quadratic
equations in n− (3m− n) = 2n− 3m variables.

Once x is found, we know 2 vectors M−1
i x and M−1

j x in O, and the remaining
vectors in O can be found more easily with the approach described in Sect. 3.3.

4.2 Attack when n < 2.5m

If n is small enough compared to m we can make the attack more efficient
by solving for an x in the intersection of more than 2 subspaces MiO at the
same time. Suppose n < 2k−1

k−1 m for an integer k ≥ 1, and let L1, · · · , Lk be k
randomly chosen invertible linear combinations of the Mi, then the intersection
L1O ∩ · · · ∩ LkO will have dimension at least km− (k − 1)(n−m) > 0, which
means there is a nonzero x such that L−1

i x ∈ O for all i from 1 to k. We can
then solve the following system of equations:

{
P(L−1

i x) = 0 , ∀i ∈ {1, · · · , k}
P ′(L−1

i x, L−1
j x) = 0 , ∀i < j ∈ {1, · · · , k} (3)

We expect to find a unique solution after imposing km− (k− 1)(n−m) linear
conditions on x to random values, so the complexity of the attack is dominated
by the complexity of solving a system of

(
k+1

2

)
m quadratic equations in nk −

(2k − 1)m variables.

Remark 4. Note that in the case n = 2m the requirement n < 2k−1
k−1 m is sat-

isfied for every k > 1. If we pick k ≈ √m, then we have more than
(
m+1

2

)

equations in m variables, which means we can linearize the system and solve it
with Gaussian elimination in polynomial time. This is not surprising, because
Kipnis and Shamir have already shown that UOV can be broken in polynomial
time if n = 2m.
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4.3 Complexity analysis of the attack

We noticed that the equations of system (3) are not linearly independent: even
though there are

(
k+1

2

)
m equations they only span a subspace of dimension(

k+1
2

)
m− 2

(
k
2

)
. This is because if we have Li =

∑m
l=1 αilMi, for all i from 1 to

k, then for all 1 ≤ i < j ≤ k we have

m∑

l=1

αilP ′l(L−1
i x, L−1

j x) =

m∑

l=1

αil(L
−1
i x)⊥MlL

−1
j x)

= (L−1
i x)⊥LiL

−1
j x)

= x⊥L−1
j x =

m∑

l=1

αjlPl(L
−1
j x)

Similarly, we have

m∑

l=1

αjlP ′l(L−1
i x, L−1

j x) = x⊥L−1
i x =

m∑

l=1

αilPl(L
−1
i x) ,

so for each choice of 0 ≤ i < j ≤ k there are two linear dependencies between
the equations of system (3). This explains why they only span a subspace of
dimension

(
k+1

2

)
m− 2

(
k
2

)
.

Our experiments show that, after removing the 2
(
k
2

)
redundant equations,

the systems (2) and (3) behave like random systems of M =
(
k+1

2

)
m − 2

(
k
2

)

quadratic equations in N = nk−(2k−1)m variables. For some small UOV sys-
tems, we computed the ranks of the Macaulay matrices at various degrees, and
we found that they exactly match the ranks of generic systems (see Table 1).
That is, at degree d, the rank is equal to the coefficient of td in the power series
expansion of

1− (1− t2)M

(1− t)N+1
,

assuming that this coefficient does not exceed the number of columns of the
Macaulay matrix.

We can use the standard methodology for estimating the complexity of system
solving with an XL Wiedemann approach as

3

(
N + dreg
dreg

)2(
N + 2

2

)

field multiplications, where the degree of regularity dreg is the first d such that
the coefficient of td in

(1− t2)M

(1− t)N+1
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is non-positive [2, 8].

Table 1. The rank and the number of columns of the Macaulay matrices for the
system of equations of the intersection attack. The rank at degree d always matches
the coefficients of td the corresponding generating function, except if the coefficient
is larger or equal to the number of columns. In this case (marked by boldface in the
table) the rank equals the number of columns minus 1, and the XL system can be
solved at that degree d.

parameters Macaulay matrix at degree d Generating
n m k d = 2 d = 3 d = 4 d = 5 function

8 4 2
Rank 10 34 1−(1−t2)10

(1−t)5#Columns 15 35

10 4 2
Rank 10 90 405 1245 1−(1−t2)10

(1−t)9#Columns 45 165 495 1287

12 5 2
Rank 13 130 673 2001 1−(1−t2)13

(1−t)10#Columns 55 220 715 2002

12 5 3
Rank 24 288 1364 1−(1−t2)24

(1−t)12#Columns 78 364 1365

14 6 2
Rank 16 176 936 3002 1−(1−t2)16

(1−t)11#Columns 66 286 1001 3003

14 6 3
Rank 30 390 1819 1−(1−t2)30

(1−t)13#Columns 91 455 1820

Concrete costs To demonstrate that the new attack is more efficient than
existing attacks, we apply it to the UOV parameters proposed by Czypek et
al. [7]. They proposed to use q = 256, n = 103,m = 44, targeting 128 bits of
security. More precisely, they estimate that the direct attack requires 2130 field
multiplications and that the Kipnis-Shamir attack requires 2136 multiplications.

Their parameter choice satisfies n < 2.5m, so we can use the more efficient
version of the attack with k = 3 (i.e. where we solve for x in the intersection of
3 subspaces of the form MiO). This results in a system of M =

(
3+1

2

)
m−2

(
3
2

)
=

258 equations in N = nk− (2k−1)m = 89 variables. The complexity of finding
a solution is 295 multiplications (dreg = 9), which is lower than the claimed
security level of 2128 multiplications.

In general, it seems that the new attack only outperforms a direct forgery
attack, if n < 2.5. The usual recommendation in the literature is to use n = 3m
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or even n = 4m, so these parameters are not affected by the new attack. In
contrast, the example above shows that more aggressive parameters (which are
tempting because they are much more efficient and previously no attacks were
known) are no longer secure.

5 The Rainbow signature scheme

The Rainbow signature scheme is a variant of the UOV signature scheme pro-
posed in 2004 by Ding and Schmidt [9]. The Rainbow trapdoor function is a
multivariate quadratic map P : Fn

q → Fm
q . The trapdoor consists of a sequence

of nested subspaces Fn
q ⊃ O1 ⊃ · · · ⊃ Ol of the input space, and a sequence

of nested subspaces Fm
q ⊃ W1 ⊃ · · · ⊃ Wl = {0} of the output space, with

dimO1 = m, and dimOi = dimWi−1 for i > 1 and such that the following
hold:

1. P(x) ∈Wi for all x ∈ Oi, and
2. P ′(x,y) ∈Wi−1 for all x ∈ Fn

q , all y ∈ Oi.

Rainbow with one layer (i.e. l = 1) is nothing more than UOV. In the rest of the
paper, we focus on Rainbow with two layers (i.e. l = 2), because this results
in the most efficient schemes and because this covers all the parameter sets
submitted to the NIST PQC standardization project. In this case, there are 3
secret subspaces: O1, O2 and W (see Figure 2). An instantiation of Rainbow is
then described by 4 parameters:

– q: the size of the finite field
– n: the number of variables
– m: the number of equations in the public key, also the dimension of O1.
– o2: the dimension of O2, also the dimension of W .

Given the trapdoor information (i.e. O1, O2 and W ), a solution s to P(s) = t
can be found with an efficient 2-step algorithm.

1. In the first step, pick v ∈ Fn
q uniformly at random, and solve for o1 ∈

O1/O2, such that P(v + o1) +W = t +W . This can be rewritten as

P(v)︸ ︷︷ ︸
fixed by choice of v

+P(o1)︸ ︷︷ ︸
∈W

+ P ′(v,o1)︸ ︷︷ ︸
linear in o1

+W = t +W.

This is a system of linear equations in the quotient space Fm
q /W , so we

can efficiently sample a solution with Gaussian elimination. Note that the
system has m − dimW constraints and m − dimW degrees of freedom,
so we expect there to be a unique solution (mod O2) with probability
approximately 1 − 1/q. If there is no unique solution we pick a new value
of v and start over.
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Fn
q O1 O2

Fm
q W {0}

P P′(x,·) P P′(x,·) P

Fig. 2. The structure of a Rainbow public key with 2 layers. The polar form P ′(x, ·)
maps O2 to W for every x ∈ Fn

q .

2. In the second step, we solve for o2 ∈ O2, such that P(v + o1 + o2) = t.
Writing it as

P(v + o1)− t︸ ︷︷ ︸
fixed,∈W

+P(o2)︸ ︷︷ ︸
=0

+P ′(v + o1,o2)︸ ︷︷ ︸
linear in o2,∈W

= 0 ,

we see that this is a system of dimW linear equations (because all the
values are in W ) in dimW variables, so we expect to find a unique solution
with Gaussian elimination with probability 1 − 1/q. If no unique solution
exists we return to step 1 with a new guess of v.

Remark 5. If we put W = Fm
q and O1 = O2, or if we put O2 = {0} and

W = {0} then we get back the original UOV construction.

5.1 Traditional description of Rainbow

Traditionally, a Rainbow public key is generated as P = S ◦ F ◦ T , where
S ∈ GL(m, q) and T ∈ GL(n, q) are uniformly random invertible linear maps,
and where F(x) = f1(x), · · · , fm(x) is the so-called central map, whose first
o1 components f1(x), . . . , fo1(x) are of the form

fi(x) =

n−o1∑

j=1

n−m∑

k=1

αijkxjxk ,

and whose remaining components fo1+1(x), · · · , fm(x) are of the form

fi(x) =

n∑

j=1

n−o1∑

k=1

αijkxjxk .
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Let O′1 be the subspace of Fn
q consisting of all the vectors whose first n −m

entries are zeros, and let O′2 be the subspace consisting of the vectors whose first
n− o2 entries are zero. Then all the polynomials in the central map vanish on
O′2, and the first o1 polynomials also vanish on O′1. In other words, F(O′2) = 0
and F(O′1) ⊂ W ′, where W ′ is the subspace of Fm

q consisting of the vectors
whose first o1 entries are zero. Moreover, F ′(x,y) ∈ W ′ for any x ∈ Fn

q and
any y ∈ O2. Therefore, the central map F satisfies the diagram in Figure 2
with the publicly known subspaces O′1, O′2 and W ′ taking the roles of O1, O2

and W . This means that after composing F with secret random linear maps
S and T we obtain a public key P = S ◦ F ◦ T that satisfies the diagram in
Figure 2 for uniformy random secret subspaces O1 = T −1O′1, O2 = T −1O′2 and
W = S−1W ′.

5.2 Rainbow NIST PQC parameter sets

In this paper, we focus on the Rainbow parameter sets that were proposed to the
second round and the finals of the NIST PQC standardization project [8]. These
parameter sets and the corresponding key and signature sizes are displayed in
Table 2.

Table 2. The Rainbow parameter sets that were submitted to the second round and
the finals of the NIST PQC standardization project.

Parameter Parameters |pk| |sk| |sig|
set q n m o2 (kB) (kB) (Bytes)

Second
Ia 16 96 64 32 149 93 64

Round
IIIc 256 140 72 36 710 511 156
Vc 256 188 96 48 1705 1227 204

Ia 16 100 64 32 157 101 66
Finals IIIc 256 148 80 48 861 611 164

Vc 256 196 100 64 1885 1376 212

5.3 Attacks on Rainbow

A straightforward method to forge a signature is to simply try to find a solu-
tion s to the system P(s) = H(M ||salt). This is called a direct attack. More
interesting attacks try to exploit the hidden structure of the Rainbow trapdoor.
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OV attack. The OV attack of Kipnis and Shamir to find the subspace O in
the OV construction can be used against Rainbow to find O2. The complexity
of the attack is Õ(qn−2o2).

When O2 is found, it is easy to find W , because

{P ′(x,y) | x ∈ Fn
q ,y ∈ O2} ⊂W ,

and with overwhelming probability this will be an equality. Once W is found, we
have reduced the problem to a small UOV instance with parameters n′ = n−o2

and m′ = m − o2, so the Kipnis and Shamir attack can be used again to find
O1, with complexity Õ(qn

′−2m′) = Õ(qn+o2−2m), which is negligible compared
to the complexity of the first step.

MinRank/HighRank attack. For all i ∈ {1, · · · ,m}, we define Mi ∈ Fn×n
q

like we did in the description of the OV attack. For v ∈ Fm
q we define the linear

combination Mv :=
∑m

i=0 viMi. Then it follows that 〈v,P ′(x,y)〉 = x>Mvy.
The second property of the Rainbow public key says that if v ∈ W⊥, then
〈v,P ′(x,y)〉 = x>Mvy = 0 for all values of x and all y ∈ O2. This implies
that O2 is in the kernel of Mv, so Mv has an exceptionally small rank of at
most n− dimO2.

The MinRank attack attempts to exploit this property to find a vector in W⊥.
The problem is, given the Mi for i ∈ {1, · · · ,m}, to find a linear combination
of these maps that has rank n− dimO2. This can be done with 2 strategies:

Guessing strategy [13]. Repeatedly pick v ∈ Fm
q . With probability q−o2 , we

have v ∈ W⊥. To check if a guess is correct, we simply check if the rank of
Mv is at most n − dimO2. The complexity of the attack is Õ(qo2). There is
a more efficient version of this attack by Billet and Gilbert, that runs in time
Õ(q2n−3m+o2+1) [4].

Algebraic strategy. One expresses rank(Mv) ≤ n−dimO2 as a system of mul-
tivariate polynomial equations in the entries of v and uses an algorithm such
as XL to find a solution. There exist several methods to translate the rank
condition into a system of polynomial equations, such as the Kipnis-Shamir
modeling, and Minors modeling [16, 12]. Recently, a more efficient approach
by Bardet et al. called “Support Minors Modeling” drastically improved the
efficiency of this attack (see Sec. 2.3 and [1]). The algebraic approach is asymp-
totically more efficient than the guessing strategy.
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As soon as a single vector v ∈ W⊥ is found, the attacker knows O2, because
it is the kernel of Mv. Then, once O2 is known he can finish the key recovery
attack as described in the previous section on the UOV attack.

Rainbow band separation attack This attack, proposed by Ding et al.
[10], tries to simultaneously find a vector o ∈ O2, and a vector v ∈ W⊥. This
gives rise to the following system of equations

{
P(o) = 0

〈v,P ′(o,x)〉 = 0 , ∀x ∈ Fn
q

. (4)

To get a unique solution, we can impose o2 linear relations on the entries of o
and m − o2 linear relations on the entries of v. This results in a system with
n−o2 variables for o and o2 variables for v, which makes a total of n variables.
It looks like we get qn bilinear equations (one for each choice of x ∈ Fn

q ),
but these equations are obviously not independent. Extend o to a basis x1 =
o,x2, · · · ,xn for Fn

q (since we fixed some entries of o, we can pick the xi with
i > 1 without having to know the precice value of o). We can rewrite system (4)
as {

P(o) = 0

〈v,P ′(o,xi)〉 = 0 , ∀i ∈ {1, · · · , n} . (5)

Note that the first bilinear equation is 〈v,P ′(o,o)〉 = 0, which is equivalent
to 〈v,P(2o) − 2P(o)〉 = 〈v, 2P(o)〉 = 0, (recall that P is homogenous), so
this equation is already implied by the P(o) = 0 equations. This leaves us
with a system of m quadratic equations in o, and n − 1 bi-linear equations
in the entries of o and v. The complexity of this attack is studied in detail
in [19], where they introduce a variant of the XL algorithm that exploits the
bi-homogenous structure of the system.

6 Intersection attack on Rainbow

In this section we introduce a new key-recovery attack against the Rainbow
signature scheme that is similar to our intersection attack on UOV from Sect. 4.
Let k be such that n < 2k−1

k−1 o2, and pick invertible matrices L1, · · · , Lk from
the span of the Mi. Our goal is to find a vector x in the intersection

x ∈
k⋂

i=1

LiO2 .

This intersection has dimension at least ko2 − (k − 1)(n − o2) > 0, so non-
zero vectors in the intersection exist. We could try to find x by solving the
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system (3). However, similar to the RBS attack, we can improve the efficiency
of the attack by simultaneously looking for a vector v ∈W⊥. Let e1, · · · , en be
a basis for Fn

q , where all the entries of ei are zero, except the i-th entry which
equals 1. Then we get the following system of quadratic equations:





P(L−1
i x) = 0 , ∀i ∈ {1, · · · , k}

P ′(L−1
i x, L−1

j x) = 0 , ∀i < j ∈ {1, · · · , k}
〈v,P ′(L−1

i x, ej)〉 = 0 , ∀i ∈ {1, · · · , k} and ∀j ∈ {1, · · · , n}
. (6)

If we impose ko2 − (k − 1)(n − o2) affine constraints on the entries of x, and
m−o2 affine constraints on the entries of v we expect to have a unique solution.

It looks like we get
(
k+1

2

)
m quadratic equations in the x variables and kn

equations that are linear in the x variables and the v variables. However, the
quadratic equations are the same set of equations as in the Intersection attack
on UOV, so we know that they give only

(
k+1

2

)
m − 2

(
k
2

)
linearly independent

equations. We can then use the Bilinear XL variant of Smith-Tone and Perl-
ner [19] to find the unique solution to the system of equations.

Remark 6. If we put k = 1 then we recover the Rainbow Band Separation
attack (see Sect. 5.3), so our attack can be seen as a generalization of the RBS
attack. However, note that previous works have assumed that only n−1 out of
the n bilinear equations are useful. We find that this is not quite correct. Even
though there is a syzygy at degree (2, 1) (which we will discuss later) it is still
useful to consider all n bilinear equations.

6.1 Extending to n ≥ 3o2

If n ≥ 3o2, then we expect there to be no non-trivial intersection, so the attack
is not guaranteed to succeed with k = 2. However, if we model L1O2 and L2O2

as uniformly random subspaces of O⊥2 , then the probability that they intersect
non-trivially is approximately q−n+3o2−1. Therefore, we can expect the attack
to succeed after qn−3o2+1 guesses for (L1, L2).

6.2 Complexity analysis of the attack

The system of equations (6) is clearly not generic, since the first
(
k+1

2

)
m equa-

tions only contain the entries of x as variables, and the remaining k(n − k)
equations are bi-linear in the entries of x and v. This is the same structure as
the systems that appear in the RBS attack (Sec. 5.3). Smith-Tone and Perl-
ner investigated the complexity of solving such systems, and they proposed
a variant of the XL algorithm that exploits the bi-homogeneous structure of
the system [19]. Their algorithm works for systems of polynomial equations in
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nx + ny variables, where mx equations are quadratic in the first nx variables,
and mxy equations are bi-linear in the first nx and last ny variables respectively.
Under a maximal rank assumption, their XL variant terminates at bi-degree
(A,B) if the coefficient corresponding to tasb in

(1− t2)mx(1− ts)mxy

(1− t)nx+1(1− s)ny+1
(7)

is non-positive for some a, b with a ≤ A and b ≤ B. If this is the case, an upper
bound for the number of multiplications in the attack is given by

3M(A,B)2

(
nx + 2

2

)
, (8)

whereM(A,B) is the number of monomials with bi-degree bounded by (A,B).

The maximal rank assumption is not valid for small instances of Rainbow,
because there are k2 non-trivial syzygies: For each (i, j) ∈ {1, · · · , k}2 we have

〈v,P ′(L−1
i x, L−1

j x)〉 =

m∑

l=1

vl · P ′l(L−1
i x, L−1

j x)

=

m∑

t=1

〈v,P ′(L−1
i x, et)〉 · (L−1

j x)t ,

which gives a non-trivial syzygy for the system (6) at bi-degree (2, 1).

Since adding an equation with bi-degree (a, b) to the polynomial system cor-
responds to an extra factor (1 − tasb) in the generating function (7), it seems
natural that a syzygy at degree (a, b) results in a factor (1− tasb)−1. We there-
fore conjecture that the generating function for the system (6) is

(1− t2)mx(1− ts)mxy (1− t2s)−k2

(1− t)nx+1(1− s)ny+1
(9)

where

nx = min(nk − (2k − 1)o2, n− 1), ny = o2,

mx =

(
k + 1

2

)
m− 2

(
k

2

)
, and mxy = kn .

We experimentally verified that this generating function exactly predicts the
ranks of the Macaulay matrices for small instances of Rainbow (see Table 4).
That is, we found that the rank of the Macaulay matrix at bi-degree (A,B)
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equals M(A,B) minus the coefficient of tAsB in (9), unless one of the coeffi-
cient of tasb with a ≤ A and b ≤ B is non-positive, in which case the rank is
M(A,B)− 1, and the bilinear XL algorithm will succeed at bi-degree (A,B).

Under our assumption, we can estimate the cost of our attack by iterating over
all minimal bi-degrees (A,B) for which the attack will succeed (i.e. for which
the coefficient of tAsB in the generating function is non-positive), and picking
the bi-degree (A,B) that minimizes the cost (8).

6.3 Application to Rainbow NIST submissions

We now estimate the complexity of our attack on the Rainbow parameter sets
that were submitted to the NIST PQC project. For all the proposed parameter
sets we have n ≥ 3o2, which means the basic attack will need to be repeated
multiple times before we expect to recover the secret key. For the Ia parameter
set on the second-round submission, we have n = 3m, and for all the parameter
sets of the final round submission we have n = 3m+ 4. In these cases, we need
to repeat the attack q and q5 times respectively. For the IIIc and Vc parameter
set of the second-round submission, n is much larger than 3m, so the attack is
very inefficient in these cases.

Table 3 reports the estimated gate count of our attack. To convert from the
number of multiplications to the gate count, we use the model that is standard
in the MQ literature; each multiplication costs 2(log2(q)2 + log2(q)) gates. We
see that our attack outperforms the best known attacks for 4 out of the 6
proposed parameter sets. The improvement is the largest for the Ia parameter
set of the first round and the Vc parameter set of the finals, where we improve
on existing attacks by almost 20 bits.

Table 3. The estimated gate count of our Intersection attack on Rainbow compared
to the best known attacks (taken from [19] for the second round parameters and the
Rainbow NIST submission for the finals parameters).

Parameter Attack parameters New Known
set nx ny mx mxy guesses (A,B) attack attacks

Second
Ia 95 32 190 192 q1 (10,1) 123 140

round
IIIc 139 36 214 280 q33 (6,9) 412 204
Vc 187 48 286 376 q45 (6,15) 548 264

Ia 99 32 190 200 q5 (7,4) 140 147
Finals IIIc 147 48 238 296 q5 (10,6) 213 217

Vc 195 64 298 392 q5 (10,12) 262 281
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Table 4. The rank and the number of columns of the Macaulay matrices for the
system of equations of the intersection attack. The rank at degree (A,B) always

matches the coefficient of tAsB in 1−(1−t2)mx (1−ts)mxy (1−t2s)−k2

(1−t)nx (1−s)ny , except if the coeffi-

cient is larger or equal to the number of columns. In this case (marked by boldface in
the table) the rank equals the number of columns minus 1, and the XL system can
be solved at bi-degree (A,B).

parameters Macaulay matrix at bi-degree (A,B)
n m o2 k (2, 0) (1, 1) (3, 0) (2, 1) (1, 2) (3, 1) (2, 2) (1, 3)

8 6 3 2
rank 16 12 119 143 64 159
cols 36 32 120 144 80 160

10 6 3 1
rank 6 10 48 103 40 479 331 100
cols 36 32 120 144 80 480 360 160

12 8 4 1
rank 8 12 72 147 60 795 589 180
cols 45 45 165 225 135 825 675 315

12 8 4 2
rank 22 24 264 389 120 360
cols 78 60 364 390 180 420

14 10 5 1
rank 10 14 100 199 84 1220 953 294
cols 55 60 220 330 210 1320 1155 650

14 10 5 2
rank 28 28 392 556 168 3359 2204 588
cols 105 84 560 630 294 3360 2205 784

7 The Rectangular MinRank Attack

In this section we introduce a new MinRank attack that exploits the property
that for y ∈ O2, we have that P ′(x,y) ∈ W for all x ∈ Fn

q . Let e1, · · · , en be
the basis for Fn

q where ei is a vector whose entries are zero, except for the i-th
entry which equals one. For a vector x ∈ Fn

q , we define the matrix

Lx =



P ′(e1,x)
· · ·

P ′(en,x)


 .

If y ∈ O2, then all the rows of Ly are in W , which implies that the matrix has
rank at most dimW = o2. Moreover, it follows from the bilinearity of P ′ that

Ly =

n∑

i=1

yiLe1
.

Since the Lei
matrices are public information, it follows that finding y ∈ O

reduces to an instance of a rectangular MinRank problem; if an attacker can
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find a linear combination
∑n

i=1 Leiyi with rank at most o2, then we can assume
that y is in O2. If we set o2−1 entries of y to zero, we still expect a non-trivial
solution, so it suffices to look for a linear combinations of only the matrices Le1

up to Len−o2+1
. Note that this MinRank instance is fundamentally different

from the one that was already known in the literature (see Table 5).

Table 5. Comparison of the new MinRank instance with the known instance of the
MinRank problem.

Known instance New instance
of MinRank problem of MinRank problem

Size of matrices n-by-n n-by-m
Number of matrices o2 + 1 n− o2 + 1
Rank of linear combination m o2

Solution vector in W⊥ vector in O2

We can use generic algorithms to solve this instance of the MinRank problem,
such as the guessing strategy, or the algebraic methods of Sect. 5.3. However,
in our case we can do slightly better because we have more information about
y; on top of knowing that Ly has low rank, we also know that P(y) = 0. Note
that the variables yi already appear in the system of equations that model the
rank condition rank(Ly) ≤ o2. Therefore, we can add the equations P(y) = 0
to the system without having to introduce additional variables. This will make
the attack slightly more efficient.

7.1 Complexity Analysis

We first estimate the complexity of solving the pure MinRank problem with the
support minors modeling approach of Sect. 2.3, without using the additional
equations P(y) = 0. From experiments it seems that in case we are working
in a field of odd characteristic, the MinRank instance behaves like a generic
instance of the MinRank problem, so we can use the methodology of Bardet et
al. to estimate the complexity of a random MinRank instance with n− o2 + 1
matrices of size n-by-m with target rank o2 (see Sect. 2.3). However, in case
of a field with characteristic 2 (which includes all the Rainbow parameters
submitted to NIST), there are some syzygies that do not appear in the case of
random MinRank instances. This stems from the fact that, in characteristic 2,
we have

P ′(y,y) = P(2y)− P(y)− P(y) = 2P(y) = 0 ,
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so the (r + 1)-by-r + 1 minors of

(
P ′(y,y)

C

)
=

n∑

i=0

yi

(
P ′(ei,y)

C

)

all vanish, which gives
(

m
r+1

)
non-trivial linear relation between the equations

at degree (2, 1). It is possible to carefully count how many linearly independent
equations we have at each degree (b, i), with an analysis similar to the analysis
of Bardet et al. [1].

However, to simplify the analysis, we can side-step the syzygies by ignoring
one of the rows of the L1, · · · , Ln−o2+1 matrices; since all the syzygies use all
the rows of the Li, the syzygies do not occur anymore if we omit a row from
all the Li matrices. Experimentally, we find that after removing a row, the
instance behaves exactly like a random instance of the MinRank problem with
n − o1 + 1 matrices of size (n − 1)-by-m and with rank o2. We can therefore
use the methodology of Bardet et al. to estimate the complexity of the attack
(see Sect. 2.3). The first half of Table 6 reports on the estimated complexities
for the Rainbow parameter sets that were submitted to the second round and
the finals of the NIST PQC standardization project.

Table 6. The optimal attack parameters of the new MinRank attack, and the cor-
responding gate complexity for the Rainbow parameter sets submitted to the second
round and the finals of the NIST PQC standardization project.

Parameter Plain MinRank MinRank and P(y) = 0
set m′ b log2

gates
m′ b log2

gates

Second
Ia 51 2 131 40 6 124

round
IIIc 59 2 153 52 4 151
Vc 80 2 197 74 3 191

Ia 51 2 131 44 4 127
Finals IIIc 72 3 184 68 4 177

Vc 95 4 235 87 6 226

The attack using P(y) = 0. We use the notation of Sect. 2.3, where Mb is the
Macaulay matrix for the Support Minors Modelling system at bi-degree (b, 1)
(omitting one row of the Li matrices, as discussed earlier), and where M(b, 1)
is the number of monomials of degree b in the yi variables and of degree 1 in
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the cS variables. Let M+
b be the Macaulay matrix of the SMM system after

appending the P(y) = 0 equations. We want to figure out the minimal value of
b, for which the rank of M+

b is equal to M(b, 1) − 1, because in that case the
system M+

b x = 0 will have a one-dimensional solution space that corresponds
to the solutions of the MinRank problem.

Bardet et al. already computed the rank of Mb, so we only need to figure out
how much the rank increases by including the P(y) = 0 equations. Let G(t)
be a generating function for the dimension of the kernel of Mb, and G+(t) a
generating function for the dimension of the kernel of M+

b . Note that, even
though we do not have a nice expression for G(t), we can compute its coef-
ficients from the expression of Bardet et al. for the rank of Mb, because the
coefficient corresponding to tb in G(t) isM(b, 1)−rank(Mb). Under some gener-
icity assumptions we have that G+(t) = (1− t2)mG(t), from which we can get
the rank of M+

b .

Experimentally, we found for all the instances of Rainbow we could check, that
this predicts the rank of M+

b exactly (see Table 7).

Table 7. The rank and the number of columns of the Macaulay matrices for the
system of equations of the rectangular MinRank attack. The rank at bi-degree (b, 1)
always matches the predicted values, except if the prediction is larger or equal to the
number of columns. In this case (marked by boldface in the table) the rank equals
the number of columns minus 1, and the XL system can be solved at bi-degree (b, 1).

parameters Macaulay matrix at bi-degree (b, 1)
n m o2 m′ b = 1 b = 2 b = 3 b = 4

rank 40 244 839
9 6 3 5 rank with P(y) = 0 40 279

number of columns 70 280 840

rank 66 528 2376 7424
12 8 4 6 rank with P(y) = 0 66 648 2474

number of columns 135 675 2475 7425

rank 14 154 924 4004
15 10 5 6 rank with P(y) = 0 14 214 1444 6005

number of columns 66 396 1716 6006

rank 136 1615 10387
18 12 6 8 rank with P(y) = 0 136 1951 12739

number of columns 364 2548 12740
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To estimate the complexity of the attack, we compute the first few terms of
G(t) until we encounter the first non-positive coefficient. If the first non-positive
coefficient corresponds to tb, then we assume the bilinear XL algorithm will
work at bi-degree (b, 1) and we can upper bound its cost as

3M(bmin, 1)2W

multiplications, where W = max((o2+1)(n−o2+1),
(

(n−o2+3)
2

)
) is the maximal

weight of the equations in the system. We found that, as already observed by
Bardet et al. , it is helpful to consider only the first m′ columns of the matrices
Lei

. For each value of m′ ∈ [o2 +1,m] we estimate the attack cost, and we pick
the value of m′ that results in the smallest cost. The optimal attack parameters
(m′, b) and the corresponding costs (in terms of gate count) are reported in
Table 6. We see that adding the P(y) = 0 equations to the Support minors
modeling system reduces the attack complexity by a modest factor between 22

and 29 for the NIST parameter sets.

8 Conclusion

This paper offers a new perspective on the UOV and Rainbow signature schemes
that avoids the use of a central map. This makes it easier to understand the
existing attacks on these schemes, and allowed us to discover some new, more
powerful, attacks. We hope that our simpler perspective will encourage more
researchers to scrutinize the UOV and Rainbow signature schemes.

We introduce two new attacks: the intersection attack, which applies to both
the UOV and the Rainbow signature schemes, and the rectangular MinRank
Attack that applies only to the Rainbow scheme. Although methods for solv-
ing systems of multivariate quadratic equations (and our understanding of their
complexity) have been improving over the last decades, the intersection attack
is the first improvement in the cryptanalysis of UOV that is specific to the
structure of the UOV public keys since 1999. Similarly, even though our under-
standing of the complexity of attacks on Rainbow has been improving (recent
examples are [19] and [1]), there had not been any fundamentally new attacks
on Rainbow since 2008.

New parameters for UOV and Rainbow. Both of our attacks reduce the
security level of the Rainbow NIST submission below the requirements set out
by NIST (see Table 8). However, our attacks are still exponential, and Rainbow
can be saved by increasing the parameter sizes by a relatively small amount.
For example, using q = 16, n = 109,m = 68, o2 = 36 would presumably reach
NIST security level I and would result in a signature size of 71 Bytes (a 10 %
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Table 8. An overview of the estimated gate counts of our attacks versus known
attacks and the target security level for the six Rainbow parameter sets submitted
to the second round and the finals of the NIST PQC standardization project. The
complexities of the known attacks are taken from [19] for the second round parameters
and the Rainbow NIST submission for the finals parameters. The security target is
taken from the NIST PQC call for proposals.

Parameter set Intersection
attack

New MinRank
attack

Known
attacks

Security
target

Second
Ia 123 124 140 143

round
IIIc 412 151 204 207
Vc 548 191 264 272

Ia 140 127 147 143
Finals IIIc 213 177 217 207

Vc 262 226 281 272

increase) an key size of roughly 203 KB (an increase of 25 %). Alternatively,
one could use the UOV scheme with q = 64, n = 118,m = 47, which results
in 89 Byte signatures and a key size of 242 Kilobytes. It seems questionable
whether the small performance advantage of Rainbow over UOV is worth the
additional complexity. We leave a more carefully optimized parameter choice
for UOV and Rainbow for future work.

Acknowledgments. I would like to thank Bo-Yin Yang and Jintai Ding for
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Chapter 12

CSI-FiSh
—–BEGIN PGP SIGNED MESSAGE—–
Hash: SHA1

Any chance you can stop the job running on my machine (Lumagon)?
It is stopping me working.

Nigel Smart
COSIC - KU Leuven

– Nigel Smart, personal communication, 3/27/2019
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Abstract. In this paper we report on a new record class group com-
putation of an imaginary quadratic field having 154-digit discriminant,
surpassing the previous record of 130 digits. This class group is central
to the CSIDH-512 isogeny based cryptosystem, and knowing the class
group structure and relation lattice implies efficient uniform sampling
and a canonical representation of its elements. Both operations were im-
possible before and allow us to instantiate an isogeny based signature
scheme first sketched by Stolbunov. We further optimize the scheme us-
ing multiple public keys and Merkle trees, following an idea by De Feo
and Galbraith. We also show that including quadratic twists allows to
cut the public key size in half for free. Optimizing for signature size, our
implementation takes 390ms to sign/verify and results in signatures of
263 bytes, at the expense of a large public key. This is 300 times faster
and over 3 times smaller than an optimized version of SeaSign for the
same parameter set. Optimizing for public key and signature size com-
bined, results in a total size of 1468 bytes, which is smaller than any
other post-quantum signature scheme at the 128-bit security level.

Keywords: Isogeny based cryptography, digital signature, class group,
group action, Fiat-Shamir.

1 Introduction

Isogeny based cryptography was first proposed in 1997 by Couveignes [9] in
a talk at the “séminaire de complexité et cryptographie” at the ENS, but

∗ This work was supported in part by the Research Council KU Leuven grants
C14/18/067 and STG/17/019. Ward Beullens is funded by an FWO fellowship.
Date of this document: 2019.05.14.
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his ideas on how class group actions could be used in cryptography were not
published at that time. The same ideas were independently rediscovered in 2006
by Rostovtsev and Stolbunov [31]. Both Couveignes as well as Rostovtsev and
Stolbunov described a Diffie-Hellman like key agreement scheme (usually called
CRS) using the class group of the endomorphism ring of ordinary elliptic curves.
Rostovtsev and Stolbunov also describe an isogeny based identification scheme.
However, none of these schemes can be considered practical.

A different approach was taken by Jao and De Feo who introduced SIDH (Su-
persingular Isogeny Diffie–Hellman) [22]. SIDH does not rely on class group
actions as CRS, but exploits the simple fact that dividing out an elliptic curve
by two (large) non-intersecting subgroups is commutative. SIDH uses super-
singular curves, mainly for two reasons: firstly, constructing a supersingular el-
liptic curve with given group order is trivial, and secondly, their endomorphism
ring is non-commutative which thwarts attacks by Kuperberg’s algorithm [25].
SIDH forms the basis of a practical key-exchange protocol called SIKE [21],
which is one of the main contenders in NIST’s post-quantum standardization
project [29].

A major improvement of CRS was made by Castryck et. al. [6] by instantiating
the scheme for supersingular curves over Fp and by restricting the endomorph-
ism ring to Fp-rational endomorphisms. This subring behaves very much like in
the ordinary curve setting, so the CRS approach applies. The main advantage
is that the class group action can be computed very efficiently since by con-
struction, the supersingular curves have many small rational subgroups. The
resulting cryptosystem is called CSIDH for Commutative Supersingular Isogeny
Diffie-Hellman and is pronounced “sea-side”.

Both SIDH and CSIDH result in efficient key-agreement schemes, but a prac-
tical isogeny based signature scheme is much harder to achieve. The first at-
tempt was made by Stolbunov in his PhD thesis [35]; the signature scheme
consists of the Fiat-Shamir transform applied to a standard three pass isogeny
based identification scheme. The scheme can be securely instantiated under
two assumptions: firstly, it should be possible to sample uniformly in the class
group (this could be efficiently approximated) and secondly, each element in the
class group has an efficiently computable canonical representation. Especially
the second assumption is a major obstacle to instantiate Stolbunov’s signature
scheme.

This problem was partly remedied by De Feo and Galbraith in the signature
scheme SeaSign [11] by employing “Fiat–Shamir with aborts”. The main idea is,
instead of using a canonical representation for each class group element, to use
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a majorly redundant representation and to apply rejection sampling to make
the distribution of the class group elements, which are part of the signature,
independent of the secret key. The drawback is that this redundant represent-
ation makes evaluating the class group much less efficient. Several versions of
SeaSign were presented offering trade-offs between signature size, public-key
size, and secret-key size. Although signature sizes of less than one kilobyte at
the 128-bit security level are possible, the scheme is again not practical taking
several minutes to sign. Decru et al. [12] improved all variants of SeaSign, but
the fastest parameter set still requires 2 minutes to sign a message.

A different approach was taken by Yoo et al. [38] who transform an SIDH-based
zero-knowledge proof proposed by De Feo et al. [15] into a digital signature
scheme. The resulting signatures however are rather large at ∼ 120KB which
is much larger than other post-quantum signature schemes. A similar approach
was described by Galbraith et al. [17] who were able to compress the signa-
tures down to roughly 10KB. None of the above signature schemes is therefore
practical, either due to lack of efficiency or due to the large signatures.

It is well known (see for instance Couveignes [9], Stolbunov’s PhD [35] or Sec-
tion 9.2 of [11]), that knowing the class group structure would resolve the two
main problems with Stolbunov’s signature scheme. Firstly, uniform sampling is
now trivial, but more importantly, each element has an efficiently computable
canonical representation. This immediately implies that rejection sampling is no
longer necessary, thereby majorly speeding up the resulting signature scheme.

The computation of the class group of a quadratic imaginary number field
is a classical problem in computational number theory, and the current best
algorithms [20, 4, 23] are improvements of an algorithm due to Hafner and
McCurley [18]. These algorithms have complexity L1/2(∆) with ∆ the discrim-
inant of the number field. The largest publicly known class group computation
was for a 130-digit discriminant by Kleinjung [23].

The main contributions in this paper are as follows:

– We compute the class group structure and a relation lattice of the class
group of the quadratic imaginary field corresponding to the CSIDH-512
parameter set having a 154-digit discriminant. This computation is de-
scribed in Section 3.

– We present an efficient algorithm to compute the class group action of ran-
dom class group elements by solving an approximate CVP-problem in the
relation lattice. This strategy is described in Section 4 and is a combina-
tion of Babai nearest plane algorithm [1] and a random walk approach due
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to Doulgerakis, Laarhoven and de Weger [14]. Compared to native CSIDH
which starts from an efficient representation, our algorithm is only 15%
slower.

– In Section 5, we introduce CSI-FiSh (Commutative Supersingular Isogeny
based Fiat-Shamir signatures, pronounce “sea-fish”) which is based on Stol-
bunov’s signature scheme [35] combined with optimisations similar to the
ones described for SeaSign [11]. We also show that the public key size can
be cut in half for free by including not only the curve, but also its quadratic
twist. This implicitly doubles the number of curves in the public key for
free, without affecting the security of the scheme. Finally, we prove that the
resulting signature scheme is secure in the quantum random oracle model.

– We provide an efficient open-source implementation of CSI-FiSh and report
on the implementation results in Section 6. As for SeaSign, CSI-FiSh allows
for various trade-offs: the smallest signatures are 263 bytes and are also the
fastest (∼ 390ms to sign/verify), but require a large public key of 2 MB.
Slightly larger signatures of 461 bytes require a public key of 16KB which
is comparable to multivariate schemes such as LUOV [3], but take ∼ 670ms
to compute. Optimizing for public key and signature size combined, results
in a total size of 1468 bytes which is smaller than any other post-quantum
signature scheme at the 128-bit security level.

2 Preliminaries

We denote by [a, b] with a, b ∈ Z, a ≤ b the set {a, . . . , b}. When considering
reals instead of integers [a, b] denotes the interval a ≤ r ≤ b with r ∈ R, whereas
[a, b[ denotes a ≤ r < b. The cardinality of a set S is denoted by #S.

2.1 Elliptic curves and isogenies

The go-to general reference on elliptic curves is Silverman [33]. A good intro-
duction to isogeny based cryptography can be found in the lecture notes by
De Feo [10].

Let E be an elliptic curve over a finite field Fp with p a large prime, and let
0E denote the point at infinity on E. The curve E is called supersingular iff
#E(Fp) = p + 1, and ordinary otherwise. Given two elliptic curves E and E′,
an isogeny φ is a morphism φ : E → E′ (i.e. can be expressed as fractions of
polynomials) such that φ(0E) = 0E′ . An isomorphism is an isogeny that has
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an inverse (which is also a morphism), and two elliptic curves are isomorphic
iff they have the same j-invariant, which is a simple algebraic expression in the
coefficients of the curve. Since an isogeny defines a group homomorphism from
E to E′, its kernel is a subgroup of E. Vice-versa, any subgroup S ⊂ E(Fpk)
determines a (separable) isogeny φ : E → E′ with kerφ = S, i.e. E′ = E/S. The
equation for E′ and the isogeny φ can be computed using Vélu’s formulae [36]
using O(#S(k log p)2) bit-operations. As such, it is only practical to handle
fairly small subgroups S defined over small extensions of Fp.

The ring of endomorphisms End(E) consists of all isogenies from E to itself, and
EndFp(E) denotes the ring of endomorphisms defined over Fp. For an ordinary
curve E/Fp we have End(E) = EndFp(E), but for a supersingular curve over
Fp we have a strict inclusion EndFp(E) ( End(E). In particular, it is known
that for a supersingular curve over Fp its full endomorphism ring End(E) is
an order in a quaternion algebra, whereas EndFp(E) is only an order in the
imaginary quadratic field Q(

√−p). In the following we will denote this order
O = EndFp(E).

The ideal class group of O is the quotient of the group of fractional invertible
ideals in O by the principal fractional invertible ideals, and will be denoted
Cl(O). Given an O-ideal a, we can consider the subgroup defined by the inter-
section of the kernels of the endomorphisms in a, i.e. Sa =

⋂
α∈a kerα. Since

this is a subgroup of E, we can divide out by Sa and denote the isogenous curve
E/Sa by a ? E. This isogeny is well-defined and unique up to Fp-isomorphism
and the group Cl(O) acts via the operator ? on the set E of Fp-isomorphism
classes of elliptic curves with Fp-rational endomorphism ring O. One can show
that Cl(O) acts freely and transitively on E , i.e. E is a principal homogeneous
space for Cl(O).

In what follows we will assume that the class group Cl(O) is cyclic of order
N = #Cl(O) generated by the class of an ideal g. The more general case of non-
cyclic class groups is a trivial extension and is not required in the application
we consider.

2.2 CSIDH

Castryck et al. [6] proposed an efficient commutative group action ? by crafting
supersingular elliptic curves with many small Fp-rational subgroups. Given that
#E(Fp) = p + 1 for a supersingular curve, it is immediate that if p is chosen
to be of the form 4 · `1 · · · `n − 1, with `i small distinct odd primes, we have
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#E(Fp) = 4 · `1 · · · `n. Such curves therefore have, for each i ∈ [1, n], an Fp-
rational subgroup of order `i. Since p = −1 mod `i, we have that in Q(

√−p)
the rational prime `i splits as (`i) = 〈`i, π − 1〉〈`i, π + 1〉, where π =

√−p
represents the Fp-Frobenius endomorphism. Note that the first ideal factor
li = 〈`i, π−1〉 corresponds to the subgroup of order `i defined over Fp, and that
the action of this ideal can be computed entirely over Fp. Once this subgroup
is determined, Vélu’s formulae require O(`i(log p)2) bit operations. However,
for small `i, finding a generator of this small subgroup requires (at least one)
full-size scalar multiplication which dominates the cost of Vélu’s formulae.

CSIDH considers the action of ideals of the form
∏n
i=1 l

ei
i where the exponents

are chosen uniformly from some interval [−B,B]. This can be done by com-
puting sequentially the action of li exactly ei times. Since the cost of each such
action is dominated by the cost to determine the correct subgroup, we assume
that the overall cost of computing such action is mostly determined by the
`1-norm of its exponent vector, i.e. |e1|+ · · ·+ |en|.

The base curve is taken to be E0 : y2 = x3 +x over Fp and instead of using the
j-invariant, each isomorphism class of a curve with given endomorphism ring
EndFp(E) = O = Z[π] is represented by a single coefficient A ∈ Fp defining the
curve EA : y2 = x3 +Ax2 + x. Denote A the set of all such coefficients A, then
we obtain a class group action ? : Cl(O)×A → A or equivalently, assuming the
class group is cyclic of order N , a group action [] : ZN × A → A. To simplify
notation in the remainder of the paper, we will identify a curve EA with its
isomorphism class represented by the corresponding coefficient A.

Note however that in CSIDH, the order (and structure) of the class group are
unknown, so only the action of ideals of the form

∏n
i=1 l

ei
i with ei smallish are

computable. This restriction brings up various questions: firstly, given the range
of exponent vectors [−B,B]n, do the ideals

∏n
i=1 l

ei
i cover the whole class group,

and secondly, assuming the exponents are chosen uniformly in [−B,B], is the
resulting distribution of

∏n
i=1 l

ei
i uniform over Cl(O). It is clear that knowing

the class group structure voids both questions as surjectivity and uniformity
become trivial to attain. The only remaining problem then is to efficiently
compute the action [a] given a random exponent a ∈ ZN (see Section 4 for an
efficient solution).

2.3 Computational problems

The main hardness assumption underlying group actions based on isogenies, is
that it is hard to invert the group action:
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Definition 1 (Group Action Inverse Problem (GAIP)). Given a curve
E, with End(E) = O, find an ideal a ⊂ O such that E = a ? E0.

Another advantage of knowing the class group structure and therefore uniform
sampling, is that the GAIP is random self-reducible: given a problem instance
E, we can shift this over a uniformly random b to obtain E′ = b ? E, which
is uniformly distributed in A. Given a solution c for E′, it is easy to see that
cb−1 is then a solution to the original problem.

The CSI-FiSh signature scheme relies on the hardness of random instances of a
multi-target version of the inversion problem, which is shown to reduce tightly
to the normal GAIP by [11] in the case that the class group structure is known.

Definition 2 (Multi-Target GAIP (MT-GAIP)). Given k elliptic curves
E1, . . . , Ek with End(E1) = · · · = End(Ek) = O, find an ideal a ⊂ O such that
Ei = a ? Ej for some i, j ∈ {0, . . . , k} with i 6= j.

The best classical algorithm to solve the GAIP problem is a simple meet-
in-the-middle approach, where one finds a collision between two breadth-first
trees starting at E and E′ respectively. The time complexity of this approach is
O(
√

#Cl(O)). The best quantum algorithm for the GAIP problem reformulates
it as a hidden shift problem [7] and then applies Kuperberg’s algorithm [25, 26],

which runs in time 2O(
√
logN). Translating this subexponential complexity to

concrete security estimates is a highly non-trivial endeavour and we refer to [6,
Section 7] for precise details.

In this paper we will only focus on the CSIDH-512 parameter set, which uses
74 small primes `i (so n = 74) and samples the exponents uniformly from the
interval [−5, 5] (so B = 5). The CSIDH authors assume that sampling exponent
vectors in [−5, 5] covers a subset of size ∼ 2256, which, as we will see, is a bit less
than half of the total size of the class group. Class group elements (represented
by their exponent vectors) require roughly 32 bytes, and each isomorphism class
requires 64 bytes (one coefficient in Fp). The average time taken to perform one
such group action [6] is roughly 40 ms on a 3.5GHz processor. This parameter
set aimed to provide 128-bit classical security and to achieve NIST security
level 1 quantumly [6]. However, recent works propose quantum attacks that
are claimed to break the NIST security level 1 claim [30, 5].
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3 Class group computation

In order to uniformly sample and canonically represent class group elements, a
class group computation of Hafner-McCurley type [18] was performed which,
besides computing generators of the class group, also expresses the ideal classes
of prime ideals with small norm in terms of these generators. This computation
relied on the programs from [23], which work over the maximal order and thus
we obtain generators for Cl(OQ(

√−p)), where p is the 512-bit prime used in
CSIDH-512. This class group turns out to be cyclic and the class number is
not divisible by 3. Since the conductor of the suborder O is (2) and 2 does
not split in OQ(

√−p), we get #Cl(O) = 3#Cl(OQ(
√−p)) so that Cl(O) is also

cyclic. Using the information from the computation over the maximal order,
it is easy to find a generator of Cl(O) and to express the li as powers of this
generator. In total, the computation took an estimated effort of 52 core years on
an inhomogenous cluster of number crunchers and desktop machines, consisting
of around 800 cores with the “average” core running at around 3.3GHz.

The class group computation consists of the following steps.

Relation collection. Given a bound F (we chose F = 7000000), let F be the
set of prime ideals of degree one with norm less than F and the prime ideal (2);
the latter is only included for technical reasons. A relation is a decomposition
(a +

√−p) =
∏

p∈F pea,p with a, ea,p ∈ Z. Such relations can be found by

factoring the ideal (a +
√−p) for random a ∈ Z which essentially amounts to

factoring its norm a2 + p. Since most a do not give rise to a relation, there
exist many methods to speed up the search for relations. We used a sieving
approach [23] and the large prime variation with up to three large primes;
these details do not matter in the following and are suppressed.

The goal of this step is to generate sufficiently many relations such that the
subsequent steps are able to determine the class group. In practice, this usu-
ally means that we can stop collecting relations when the number of relations
slightly exceeds the number of prime ideals contained in their decompositions
(which is at most #F). However, a bigger excess often reduces the running
time of the subsequent steps significantly.

This step is one of the two main steps in terms of computational effort. For-
tunately, it is trivially parallelized and has moderate memory requirements. In
our computation it took an estimated time of 43 core years to collect 319.5
million relations over an extended factor base of size 32.7 million.
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Building the matrix. In this step the set of relations is converted into a
matrix over Z with rows corresponding to prime ideals and columns corres-
ponding to relations; the matrix entry belonging to the prime ideal p ∈ F and
relation (a+

√−p) is ea,p. This matrix is overdetermined and very sparse. We
now assume that the ideal classes of the prime ideals in F generate the class
group. In practice, it is very likely that this assumption holds; moreover, it
follows from GRH if F is chosen appropriately. Under the assumption above,
one has a surjection Z#F/Λ → Cl(OQ(

√−p)) where Λ is the lattice spanned
by the columns. If the matrix has full rank, the covolume of Λ is a multiple
of the class number. By performing elementary column operations as well as
removing certain rows and columns one can reduce this matrix significantly
while keeping it slightly overdetermined and sparse; this is done to reduce the
complexity of the next steps.

In terms of running time this step is negligible but it has higher memory re-
quirements and is not easily parallelisable. We reduced our set of 319.5 million
relations over a factor base of size 32.7 million to a slightly overdetermined
matrix with roughly 222 thousand rows.

Matrix step. By dropping some columns from the matrix above one can
obtain a square matrix and use the (block) Wiedemann algorithm modulo many
small primes to compute its determinant over Z (cf. [37, 8]). If the determinant
is non-zero, it is a (usually) huge multiple of the class number. By repeating
the determinant calculation for another square matrix obtained by dropping
another set of columns one gets a second huge multiple of the class number.
Their greatest common divisor is much smaller, thus can be factored, and for
each of its prime factors one can check whether it is a divisor of the class
number using quadratic forms.

This is the other main step, it is also easy to parallelize and has moderate
memory requirements. For both determinant computations, we computed the
determinant modulo roughly 7000 different 64-bit primes, which took roughly
4.3 core years per determinant. By taking the gcd of the determinants and
removing an extra factor of 2, we obtained that

#Cl(OQ(
√−p)) = 37× 1407181× 51593604295295867744293584889

×31599414504681995853008278745587832204909 .

The class group of the order O therefore has cardinality 3·#Cl(OQ(
√−p)) which

is approximately equal to 2257.136.
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Final computations. In this step the r-Sylow group of Cl(OQ(
√−p)) is com-

puted for each r dividing the class number together with the images of all
involved prime ideals in this Sylow group. For small r this is easy and for
large r the kernel of one of the square matrices from the previous step can be
computed modulo r, e.g., using the Lanczos or Wiedemann algorithm. Finally,
tying everything together a set of generators of the class group and for each
involved prime ideal a representation in terms of these generators are obtained.

This step is negligible in terms of running time and has only moderate memory
requirements. It turns out that the ideal l1 = 〈3, π − 1〉 generates Cl(O), the
discrete logs of the other li are available in our GitHub repository [2].

Remark 3. Notice that all odd primes up to 373 split in Q(
√−p) thus improving

the probablity that the ideal (a+
√−p) gives rise to a relation. This facilitates

the class group computation for our choice of p but the gain is much less than
a factor of 2 compared to an average prime of the size of p.

4 Class group action

In this section we discuss how to compute the action of ideals represented as ga,
where g is a generator of the class group. In practice, it will often be the case
that one of the li generates the class group already, and in fact, for the CSIDH-
512 class group we can even take g = l1 = 〈3, π − 1〉. Recall that for isogenies,
there is no analogue of the standard square-and-multiply for exponentiation,
so a different approach is required. We can only compute the group action
efficiently for the prime ideals li = 〈li, π−1〉, our approach is to first use lattice
reduction algorithms to rewrite ga as a product of the li with small exponents.
After this step, the action can be computed efficiently with Vélu’s Formulae.

Concretely, the ideal la1 corresponds to the exponent vector e = [a, 0, . . . , 0],
that needs to be reduced modulo the relation lattice:

L := {z = (z1, . . . , zn) ∈ Zn :

n∏

i=1

lzii = (1)} .

The lattice L has rank n and volume N = #Cl(O) since by definition it is the
kernel of the surjective group homomorphism that maps Zn → Cl(O) : z =
(z1, . . . , zn) 7→∏n

i=1 l
zi
i . Note that the relation lattice follows directly from the

class group computation described in Section 3.
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Since the complexity of a CSIDH action is mainly determined by the `1-norm
of the exponent vector, we want to solve the Closest Vector Problem (CVP) in
L for the `1-norm given the target vector e. Indeed, any vector z ∈ L which is
close to e for the `1 norm will result in an equivalent vector e − z such that
‖e− z‖1 is small and thus efficiently computable.

A first approximation for solving the CVP for the `1-norm is to use either
Babai’s rounding or nearest plane algorithm [1]. Given a set of basis vectors
B := {b1, . . . ,bn}, denote with B? := {b?1, . . . ,b?n} the corresponding Gram-
Schmidt orthogonalization vectors. Let P(B) denote the parallelepiped

P(B) =

{
n∑

i=1

αibi | αi ∈ [−1/2, 1/2[

}
,

then Babai rounding returns a lattice vector in e + P(B) and Babai’s nearest
plane in e + P(B?). This shows that e − z is either in P(B) or in P(B?)
depending on the choice of algorithm. Given a basis B and corresponding Gram-
Schmidt basis B?, it is therefore easy to bound ‖e− z‖1. This also shows that
a basis with short and almost orthogonal vectors will give better results. In our
experiments, we only used Babai’s nearest plane algorithm since it is superior
to Babai rounding.

Several notions of lattice reduction (and corresponding reduction algorithms)
exist such as LLL [28], BKZ [32] or HKZ [24]. Since the lattice L is fixed for
a given class group, a considerable effort can be spent in reducing the lattice
basis during a precomputation. To analyze the impact of the quality of the
basis, we computed three reductions: BKZ-40, BKZ-50 and HKZ. For each
reduced basis, we then ran Babai nearest plane resulting in Table 1, where
the average `1-norm and standard deviation are given for a sample size of 104

random exponents.

Table 1. `1-norm and `2-norm of Babai’s nearest plane method and evaluation times
of CSIDH-action on three different bases

BKZ-40 BKZ-50 HKZ

`1-norm
µ = 240.67 µ = 239.35 µ = 237.50
σ = 18.82 σ = 18.35 σ = 18.26

`2-norm
µ = 35.13 µ = 34.93 µ = 34.67
σ = 2.47 σ = 2.43 σ = 2.38

action evaluation time µ = 148.59 µ = 148.41 µ = 147.16
(106 cycles) σ = 12.91 σ = 12.57 σ = 12.46



CSI-FISH 247

12 Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren

The above table should be compared with the expected `1-norm and standard
deviation of vectors sampled according to the CSIDH distribution, i.e. uniform
random in [−B,B]n. For B = 5 and n = 74, we obtain µ = n2(5 + 4 + 3 + 2 +
1)/11 = 201.81 and σ = 13.76, but note (2B + 1)74 < N/2.2 so less than half
of the class group is covered by CSIDH.

To lower the `1-norm further, we can employ an algorithm due to Doulgerakis,
Laarhoven and de Weger [14] (originally described in [27]). The idea of this
algorithm is pretty simple: given a list S of short vectors in the lattice L, it tries
to construct a vector that is closer to e than the current vector z by considering
z ± s for all s ∈ S. This procedure is then repeated on small random shifts of
the target vector. The resulting DLW algorithm is described in Algorithm 1.

Algorithm 1 DLW algorithm - randomized slicer for solving CVP

Input: A list S ⊂ L of short vectors, target vector e ∈ Zn, number of iterations M
Output: Approximate closest lattice vector z to e
1: z← 0
2: for i = 0, . . . ,M − 1 do
3: Randomize e with random small lattice vector to obtain e′

4: for s ∈ S do
5: if ‖e′ − s‖1 < ‖e′‖1 then
6: e′ ← e′ − s and restart for loop in line (4)
7: end if
8: end for
9: if ‖e′‖1 < ‖e− z‖1 then

10: z← e− e′

11: end if
12: end for
13: return z

We ran Algorithm 1 for varying sizes of lists of short vectors and varying number
of iterations; the results can be found in Table 2.

Our experiments indicate that (on our setup) the fastest approach is to use the
Babai nearest plane method with 2 iterations of the DLW algorithm, with a
list of 10000 short vectors. In this case, the reduction takes 7.2 · 106 cycles on
average, and evaluating the CSIDH action takes on average 128.1·106 cycles. In
comparison, standard CSIDH-512 uses vectors sampled uniformly from [−5, 5]74

(which does not sample uniformly from Cl(O)) and takes on average 117.7 ·106

cycles. Hence, the additional cost of sampling uniformly is only 15%.
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Table 2. `1-norm, `2-norm and evalutation time (reduction + action) of the DLW
algorithm combined with Babai’s nearest plane method on an HKZ basis

List size Iterations `1-norm `2-norm time of reduction + action

1000 1 223.54± 13.29 34.07± 2.45 140.17± 10.32
1000 3 221.38± 11.82 33.79± 2.26 138.02± 10.24
1000 10 216.84± 10.14 33.21± 2.03 137.66± 9.82

3000 1 219.02± 12.02 33.65± 2.34 138.09± 10.25
3000 3 214.96± 10.33 33.03± 2.09 136.78± 9.46
3000 10 208.75± 8.55 32.12± 1.81 136.95± 8.73

10000 1 213.96± 10.92 33.09± 2.30 135.55± 9.53
10000 3 207.97± 9.10 32.08± 1.93 135.41± 8.82
10000 10 201.26± 7.47 31.05± 1.66 144.26± 7.94

5 The signature scheme

In this section we propose CSI-FiSh, an efficient isogeny based signature scheme.
The basis of CSI-FiSh was already sketched by Stolbunov in his thesis [35, 2.B].
He applies the Fiat-Shamir transform [16] to an isogeny based identification
scheme by Couveignes [9] and independently by Stolbunov [34].

E0 E1a?

E

b?
r?

Figure 1. The basic identification scheme for challenge c = 1.

5.1 The basic identification scheme

The identification scheme is illustrated in Figure 1 and works as follows: the
public key of the prover consists of E1 = a ? E0 with a a random element
in Cl(O) and E0 the base curve specified by the system parameters. Assuming
that Cl(O) is cyclic with generator g, we can write a = ga with a random in ZN
and N = #Cl(O). The prover samples a random element b = gb with b ∈R ZN
and commits to the (isomorphism class of the) curve E = gb ? E0 = [b]E0. The
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verifier then chooses a random bit c ∈ {0, 1} and sends this to the prover. If
c = 0, the prover responds with r = b, and the verifier checks that E = [r]E0,
if c = 1, the prover responds with r = b−a mod N and the verifier checks that
E = [r]E1. Note that reducing modulo N is required to avoid any leakage on a
and that the check can be written as E = [r]Ec. A detailed description of the
protocol is displayed in Figure 2.

Prover Verifier

b←R ZN

E ← [b]E0

E−−→
c

$←− {0, 1}

r ← b− c · a mod N

c←−−−−

r−−−−→
return E

?
= [r]Ec

Figure 2. The identification scheme of Couveignes and Stolbunov.

Theorem 4. The Couveignes-Stolbunov protocol (Figure 2) is a complete and
secure Sigma protocol proving knowledge of a solution of a GAIP instance. That
is, it enjoys completeness, special soundness and special Honest-Verifier Zero
Knowledge.

Proof. Completeness. Suppose the protocol is followed honestly, and suppose
E1 = [a]E0. In the case c = 0 the verifier checks if E = [b]E0, which is true by
construction of E. In the case c = 1 the verifier checks if E = [b− a]E1 which
holds because

[b− a]E1 = [b− a][a]E0 = [b]E0 = E .

Special Soundness. Suppose (E, 0, r0) and (E, 1, r1) are two transcripts that
are accepted by the verifier. Then we have

E = [r0]E0 = [r1]E1 ,
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from which it follows that [r0−r1]E0 = E1. Hence, it is trivial to extract r0−r1,
which is a solution to the GAIP problem.

Special Honest-Verifier Zero Knowledge. Consider the simulator that,
given a bit c picks a random r ∈ ZN , computes E = [r]Ec and outputs the
transcript (E, c, r). Then it is clear that the transcripts generated by the simu-
lator are indistinguishable from transcripts of honest executions of the protocol
with challenge equal to c: both the real transcripts and the simulated transcripts
have uniformly random distributed values of r, and E = [r]Ec. ut

5.2 Optimizing the Sigma protocol

Hashing. To reduce the communication cost (and hence the signature size
after applying the Fiat-Shamir transform) it suffices for the Prover to send
H(E) rather than E, for some collision resistant hash function H. The verifier
then computes H([r]Ec) and checks that it is equal to the hash value sent
by the prover. If we are doing t rounds of the protocol in parallel to amplify
soundness, it suffices to send a single hash of the concatenation of all the E(i) for
i from 1 to t. Clearly the completeness and the Honest-Verifier Zero Knowledge
properties of the scheme are not affected by this change. For special soundness,
the collision resistance of H implies that if

H([r
(1)
1 ]E

c
(1)
1
|| · · · ||[r(t)1 ]E

c
(t)
1

) = H([r
(1)
2 ]E

c
(1)
2
|| · · · ||[r(t)2 ]E

c
(t)
2

)

then [r
(i)
1 ]E

c
(i)
1

= [r
(i)
2 ]E

c
(i)
2

for all i from 1 to t. Hence, if we model H as

a random oracle it is sufficient for H to have output length 2λ, with λ the
security level.

Larger challenge spaces. A well-known approach [11] to lower the soundness
error is to increase the challenge space. To do this we move from the GAIP prob-
lem to the MT-GAIP problem. We now have S − 1 public keys instead of one,
i.e. the public key now consists of the S-tuple (E0, E1 = [a1]E0, . . . , ES−1 =
[aS−1]E0) (note that E0 can be left out, it is just there to illustrate the nota-
tion) and the prover proves to the verifier that he knows an s ∈ ZN such that
[s]Ei = Ej for some pair of curves in the public key (with i 6= j). The prover still
chooses a random exponent b ∈R ZN and computes E(i) = [b]E0. The verifier
now sends a challenge c ∈ [0, S[, and the response consists of r = b−ac mod N .
The verifier then recomputes [r]Ec and verifies that this is equal to E(i). The-
orem 4 generalizes to the new identification scheme. In particular, since the
challenge space now contains S elements the soundness error drops to 1/S.
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Theorem 5. The adapted identification scheme is a complete and secure Sigma
protocol proving knowledge of a solution of an MT-GAIP instance.

Proof. The proof is completely analogous to the proof of Theorem 4. ut

Doubling the challenge space with twists. To increase the size of the
challenge space even further, we exploit the fact that given a curve E = [a]E0,
its quadratic twist Et (which can be computed very efficiently) is Fp-isomorphic
to [−a]E0 [6]. Therefore, we can almost double the set of public key curves going
from E0, E1, . . . , ES−1 to E−S+1, . . . , E0, . . . , ES−1, where E−i = Eti , without
any increase in communication cost. Hence, the soundness error drops to 1

2S−1 .
Theorem 5 still applies, but instead of a reduction from a random MT-GAIP
instance, we now have a reduction from a random MT-GAIP instance subject
to E−i = Eti (we call this twisted MT-GAIP). However, there is a simple
reduction from this problem to GAIP, which shows this optimization does not
affect security.

Theorem 6. Given an adversary A that solves a random instance of twisted
MT-GAIP in time T and with probability ε, there exists an adversary BA that
solves a random instance of MT-GAIP in time T + O(S) with probability at
least ε/2.

Proof. We describe the adversary BA. Suppose B is given a random MT-GAIP
instance E1, . . . , Ek, then he chooses k random bits b1, . . . , bk and defines curves

Ẽi =

{
Ei if bi = 0

Eti if bi = 1
,

then he sets Ẽ0 = E0 and Ẽ−i = Ẽi
t

for all i in {1, . . . , k}. This is a random
twisted MT-GAIP instance that B then sends to A. With probability ε, A
responds with (a, i, j) such that i 6= j and Ẽi = [a]Ẽj . Now we consider 2
cases:

◦ i = −j. In this case we have Ẽi = [a]Ẽi
t
, which implies Ẽi = [a/2]E0, so

B outputs ((−1)b|i|a/2, |i|, 0), which is a valid solution to his MT-GAIP
instance (|Cl(O)| is known to be odd, so the inverse of 2 always exists).
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◦ |i| 6= |j|. In this case we have sign(i)(−1)b|i| = sign(j)(−1)b|j| with prob-
ability 1

2 . In this case we have an equation of the form Ei = [±a]Ej or
Eti = [±a]Etj . Therefore B can output a valid solution to his MT-GAIP
problem (±a, |i|, |j|).

Shorter public keys. The previous section explains how one can improve
the communication cost and the proving and verification time by considering
multiple public key curves Ei = [ai]E0 for i ∈ {1, . . . , S − 1}. The drawback
of this approach is that the public key now consists of S − 1 curves, so its size
blows up as S increases. Note that at most t of these public key curves are used
during each verification (where t is the number of parallel executions of the
protocol to amplify soundness). Therefore, instead of including all the curves
E1, . . . , ES−1 in the public key, the public key can just be a commitment to
those curves. The improvement in total communication cost comes from the fact
that the response of the prover now only has to include the opening of at most
t curves Ec1 , . . . , Ect . If the commitment scheme is binding, then a cheating
prover cannot open the commitment to an incorrect curve, so the security of
the scheme is preserved. We use a Merkle tree construction to implement the
binding commitments, because this allows for the efficient opening of a subset
of the curves.

In particular, suppose for simplicity that S − 1 = 2d and let

hd,i = H(Ei||2d + i||MerkleKey) ,

where MerkleKey ∈ {0, 1}λ is a key which is chosen uniformly at random during
key generation and included in both the secret and public keys. Then we define
each internal node of the Merkle tree as the hash of its children, concatenated
with its position in the tree and the MerkleKey :

hk,i = H(hk+1,2i−1||hk+1,2i||2k + i||MerkleKey) .

It is an easy exercise to show that if we model H as a random oracle, the root
of the Merkle tree is a binding commitment: An adversary making q queries
to the random oracle has at most probability q+1

2λ
of breaking the binding

property. Note that the MerkleKey is not strictly required to prove soundness,
but it prevents an adversary from attacking multiple public keys at the same
time. A similar approach of reducing the public key size was proposed by [11].
They use the more complicated and slightly less efficient construction of [19],
which is designed to be provably secure in the standard model. Since the Fiat-
Shamir transform relies on the (Q)ROM anyway, there is no reason to use this
approach.
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5.3 Signatures

The above identification schemes can be turned into (non-interactive) signature
schemes using the Fiat-Shamir transform [16], where the challenges ci ∈ {−S+
1, . . . , S − 1} are simply obtained by hashing the ephemeral keys E(i) for i =
1, . . . , t together with the message m, i.e. (c1, . . . , ct) = H(E(1)|| · · · ||E(t)||m).
The signature then consists of (r1, . . . , rt, c1, . . . , ct), and the verifier recomputes
the E(i) = [ri]Eci and checks that indeed (c1, . . . , ct) = H(E(1)|| · · · ||E(t)||m).
Figure 3 details the “simple” variant and corresponds to the identification
scheme using multiple public keys. The “Merkle” variant reduces the size of
the public key by using a Merkle tree as described above.

To achieve security level λ, we require t = λ/ log2 S and the resulting signature
size is t(dlog2Ne+ dlog2 Se) bits for the simple variant. The “Merkle” variant
needs to include the openings of merkle paths in the signature, the total size
of these openings depends on the leaves that are opened. For example, in the
extremely unlikely case that all the t challenges are identical only one Merkle
path needs to be opened. Both signing and verification require t CSIDH actions
(including the time to construct a small representant of the ideal).

The results on Fiat-Shamir in the QROM of Don et al. [13] readily apply to
our setting:

Theorem 7. Assume the hash functions used are modeled as quantum random
oracles, then CSI-FiSh is sEUF-CMA secure.

Proof. The basic sigma protocol (without hashing) has special soundness and
unique responses (for each i there exists only one value of ri ∈ ZN such that
[ri]Eci = E(i)). Hence, Theorem 25 of [13] implies that the scheme also has
the Quantum Proof of Knowledge property. The protocol also has more than
λ bits of min entropy and perfect HVZK, so Theorem 22 of [13] implies that
the Fiat-Shamir scheme is sEUF-CMA secure in the QROM.

For the variant with hashing, it is known that Quantum random oracles are
collapsing, so it is immediate that the sigma protocol has quantum computa-
tionally unique responses. Hence, the claim again follows from Theorems 25
and 22 of [13].
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Algorithm 2 KeyGen

Input: E0, class number N = #Cl(O)
Output: sk,pk
1: for i ∈ {1, . . . , S − 1} do
2: ai ←R ZN

3: Ei = [ai]E0

4: end for
5: pk = [Ei : i ∈ {1, . . . , S − 1}]
6: return (sk = a,pk)

Algorithm 3 Sign

Input: msg, sk = a
Output: σ = (r1, . . . , rt, c1, . . . , ct)
1: a0 ← 0
2: for i = 1, . . . , t do
3: bi ←R ZN , E(i) = [bi]E0

4: end for
5: (c1, . . . , ct) = H(E(1)|| · · · ||E(t)||m)
6: for i = 1, . . . , t do
7: ri = bi − sign(ci)a|ci| mod N
8: end for
9: return σ = (r1, . . . , rt, c1, . . . , ct)

Algorithm 4 Verify

Input: msg, E0,pk = [Ei : i ∈ {1, . . . , S − 1}], σ
Output: Valid / invalid
1: Parse σ as (r1, . . . , rt, c1, . . . , ct)
2: Define E−i = Et

i for all i ∈ {1, . . . , S − 1}.
3: for i = 1, . . . , t do
4: E(i) = [ri]Eci

5: end for
6: (c′1, . . . , c

′
t) = H(E(1)|| · · · ||E(t)||m)

7: if (c1, . . . , ct) == (c′1, . . . , c
′
t) then

8: return Valid
9: else

10: return Invalid
11: end if

Figure 3. The “simple” variant of the CSI-FiSh signature scheme.
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6 Implementation results

6.1 Parameter Choices

Slow Hash functions Because the QROM security proof is very non-tight
it would not be practical to choose parameters in such a way that security is
guaranteed by the proof. Instead, as is customary, we assume that the prob-
ablity of a successful attack is at most Q× E, where Q is the number of hash
function evaluations that an attacker makes, and E is the soundness error of
the zero knowledge proof. So usually one would choose the parameters S and
t such that S−t ≤ 2−λ. In our implementation we choose a hash function that
is a factor 2k slower than a standard hash function (e.g. SHA-3), therefore it
suffices to take our parameters such that S−t ≤ 2−λ+k. We pick k in such a
way that the time spent evaluating the slow hash function is small compared
to the total signing and verification time. Since we can take smaller parameters
this optimization slightly reduces both the signature size and the signing and
verification time.

Proposed parameter sets We have implemented several parameter sets for
both the “simple” variant and the “Merkle” variant. For the simple variant the
secret key is always small and the variable S controls a trade-off between on
the one hand small public keys and fast key generation (when S is small), and
on the other hand small signatures and fast signing and verification (when S is
large). When we use the “Merkle” variant the public key is always small, but
the secret key size increases with increasing value of S, because we store the
entire Merkle tree to avoid having to recompute the public keys during signing.

6.2 Implementation details and Benchmarking results

Our proof-of-concept implementation is available on GitHub [2]. To evaluate
the CSIDH action, we use the 20180826 version of the proof-of-concept imple-
mentation by Castryck et al. [6]. Our implementation depends on the eXtended
Keccak Code Package for the implementation of SHAKE256, which we have
used as hash function, commitment scheme and to expand randomness. The
implementation of the Babai nearest plane step depends on the GMP library for
its high precision arithmetic. Since we rely on the implementation of Castryck
et al. [6], the implementation is not constant-time. Implementing an optimized
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Table 3. Parameter choices and benchmark results for the “simple” variant of CSI-
FiSh .

S t k |sk| |pk| |sig| KeyGen Sign Verify

21 56 16 16 B 128 B 1880 B 100 ms 2.92 s 2.92 s
22 38 14 16 B 256 B 1286 B 200 ms 1.98 s 1.97 s
23 28 16 16 B 512 B 956 B 400 ms 1.48 s 1.48 s
24 23 13 16 B 1 KB 791 B 810 ms 1.20 s 1.19 s
26 16 16 16 B 4 KB 560 B 3.3 s 862 ms 859 ms
28 13 11 16 B 16 KB 461 B 13 s 671 ms 670 ms

210 11 7 16 B 64 KB 395 B 52 s 569 ms 567 ms
212 9 11 16 B 256 KB 329 B 3.5 m 471 ms 469 ms
215 7 16 16 B 2 MB 263 B 28 m 395 ms 393 ms

Table 4. Parameter choices and benchmark results for the “Merkle” variant of CSI-
FiSh .

S t k |sk| |pk| |sig| KeyGen Sign Verify

28 13 11 8 KB 32 B 1995 B 13 s 671 ms 371 ms
210 11 7 32 KB 32 B 2086 B 52 s 567 ms 567 ms
212 9 11 128 KB 32 B 2022 B 3.5 m 467 ms 467 ms
215 7 16 1 MB 32 B 1953 B 28 m 399 ms 402 ms
218 6 14 8 MB 32 B 1990 B 3.8 h 335 ms 326 ms

constant-time implementation of CSI-FiSh is outside the scope of this paper
and is left for future work.

All our benchmarking experiments are performed on a Dell OptiPlex 3050
machine with Intel Core i5-7500T CPU @ 2.70GHz. The benchmarking results
are displayed in Tables 3 and 4.

Remark 8. Like most discrete logarithm based signature schemes, it is possible
to precompute the ephemeral keys in CSI-FiSh, i.e. all CSIDH actions can
be computed offline, and the online phase then only consists of t modular
subtractions, which are extremely fast.

7 Conclusions and open problems

We computed the class group of the imaginary quadratic field that is at the
heart of the CSIDH-512 cryptosystem, and exploited the knowledge of the
relation lattice to instantiate the first efficient isogeny based signature scheme
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called CSI-FiSh. The scheme is flexible in that it allows trade-offs between
signature sizes, key sizes and the time to sign/verify. One parameter set of CSI-
FiSh gives the smallest combined size of public key and signature, compared to
any other existing post-quantum secure signature scheme at the 128-bit security
level.

Should the CSIDH-512 parameters turn out to be insufficiently secure, then
the class group computation in this paper can be repeated for a larger prime.
Even though the computation for the CSIDH-512 parameters already broke
previous records, the effort of 52 core years is relatively small compared to
other record computations such as for factoring and DLP, which often take
thousands of core years. Our computation took less than a month with the
resources available to us. Hence, there is still quite some room to compute class
groups for increased parameters. Moreover, the class group can be computed in
quantum polynomial time. Hence, it seems likely that quantum computers that
can compute large class groups will be available well before there are quantum
computers that can break CSIDH-512.

The main open problem, given that the class group is cyclic of order N , is to
devise an identification scheme where the challenge is taken from ZN , instead
of binary or from the small set ] − S, S[. Note that the prover can simply
mimick the discrete logarithm based constructions since he can now work in
the ring ZN , and thus can create the typical response expressing a combination
of the ephemeral key, secret key and challenge. The major problem however is
how the verifier can verify this combination to be correct, since the group
action still only allows to add a known constant in ZN . The impact of such an
identification scheme would be major: the signature size could possibly be as
small as 64 bytes, the public key also 64 bytes and signing would require only
one CSIDH action taking around 40ms.
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cryptosystems from supersingular elliptic curve isogenies. J. Mathematical
Cryptology, 8(3):209–247, 2014.

[16] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986.

[17] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification
Protocols and Signature Schemes Based on Supersingular Isogeny Prob-
lems. In Advances in Cryptology - ASIACRYPT 2017, volume 10624 of
Lecture Notes in Computer Science, pages 3–33. Springer, 2017.

[18] James L. Hafner and Kevin S. McCurley. A rigorous subexponential al-
gorithm for computation of class groups. Journal of the American Math-
ematical Society, 2:837–850, 1989.

[19] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. In Public-Key Cryptography–PKC 2016,
pages 387–416. Springer, 2016.

[20] Michael J. Jacobson. Applying sieving to the computation of quadratic
class groups. Math. Comp, 68:859–867, 1999.

[21] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David
Urbanik. SIKE, 2016. Submission to [29]. http://sike.org.

[22] David Jao and Luca De Feo. Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies. In PQCrypto, volume 7071 of
Lecture Notes in Computer Science, pages 19–34. Springer, 2011. https:

//ia.cr/2011/506.

[23] Thorsten Kleinjung. Quadratic sieving. Mathematics of Computation,
85(300):1861–1873, 2016.

[24] Aleksandr Korkine and G Zolotareff. Sur les formes quadratiques. Math-
ematische Annalen, 6(3):366–389, 1873.

[25] Greg Kuperberg. A Subexponential-Time Quantum Algorithm for the
Dihedral Hidden Subgroup Problem. SIAM J. Comput., 35(1):170–188,
2005.

[26] Greg Kuperberg. Another Subexponential-time Quantum Algorithm for
the Dihedral Hidden Subgroup Problem. In TQC, volume 22 of LIPIcs,
pages 20–34. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[27] Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing).
In Selected Areas in Cryptography - SAC 2016, volume 10532 of Lecture
Notes in Computer Science, pages 523–542. Springer, 2017.

[28] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factor-
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Abstract. Most Multivariate Quadratic (MQ) signature schemes have
a very large public key, which makes them unsuitable for many appli-
cations, despite attractive features such as speed and small signature
sizes. In this paper we introduce a modification of the Unbalanced Oil
and Vinegar (UOV) signature scheme that has public keys which are
an order of magnitude smaller than other MQ signature schemes. The
main idea is to choose UOV keys over the smallest field F2 in order to
achieve small keys, but to lift the keys to a large extension field, where
solving the MQ problem is harder. The resulting Lifted UOV signature
scheme is very competitive with other post-quantum signature schemes
in terms of key sizes, signature sizes and speed.

Keywords: Post-Quantum Cryptography, Multivariate Cryptography,
Signature Schemes, Unbalanced Oil and Vinegar, Key Size Reduction

1 Introduction

When large scale quantum computers are built, they will be able to break
nearly all public key cryptography that is being used today, including RSA [25],
DSA [17] and ECC. This is because these schemes rely on the hardness of
number theoretic problems such as integer factorization and finding discrete
logarithms, which can be solved efficiently by Shor’s Algorithm [26]. Even if it
would take 10 or 20 years to build large scale quantum computers, upgrading
our current systems may be very slow and some stored data requires long term
protection (in particular for confidentiality). To avert a potential catastrophe,
post-quantum cryptography should be designed, implemented and deployed
well before large scale quantum computers are built.
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During recent years, the research on post-quantum cryptography has been ac-
celerating. One of the goals of the EU-funded PQCRYPTO project is to de-
velop and standardize post-quantum algorithms [1]. Recently NIST, the US
National Institute for Standards and Technology, has started the process of
selecting post-quantum algorithms for standardization [19]. According to both
PQCRYPTO and NIST, multivariate cryptography is one of the major candi-
dates for providing post-quantum security. Multivariate cryptography is based
on the hardness of some problems related to multivariate polynomials over fi-
nite fields, such as solving multivariate polynomial equations. In general, mul-
tivariate cryptography is very fast and requires only moderate computational
resources, which makes it attractive for applications in low-cost devices. How-
ever, a disadvantage of multivariate cryptography is its large public keys, which
can be prohibitive for many applications. Some work in mitigating this prob-
lem in the case of the UOV and Rainbow signature schemes has been published
by Petzoldt [22], who managed to reduce the key size by a factor of 8 in the
case of UOV and a factor of 3 in the case of the Rainbow signature scheme.
His proposal makes a small modification to the key generation algorithm and
exploits the fact that a large part of the public key can be freely chosen by
the user. One can then choose to generate this part using a Pseudo-Random
Number Generator (PRNG), and to only store the seed for the PRNG. In this
paper we introduce a new idea to reduce the size of the public keys of UOV dra-
matically, by lifting the public and central maps to an extension field. The new
idea is compatible with the ideas of Petzoldt and together they provide public
keys that are up to 10 times smaller than if we were to use only Petzoldt’s
modification of UOV.

Before introducing the Lifted UOV signature scheme in Sect. 5, we present an
overview of the MQ problem in Sect. 2 and the UOV signature and how it was
improved by Pezoldt in Sects. 3 and 4. We finish with a brief description of our
software implementation in Sect. 6 and conclude in Sect. 7.

2 The MQ problem

The security of an MQ signature scheme relies on the hardness of the MQ-
problem. We give a brief discussion of the problem here.

MQ Problem. Given a quadratic polynomial map P : Fnq → Fmq over a finite
field Fq, find x ∈ Fnq that satisfies P(x) = 0.

2
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It is known that the MQ problem is NP-hard [18]. Therefore it is unlikely
that there are (quantum) algorithms that solve the hardest instances of the
MQ problem in polynomial time. The problem is also believed to be hard on
average in the case n ≈ m. Only exponential time algorithms are known to
solve random instances of the problem for these parameters.

Systems with n = m are called determined systems; these are the most difficult
systems to solve. When n < m a system is called overdetermined, and when
n > m the system is called underdetermined. Thomae et al. showed that finding
a solution for an underdetermined system with n = αm can be reduced to
finding a solution of a determined system with only m+ 1−bαc equations [27].
This means that as a system becomes more underdetermined it becomes easier
to solve. This fact will become important in the security analysis of UOV.

2.1 Classical algorithms

The best known classical algorithms to solve the MQ-problem for generic deter-
mined systems over finite fields use the hybrid approach [5, 6]. This approach
combines exhaustive search with Gröbner basis computations. In this approach
k variables are fixed to random values and the remaining n − k variables are
found with a Gröbner basis algorithm such as F4, F5 or XL. If no assignment
to the remaining n − k variables exists that solves the system, the procedure
starts again with a different guess for the first k variables. We require on av-
erage roughly qk Gröbner basis computations until a solution is found. As a
result, the optimal value of k decreases as q increases. The complexity of com-
puting a Gröbner basis for a system of polynomials depends critically on the
degree of regularity (dreg) of that system. Though it is of little importance to
the rest of the paper, we refer to Bardet [2] for a precise definition of the degree
of regularity. The complexity of the F5 algorithm is given by

CF5(n, dreg) = O

((
n+ dreg
dreg

)ω)
,

where 2 ≤ ω < 3 is the constant in the complexity of matrix multiplication.
Therefore the complexity of the hybrid approach is

CHybridF5(n,dreg,k) = O

(
qk
(
n− k + dreg(k)

dreg(k)

)ω)
, (1)

where dreg(k) stand for the degree of regularity of the system after fixing the
values of k variables.

3
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Determining the degree of regularity for a specific polynomial system is difficult,
but for a certain class of systems, called semi-regular systems, it is known that
the degree of regularity can be deduced from the number of equations m and the
number of variables n [2, 8]. In particular, for quadratic semi-regular systems
the degree of regularity is the degree of the first term in the power series of

Sm,n(x) =
(1− x2)m

(1− x)n

with a non-positive coefficient. This gives a practical method to calculate the
degree of regularity of any semi-regular system. Empirically, polynomial sys-
tems that are randomly chosen have a very large probability of being semi-
regular and it is conjectured that most systems are semi-regular systems. For
the definition and the theory of semi-regular systems we refer to chapter 3 of
the PhD thesis of Bardet [2].

2.2 Quantum algorithms

Currently, there are no specialized quantum algorithms that solve polynomial
systems over finite fields. However, Grover’s algorithm [13] can be used to speed
up the brute force part of the hybrid approach. This approach gives a quadratic
speedup for the brute force part of the attack, so the new complexity would be

CHybridF5(n,dreg,k) = O

(
qk/2

(
n− k + dreg(k)

dreg(k)

)ω)
, (2)

where the difference with (1) is that we have the factor qk/2 instead of qk.
However it should be noted that this approach requires sequentially running
qk/2 Gröbner basis computations on a quantum computer. This would be an
incredible feat because even for moderately sized polynomial systems this would
require gigabytes worth of qubits and days of computation without decoherence.
Also, note that the gains of parallelizing Grover search grow only with the
square root of the number of independent computers used, instead of a linear
growth for the classical brute force search [28]. Nevertheless, in the security
analysis of the signature scheme proposed in this paper we will be cautious and
assume that these kinds of attacks on the MQ problem are possible and we
will make our parameter choices accordingly. This has the additional benefit of
providing a large safety margin against classical attacks.

Remark 1. Typically the optimal value of k, i.e. the number of variables that is
guessed by brute force, is quite small (eg. 2,3 or 4), this does not mean that the

4
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hybrid approach is only a marginal improvement over a direct Gröbner basis
computation. Guessing only a few variables can drastically reduce the degree of
regularity of a system. For example, guessing only one variable in a determined
semi-regular system of polynomials roughly reduces the degree of regularity by
half! The idea of lifting a public key to an extension field is a countermeasure
to the hybrid approach. By working in a large extension field (eg. F264) we
ensure that guessing even a single variable is computationally too expensive.

3 The UOV signature scheme

The UOV or Unbalanced Oil and Vinegar digital signature scheme is a mul-
tivariate quadratic (MQ) signature scheme. It is a slightly modified version of
the original Oil and Vinegar signature scheme that was proposed by Patarin
in 1997 [20]. With the right parameter choices UOV has withstood all crypt-
analysis since 1997 and it is one of the best studied and most promising MQ
signature schemes.

3.1 Description of UOV

The UOV signature scheme uses a one-way function P : Fnq → Fmq , which is a
multivariate quadratic polynomial map over some finite field Fq. The trapdoor
is a factorization P = F ◦ T , where T : Fnq → Fnq is an invertible linear map,
and F : Fnq → Fmq is a quadratic map whose components f1, · · · , fm are of the
form

fk(x) =

v∑

i=1

n∑

j=i

αi,j,kxixj +

n∑

i=1

βi,kxi + γk ,

where v = n −m. We say that the first v variables x1, · · · , xv are the vinegar
variables, whereas the remaining m variables are the oil variables. The compo-
nents of F are quadratic polynomials in the variables xi such that there are no
quadratic terms which contain two oil variables. One could say that the vinegar
variables and the oil variables are not fully mixed, which is where their names
come from. 1

1 However it is not a very good name because in reality oil mixes with oil and vinegar
mixes with vinegar but no mixing happens between oil and vinegar, and this is not
what happens in UOV polynomials. A better name would have been hen variables
and rooster variables because hens can get along with hens and roosters, but two
roosters start a fight when they appear in the same term. Moreover, this foreshad-

5
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How does the trapdoor P = F ◦ T help to invert the function P? Given a
target x ∈ Fmq a solution y for P(y) = x can be found by first solving F(y′) =
x for y′ and then computing y = T −1(y′). The system F(y′) = x can be
solved efficiently by randomly choosing the values of the vinegar variables. If
we substitute these values in the equations the remaining system only contains
linear equations, because every quadratic term contains at least one vinegar
variable and thus turns into a linear or constant term after substitution. The
remaining linear system can be solved using linear algebra. In the event that
there are no solutions we can simply try again with a different choice for the
vinegar variables.

The trapdoor function is then combined with a collision resistant hash function
H : {0, 1}∗ → Fmq into a signature scheme using the standard hash-and-sign
paradigm. The resulting key generation, signature generation and verification
algorithms of the UOV signature scheme are described in Algorithms 1, 2
and 3.

Algorithm UOVGenerateKeys

input: Random bits to generate F and T
output: P — A public key

(F , T ) — A corresponding secret key

1: F ← A randomly chosen UOV system
2: T ← A randomly chosen linear map Fn

q → Fn
q

3: P ← F ◦ T
4: return P and (F , T )

Algorithm 1. The UOV key pair generation algorithm

3.2 Attacks against UOV

Direct attack. This attack tries to forge a signature s for a message M by
solving the polynomial system P(s) = H(M). An attacker can use the trick
of Thomae and Wolf [27] to reduce this to finding a solution of a polynomial
system with m + 1 − bn/mc equations. The best known algorithms to solve
this problem use the hybrid approach [5] which was briefly described in Sect. 2.

ows the fact that in order for the signature scheme to be secure, the number of
hen (vinegar) variables should be larger than the number of rooster (oil) variables.
Nevertheless, we will stick to the traditional naming of oil and vinegar variables.

6
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Algorithm UOVSign

input: (F , T ) — A secret key
M — A message to sign

output: s — A signature for the message M

1: h← H(M)
2: while No solution s′ to the system F(s′) = h is found do
3: Assign random values to the first v entries of s′

4: Substitute these values into F(s′) = h to get a linear system L(o) = h.
5: if L(o) = h has solutions then
6: Calculate an assignment o to the oil variables such that L(o) = h
7: Assign the entries of o to the last m entries of s′

8: end if
9: end while

10: s← T −1(s′)
11: return s

Algorithm 2. The UOV signature generation algorithm

Algorithm UOVVerify

input: P — A public key
M — A message
s — A candidate–signature

output: True if s is a valid signature for M , False otherwise

1: h← H(M)
2: h′ ← P(s)
3: if h = h′ then
4: return True
5: else
6: return False
7: end if

Algorithm 3. The UOV signature verification algorithm

7
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Empirically, the systems that have to be solved behave like semi-regular sys-
tems [12], therefore we can calculate the degree of regularity and use this to
estimate the complexity of the hybrid approach. Petzoldt [22] uses a similar
method to estimate the complexity of a direct attack against UOV, the only
difference being that we have used an updated estimate of the complexity of
F5 [6]. In Petzoldt’s thesis it was shown that the estimated complexity of a
direct attack agrees very well with the measured complexity of a direct attack
against small instances of UOV. These experiments justify ignoring the big-O
notation in formula (1) and treating the formula as an estimate for the concrete
hardness of the hybrid approach.

Example 1. We will estimate the complexity of a direct attack against UOV
with the parameter set (q = 31,m = 52, v = 104); this set is proposed in [22]
as a set that achieves 128-bit security. Using the trick of Thomae et al. we can
reduce finding a solution to this underdetermined system to finding a solution
of a determined system with 52 + 1 − b(52 + 104)/52c = 50 equations. We
assume this system to be semi-regular. If we fix k extra variables the degree of
regularity is equal to the degree of the first term in the power series of

S50,50−k(x) =
(1− x2)50

(1− x)50−k

which has a non-positive coefficient. For k = 0 we have S50,50(x) = (1 + x)50,
so the degree of regularity is 51. For k = 1 we have

S50,49(x) = 1+49x+1175x3 + · · ·+4861946401452x25−4861946401452x26 +O(x27) ,

where all the omitted terms have positive coefficients, so the degree of regularity
is 26. We can now use (1) to estimate the complexity of the hybrid approach.
We prefer to err on the side of caution, so we have chosen ω = 2 for the value
of the linear algebra constant. For k equal to 0 and 1 this is equal to

(
50 + 51

51

)2

≈ 2194.7 and 31

(
50− 1 + 26

26

)2

≈ 2137.8

respectively. Continuing this for higher values of k we eventually see that the
optimal value of k is 6, the corresponding degree of regularity is 16 and the
complexity of the direct attack is 2123.9.

In the example we concluded that the complexity of the attack is less than 2128

which was supposed to be the security level of the parameter set (q = 31,m =
52, v = 104) according to [22]. Even though we have used roughly the same
method of estimating the complexity as the method used by Petzoldt [22] we

8
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arrive at a slightly different value because we have used a tighter bound on the
complexity of F5 coming from an improved analysis of the hybrid approach [6].

With this method we can calculate the minimal number of equations that is
needed in a determined semi-regular system in order to guarantee that the
complexity of finding a solution is larger than a targeted security level. For
quantum attackers, we can follow the same method with (2) instead of (1) for
estimating the complexity of the hybrid approach. The result of these calcula-
tions for the security levels of 2128 and 2256 for different finite fields of size up
to q = 2100 are plotted in Fig. 1.
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Fig. 1. The minimal sizes of determined semi-regular systems to reach 128-bit security
and 256-bit security for different finite fields.

UOV attack. Patarin [20] suggested in the original version of the Oil and
Vinegar scheme to choose the same number of vinegar and oil variables, or
v = m. This choice was cryptanalyzed by Kipnis and Shamir [16]: they showed
that an attacker can find the inverse image of the oil variables under the map
T . This is enough information to find an equivalent secret key, so this breaks
the scheme. This approach generalizes for the case v > m; the complexity then
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increases to O(qv−mn4) [15] and is thus exponential in v − m. Typically one
chooses v = 2m or v = 3m to preclude the UOV attack.

UOV reconciliation attack. Similar to the UOV attack, the UOV reconcil-
iation attack proposed by Ding et al. [9] tries to find an equivalent secret key.
We present a brief summary. In this section we will make a distinction between
m, the number of polynomials in the public and private system, and o, the
number of oil variables. In the UOV signature scheme these numbers are the
same, which explains why we did not need to make this distinction before. It
turns out that for a public key P there exists with a very high probability a
private key (F , T ) such that the matrix representation of T is of the form

MT =

(
Iv T
0 Io

)
.

This means that an attacker only has to find the v × o matrix T to get an
equivalent key. The UOV reconciliation attack tries to find T algebraically by
solving a quadratic system. If the choice of T is correct (i.e. there exists a
private key of the form (F , T ), then we have that the matrix representation
Pi of the quadratic part of each polynomial in the public key satisfies for all
1 ≤ i ≤ m

(
∗v×v ∗o×v
∗v×o 0o×o

)
=

(
Iv 0
−T Io

)
Pi

(
Iv −T
0 Io

)
. (3)

The condition that the lower right o × o submatrices of the private system
consist of zeroes give quadratic equations in the entries of T. It looks like we
have o2 equations for each component, but since the matrix representations
are only defined up to the addition of a skew symmetric matrix this gives only
o(o+ 1)/2 equations per component. In total we have a system of mo(o+ 1)/2
equations in vo variables. The reconciliation attack tries to recover T by solving
this system of equations.

The reconciliation system has a structure that makes it much easier to solve
compared to a random system of the same size. In fact, Ding et al. argue that
the complexity of this attack for UOV variants with v ≤ m (like Rainbow and
TTS) is the same as the complexity of solving a system of m equations in v
variables [9].

In the case v ≥ m the complexity of the attack is more difficult to estimate,
but we can formulate a lower bound to the complexity of the attack. The rec-
onciliation system has mo(o+ 1)/2 equations in ov variables. For all parameter
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choices of UOV this is a heavily overdetermined system, so it should not be a
surprise that there is only one matrix T that satisfies (3). Computer experi-
ments have shown that there is a unique solution for T as soon as the number
of equations of the reconciliation system exceeds the number of variables. Let
Rec[v, o,m] denote the complexity of a key reconciliation attack against a UOV
public system with v vinegar variables, o oil variables and m polynomials in the
public key. Increasing m only makes the reconciliation attack easier. Indeed,
increasing the number of equations can only make the attack easier, because
an attacker could just ignore the extra equations and still find the same unique
solution. In other words, if m < m′, then we have Rec[v, o,m] ≥ Rec[v, o,m′],
provided that mo(o+ 1)/2 > ov, which is the case for all good UOV parameter
choices.

We can now derive a lower bound on the complexity of a reconciliation attack
when v > m = o. According to the above observation, we can increase m, the
number of equations, until it matches the number of vinegar variables v, and
this would make solving the system easier, i.e. we have

Rec[v,m,m] ≥ Rec[v,m, v] . (4)

We can now use the argument of Ding et al. which says that when m ≥ v, the
complexity of the reconciliation attack is equal to the complexity of solving a
system of m quadratic equations in v variables, so Rec[v,m, v] is equal to the
complexity of solving a system of v quadratic equations in v variables.

We conclude that a UOV reconciliation attack on a UOV system with m equa-
tions and v ≥ m vinegar variables is at least as difficult as solving a system
of v quadratic variables in v equations, but it is expected to be more difficult,
because a lot of hardness is lost in the inequality (4). In particular, the rec-
onciliation attack is less effective against the UOV scheme than attacking the
system P(s) = H(M) directly.

Quantum attacks. There are no known specialized quantum algorithms
that solve multivariate quadratic equations. However, as described in Sect. 2,
Grover’s algorithms can be used to speed up the exhaustive search part of hy-
brid solution finding algorithms. This quantum version of the hybrid approach
algorithm can be used to speed up a direct attack and a reconciliation attack.

Grover search could be used to speed up the UOV attack from O(qv−mn4)

to O(q
v−m

2 n4). This requires repeatedly running an algorithm that calculates
the common eigenspaces of a set of matrices and checks whether any of these
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eigenspaces lies within the oil subspace in superposition. In comparison with
the classical algorithm this has the disadvantage that it cannot be parallelized
without a significant amount of overhead.

4 Improving UOV

In [22] Petzoldt presented a new method to reduce the public key size of UOV
by roughly a factor 8. The key generation algorithm was adapted to make it
possible to choose a large part of the public key. One can generate this part
with a pseudo-random number generator and replace a large part of the public
key by a seed. Also, it is possible to choose part of the public key in such a way
such that signatures can be verified faster [21].

Usually, during key generation, a UOV system F and an invertible linear map
T are chosen randomly, and then P is determined as P = F ◦ T . With this
strategy we have full control over F , but no control over the public key P.
Instead, Petzoldt proposed to first pick T and v(v + 1)/2 + mv coefficients
of each polynomial of P. Then we solve the system P = F ◦ T to find the
coefficients of F , and the remaining coefficients of P. This is a linear system of
equations, so this can happen efficiently. With a small probability this system
does not have any solutions, but in that case we can simply try again with a
different choice of T . For the details of this method we refer to [22].

With this approach the public key size is decreased with m(v(v+1)/2+mv) field
elements, at the negligible cost of including the seed for the random number
generator. The public key size is now m2(m + 1)/2 log2(q) + |seed|. Table 1
shows that this method drastically reduces the size of the public key. However,
the public key remains much larger than the signature schemes that are in use
today such as RSA [25] and DSA [17], which typically stay well under 1 kB.
Note that if Petzoldt’s method is used, the size of the public key is independent
of v, the number of vinegar variables.

Table 1. The effect of Petzoldt’s method on the public key size

security level q (m, v) public key (kB)
public key with

Petzoldt’s method (kB)

100-bit 28 (36,72) 207 23
128-bit 28 (47,94) 460 52
192-bit 28 (72,144) 1648 185
256-bit 28 (98,196) 4150 464
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5 Lifting P to an extension field

In this section we will work with UOV over a finite field F2r of characteristic 2.
The parameter r is quite important for the security of the scheme, the signature
size and key sizes. It can be seen in Fig. 1 that by choosing a larger value of
r we can put a smaller number of equations in the system and still reach the
same level of security. Since the number of field elements in the public key and
secret key is O(m3) it is desirable to have a small value of m. However, since
it costs r bits to store a field element r should not be too big either. We must
make a trade-off between large r and large m. In this section we propose a
scheme that gets some security benefits of a high value of r, but has a public
and private key with coefficients in F2, greatly reducing the key sizes.

5.1 Description of the new scheme

As usual, the public key of the scheme represents a quadratic system over F2r ,
given by

P = F ◦ T .

When we want to sign a message m we use a hash function to generate a digest
of mr bits which represents a vector h of m elements of F2r . Then we use
the knowledge of the private key to solve the system P(s) = h to get a valid
signature s. However, the difference with standard UOV is that we now choose
all the coefficients of F ,P and T in F2. Therefore the key generation process
is identical to the key generation process of a regular UOV scheme over F2. In
particular, we can use the approach of Petzoldt [22] as explained in Sect. 4 to
reduce the size of the public key. Contrary to the key generation, the signature
generation and verification still happen over the field F2r as usual.

To summarize, we simply take a key pair of the UOV scheme over F2, and use it
as a key pair for the UOV scheme over F2r . The public key is thus approximately
a factor r smaller than if we were to use the regular UOV scheme over F2r since
we only use one bit to represent each coefficient instead of r bits. Furthermore,
we can now choose r to be much larger than what would otherwise its optimal
value. This in turn allows for a smaller value of m (See Fig. 1), reducing the
public key size even more.

The public key consists of a seed for a pseudorandom number generator and
the part of the public map which cannot be generated. The total size of the
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public key is therefore

|seed|+ m2(m+ 1)

2
bits.

Storing the private maps F and T would take

m
v(v + 1)

2
+m2v bits and n2 bits

respectively, but they do not need to be stored, because they can be calculated
using the key generation algorithm each time they are needed. A signature
consists of n = m+ v elements of F2r , so the size of the signature is nr bits.

Remark 2. Though we have presented this scheme with a finite field of charac-
teristic 2 and with the subfield F2 ⊂ F2r , it is easy to see that we can use this
scheme with any field extension of finite fields K ⊂ K ′. In such a scenario we
generate a key pair with coefficients in the small field K, and the signing and
verifying is done with elements of the big field K ′.

5.2 Security analysis of the new scheme

Direct attack. This attack tries to forge a signature for a certain message M
by trying to find a solution s ∈ Fn2r for the system F(s) = H(M). The best
known methods for this use the hybrid approach as described in Sect. 2.

For a direct attack against the new scheme all the coefficients of the system
that needs to be solved lie in F2, except those of the constant terms, because
those coefficients come from the message digest. We claim that this does not
significantly reduce the hardness of finding solutions relative to the case where
the coefficients are generic elements of F2r . It has been noticed by Faugère and
Perret [12] that the polynomial systems that result from fixing ≈ v variables
in a UOV system behave like semi-regular systems. The degree of regularity of
a quadratic semi-regular system is given by the degree of the first term in the
power series of

(1− x2)m

(1− x)n

with a non-positive coefficient. In particular the degree of regularity does not
depend on q for semi-regular systems. Hence, the degree of regularity for a
direct attack against the modified UOV scheme is identical to the degree of
regularity of an attack against the regular UOV scheme. Therefore a Gröbner
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basis computation against the modified scheme is not significantly more effi-
cient than a Gröbner basis computation against regular UOV with the same
parameters. This argument is confirmed by the experimental data in Table 2.
There we see that a direct attack is slightly faster against the modified scheme
than against the original UOV scheme, but only by a small constant factor.
Even though the Gröbner basis is computed over F2r , the largest part of the
arithmetic only involves the field elements 0 and 1, so the arithmetic is faster
than with generic elements of F2r . This is where the difference observed in Ta-
ble 2 comes from. If we do the same experiment with a smaller extension field
such as F28 there is no observed difference between the running time of a direct
attack against a regular UOV scheme and our modified scheme.

Remark 3. In a direct attack one fixes ≈ v variables randomly to make the
system a slightly overdetermined system. In our experiments we have fixed
these variables to values in F2 to make sure that we do not introduce linear
terms with coefficients in F2r instead of F2 in the case of the modified UOV
scheme.

Table 2. Running time of a direct attack against the regular UOV scheme over F264

and the modified UOV scheme, with the MAGMA v2.22-10 implementation of the
F4 algorithm. We did not implement the method of Thomae and Wolf [27].

(m,v) Regular UOV (s) Lifted UOV (s) difference

(7,35) 0.43 0.21 -52%
(8,40) 1.56 0.76 -51%
(9,45) 7.00 3.21 -54%
(10,50) 33.50 17.44 -48%
(11,55) 132.88 76.60 -42%
(12,60) 828.31 588.33 -29%

Remark 4. It might seem tempting to decompose the equations over F2r into
equations over F2 to make a direct attack more efficient. This decomposition is
done by fixing some basis β1, · · · , βr of F2r over F2 and replacing each variable
xi by

∑r
j=1 x̂i,jβj , where the x̂i,j are nr new variables in F2. Each equation of

the original system is then decomposed into r equations, resulting in a total of
mr equations in nm variables over F2. The problem with this approach is that
the number of equations and variables is increased by the factor r, which makes
the naive approach of solving the decomposed system with a generic boolean
solver hopelessly slow. However, the decomposed system has a specific structure
which could potentially be exploited to solve the system more efficiently. We
investigated this possibility, but we we were not able to make any progress. It
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should be pointed out that this idea does not only apply to our scheme, but
to any multivariate cryptosystem over a field of non-prime order. Still, no such
attacks are reported in literature. One could say that the idea of decomposing
a system to make it easier to solve is not very promising because in big-field
schemes such as Gui [24] and medium-field schemes such as HMFEv [23] the
systems are decomposed with the objective of making them harder to solve for
an attacker.

Key recovery attacks. In contrast to a direct attack, the modified scheme is
more vulnerable to a key recovery attack. Since the key pair used in the Lifted
UOV scheme is identical to the key pair of regular UOV over the field F2 it is
clear that a key recovery attack against the Lifted UOV scheme is equivalent
to a key recovery attack against a regular UOV scheme over F2, which is much
easier than a key recovery attack against UOV over F2r . Luckily, key recovery
attacks against UOV have been investigated ever since the invention of the
oil and vinegar scheme in 1997 [20], so it is well understood which attacks are
possible (see Sect. 3.2) and what the complexities of these attacks are. It is also
clear that we can make key recovery attacks harder by increasing the number
of vinegar variables.

The UOV attack attempts to recover an equivalent private key by searching for
the oil subspace. This attack has complexity qv−m−1 · n4. Since a UOV attack
on the Lifted UOV scheme is equivalent to a UOV attack over F2, we have that
the complexity of a UOV attack against the Lifted UOV scheme is 2v−m−1 ·n4.

The reconciliation attack against the lifted UOV scheme is equivalent to the
UOV reconciliation attack against UOV over the field F2. A lower bound on
the complexity of this attack is given by the complexity of solving a quadratic
system of v variables and v equations over F2, but we expect the problem to
be harder. There exists specialized algorithms for solving polynomial systems
over F2 that are more efficient than the generic hybrid approach. One method
is a smart exhaustive search, which requires approximately log2(n)2n+2 bit
operations [7]. The BooleanSolve algorithm [3] combines an exhaustive search
with sparse linear algebra to achieve a complexity of O(20.792n). However the
method only becomes faster than the exhaustive search method when n > 200.
Recently, Joux et al. proposed a new algorithm that was able to solve a boolean
system of 146 quadratic equations in 73 variables in one day [14]. The algorithm
beats the exhaustive search algorithm, even for small systems. The complexity
of this algorithm is still under investigation, but a rough estimate based on
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the reported experiments suggests that it scales like 2αn with α between 0.8
and 0.85 and with a small constant factor. For choosing the parameters of our
signature scheme, we have assumed that a determined system of n quadratic
boolean equations provides 0.75n bits of security, even though this is likely to
seriously overestimate the capabilities of the state of the art algorithms. Quan-
tum attackers can use Grover search to solve systems over F2 with complexity
O(2n/2).

5.3 Choice of parameters

For convenience and efficiency we will work with binary finite fields whose
elements are represented by a number of bits that is a multiple of 16, i.e. the
finite fields we want to use are F216 ,F232 ,F248 and so on.

When designing a signature scheme of security level l, we choose a finite field
that is large enough such that the minimal number of equations in a determined
regular system that is needed to reach the security level l is minimized. Figure 1
shows that for 128-bit and 256-bit security the chosen fields are F248 and F280

respectively, and the minimal number of equations is 34 and 66 respectively or
40 and 81 when considering quantum attacks. For 100-bit and 192-bit security
the chosen fields are F232 and F264 , and the minimal number of equations is 27
and 50 for classical attackers or 33 and 60 for quantum attackers.

We now consider the constraints on the parameters due to the different attacks
against our scheme. In order to be safe against a direct attack we require

m− bv/mc ≥ mmin ,

with mmin equal to 27, 34, 50 or 66 if the desired security level is 100 bits, 128
bits, 192 bits, or 256 bits respectively. For quantum attackers mmin is equal to
33, 40, 60 and 81 respectively. In order to be safe against the UOV attack we
require

2v−m−1n4 > 2l or 2(v−m−1)/2n4 > 2l ,

depending on whether we want l bits of security against classical, or quan-
tum adversaries. To be secure against the UOV reconciliation attack it suffices
that an attacker cannot solve a determined system with v equations over F2.
Therefore it suffices to have

20.75v > 2l or 2v/2 > 2l

for classical and quantum attackers respectively. The parameter sets displayed
in Table 3 satisfy all the constraints for the targeted security level and minimize
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the size of the public key, i.e. they minimize m. In the last column of the table,
the bit complexity of the best known classical attack against the parameter set
is calculated. For all the proposed parameters the best known classical attack
is a direct Groebner basis attack.

Table 3. Parameter choices and corresponding public key and signature sizes for
different security levels

security level (r,m, v) |pk| (kB) |sig| (kB) classical security

100-bit
classical (32,31,134) 1.9 0.6
quantum (32,37,200) 3.2 0.9 115 bit

128-bit
classical (48,38,171) 3.4 1.2
quantum (48,45,256) 5.7 1.8 153 bit

192-bit
classical (64,54,256) 9.8 2.4
quantum (64,65,384) 17.0 3.5 224 bit

256-bit
classical (80,70,341) 21.2 4.0
quantum (80,87,526) 40.7 6.0 296 bit

5.4 Trade-off

In comparison to regular UOV, Lifted UOV has much smaller public keys, but
also larger signatures. In the discussion above, we have chosen the parameter r
very large in order to minimize the size of the public key, without considering
the size of the signatures. It is possible to make a trade-off between the size of
the public key and the size of the signature by choosing a smaller value of r.
Having a smaller value of r requires a larger value of m to reach the same secu-
rity level, resulting in a larger public key, but since the signature consists of n
elements of F2r it also leads to smaller signatures. Figure 2 compares public key
sizes and signature sizes of the Lifted UOV scheme with different values of the
parameter r with some other MQ signature schemes [22], the lattice-based sig-
nature scheme BLISS-II [10] and SPHINCS, a hash-based signature scheme [4].
Note that even though the MQ schemes UOVRand and RainbowLRS2 claim
to provide 128-bit of post-quantum security, their parameters are not chosen to
resist quantum attacks on the MQ problem or quantum versions of the UOV
attack. So we are not comparing schemes with the same security level. Ignor-
ing quantum attacks, the Lifted UOV signature scheme with r = 48 in the
comparison achieves 153 bits of security.

Example 2. For some application on a low-cost device it might be desirable to
have a signature scheme that provides 128 bits of post-quantum security with
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minimal signature sizes subject to the condition that the public key is smaller
than, say, 10 kB. If we choose the parameters as in the discussion above, we
would have a public key of 5.7 kB and signatures of 1.8 kB. However, we can
do better by choosing r = 12. The lowest values of m and v providing 128 bits
of security are then m = 54 and v = 256. This leads to a public key of 9.8 kB
(< 10kB) and a signature of 0.45 kB.
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Fig. 2. Comparison of different signature schemes providing 128 bits of post-quantum
security.

6 Implementation and results

We developed an ANSI C implementation of the Lifted UOV signature scheme.
The large fields are implemented as extension fields of F216 and the arithmetic
in F216 is done using log tables. We have a table that maps each nonzero
element x to the number y such that x = ay, where a is some generator of
the group F×216 . Conversely, we also have a table that maps a number y to the
element ay. Multiplication in F216 is then computed with three table lookups
and an addition modulo 216 − 1. Note that this approach could make our
implementation vulnerable to cache timing attacks. Newer CPUs support the
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CLMUL instruction set which could be used to perform the field arithmetic
efficiently without the need for lookup tables, eliminating the possibility of
this attack. Two field elements are added using a XOR operation. During the
key generation phase we only use elements of F2, so we have used bit slicing
whenever possible to speed up the algorithm. The running times of the key
generation, signature generation and the verification algorithms are displayed
in Table 4.

Please note that the implementation uses naive implementations of matrix
multiplication, polynomial multiplication and Gaussian reduction, and the code
was not heavily optimized. Therefore, it can be expected that the running
times reported in Table 4 are nowhere near optimal. Some techniques that
can speed up the code very significantly include writing cache friendly code,
using parallelization and using Karatsuba’s algorithms for the field arithmetic.
Moreover, it is possible to use a method of Petzoldt to structure part of the
public key in such a way that the verification algorithm is faster [22]. In order
to avoid storing the large private key, part of the key generation algorithm is
run each time a signature is generated to generate the private key. If a batch of
messages is signed together this step only has to happen once. Alternatively, if
storing the private key is not an issue, this part can be omitted altogether to
speed up the signing algorithm significantly.

Table 4. Running times for the key generation, signing and verification algorithms
on a single thread on an Intel®CoreTM i7-4710MQ CPU at 2.5 GHz

security level key gen (ms) sig gen (ms) verification (ms)

100-bit
classical 4 6 3
quantum 13 16 7

128-bit
classical 10 14 7
quantum 26 34 15

192-bit
classical 32 46 21
quantum 148 156 54

256-bit
classical 125 149 55
quantum 366 410 144

7 Conclusion

The simple idea of lifting a UOV key pair from F2 to an extension field F2r

increases the security against direct attacks without affecting the size of the
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public key. At the same time, thanks to the method of Petzoldt, we can increase
the number of vinegar variables to protect against key recovery attacks without
increasing the size of the public key. These two ideas come together to create
a secure signature scheme whose public key is an order of magnitude smaller
than other MQ signature schemes, with slightly larger signatures. The signa-
ture scheme is very competitive with other post-quantum signature schemes.
By choosing the parameter r it is possible to make a trade-off between larger
public keys and smaller signatures or vice versa. We developed a rudimentary
ANSI C implementation of the Lifted UOV signature scheme which shows that
key generation, signing and verification takes only a few milliseconds for 100-bit
security instantiations of the scheme and up to a few hundred milliseconds for
256-bit security instantiations. However it is very likely that these times can
be improved significantly with an optimized implementation.

The idea of lifting keys to a large extension field can be applied to any MQ
signature scheme, but it might not always be useful to produce smaller public
keys. We believe that the idea could be used to improve the Rainbow signa-
ture scheme, but not HFE or C∗. This is because the public keys of signature
schemes such as HFE and C∗ are not semi-regular maps [11] and have a much
smaller degree of regularity than random maps of the same dimensions. This
means that guessing a few variables does not necessarily reduce the degree of
regularity, like it does in the case of semi-regular systems. This makes the hy-
brid approach unsuitable for attacking these systems, since solving the system
with one big Gröbner basis computation is more efficient. Therefore there is no
point in lifting the system to a larger field, because the complexity of a Gröbner
basis computation is largely independent of the size of the finite field.
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Abstract. This work presents sigma protocols to prove knowledge of:
– a solution to a system of quadratic polynomials,
– a solution to an instance of the Permuted Kernel Problem and
– a witness for a variety of lattice statements (including SIS).

Our sigma protocols have soundness error 1/q′, where q′ is any number
bounded by the size of the underlying finite field. This is much better
than existing proofs, which have soundness error 2/3 or (q′ + 1)/2q′.
The prover and verifier time of our proofs are O(q′). We achieve this by
first constructing so-called sigma protocols with helper, which are sigma
protocols where the prover and the verifier are assisted by a trusted
third party, and then eliminating the helper from the proof with a “cut-
and-choose” protocol. We apply the Fiat-Shamir transform to obtain
signature schemes with security proof in the QROM. We show that the
resulting signature schemes, which we call the “MUltivariate quaDratic
FIat-SHamir” scheme (MUDFISH) and the “ShUffled Solution to Ho-
mogeneous linear SYstem FIat-SHamir” scheme (SUSHSYFISH), are
more efficient than existing signatures based on the MQ problem and
the Permuted Kernel Problem. Our proof system can be used to improve
the efficiency of applications relying on (generalizations of) Stern’s pro-
tocol. We show that the proof size of our SIS proof is smaller than that
of Stern’s protocol by an order of magnitude and that our proof is more
efficient than existing post-quantum secure SIS proofs.

Keywords: Zero-Knowledge, Post-Quantum digital signatures, SIS,
Multivariate cryptography, Permuted Kernel Problem, Silly acronyms

1 Introduction

Zero-knowledge proofs of knowledge and more specifically Sigma protocols are
a technique in cryptography that allows a prover to prove to a verifier that they
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know a value x that satisfies some relation, without revealing any additional
information about x [19]. Sigma protocols are useful to build a wide variety of
cryptographic applications, including digital signatures, group/ring signatures,
e-voting protocols, and privacy-preserving cryptocurrencies. In some cases these
sigma protocols are not completely sound, meaning that a cheating prover
can convince a verifier he knows some value, without actually knowing it. If
a prover can do this with a probability at most ε, then ε is said to be the
soundness error of the sigma protocol. The soundness of a sigma protocol can
be amplified; by repeating the protocol k times the soundness error of the
entire protocol becomes εk. Therefore, if one repeats a protocol with soundness
error ≤ 1 often enough, one can obtain a sound protocol. However, if a large
number of repetitions is required, this makes the protocol less efficient and
makes applications of the protocol less practical. This is the case for Stern’s
protocol [34] and the sigma protocols underlying some post-quantum signature
schemes [14, 12, 10]. The goal of this paper is to develop new variants of these
sigma protocols that have a smaller soundness error, such that fewer repetitions
are necessary and such that the overall efficiency of the protocols is improved.

Zero-Knowledge based Post-Quantum signatures. One way to con-
struct a signature scheme is to first construct a zero-knowledge identifica-
tion scheme and then make it into a non-interactive signature scheme with
a transformation such as the Fiat-Shamir transform [17] or the Unruh trans-
form [35]. Looking at the NIST Post-Quantum Standardization project, three
of the Round II signature schemes, MQDSS, Picnic, and Dilithium use this
approach. MQDSS [13] uses a zero-knowledge proof that, given a multivari-
ate quadratic map P : Fnq → Fmq proves knowledge of a solution s ∈ Fnq
such that P(s) = 0. Picnic [12] uses an identification scheme constructed us-
ing the “MPC-in-the-head” technique [20] that relies on symmetric primitives.
Dilithium is a lattice-based signature scheme that relies on the Fiat-Shamir
with aborts technique [29]. Another example is PKP-DSS [10], which uses a
zero-knowledge proof introduced by Shamir in 1989 for proving knowledge of
a solution of an instance of the Permuted Kernel Problem (PKP) [33]. This
means that, given a matrix A ∈ Fm×nq and a vector v ∈ Fnq , the proof system
can prove knowledge of a permutation π ∈ Sn such that Avπ = 0, where vπ
is the vector obtained by permuting the entries of the vector v with the per-
mutation π. A drawback of these schemes (with exception of Dilithium) is that
the underlying identification schemes have a large soundness error, so a large
number of parallel repetitions are required to get a secure signature scheme.
This increases the signature sizes and the signing and verification times. For
example, the protocol underlying the Picnic signature scheme has a soundness

2
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error of 2
3 and hence requires k = 219 repetitions to get the soundness error

down to less than 2−128.

Recently, Katz et al. [24] improved on the approach of Picnic by building a
zero-knowledge proof from MPC in the preprocessing model, where the par-
ties can use some auxiliary data that was generated during a preprocessing
phase. The advantage of moving to the new MPC protocol is that it allows
for secure computation with dishonest majority with an arbitrary number of
parties n, which results in a zero-knowledge proof with a soundness error of 1

n .
Hence, fewer parallel rounds are required to get a secure signature scheme. A
“cut-and-choose” protocol is used to deal with the preprocessing phase, which
makes signing and verification slower compared to the original Picnic scheme.
This new signature scheme is called Picnic2 and is, together with the original
Picnic scheme, one of the Round 2 candidates of the NIST PQC standardization
project.

Stern’s protocol. In 1993, Stern proposed a code based sigma protocol [34].
For a publicly known parity check matrix H ∈ Fm×n2 , syndrome s ∈ Fm2 and
weight t, Stern’s zero-knowledge proof can prove knowledge of an error vector
e ∈ Fn2 with hamming weight t such that He = s. Internally, Stern’s proto-
col is very similar to Shamir’s protocol for PKP, and in fact, Stern’s proto-
col generalizes easily to proving knowledge of a witness of the inhomogeneous
PKP (IPKP) relation. The motivation behind Stern’s protocol was to obtain a
code-based identification scheme (and hence also a signature scheme with the
Fiat-Shamir transform). However, Stern’s protocol has been used extensively in
lattice-based cryptography, because the IPKP relation can be bootstrapped to
prove knowledge of a solution to the SIS problem, knowledge of an LWE secret
and more complex lattice statements such as proving that a given LWE cipher-
text is a valid encryption of a known message satisfying certain constraints [28].
This led to the construction of many advanced primitives from lattices, such as
identity-based identification schemes, group signatures (with verifier local re-
vocation), logarithmic size ring signatures and group encryption [28, 25, 27, 26].
Improving Stern’s protocol is an important and long-standing open problem
because this would improve the efficiency of all these constructions.

Contributions. In this paper we generalize the idea behind Picnic2 [24] to
something we call “sigma protocols with helper”. Concretely, a sigma protocol
with helper is a 3-party protocol between a prover, a verifier and a trusted third
party called the “helper”. The protocol begins with the helper who honestly
generates some auxiliary information that he sends to the verifier. The helper

3
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also sends the randomness seed that he used to generate his randomness to
the prover. Then, the protocol resumes like a normal sigma protocol. A sigma
protocol with helper is similar to a sigma protocol in the Common Reference
String (CRS) model, except that the trusted third party sends some secret
information (the randomness seed) to the prover and that the trusted third
party needs to participate in every execution, rather than just doing the trusted
setup once.

We then construct a sigma protocol with helper to prove knowledge of a solution
of a system of quadratic equations and a sigma protocol with helper for proving
knowledge of a solution of an inhomogeneous PKP instance (i.e. the same
relation as the Shamir and Stern protocols). Our proofs have soundness error
1
q′ and prover time Θ(q′), where q′ is any number bounded by the size of the
finite fields that are used. This soundness error is much better than existing
proofs which have soundness error 1

2 + 1
2q or soundness error 2/3. We then

show how to remove the helper with a “cut-and-choose” protocol, analogous
to the approach used by Katz et al. [24]. This transformation gives rise to
standard sigma protocols (i.e. without helper) which can then be transformed
into signature schemes using the Fiat-Shamir transform or used as a more
efficient variant of Stern’s protocol as a building block for advanced privacy-
preserving constructions.

Note that, even though the soundness error is q′, it is not possible to do one-shot
proofs if the field size is exponential because the prover time is Θ(q′). However,
we can still realize a large practical improvement over existing proofs: The proof
size of existing proofs is O(λX), where λ is the security parameter and X is
the proof size of a single iteration of the protocol. In comparison, the proof size
of our proofs is O( λ

log q′ (X + log q′ ∗ |seed|)), because the number of iterations

is now O( λ
log q′ ), and each iteration incurs an overhead of log q′|seed| ( a path

in a Merkle tree of size q′). In practice, the proof size is often dominated by
the O(λ|seed|) term even for small values of q′. Since X is usually much larger
than |seed| = λ, this gives a large improvement in practice. X and |seed| are
both linear in λ, so the improvement factor remains the same at higher security
levels.

We apply the Fiat-Shamir transform to our Sigma protocol for the MQ relation
to get a signature scheme whose security reduces to the problem of finding a
solution to a random system of multivariate quadratic polynomials. We call this
the “MUltivarite quaDratic FIat-SHamir” scheme (MUDFISH). MUDFISH is
more efficient than MQDSS, the existing signature scheme based on the same
hard problem. At NIST security level 1, the MUDFISH signatures are roughly
half as big as the MQDSS signatures, while our constant-time MUDFISH im-
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plementation is roughly twice as fast as the optimized MQDSS implementa-
tion that was submitted to the NIST PQC standardization project. Using the
Fiat-Shamir transform on our sigma protocol for the PKP relation, we obtain
the “ShUffled Solution to Homogeneous linear SYstem FIat-SHamir” scheme
(SUSHSYFISH), a signature scheme whose security reduces to finding a so-
lution of a random PKP instance. SUSHSYFISH has smaller signatures than
PKP-DSS, the existing scheme based on the PKP problem while being only
slightly slower. Moreover, unlike MQDSS and PKP-DSS, the MUDFISH and
SUSHSYFISH signature schemes are based on sigma protocols (i.e. 3-round
proofs) rather than 5-round proofs, which results in tighter security proofs in
the ROM and even allows us to use the recent results of Don et. al. [16] to
prove their security in the QROM. A comparison of the signature sizes and
signing speed of MUDFISH and multiple instantiations of SUSHSYFISH with
those of existing Post-Quantum Fiat-Shamir signatures is given in Fig. 1. Our
implementation is available on GitHub [9].

We can improve the lattice-based constructions such as identity-based identi-
fication schemes, group signatures (with verifier local revocation), logarithmic
size ring signatures and group encryption that rely on Stern’s protocol [28,
25, 27, 26], by replacing Sterns protocol by our more efficient proof for IPKP.
In particular, we make a case study for the SIS problem, where we see that
with our proof system, the proof size is a factor 10 smaller than with Stern’s
protocol. And smaller than proof sizes arising from other post-quantum exact
proofs for SIS, such as using “MPC-in-the-head” techniques [5] or an algebraic
approach [11].

Roadmap In sect. 2 we lay out some basic preliminaries required for the
remainder of the paper. In Sect. 3 we formalize the notion of a sigma protocol
with helper, then we construct sigma protocols with helper for the MQ problem
and the Permuted Kernel Problem in sections 4 and 5. In Sect. 6 we show how to
convert a sigma protocol with helper in a normal zero-knowledge proof (without
helper). Then, we convert our zero-knowledge proofs into signature schemes in
Sect. 8, where we also briefly discuss our proof-of-concept implementations.
Finally, in Sect. 9 we show how to use the IPKP proof to construct a zero-
knowledge proof for the SIS relation, and we compare our SIS proof to existing
SIS proofs.

5
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Fig. 1. Comparison of MUDFISH and SUSHSYFISH to existing signatures based on
the MQ problem (MQDSS) and PKP problem (PKP-DSS). Cycle counts of picnic
and MQDSS are taken from the NIST Round2 submission packages (the optimized,
but not AVX2 optimized implementations, updated to take the attack of Kales and
Zaverucha into account [23]), cycle counts for PKP-DSS are taken from [10].

2 Preliminaries

2.1 Hard problems

We introduce (variants of) the Permuted Kernel Problem (PKP), the Multi-
variate quadratic problem (MQ) and the Short Integer Solution problem (SIS),
three computationally hard problems that are used in the remainder of the
paper.

Permuted Kernel Problem (PKP/IPKP). Given a matrix A ∈ Fm×nq and
a vector v ∈ Fnq defined over a finite field Fq, the Permuted Kernel Problem
is to find a permutation π ∈ Sn, such that Avπ = 0, where vπ is the vector
obtained by permuting the entries of v with the permutation π, that is, the
vector defined by (vπ)i = vπ(i). There is also a inhomogeneous version of the
problem, where given A ∈ Fm×nq , v ∈ Fnq and a target vector t ∈ Fmq , the task
is to find a permutation π ∈ Sn, such that Avπ = t.

6



292 MUDFISH AND SUSHSYFISH

The permuted kernel problem is a classical NP-Hard problem that was first
introduced in cryptography by Shamir, who designed an identification scheme,
whose security reduces to the problem of solving a random PKP instance [33].
Several works have introduced new algorithms and time-memory trade-offs for
solving the PKP [30, 3, 18, 21], but solving the problem remains prohibitively
difficult, even for small parameters (see Table 3).

Subgroup IPKP The Subgroup Inhomogeneous Permuted Kernel Problem
(SIPKP) is the same as the IPKP problem, with the additional constraint that
the solution is a member of a certain subgroup of Sn. Concretely, a solution to
the a SIPKP instance (A,v, t, H), with A ∈ Fm×nq ,v ∈ Fnq , t ∈ Fmq and H a
subgroup of Sn is a permutation π ∈ H such that Avπ = t.

Multivariate Quadratic (MQ). Given a multivariate quadratic map P :
Fnq → Fmq of m quadratic polynomials in n variables defined over a finite field
Fq, the MQ problem asks to find a solution s ∈ Fnq such that P(s) = 0. The best
known methods for solving this problem rely on Grobner basis methods or lin-
earization methods in combination with guessing a number of the variables [8,
22]. This is the central problem underlying most of multivariate cryptography,
and for random systems F , the hardness of the problem is well understood.

Short Integer Solution (SIS/ISIS). The well known Short Integer Solution
problem, introduced in the seminal work of Ajtai [1] asks to, given a matrix
A ∈ Zn×mq , and a bound β, find a vector x, such that Ax = 0 whose norm
is bounded by ||x|| ≤ β. There is also a inhomogenues version of the problem
(ISIS), where, given A ∈ Zn×mq , t ∈ Znq and a bound β the taks is to find
x ∈ Zmq such that Ax = t, again subject to ||x|| ≤ β. The problem enjoys
reductions from worst case lattice problems, and is one of the fundamental
problems underlying lattice-based cryptography.

2.2 Commitment schemes

Many sigma protocols, including ours, depend heavily on secure non-interactive
commitment schemes. In the remainder of the paper we assume a non-interactive
commitment function Com : {0, 1}λ ×{0, 1}? → {0, 1}2λ, that takes as input λ
uniformly random bits bits, where λ is the security parameter, and a message
m ∈ {0, 1}? and outputs a 2λ bit long commitment Com(bits,m).

7
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Intuitively, the commitment scheme should not reveal anything the message it
commits to, and it should not be possible to open the commitment to some
different message. These properties are formalized as follows:

Definition 1 (Computational binding.). For an adversary A we define its
advantage for the commitment binding game as

AdvBindingCom (A) = Pr[Com(bits,m) = Com(bits′,m′)|(bits,m, bits′,m′)← A(1λ)]

We say that Com is computationally binding if for all polynomial time algo-
rithms A, the advantage AdvBindingCom (A) is a negligible function of the security
parameter λ.

Definition 2 (Computational hiding.). For an adversary A we define the
advantage for the commitment hiding game for a pair of messages m,m′ as

AdvHidingCom (A,m,m′) =

∣∣∣∣ Pr
bits←{0,1}λ

[1 = A(Com(bits,m)]

− Pr
bits←{0,1}λ

[1 = A(Com(bits,m′)]

∣∣∣∣ .

We say that Com is computationally hiding if for all polynomial time algorithms
A, and every pair of messages m,m′ the advantage AdvHidingCom (A,m,m′) is a
negligible function of the security parameter λ.

In our implementations, we use SHAKE256 as commitment function. If we
model SHAKE256 as a quantum random oracle, then it satisfies the computa-
tional binding and hiding properties.

3 Sigma protocols with helper

This paper introduces two Sigma protocols with helper, which are like normal
sigma protocols, with the addition of a trusted third party (called the helper)
that runs a setup algorithm based on a random seed at the beginning of each
execution of the protocol. The helper then sends some auxiliary information to
the verifier and sends the seed value that was used to seed the setup algorithm
to the prover. A more formal definition is as follows:

8
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Definition 3 (Sigma protocol with helper). A protocol is a sigma protocol
with helper for relation R with challenge space C if it is of the form of Fig. 2
and satisfies:

– Completeness If all parties (Helper, Prover and Verifier) follow the pro-
tocol on input (x,w) ∈ R, then the verifier always accepts.

– 2-Special soundness. From an adversary A that outputs with noticeable
probability valid transcripts (x, aux, com, ch, rsp) and (x, aux, com, ch′, rsp′)
with ch 6= ch′ and where aux = Setup(seed) for some seed value seed (not
necessarily known to the extractor) one can efficiently extract a witness w
such that (x,w) ∈ R.

– Special honest-verifier zero-knowledge. There exists a PPT simula-
tor S that on input x, a random seed value seed and a random challenge
ch outputs a transcript (x, aux, com, ch, rsp) with aux = Setup(seed) that is
computationally indistinguishable from the probability distribution of tran-
scripts of honest executions of the protocol on input (x,w) for some w such
that (x,w) ∈ R, conditioned on the auxiliary information being equal to aux
and the challenge being equal to ch.

Helper(x)

seed
$←− {0, 1}λ

aux← Setup(seed)
Send seed to the prover and aux to the verifier.

Prover(x,w, seed) Verifier(x, aux)

com,P state← P1(x,w, seed)

com−−−−→
ch

$←− C

rsp← P2(P state, ch)

ch←−−−−−

rsp−−−−−→
return V (x, aux, com, ch, rsp)

Fig. 2. The structure of a sigma protocol with trusted setup.

9
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4 Proving knowledge of a solution to a system of
quadratic equations

Two zero-knowledge proofs to prove knowledge of a solution of a system of mul-
tivariate quadratic equations over a finite field Fq were proposed by Sakumoto
et al. [32]. The first proof is a 3-round protocol which has soundness error 2

3 ,
while the second proof is a 5-round protocol with soundness error 1

2 + 1
2q , where

q is the size of the finite field over which the system of polynomials is defined.
The MQDSS [13] signature scheme is obtained by applying the Fiat-Shamir
transform to the 5-round protocol of Sakumoto et al. Because the soundness
error of 1

2 + 1
2q is rather big, and because the Fiat-Shamir transformation does

not tightly preserve security for 5-round protocols [23] a large number (e.g. 184
for the NIST security level I parameter set) of parallel rounds is required to
obtain a secure signature scheme.

In this section, we present a sigma protocol with helper to prove knowledge of a
solution of a system of multivariate quadratic equations. The scheme improves
the knowledge error to only 1/q, but this comes at the cost of having an honest
party that helps the prover and the verifier in their execution of the protocol.
Similar to the schemes of Sakumoto et al. the new protocol relies on the fact
that if F : Fnq → Fnq is a multivariate quadratic map of m polynomials in n
variables, then the polar form of F , which is defined as

G(x,y) := F(x + y)−F(x)−F(y) (1)

is linear in both x and y.

To prove knowledge of a secret s such that F(s) = v the protocol goes as
follows: During the first phase the helper picks a random vector r0 and commits
to linear secret sharings t + tc = cr0, e + ec = cF(r0) for each c ∈ Fq. These
commitments are public auxiliary information which the helper sends to the
verifier. The helper also sends the seed that he used to generate his randomness
to the prover. Then, the prover publishes the masked secret r1 = s − r0 and
commits to the value of e + G(r1, t). Finally the verifier challenges the prover
to reveal eα and tα for a random choice of α ∈ Fq and checks whether the
following equation, which is equivalent to Eqn. 1, holds.

e + G(r1, t) = c (F(s)−F(r1))− ec − G(r1, tc) , ∀c ∈ Fq (2)

A more detailed version of the protocol is displayed in Fig. 3.

10
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Theorem 1. Suppose the used commitment scheme is computationally binding
and computationally hiding, then the protocol of Fig. 3 is a sigma protocol with
trusted setup as in definition 3 with challenge space Fq.

Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:

Completeness: The fact that in a honest execution of the protocol x = e +
G(r1, t) follows from Eqn. 2, so completeness follows immediately.

2-Special Soundness: Suppose an extractor is given two transcripts
(aux, com, α, (r, rα, r1, eα, tα)), (aux, com, α, (r′, r′α, r

′
1, eα′ , tα′)) with α 6= α′ that

are accepted by the verifier and such that aux = Setup(seed) (for some seed
value unknown to the extractor). Then we show how to extract a witness s
such that P(s) = v if the binding of the commitments does not fail.

Let x := α(v−F(r1))−eα−G(r1, tα) and x′ := α′(v−F(r′1))−eα′−G(r′1, tα′),
then the verifier only accepts if we have com = Com(r, r1,x) = Com(r′, r′1,x

′),
so the binding property of Com implies that r1 = r′1 and x = x′.

Even though the extractor does not know e, t, r0 or the commitment random
strings {rc | c ∈ Fq}, the extractor still knows that

aux = {Com(̃rc, (cF(r0)− e, cr0 − t)) | c ∈ Fq}
for some values of e, t, r0 and {r̃c | c ∈ Fq}, because the helper computed aux =
Setup(seed) honestly.

The verifier only accepts both transcripts if Com(̃rα, (αF(r0) − e, αr0 − t)) =
Com(rα, (eα, tα)) and Com(̃rα′ , (α

′F(r0)−e, α′r0−t)) = Com(r′α, (eα′ , tα′)), so
the binding property of Com implies that

αF(r0)− e = eα , αr0 − t = tα ,

α′F(r0)− e = eα′ and α′r0 − t = tα′ .

Substituting this into x = x′ we get

α(v −F(r1)) + e− αF(r0)− G(r1, αr0 − t)

= α′(v −F(r1)) + e− α′F(r0)− G(r1, α
′r0 − t) ,

which simplifies to

(α− α′) (F(r1) + F(r0) + G(r0, r1)− v) =

(α− α′) (F(r0 + r1)− v)) = 0 ,

11
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so r0 + r1 = tα−tα′
α−α′ + r1 is a solution to F(x) = v. Notice that all the values

on the right hand side of this equation are included in the 2 transcripts, so
extracting the solution from the two transcripts is trivial.

Special honest-verifier zero-knowledge: Define a simulator S, that on in-
put v, a random seed value seed and a random challenge α ∈ Fq does the
following things:

1. recompute aux, rα, eα and tα from seed.
2. pick a uniformly random vector u ∈ Fnq .
3. compute fα,eα,tα(u), where fα,eα,tα(x) := α(v −F(x))− eα − G(x, tα).
4. pick commitment randomness r and a commitment com′ to (u, fα,eα,tα(u)) .
5. output (aux, com′, α, (r, rα,u, eα, tα)).

Then the Simulator is identical to an honest prover, except for step 2, where
the honest prover sets u equal to s− r0 rather than a uniformly random value.
It is clear that (α, r, rα,u, eα, tα) and (α, r, rα, s−r0, eα, tα) are both uniformly

distributed in Fq×{0, 1}2λ×
(
Fnq
)3

and hence follow the same distribution. Since
com and comα are completely determined by (α, r, rα, s − r0, eα, tα) it follows
that (comα, com

′, α, r, rα,u, eα, tα) and (comα, com, α, r, rα, s − r0, eα, tα) also
follow the same distribution. Finally, since the commitments comc6=α are never
opened, it follows from the hiding property of the commitment scheme with the
standard hybrid argument that (aux, com′, α, r, rα,u, eα, tα) is computationally
indistinguishable from (aux, com, α, r, rα, s− r0, eα, tα).

5 Proving knowledge of a solution to a (inhomogeneous)
PKP instance

In this section we give a Sigma protocol with helper with challenge space Fp to
prove knowledge of a solution for an inhomogeneous PKP instance, i.e. given
A,v, t our proof system proves knowledge of a permutation π such that Avπ =
t. The soundness error of our proof is only 1/p, which is much better than the
5-round proof of Shamir, which has a soundness error of 1

2 + 1
2p [33], and Stern’s

3-round protocol, which has a soundness error of 2/3 [34].

To prove knowledge of a solution π to the instance (A,v, t) the protocol goes as
follows: The helper picks a random vector r ∈ Fnp , and a random permutation
σ ∈ Sn, it then commits to r + cvσ for all values of c ∈ Fp. The helper sends

12
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Helper(F)

seed
$←− {0, 1}λ

Generate e ∈ Fmq and t, r0 ∈ Fnq from seed.
for each c in Fq do

ec ← cF(r0)− e
tc ← cr0 − t
Generate commitment randomness rc ∈ {0, 1}λ from seed.
comc ← Com(rc, (ec, tc))

end for
aux← [comc| for c ∈ Fq]
Send seed to the prover and aux to the verifier.

Prover(F , s, seed) Verifier(F ,v, aux)

Regenerate e, t, r0 from seed.
r1 ← s− r0
r← {0, 1}λ
com← Com(r, (r1, e + G(r1, t)))

com−−−−→
α

$←− Fq

Recompute rα, eα, tα from seed.

α←−−−−

(r,rα,r1,eα,tα)−−−−−−−−−→
x← α(v−F(r1))−eα−G(r1, tα)
b1 ← com = Com(r, (r1,x))
b2 ← comα = Com(r, (eα, tα))
return b1 ∧ b2

Fig. 3. A sigma protocol with helper for proving knowledge of a solution to the MQ
problem.

13
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these commitments as public auxiliary information to the verifier, and he sends
the seed that he used to generate his randomness to the prover. Then the prover
sends ρ = πσ−1 to the verifier and commits to the value of Arπσ−1 . Finally, the
verifier challenges the prover to reveal x = r + αvσ for a random choice of α.
Once the prover reveals x the verifier checks if Axρ−αt = A (rπσ−1 + αvπ)−
αt = Arπσ−1 . For a more detailed description of the protocol we refer to Fig. 4.

Theorem 2. Suppose the used commitment scheme is computationally binding
and computationally hiding, then the protocol of Fig. 4 is a sigma protocol with
trusted setup as in definition 3 with challenge space Fp.

Proof. We prove completeness, 2-special soundness and special honest-verifier
zero knowledge separately:

Completeness: In an honest execution of the protocol we have

y = Axρ − αt = A (rπσ−1 + αvπ)− αt ,

so if π is a solution to the PKP instance (A,v,t), then Avπ = t, which means
y = Arπσ−1 and hence the completeness follows from the completeness of the
commitment scheme.

2-Special Soundness: Given two transcripts (aux, com, α, (r, rα, ρ,x)) and
(aux, com, α′, (r′, r′α, ρ

′,x′)) with α 6= α′ that are accepted by the verifier and
such that aux =Setup(seed), for some value of seed (not necessarily known
to the extractor). Then, if the binding of the commitment scheme does not
fail (which, by assumption, happens with overwhelming probability), one can
efficiently extract a witness π such that Avπ = t.

Let y := Axρ − αt and y′ := Ax′ρ′ − α′t, then the verifier only accepts if we
have com = Com(r, (ρ,y)) = Com(r′, (ρ′,y′)), so the binding property of Com
implies that ρ = ρ′ and y = y′.

Note that even though the extractor does not know r, σ or any of the commit-
ment randomness strings rc, he still knows that aux is of the form

aux = {Com(rc, r + cvσ) | c ∈ Fq}
for some values of r, σ and {rc}c∈Fq , because we can assume the helper com-
puted aux =Setup(seed) honestly.

The verifier only accepts both transcripts if Com(rα, r+αvσ) = Com(rα,x) and
Com(rα′ , r +α′vσ) = Com(rα′ ,x

′), so the binding property of Com implies that
x = r + αvσ, and that x′ = r + α′vσ.

14
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Putting everything together we get

A (rρ + αvρσ)− αt = A (rρ + α′vρσ)− α′t

which simplifies to

(α− α′) (Avρσ − t) = 0,

so ρσ is a solution to the instance of the permuted kernel problem. The value
of ρ is known to the extractor because it is included in the transcripts, and the
value of σ can be deduced from α, α′,x,x′ and v, because x−x′ = (α−α′)vσ.
(If the entries of v are not unique, multiple values of σ are possible, but they
will all give valid solutions to the PKP problem.)

Special honest-verifier zero knowledge: Define a simulator S, that on
input A,v, a random seed value seed and a random challenge α ∈ Fp does the
following things:

1. recompute aux, rα and x = r + αvσ from seed.
2. pick a uniformly random permutation τ ∈ Sn.
3. produce commitment randomness r, and a commitment com′ to (τ,Axτ ).
4. output (aux, com′, α, (r, rα, τ,Axτ )).

Then the Simulator is identical to an honest prover, except for step 2, where
the honest prover sets ρ equal to πσ−1 rather than a uniformly random value.
It is clear that (α, r, rα, τ,Axτ ) and (α, r, rα, ρ,Axρ) are both uniformly dis-
tributed in Fq × {0, 1}2λ × Sn × Fnq and hence follow the same distribution.
Since com and comα are completely determined by (α, r, rα, ρ,Axρ) it follows
that (comα, com

′, α, r, rα, τ,Axτ ) and (comα, com, α, r, rα, ρ,Axρ) also follow
the same distribution. Finally, since the commitments comc6=α are never opened,
it follows from the hiding property of the commitment scheme and the standard
hybrid argument that (aux, com′, α, (r, rα, τ,Axτ )) is computationally indistin-
guishable from (aux, com, α, (r, rα, ρ,Axρ)).

6 Removing the helper

In this section, we show how to transform a Sigma protocol with helper into
a standard zero-knowledge proof of knowledge (without helper). We use the
same “Cut-and-choose” approach that was used by Katz et al. to get rid of the
preprocessing phase [24].

15
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Helper(v)

seed
$←− {0, 1}λ

Generate r ∈ Fnp and σ ∈ Sn from seed.
for each c in Fp do

Generate commitment randomness rc ∈ {0, 1}λ from seed.
comc ← Com(rc, r + cvσ)

end for
aux← [comc| for c ∈ Fp]
Send seed to the prover and aux to the verifier.

Prover(A,v, π, seed) Verifier(A,v, t, aux)

Regenerate r, σ from seed.
ρ← πσ−1

r← {0, 1}λ
com← Com(r, (ρ,Arρ))

com−−−−−→
α

$←− Fq

Recompute rα and
x = r + αvσ from seed.

α←−−−−

(r,rαρ,x)−−−−−→
y← Axρ − αt
b1 ← com = Com(r, (ρ,y))
b2 ← comα = Com(rα,x)
return b1 ∧ b2

Fig. 4. A sigma protocol with helper for proving knowledge of a solution to the
inhomogeneous PKP problem.
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The idea is to let the prover pick k seeds seed1, · · · , seedk and generate k sets
of auxiliary information auxi = Setup (seedi) which the prover sends to the
verifier, along with the first messages of the protocol comi = P1(x,w, seedi) for
all i from 1 to k. The verifier then picks a random index I and a single challenge
ch ∈ C and sends this to the prover. The prover then sends seedi for i 6= I as
well as a response rsp to the challenge at index I. Using the seeds, the verifier
then checks if all the auxiliary information auxi 6=I was generated properly and
checks if rsp is a correct response to the challenge at index I. The details of
the protocol are displayed in Fig. 5. We prove that this is a honest-verifier zero
knowledge protocol with soundness error max( 1

k ,
1
|C| ).

Theorem 3. Let (Setup, P1, P2, V ) be a sigma protocol with helper and chal-
lenge space C, if the used commitment scheme is hiding, then the protocol of
Fig. 5 is an honest-verifier zero knowledge proof of knowledge with challenge
space {1, · · · , k} × C and max(k, |C|) + 1-special soundness (and hence it has
soundness error max( 1

k ,
1
|C| )).

Proof. We prove completeness, special soundness and special honest-verifier
zero knowledge separately.

Completeness: Follows immediately from the completeness of the underlying
Sigma protocol with trusted setup.

(max(k, |C|) + 1)-special soundness: If there are max(k, |C|) + 1 valid tran-
scripts then there are at least two valid transcripts with different values of I,
which implies that all k setups were done honestly. The pigeon hole principle
says there are at least two accepted transcripts with the same value of I, but
different ch, so the extractor can use special soundness of the underlying Sigma
protocol with trusted setup to extract a witness w.

Special Honest-verifier zero-knowledge: On input (I, ch), the simulator
generates all the setups honestly, and commits to random dummy values to
create the commitments comi 6=I . The simulator then uses the simulator of the
underlying sigma protocol with trusted setup to simulate the transcript at index
I. Indistinguishability follows from the hiding property of the commitment
scheme and the honest-verifier zero-knowledge property of the underlying sigma
protocol with trusted setup.
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Prover Verifier

for i ∈ {1, · · · , k} do

seedi
$←− {0, 1}λ

auxi ←Setup(seedi)
comi ← P1(x,w, seedi)

end for

auxi,comi∀i−−−−−−−→
I

$←− {1, · · · , k}
ch

$←− C

rsp← P2(x,w, seedI , com, ch)

(I,ch)←−−−−−−−

seedi∀i6=I,rsp−−−−−−−−→
if ∃i 6= I : auxi 6=Setup(seedi)
then

return 0
end if
return V (x, aux, com, ch, rsp)

Fig. 5. A zero knowledge proof (without trusted setup) from a Sigma protocol with
trusted setup.
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7 Optimizations

In this section, we describe optimizations for the MQ and PKP zero-knowledge
proofs with trusted setup, as well as for the transformation that removes the
trusted setup. The first two optimizations are applications of standard tech-
niques and the last optimization was proposed by Katz et al. [24], and proven
secure by Baum and Nof [5].

Hashing and Merkle trees. In both the MQ proof and the PKP proof the
auxiliary information consists of q commitments comi for i ∈ Fq, but only
one of these commitments, comα, is opened in each honest execution of the
protocol. To reduce the communication cost (and hence the signature size after
the Fiat-Shamir transform) we can build a Merkle tree on these commitments
and only send the root of the tree. Then the prover includes in his response
the dlog2(q)e nodes of the Merkle tree required to reconstruct the root of the
Merkle tree.

When we are doing the transformation to get rid of the trusted party, we do
not have to send all the k roots separately. Instead, it suffices to send a hash of
all the roots to the verifier. Then, during verification, the verifier recomputes
all the roots (either from seedi if i 6= I, or through the verification algorithm if
i = I) and hashes the roots to verify that they were correct.

The prover sends k commitments comi, but only the commitment comI is used.
Therefore, similar to the first optimization, the prover can build a Merkle tree
on his commitments and send the root to the verifier. Then, he includes comI

and some nodes of the Merkle tree in his response, so the verifier can recompute
the root and authenticate comI .

Sending fewer seeds. The prover chooses k seed values and sends all but
one of these seeds to the verifier. We can use a tree strategy to reduce the
communication cost. The prover constructs a binary tree of seed values. First,
he picks the value of the root at random. Then, the value of each internal node
is used to seed a PRNG which generates the values of its two children. In the
end, the leaf nodes act as the seedi values. Now, instead of sending k − 1 seed
values, the prover can send dlog2(k)e node values in the tree and the prover
can recompute the k − 1 seeds himself (but not seedI).
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Smaller challenge space. For some applications, the finite field Fq is so large
that it would not be practical to compute Merkle trees of size q. In that case,
we can simply reduce the challenge space to some subset of Fq of size q′ ≤ q.
The soundness error of the scheme then becomes 1/q′ instead of 1/q.

Beating parallel repetition. The basic scheme has soundness error 1
q′ , so to

reach a soundness error of 2−λ we would need to perform r =
⌈

λ
log2(q′)

⌉
parallel

executions of the protocol. The optimization of Katz et al. [24] gives a more
efficient approach: The idea is that instead of letting the verifier choose 1 out of
k setups to execute, we now let him choose τ out of M setups to execute. Now
suppose a cheating prover does e ≤ τ out of the M setups incorrectly. Since
he cannot produce seedi values for the cheated setups, he can only convince
the verifier if all the setups in which he cheated end up being executed. This

happens with probability
(
M−e
τ−e

)
·
(
M
τ

)−1
. Then, the prover still needs to generate

responses for τ − e honest setups, which he can do with probability at most(
1
q′

)τ−e
. Therefore the soundness error of the adapted scheme is bounded by

max
0≤e≤τ

(
M−e
τ−e

)
(
M
τ

)
q′τ−e

.

For a more formal proof we refer to [5].

Example 1. Suppose q = 128, then without the optimization, we would need
19 parallel executions of the basic protocol to reach a soundness error of 2−128,
which amounts to 19 ∗ 128 = 2432 setups and 19 executions of the protocol.
With the optimization, it turns out that 916 setups and 20 executions are
sufficient. So, in this case, the optimization reduces the number of setups by a
factor 2.6 at the cost of a single extra execution.

8 Signature schemes

In this section, we apply the Fiat-Shamir transformation to the zero-knowledge
proofs for MQ and PKP (after applying the transformation of Sect. 6) to ob-
tain 2 signature schemes. We call these schemes the “MUltivariate quaDratic
FIat-SHamir” scheme (MUDFISH) and the “ShUffled Solution to Homogeneous
linear SYstem FIat-SHamir” scheme (SUSHSYFISH). First, we observe that
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the recent results on Post-Quantum Fiat-Shamir by Don et al. [15] apply and
thus that our signature scheme are provably secure in the QROM (with non-
tight reductions). We then give some generic optimizations for the signature
scheme and parameter choices for MUDFISH and SUSHSYFISH. We provide
a proof-of-concept implementation to show that MUDFISH and SUSHSYFISH
are more efficient than existing signature schemes based on the MQ and PKP
assumptions (i.e. MQDSS and PKP-DSS respectively) in terms of signature
size and speed (on the NIST reference platform).

8.1 Fiat-Shamir transform

The Fiat-Shamir transform allows us to convert the sigma protocols for MQ
and PKP into signatures. The idea is that instead of letting the verifier choose
the challenge at random, we derive the challenge deterministically from the
commitment and the message that we want to sign. Concretely, to sign a mes-
sage m, the signer executes the first part of the identification scheme to produce
a commitment com, then he derives a challenge ch by applying a random oracle
to com|m. Finally, the signer completes his part of the identification scheme to
produce the response rsp. The signature is then simply (com, resp). To verify
a signature (com, resp) for a message m, the verifier simply computes ch by
querying the random oracle at com|m, and then he accepts the signature if
and only if (com, ch, resp) is a valid transcript of the identification protocol.
Using the results of [15], it is straightforward to prove that MUDFISH and
SUSHSYFISH are strongly unforgeable in the QROM.

Theorem 4. Assume that a hash function modeled as a Quantum Random Or-
acle is used as commitment scheme and that a Quantum random oracle model
is used as PRG, then the non-optimized variants of MUDFISH and SUSHSY-
FISH signature schemes are strongly existentially unforgeable in the QROM.

Proof. (The argument is similar to the proof for the FS variant of Picnic, see
Sect. 6.1 of [15].) First, we prove that the Setup function is collapsing: If we
model the commitment functions as Quantum random oracles, then they are
collapsing [36]. In both the MUDFISH and SUSHYFISH schemes, the Setup
algorithm consists of expanding a randomness seed, computing some values
based on the output of the PRG, and committing to them. In both cases, the
PRG output is more than three times longer than the input, so this function
is injective with overwhelming probability. Also, it is easily verified that the
computing of the values from the output of the PRG is injective. Since the
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concurrent composition of collapsing functions is collapsing [16] and compos-
ing a collapsing function with an injective function preserves collapsingness, it
follows that the entire Setup algorithm is collapsing.

Since the responses of the sigma protocol only consist of openings of com-
mitments (which are preimages to Com), and preimages to the Setup func-
tion it follows from the collapsingness of Com and Setup that the MUDFISH
and SUSHSYFISH sigma protocols have quantum computationally unique re-
sponses. Moreover, the protocols have k-special soundness, so theorem 25 of [15]
says that the non-optimized versions of MUDFISH and SUSHSYFISH are quan-
tum computational proofs of knowledge. Together with their theorem 22, this
implies that MUDFISH and SUSHSYFISH are sEUF-CMA secure.

8.2 MUDFISH

Parameter choices For ease of implementation, we have chosen to use the
same finite field F4 for all the parameter sets. To have a fair comparison with the
MQDSS scheme, and to avoid the technicalities of choosing secure parameters
for the MQ problem, we use the parameters proposed in the MQDSS submission
to the NIST PQC standardization project. These parameter choices for the MQ
problem are displayed in Table 1.

We still need to pick parameters for the ZK proof (i.e. τ , the number of ex-
ecutions and M , the number of setups). The choice of τ and M allows for a
trade-off: If one is willing to increase τ , which mainly impacts signature size,
then one can decrease M , which mainly impacts signing and verification time.

NIST PQC Best classical attack Best quantum attack
Security Level q n = m gates gates depth

I 4 88 2156 293 283

III 4 128 2230 2129 2119

V 4 160 2290 2158 2147

Table 1. parameters for the MQ problem used by MUDFISH, and the complexity of
solving them with the Crossbred algorithm. The parameter sets and the complexity
estimates are taken from Table 8.4 of [14].
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NIST PQC Parameters |pk| |sk| |sig| KeyGen Sign Verify
Security Level q n M τ (B) (B) (KB) (Mc) (Mc) (Mc)

I 4 88 191 68 38 16 14.4 2.3 14.8 15.3
III 4 128 256 111 56 24 32.9 7.2 51.3 49.6
V 4 160 380 136 72 32 55.6 14.2 140.4 139.3

Table 2. parameters for MUDFISH, key and signature sizes and performance mea-
surements (average over 1000 signatures).

Implementation results The signing and verification algorithms require to
do a lot of setups and executions of the ZK proof on independent data. We take
advantage of this by fitting data from 64 independent rounds into one word.
Hence, we can do 64 setups or 64 executions of the protocol in parallel on a 64-
bit machine. Since the MUDFISH algorithm is inherently constant-time, there
was no performance penalty for making the implementation constant-time. Our
proof-of-concept implementation uses SHAKE256 as hash function and to ex-
pand randomness. The performance results of the implementation are displayed
in Table 2. We see that MUDFISH is more efficient than MQDSS: Comparing
the parameter sets that achieve NIST security level I, the signatures of MUD-
FISH are only half as big as those of MQDSS. At the same time, the signing
and verification speed of our proof-of-concept implementation of MUDFISH is a
factor 2.5 and 1.8 faster than those of the optimized implementation of MQDSS
submitted to the second round of the NIST PQC standardization project. We
leave the task of making an AVX2 optimized implementation of MUDFISH and
comparing its performance to the AVX2 optimized implementation of MQDSS
for future work.

8.3 SUSHSYFISH

Parameter choices An advantage of building cryptography on PKP is that
the best attack algorithms are quite simple and easy to analyze. We use the
PKP parameter sets proposed by Faugère et al. [10] to achieve the NIST security
levels 1, 3 and 5. The choice of the remaining parameters q′, τ and M allows for
a trade-off between signature size and signing and verification speed. For each
of the NIST PQC security levels 1, 3 and 5 we propose a parameter set which
aims to be fast (q′ = 4), a parameter sets which aims to have small signatures
q′ = 128 and an intermediate parameter set q′ = 16.
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NIST PQC |pk| |sk| |sig| KeyGenSign Verify
Security level q n m q′ M τ (B) (B) (KB) (Mc) (Mc) (Mc)

Fast 997 61 28 4 191 68 72 16 18.1 0.1 3.6 1.7
I Middle 997 61 28 16 250 36 72 16 14.0 0.1 8.6 6.0

Compact 997 61 28 128 916 20 72 16 12.1 0.1 170 169

Fast 1409 87 42 4 256 111 108 24 43.7 0.1 7.3 3.3
III Middle 1409 87 42 16 452 51 108 24 30.8 0.1 22.7 16.5

Compact 1409 87 42 128 1357 30 108 24 27.1 0.1 365 342

Fast 1889 111 55 4 380 136 142 32 72.8 0.2 12.1 5.8
V Middle 1889 111 55 16 643 67 142 32 54.9 0.2 25.7 18.0

Compact 1889 111 55 128 2096 39 142 32 47.5 0.2 602 567

Table 3. parameters for SUSHSYFISH, key and signature sizes and performance
measurements (average over 1000 signatures).

Making the implementation constant-time. Most of the SUSHSYFISH
algorithm is inherently constant-time, except for some operations involving
permutations such as composing permutations, applying a permutation to a
vector and sampling random permutations. Naive implementations of these
operations involve accessing memory at secret indices, which could make the
implementation vulnerable to cache timing attacks. In our implementation,
we leverage the djbsort constant-time sorting software library [7] to do these
operations in constant-time. For example, to apply a permutation π ∈ Sn to a
vector v ∈ Fnp we first construct a list of integers xi, such that the high-order
bits of xi correspond to πi, and such that the low-order bits of xi correspond to
vi. We then call the djbsort library to sort this list of integers in constant-time,
and we extract the low-order bits from the sorted list, which correspond to vπ.
Since the performance bottleneck of SUSHSYFISH is hashing, a slight increase
in the cost of the operations involving permutations has a negligible effect on
the total performance of the signature scheme.

Implementation results. Our implementation uses SHAKE256 as hash func-
tion and to expand randomness. The signing and verification times are dom-
inated by the use of SHAKE256, and hence there is a lot of potential for
speedups by choosing different symmetric primitives or by parallelizing inde-
pendent calls of the SHAKE function. The key and signature sizes and the
performance measurements for the 9 proposed parameter sets are displayed
in Table 3. We see that SUSHSYFISH has smaller signatures than PKP-DSS
while being only slightly slower. For NIST PQC security level I, the performance
of the “Fast” SUSHSYFISH parameter set is the close to the performance of
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PKP-DSS: Signatures are 12% smaller, while with the current implementations
signing and verification are 44% and 80% slower respectively. The “Middle”
and “Fast” parameter sets offer more compact signatures at the cost of slower
signing and verification.

Comparison to previous works. In this section, we compare the MUDFISH
and SUSHSYFISH non-interactive zero-knowledge proof systems to existing
methods for proving knowledge of a solution to the MQ or PKP problem. We
compare to MQDSS [14] and PKP-DSS [10] that are dedicated proof systems
for MQ and PKP respectively, and we compare to Ligero [2] and Aurora [6],
which are generic ZK-proof systems capable of proving knowledge of a witness
for any NP statement. To compare with generic ZK systems we construct a
verification circuit with a minimal number of multiplication gates (since linear
gates are for free). For the MQ problem, the verification circuit just evaluates
the multivariate system, which requires n(n+1)/2 secret multiplications. Using
a permutation network [37], we can encode a permutation as a sequence of bits,
where each bit controls if a switch in the network is active or not. With this
representation, we can verify if a permutation is a solution of a PKP problem
with a small number of non-linear gates. If the permutation network has k
switches the verification can be done with 2k non-linear gates; k multiplications
for applying the k switches and an additional k multiplications to verify that
the witness consists of bits. Table 4 and 5 show that our proof systems have
significantly lower proof sizes compared to existing solutions.

sec. Parameters Circuit Proof Size (KB)
level F, n Size MQDSS Ligero Aurora Mudfish

128 GF(4), 88 3916 40 199 59 14
192 GF(4), 128 8256 43 421 90 33
256 GF(4), 160 12880 154 721 358 56

Table 4. Comparison of proof sizes of various ZK-proof systems for proving knowledge
of a solution of an MQ instance. For the MQDSS system the number of iterations
is 315, 478 and 637 respecively. At security level λ, the hashes and commitments
are 2λ bits long. The parameter choices do not compensate for the non-tightness of
the Fiat-Shamir transform, instead they only guarantee λ bits of soundness for the
interactive version of the protocols.
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sec. Parameters Circuit Proof Size (KB)
level F, n,m Size PKP-DSS Ligero Aurora Sushsyfish

128 GF(997), 61, 28 606 20 251 46 12
192 GF(1409), 87, 42 964 43 385 88 27
256 GF(1889), 111, 55 1300 77 539 239 48

Table 5. Comparison of proof sizes of various ZK-proof systems for proving knowledge
of a solution of a PKP instance.

9 Zero Knowledge proofs for lattice statements

Stern’s zero-knowledge protocol has been used extensively in lattice-based cryp-
tography because it can be used to prove a wide variety of statements. It
has been used to construct, among other things, identity-based identification
schemes, group signatures (with verifier local revocation), logarithmic size ring
signatures and group encryption [28, 25, 27, 26]. The way this works is to trans-
form the lattice statement into an instance of the IPKP problem, in such a way
that from a solution to the IPKP instance one can efficiently derive a witness
for the lattice statement and conversely, that given a witness for the statement
one can efficiently compute a solution to the IPKP instance. Then, one just
uses Stern’s protocol to prove knowledge of a solution to the IPKP instance,
which is equivalent to proving knowledge of a witness of the lattice statement.
However, it is often the case that witnesses for the lattice statement correspond
to IPKP solutions that lie in a certain subgroup H ⊂ Sn. If this is the case,
then the prover needs to prove that he knows a solution π to the IPKP instance
subject to π ∈ H. Luckily, Stern’s protocol (and as we will see also our IPKP
proof) can be easily adapted to prove knowledge of an IPKP solution that lies
in any subgroup H (assuming one can sample uniformly from H and efficiently
verify membership of H).

In the remainder of this section, we prove that our IPKP proof can handle
proving that a solution lies in a subgroup H ⊂ Sn, which implies that we
can improve all the applications of Sterns protocol by replacing Stern’s proof
by our more efficient protocol. Then, we will focus on proving knowledge of
a solution to the inhomogeneous SIS problem. We briefly illustrate how the
ISIS problem can be embedded into IPKP with the decomposition-extension
technique of ling et al. [28]. Then, we compare the efficiency of our IPKP proof
against the efficiency of Stern’s protocol for proving knowledge of a solution of
an ISIS problem. Finally, we compare our approach to some recent works that
use different techniques to prove knowledge of a solution of an ISIS instance.
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9.1 Generalizing to Subgroup IPKP

It is trivial to generalize the protocol of Sect. 5 to prove knowledge of a so-
lution π of an IPKP instance with the additional constraint that π lies in a
subgroup H ⊂ Sn, assuming that one can efficiently sample uniformly from H
and efficiently test if a group element is a member of H. The only modification
required is that the prover now samples σ from H instead of from Sn and that
the verifier checks that ρ lies in H.

Theorem 5. The modified version of the protocol for IPKP of Sect. 5 is a
sigma protocol with helper as in Definition 3 with challenge space Fq.

Proof. Completeness. If π is a solution of the IPKP instance, then since the
unmodified protocol is complete, the verifier will accept a transcript unless the
additional check that ρ lies in H fails. However, if π ∈ H, then also ρ = πσ−1

lies in H, because σ is sampled from H. Therefore, the verifier will accept with
probability 1 if π is a solution to the SIPKP problem.

2-Special Soundness. The extractor from the security proof of the IPKP
proof system extracts ρσ, which is a solution to the IPKP problem. We only
need to show that ρσ ∈ H. The verifier only accepts if ρ ∈ H, and we know
that σ ∈ H, because it is sampled from H by the honest helper. Therefore
the extracted solution to the IPKP solution is also a solution to the SIPKP
problem.

Honest-Verifier Zero-Knowledge. The proof is the same as in the proof of
Theorem 2, except that the simulator samples τ uniformly from H instead of
from Sn.

Remark 1. The proof of Theorem 2 does not use any specific properties of the
action of Sn apart from the property that vσ+wσ = (v+w)σ, which is required
for correctness. Therefore, it is clear that the proof system generalizes to any
representation of a finite group G on Fnq . In particular, we can also consider
the group of signed permutations with it natural representation on Fnq .

9.2 Embedding ISIS into IPKP.

To illustrate the embedding first suppose that (A, t) ∈ Fm×nq ×Fmq is an instance
of the ISIS problem where a solution is a vector s ∈ Fnq such that As = t and
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the coefficients of s are 0 or 1. In that case we define the extended matrix
A′ =

(
A 0m×n

)
and a vector v ∈ Fq whose first n entries are 1 and whose last

n entries are equal to 0. Then finding a solution to the ISIS instance (A, t) is
equivalent to finding a solution to the IPKP instance (A′,v, t): Given a solution
s to the ISIS instance it is trivial to find a permutation π such that the first
half of vπ equals s, which is then a solution to the IPKP instance. Conversely,
if π is a solution to the IPKP instance, then the first half of vπ is a solution to
the ISIS instance. Therefore, proving knowledge of π is equivalent to proving
knowledge of s.

To improve the efficiency of the proof system we can restrict the IPKP solutions
to the subgroup of S2n generated by the transpositions (i i+n) for 0 ≤ i < n.
This approach reduces the proof size because elements of the subgroup can be
represented with only n bits, rather than the log2((2n)!) ≈ 2n log2(2n) bits
required to represent an arbitrary permutation of 2n elements.

More generally, if the coefficients of s are required to lie in a range of size B, one
can use the decomposition-extension technique [28] to transform an instance
of the ISIS problem into an equivalent instance of the IPKP with a matrix A′

with 2n dlog2Be columns [28]. Moreover, we can restrict to a subgroup of size
22dlog2 Be to reduce the proof size.

9.3 Concrete examples and comparison to previous works.

To compare the concrete efficiency of our work with the recent work of Bootle
at al [11]. and Baum and Nof [5] we apply our proof system to the following
two SIS parameters sets:

1. q ≈ 232,m = 512, n = 2048, β = 1 : This is the parameter set considered
by Bootle et al [11]. This parameter set is relevant for FHE schemes and
group signature schemes.

2. q ≈ 261,m = 1024, n = 4092, binary solution : This is one of the parameter
sets considered by Baum and Nof. [5], they claim that this parameter set
is relevant for applications such as somewhat homomorphic encryption.

Let A ∈ F512×2048
q be an instance of the SIS problem from the first parameter

set, define the matrix A′ =
(
A 0512×2048

)
and let v ∈ {0, 1}4096 be the vector

whose first 2048 entries are equal to 1 and whose remaining 2048 entries are
equal to 0. Then finding a solution to the SIS instance A is equivalent to
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finding a solution to the generalized PKP instance that asks to find a signed
permutation π such that A′vπ = 0. Moreover, this still holds if we restrict the
solutions of the PKP problem to lie in the subgroup H generated by sign swaps
and the transpositions {(i i+2048)| for i from 1 to 2048}. This subgroup has
82048 elements, and we can represent each element by 3 ∗ 2048 bits.

Therefore, to prove knowledge of a short integer solution it suffices to prove
knowledge of a signed permutation π in H such that A′vπ = 0. We choose
parameters τ = 14,M = 4040, q′ = 210 to achieve a soundness error less than
2−128. The proof size is dominated by the vectors and signed permutations in
the proof, of which there is one per execution. A vector can be represented with
4069 log2(q) bits and each permutation in H can be represented with 2048 ∗ 3
bits. Therefore the total proof size is roughly equal to

14 · (4069 · 32 + 2048 · 3) bits = 233 KB .

Observe that (in a field of characteristic > 2) if 1 is the vector with a 1 in each
entry, then

As = t ⇐⇒ A(2s− 1) = 2t +A1 ,

which means that binary SIS is equivalent to a SIS instance where the entries
of s are restricted to {−1, 1}. Therefore, for the second parameter set, we can
embed the binary SIS problem into a generalized PKP problem of the form
A1π = t′ with π in the group with 24092 elements generated by sign flips. If we
again pick τ = 14,M = 4040, q′ = 210 to achieve a soundness error less than
2−128 the total proof size is approximately

14 · (4092 · 61 + 4092) bits = 444 KB

Comparison to previous works. Table 6 makes a comparison of the proof
sizes of our proof system with that of previous works. First of all, an application
of Stern’s protocol to the generalized PKP problems derived from the two
parameter sets results in proofs of 2.3 MB and 4.3 MB respectively. This is an
order of magnitude larger than our proof system for both parameter sets. The
work of Bootle et al. [11] uses algebraic techniques rather than combinatorial
ones and achieves a proof size of 384 KB for the first parameter set, which is
65% larger than our proofs.

The proof system of Baum and Nof uses MPC-in-the-head techniques and has
a proof size of 4.0 MB for the second parameter set. This is almost an order of
magnitude larger than our proofs. Baum and Nof also include timings of the
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implementation of their protocol. An implementation with 80 bits of statistical
security for the second SIS parameter takes 2.4 seconds, with a proof size of 7.5
MB. (Note that this proof size is larger than for their 128 bits variant, because
this choice was optimized for speed rather than proof size.) If we choose the
parameters for our proof scheme as q′ = 24,M = 149, τ = 23 to reach 80 bits
of statistical security and optimize for speed, our proof size would be 1.4 MB
(still 5 times smaller). Extrapolating from our SUSHSYFISH measurements, we
claim that with these parameter choices our proof system will be significantly
faster than the system of Baum and Nof.

Compared to the generic sub-linear Zero-Knowledge systems Ligero and Au-
rora [6] our proof systems are asymptotically worse, and for the “large” exam-
ples in Table 6 aiming at applications such as FHE we also perform significantly
worse in terms of concrete proof sizes. However, for smaller applications, such
as proving knowledge of a secret key that corresponds to a MLWE-encryption
public key. (q ≈ 213, n = 1024,m = 512, β = 3) we expect our proof size to
be smaller than those of Ligero and similar to those of Aurora. Moreover, an
important advantage of our proof system, as well as Stern’s protocol and the
method of Baum and Nof is that they do not require Fq (or a field extension
thereof) to be NTT friendly, this is in contrast to Ligero, Aurora and the work
of Bootle et al..

q = 232, q = 261,
m = 512, n = 2048 m = 1024, n = 4096

Ours 233 KB 444 KB
Stern [34, 28] 2.3 MB 4.3 MB

Bootle et al. [11] 384 KB /
Baum and Nof [5] / 4.0 MB

Aurora [6] 71 KB 71 KB
Ligero [2] 157 KB 200 KB

Table 6. Proof sizes of various protocols for our two SIS parameter sets aiming at
128 bits of security. The hashes and commitments are 256 bits long. The parameter
choices do not compensate for the non-tightness of the Fiat-Shamir transform, instead
they only guarantee 128 bits of soundness for the interactive version of the protocols.

The work of Del Pino et al. [31] uses so-called bulletproofs to achieve much
smaller proof sizes for SIS (for example 1.25 KB for q ≈ 213,m = 2048, n =
4096) at the cost of longer running times. However, one cannot make a direct
comparison with our work and the other works in Table 6, because bulletproofs
rely on the discrete logarithm problem and are hence not post-quantum secure.
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Also, there has been a lot of work on “relaxed” proofs for SIS, where the
extractor does not output the witness that is known to the prover, but instead
some other solution that is somewhat short, but bigger than the witness [29,
4]. For some applications, such as post-quantum signatures [29], this is not a
problem, but for other applications, exact proofs are required.
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