Discover millions of ebooks, audiobooks, and so much more with a free trial

Only $11.99/month after trial. Cancel anytime.

IoT-enabled Sensor Networks: Architecture, Methodologies, Security, and Futuristic Applications
IoT-enabled Sensor Networks: Architecture, Methodologies, Security, and Futuristic Applications
IoT-enabled Sensor Networks: Architecture, Methodologies, Security, and Futuristic Applications
Ebook289 pages2 hours

IoT-enabled Sensor Networks: Architecture, Methodologies, Security, and Futuristic Applications

Rating: 0 out of 5 stars

()

Read preview

About this ebook

This volume explores IoT architectures, their configuration, and operability in wireless sensor networks.

The topics are spread across nine structured chapters covering fundamental and applied knowledge about wireless sensor networks using IoT devices. The book starts with an introduction to the subject, giving readers a quick overview of IoT enabled networks and bio-inspired approaches towards network design. This is followed by chapters explaining optimized routing protocols for accident detection, efficiency and performance analysis. The book concludes with four chapters dedicated to security applications of wireless networks, for homes, urban areas and businesses. Overall, the volume gives a balance of theoretical and practical information for readers.

The book is intended as a resource for graduate and postgraduate students for understanding network design for home and embedded applications, specifically using single board computing devices. It also serves as a guide for networking courses and assessments.

Readership
Graduate and post graduate students and faculty members in the field of networking and IoT.

LanguageEnglish
Release dateMar 1, 2024
ISBN9789815049480
IoT-enabled Sensor Networks: Architecture, Methodologies, Security, and Futuristic Applications

Related to IoT-enabled Sensor Networks

Titles in the series (5)

View More

Related ebooks

Computers For You

View More

Related articles

Reviews for IoT-enabled Sensor Networks

Rating: 0 out of 5 stars
0 ratings

0 ratings0 reviews

What did you think?

Tap to rate

Review must be at least 10 words

    Book preview

    IoT-enabled Sensor Networks - Samayveer Singh

    Internet-of-Things-Enabled Sensor Networks: Vision Challenges and Smart Applications

    Aatif Jamshed¹, Anshu Kumar Dwivedi², Pawan Singh Mehra³, *, Arvind Dagur⁴

    ¹ ABES Engineering College, Ghaziabad, U.P., India

    ² Buddha Institute of Technology, Gorakhpur, U.P., India

    ³ Delhi Technological University, New Delhi, India

    ⁴ Galgotias University, Greater Noida, U.P., India

    Abstract

    Internet-of-Things is the future of connectivity that has turned the physical world into smart objects. The practical feature of Internet-of-Things is to combine all objects, rendering them dependent on a shared infrastructure, in such a manner that humans can regulate them as well as monitor their status. Internet-of-Things is a physical object network that is embedded with hardware, software, sensors, and networking to allow objects to share data with the connected devices. This chapter details the Internet of Things, vision challenges, and various intelligent applications in sensor-enabled networks. The wide-scale application of the Internet would significantly affect how computers and objects engage in real-life scenarios. This chapter aims to highlight the perspective of some novel technologies and innovative implementations for the protection, welfare, and privacy concerns due to the Internet of Things. Some critical sensor networks, which represent the most used sensor networks in many domains, such as Smart Applications, are included in this introduction section. A literature study on Internet-of-Things has been conducted for different aspects, such as infrastructure, implementation problems, etc. The authors offer several other applications that are significant. Future research directions for Internet-of-Things have been outlined in the study to equip novel researchers with the assessment of current status and to build upon them with creative ideas.

    Keywords: Actuators, Internet-of-Things, Innovative homes, Sensors, Smart city, WSNs.


    * Corresponding author Pawan Singh Mehra: Delhi Technological University, New Delhi, India; E-mail: [email protected]

    1. Introduction

    The Internet of Things (IoT) is a network of physical devices and products used daily and connected to the Internet. It is interlinked with a multitude of devices

    that communicate with one another through the use of sensors, actuators, and processors, among other means. The Internet of Things aims to reach high levels of intelligence with the least amount of human contact possible [1, 2]. Many elements of life are made more pleasant by the Internet of Things (IoT), which adds automation and intelligence to many parts of existence. In this context, things are made self-aware and capable of making intelligent decisions on their own, making them more pleasant. There are a large number of heterogeneous devices in the Internet of Things that are all linked over a network. The Internet of Things (IoT) now covers a wide variety of applications, with services accessible in various industries, including manufacturing, healthcare, transport, farming, and smart home. A smart city encompasses all societal areas that rely on information and communication technology (ICTs) [3]. It also encompasses many applications, making city services and surveillance more aware, interactive, and effective. The backbone of Internet-of-Things [3] is the wireless sensor network (WSN), without which the notion of a smart city cannot be achieved. The devices interacting with the physical environment and imposing changes are known as sensors and actuators. Many devices are networked together via sensors in a heterogeneous environment, generating a vast and enormous volume. This data is saved and evaluated to extract knowledge and help decision-making [4]. A smart city comprises a diverse range of gadgets, including a mart and basic essentials. Due to the enormous number of sensors linked to the items, a great sign of data is collected. In the case of an intelligent city, the Internet-of-Things network must be scalable since it may be necessary to add new devices and delete old ones at any time and from any location. Incorporating WSNs is difficult due to the wide range of applications and technological differences across devices [5]. The fundamental a basic problem with the Internet: We must develop cities that are private and secure; which are adaptive, independent, reliable; and which are responsive and dependable. The complex is growing in developing cities due to intelligence in smart infrastructure, and these include issues like a lack of interoperability, context sensitivity, scalability, and managing enormous amounts of informatics pics as well as issues such as security, privacy, and integrity, as well as dynamic adaptation, dependability, and latency. To do this, the city takes care of every facet of society, using a diverse array of applications. As shown smart city's main components are comprised, the city is made up of different sectors of society. A smart city is a city that has several essential and interdependent healthcare, industry, transportation, agriculture, and home automation. The intelligent smart uses many factors like intelligent TechnoMarine governance. It also includes a range of facilities and technologies to make people easier in several applications. Internet-of-Things is transforming the education industry as smart city security requirements [6]. The Internet of Things (IoT) will transform the Internet in such a way that machine-to-machine (M2M) learning will become a reality [7]. As a solid backbone, the Internet infrastructure will exist. The reconfiguration will occur by making physical equipment ‘smart,' allowing them to accomplish things on their own, giving rise to the ‘Internet of Things.' The Internet of Items (Internet-of-Things) promises to make smart technologies more accessible by linking things at any time and in any location. The Internet of Things (IoT) idea was created in 1998, and Kevin Ashton coined the phrase in 1999 [8, 9]. Internet-of-Things essentially enables the interaction of real-world objects to be autonomous but secure [10]. The Internet of Things (IoT) decreases physical labor by automating routine tasks [11]. The number of items linked to the Internet is continuously increasing. Smartphones have a variety of sensors and actuators that collect data, execute computations on it, and then send the important data acquired through the Internet [11]. The authors will be able to construct many fresh applications that will lead to persuasive benefits by employing such a network with various devices containing the sensors [12]. Internet-of-Things smart things may be uniquely recognized. Radio-Frequency Identification (RFID) tags or barcodes are used on these devices, which are detected by sensor devices [13, 14]. The sensors send the collected data to the processing unit through the Internet for processing. The results of the processing are conveyed to the decision-making and action-invoking system, which then takes the required action.

    1.1. Major Issues Resolved by Internet of Things

    One of the main ideas behind the Internet of Things is to bring information from different devices together. However, this can only be done perfectly if the right information is given at the right time. This can be done with the help of Augmented Reality, which lets you use a headset or mobile device to see relevant and actionable data over your environment whenever you need to. Microsoft, NASA, Volvo, Autodesk, and Caterpillar are just a few of the big companies that have put a lot of money into AR. Autodesk and NASA have tried out different ways to use Microsoft's Hololens.

    To explain this further, the following are the real world problems that IoT could help solve.

    IoT and AI can be used to find out what went wrong with a machine and how to fix it. This can be shown with the help of a centrifugal pump as an example. Real-time sensors will keep an eye on how the machine is working and pick up on any problems. When they do, real-time CFD analysis will be used to find out what went wrong. With AR, a real-time image or CAD diagram can be shown on top of the pump to show exactly what needs to be done to fix it.

    Technical documents assembly A picture is worth 1,000 words. This saying is especially true when it comes to putting things together. User manuals and technical documents can make simple tasks harder than they need to be, like putting together industrial equipment in the same way over and over again. They can also be used to show videos of real assembly steps that were taken before, either by the person putting it together or by another worker.

    Smartphones and health equipment work together to instantly diagnose medical issues. You can get diagnostics and capture pictures to share with medical professionals all across the world. They enable the cost-effective collecting and distribution of data; enable inventors to consider application cases; create a digital power grid; play around with the delivery of energy. You will receive an energy profile from each device in your home. The digitalization of equipment will help businesses and enable the subsequent wave of digitization.

    It has the ability to keep an eye on substation security, track current electrical usage data, and report any anomalies promptly; the capacity to solve issues outside of one's silo in a utility where IT, Operations, and Security don't communicate; encourages communication regarding crucial topics.

    2. Related Work

    The Internet of Things (Internet-of-Things) can be thought of as a large network structure made up of numerous linked real-world items that rely on sensory, communication, networking, and information-processing technologies. RFID is the foundation for Internet-of-Things, as it allows microchips to send identifying data to a reader through a wireless channel. Anyone may use RFID to analyze, track, and monitor items that have RFID tags attached to them [15]. Wireless Sensor Networks (WSNs) [16], another key technology, focus on intelligent sensors for sensing and monitoring. Since the 1980s, RFID has been used in the transit of products to customers, the manufacture of pharmaceutical items, and retail [17, 18], while WSN has been used in traffic, healthcare, and industrial monitoring [19, 20]. The expansion of Internet-of-Things is accelerated by advancements in both technologies. Other technologies and gadgets, including barcodes, location-based services, service-oriented architecture, near-field communication, Wimax, ZigBee, cloud computing, and so on, are being utilized to build a complete network to enable Internet-of-Things [21] (Fig. 1).

    2.1. Smart City's Architecture

    Architecture is required to allow and resolve the key problems encountered by the Internet in the Internet-of-Things fields of services and their operations. The Internet of Things(Internet-of-Things) provides a level of abstraction, giving

    Fig. (1))

    Technologies empowering Internet-of-Things [19].

    users access to physical devices and services while also allowing for device interoperability. An impressive number of things, ranging from refrigerators to light bulbs, may be connected to the Internet of Things (Internet-of-Things) with several purposes, capacities, features, and Internet protocols. A complex system of connected devices is implemented in an intelligent city Internet-of-Things framework. The device we are developing has a variety of sensors, which include different levels of both hardware and software heterogeneity. Thus, we want a flexible design that can accommodate both hardware and software variability. To illustrate this, imagine an intelligent urban Internet-of-Things system where information is exchanged not just amongst social applications but also with the government and management sectors as well. Cross-application services are essential for intelligent cities as they must, at any point in time, regardless of their size, be able to expand to various devices utilizing a range of technologies. The authors [22] argue that some domains in smart cities need to react promptly in real-time to well-structured resource planning, helping to effectively utilize available resources. Data management, communication issues due to the existence of many protocols, real-time processing of data, data protection, and privacy [23], as well as expansion of existing applications because of advancements in technology and greater use, all referred to as scalability [24] are necessary for standardized architectures to address common issues. Due to the diversity of devices, the dynamic nature of the network, and the requirement for scalability, security in all Internet-of-Things applications is one of the most demanding problems, especially in smart cities, where intercourse exists across numerous applications. Existing Internet-of-Things solutions do not fully fulfill the security requirements. Certain techniques are quite energy-intensive and hence expensive [22]. This type of architecture, seen in Fig. (2), is an open design that may handle a wide range of uses. It also shows that separate sectors are equipped with sensors and connected to one gateway to communicate information across different sectors, therefore assisting one another. In addition, the processing needs of the architecture to support Internet-of-Things problems, such as data processing, will be done on the edges of the device itself to serve essential applications like the healthcare system. Certain data, often known as fog computing, cannot be handled at the end of this software [25]. The conclusion drawn from the examination of architectural issues and the knowledge of the requirements for architecture in smart cities is that a smart city requires an open, flexible architecture that allows for scalability and extensibility.

    Fig. (2))

    The overall Internet-of-Things-based architecture of a smart city.

    In other words, an additional large number of devices can be added to the system at any time. One must also take into consideration the scalability and diversity of the gadgets. An architectural framework is provided that is constructed on edge, with several direct and indirect ways of data

    Enjoying the preview?
    Page 1 of 1