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Migratory shorebirds utilize the intertidal zone as key foraging habitat throughout the 

Western Americas Flyway, from stopover locations like Delaware Bay in the United States, to 

overwintering locations like the Gulf Coast, Bahia Lomas in Chile, and the states of Pará and 

Maranhão on the northern coast of Brazil.  Northern Brazil serves as a critical stopover and 

overwintering location for a number of migratory shorebirds. Characterizing, modeling, and 

managing the intertidal habitat in northern Brazil is critical for conserving this ecosystem crucial 

to the Western Americas Flyway. In Chapter 1, intertidal habitat is characterized by evaluating 

the relationship between the remote sensing metrics of Landsat 8 optical reflectance, Sentinel 1 

radar backscatter, and intertidal sediment conditions in northern Brazil and Bahia Lomas, Chile. 

Consistent patterns are found within each site, indicating that remote sensing effectively 

characterizes sediment, but the patterns are unique to each location, and distinct from previous 

research. In Chapter 2, remote sensing, landscape, and climatic metrics are utilized in Maxent 

distribution models of eight shorebird species of conservation interest. Resulting models 

effectively distinguished between presence and absence validation data, even though some
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models did not have high values of internal model function. Remote sensing metrics contributed 

significantly to model performance, with models' responses reflecting the relationships between 

remote sensing and sediment size determined in Chapter 1 and known ecology of each shorebird 

species. Landscape metrics also contributed significantly, though interpreting how the metric 

response related to shorebird ecology was less clear. Climatic variables contributed significantly, 

but their relevance to the underlying biological processes was suspect, considering the equatorial 

nature of northern Brazil. Finally, in Chapter 3, the models developed in Chapter 2 were applied 

to a case study of three different conservation prioritization strategies: umbrella species, flagship 

species, and biodiversity. Semipalmated sandpipers were used as the umbrella species, red knots 

as the flagship, and areas with high shorebird species richness as biodiversity. The umbrella 

approach cast the widest net, and protected very species rich habitat, the biodiversity protected 

similarly rich habitat, but under a much narrower range, and the flagship species protected the 

least species rich areas, though with greater species richness than the landscape or areas currently 

protected. Both umbrella and biodiversity approaches did not cover a significant portion of the 

rarer, red knot habitat. A final hybrid approach, using both biodiversity and flagship species 

approaches, was proposed to protect both species diversity, and the rarer species of concern. 

Three areas outside of current protections were identified as potential hot spots for conservation 

prioritization using the different management regimes, Baía do Cumã, and Baía de São José, and 

an area west of Extractive Reserve Cururupu.
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Introduction 

Climate change, sea level rise (Galbraith et al. 2002, Iwamura et al. 2013, Galbraith et al. 

2014), and coastal development (Murray et al. 2015) are dramatically changing coastal 

ecosystems worldwide. Migratory shorebirds travel annually from their summer breeding grounds 

in the high Arctic, stopping at coastal staging grounds along the way, to southern overwintering 

habitat, and returning northward the following year (Colwell 2010, Niles et al. 2010, Gratto-

Trevor et al. 2012). Due to their reliance on numerous cross-continental breeding, stopover, and 

overwintering locations, shorebirds are particularly vulnerable to coastal ecosystem changes as 

disruptions at any migratory location can affect migratory and breeding success (Piersma and 

Lindstrom 2004, Mizrahi et al. 2012). This vulnerability means that shorebird populations can 

serve as an indicator species for coastal systems, with declining population numbers indicating 

serious damage or disruption to one or more of the stopover locations along the flyway (Piersma 

and Lindstrom 2004). Such was the case in the early 1990s with the rapid decline of the Red Knot 

(Calidris canutus rufa) across the Western Atlantic Flyway, whose decline pointed to the 

previously unrecognized overharvest of horseshoe crabs in Delaware Bay, USA (Baker et al. 

2004). Unfortunately, red knots are not the only species indicating an issue; Semipalmated 

Sandpipers (Calidris pusilla) (Morrison et al. 2012), Black-bellied (Gray) Plovers (Pluvialis 

squatarola), and Ruddy Turnstones (Arenaria interpres) populations are all in decline (Andres et 

al. 2012a). Affected populations are found globally, across the Asian-Australasian flyway 

(Clemens et al. 2016), flyways in Europe (Stroud et al. 2004) and in North America (Bart et al. 

2007, Morrison et al. 2012).  

One major overwintering and stopover location in the Western Americas Flyway is the 

northern coast of Brazil, along the states of Pará and Maranhão (Niles and Cooper Ornithological 

Society 2008, Colwell 2010, Figure 1.1). This region encompasses two Ramsar sites: the Maraja 

archipelago at the mouth of the Amazon river; and, the Reentracias Maranhenses. Both sites 
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consist of “complex estuarine system[s] of extensive islands, bays, coves, and rugged coastline 

covered mainly by mangrove forest.” The Reentrancias Maranhenses, located to the northwest of 

Sao Luis, is a complex series of bays and inlets, critically important for migratory shorebirds, 

fish, manatee, and the fishermen that subsist within the region (Ramsar Convention, 

https://www.ramsar.org/wetland/brazil). Across this region are a number of coastal protected 

areas, called Marine Extractive Reserves (MER), managed by the Brazilian federal conservation 

organization, the Chico Mendes Institute for Biological Diversity Conservation (ICMBio). MERs 

are structured in a bottom-up fashion, with regulations on use and extraction coming from local 

communities (De Moura et al. 2009). While these areas do encompass important shorebird 

foraging habitat, they are designed and managed for protecting the livelihoods of local artisanal 

fishermen, not migratory shorebirds (Santos and Schiavetti 2014).  Accurately and logically 

predicting how migratory shorebirds are distributed across the Pará-Maranhão ecosystem is 

essential to understanding the effects of current management practices, identifying gaps in those 

practices, and making future shorebird conservation decisions in the region. 

Migratory shorebirds, such as red knots, utilize the intertidal zone as key foraging habitat 

throughout the Western Americas Flyway, from stopover locations like Delaware Bay in the 

United States, to overwintering locations like the Gulf Coast, Bahia Lomas in Chile, and the 

states of Pará and Maranhão on the northern coast of Brazil (Niles and Cooper Ornithological 

Society 2008). The intertidal zone, or region exposed at low tide and inundated at high tide, is one 

of the habitats driving these processes due to the high productivity of macrophytobenthos 

(MacIntyre et al 1996) and benthic invertebrates (Herman et al. 1999) found within the 

sediments.  Sediment size across intertidal flats significantly influences a variety of ecological 

processes.  Primary productivity is typically found to be higher in mud (smaller grain sized) 

sediment than in sand (Nybakken and Bertness 2005, Dube 2012).  Invertebrate species 

distributions are also influenced by sediment size, with sand and mud both hosting different, 

thriving communities (Sheaves et al 2016).  The distribution of intertidal-feeding birds is 

https://www.ramsar.org/wetland/brazil
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determined, in part, by the distribution of the benthic invertebrates they prey upon, and in turn, 

sediment grain size that these invertebrates occupy (Colwell and Landrum 1993, Erwin 1996). 

Characterizing, modeling, and managing the intertidal habitat in northern Brazil is critical for 

conserving this ecosystem crucial to the Western Americas Flyway. 

Characterizing broad regions of the temporally specific intertidal zone, like the intertidal 

habitat across northern Brazil, is a daunting prospect. Remote sensing and geographic information 

systems (GIS) are used to analyze massive areas of land, making them ideal tools for such a task. 

There has been significant work using remote sensing to evaluate intertidal sediment across 

specific flats or bays of relatively small geographic area, identifying significant relationships 

between remote sensing metrics like multispectral reflectance or radar backscatter and intertidal 

sediment size (Yates et al. 1993, Rainey et al. 2003, Van der Wal et al 2005, Van der Wal and 

Herman 2007, Gade et al. 2014). Recently, there have also been advances in mapping the 

intertidal zone using multispectral reflectance, proving highly useful for understanding both the 

extent of the intertidal zone, and trends of gains and losses at continental (Murray et al. 2012, 

2014, 2015) or even global scales (Murray et al. 2019). However, there has not been much work 

bridging both broad scale mapping and finer scale sediment size characterization.   

This dissertation aims to understand the remote sensing of the intertidal zone in northern 

Brazil, leverage those remote sensing metrics to model intertidal shorebird habitat, and use that 

information to inform management and conservation decision making in northern Brazil. In 

Chapter 1, I start by characterizing intertidal habitat on a broad scale, by using remote sensing 

metrics, including Landsat 8 multispectral reflectance and Sentinel 1 radar backscatter. Two 

locations are compared, northern Brazil, and Bahia Lomas, Chile, another important shorebird 

location in the Western Americas Flyway. Understanding the patterns of remote sensing data and 

sediment types at these sites is a critical step for informing shorebird conservation, local 

management (such as the Marine Extractive Reserves found in northern Brazil), understanding 

habitat use of other intertidal species, and understanding how these regions can change over time. 
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In this chapter, two research questions were posed: (1) multispectral reflectance and SAR 

backscatter can be used to discriminate between mud and sand intertidal sediment types; and, (2) 

the relationship between multispectral reflectance, SAR backscatter, and sediment type is 

applicable across a span of geographic locations. Then, I applied our findings about these 

questions to classifying the intertidal land cover in northern Brazil using conventional 

unsupervised classification techniques and evaluated the accuracy and efficacy of using discrete 

classifications to characterize the intertidal zone. 

All intertidal habitat is not made equal, certainly in the eyes of migratory shorebirds 

(Colwell and Landrum 1993, Burger et al. 1997, Bocher et al. 2014, Burger et al. 2018). 

Understanding not only the extent and composition of intertidal habitat, but also where in that 

habitat shorebirds are more likely to occur is a crucial step towards the ecological understanding 

of shorebirds in northern Brazil, and their management. One of the major drivers of shorebird 

distributions is intertidal sediment size (Bocher et al. 2014), which, as demonstrated in Chapter 1, 

strongly influences the response of remote sensing platforms. Also demonstrated in Chapter 1 is 

the difficulty in discretely classifying the mud-sand continuum. With those results in mind, one 

goal of Chapter 2 is to evaluate the effectiveness of remote sensing values as proxies for intertidal 

sediment composition in intertidal shorebird habitat modeling. The major objective of Chapter 2 

is to develop species distribution models for the intertidal foraging habitat of eight migratory 

shorebird species that occupy the Pará-Maranhão coastline as either a migratory stopover 

location, or for the duration of the winter.  Using the Maxent modeling package (Phillips et al. 

2004), the relationship between remote sensing metrics and sediment established in Chapter 1, as 

well as relevant landscape and climate metrics, species distribution models are parameterized 

using shorebird presence data collected during two field seasons in northern Brazil (Winter 2016 

and 2017). The efficacy of species distribution models based on remote sensing values, as well as 

the statistical and biological significance of the different classes of model variables (landscape, 
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remote sensing, and climatic) were evaluated, with the goal of informing future foraging habitat 

models and subsequent management. 

In the third and final chapter, shorebird species models vetted in Chapter 2 are 

used in evaluating three different approaches to conservation decision making, to answer 

the question “how does changing your conservation lens change your conservation 

decision making?” I considered three different lenses: the single species “umbrella” and 

“flagship” approaches, and a “biodiversity” centric approach. Single species approaches 

focus on management planning around a single species whose range encompasses other 

species of conservation concern. These “umbrella species” are typically wide ranging, 

occupying broad and diverse habitats such that their protective “shadow” encompasses a 

variety of tangentially protected species (Shrader-Frechette and McCoy 1993, Wilcove 

1993, Simberloff 1998). A “flagship species” approach utilizes a particularly charismatic 

species to cast this protective “shadow”. The species, often one of great conservation 

concern on its own, is used for its capacity to muster both stakeholder and regulatory 

support to protect both the flagship species, and those that fall under its shadow (Caro 

and O’Doherty 1999). Finally, prioritizing areas with the highest biodiversity has been 

proposed as the most resource efficient way of protecting biologically rich and important 

regions (Myers et al. 2000, Meir et al. 2004). I utilized the wide-ranging and numerous 

semipalmated sandpiper as an umbrella species, a species of international conservation 

concern such as the red knot as a flagship species, and distributions of eight shorebirds as 

a metric of shorebird biodiversity. Using the distribution models from Chapter 2, I 

evaluated the extent and composition of current protections in northern Brazil based on 

these three management scenarios. Finally, I identified three regions currently not under 

those protections that may be of conservation concern. 
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CHAPTER 1: REMOTE SENSING OF INTERTIDAL SEDIMENT 

1.1 - Introduction 

Nearshore intertidal regions are dynamic ecosystems that support an exceptional 

abundance and diversity of life (MEA 2005).  These areas also play a significant role in a variety 

of economic and ecological processes from coastal protection (Bouma et al 2014), to nurseries for 

pelagic fish (MEA 2005), to foraging habitat for migratory wading birds (Colwell 2010).  The 

intertidal zone, or region exposed at low tide and inundated at high tide, is one of the habitats 

driving these processes due to the high productivity of macrophytobenthos (MacIntyre et al 1996) 

and benthic invertebrates (Herman et al 1999) found within the sediments.  Sediment size across 

intertidal flats significantly influences a variety of ecological processes.  Primary productivity is 

typically found to be higher in mud (smaller grain sized) sediment than in sand (Nybakken and 

Bertness 2005).  Invertebrate species distributions are also influenced by sediment size, with sand 

and mud both hosting different, thriving communities (Sheaves et al 2016).  The distribution of 

intertidal-feeding birds is determined by the distribution of the benthic invertebrates they prey 

upon, and in turn, sediment grain size that these invertebrates occupy (Colwell and Landrum 

1993, Erwin 1996).  The intertidal zone is key foraging habitat for migratory shorebirds, such as 

Red Knots (Calidris canutus) throughout the Atlantic Americas Flyway, from stopover locations 

like Delaware Bay in the United States, to overwintering locations like the Gulf Coast, Bahia 

Lomas in Chile, and the states of Pará and Maranhão on the northern coast of Brazil (Niles and 

Cooper Ornithological Society 2008). Modeling and mapping the intertidal zone and different 

classes of sediment grain size at these locations is critical to understanding and managing this 

important ecosystem. 

Remote sensing has been demonstrated as a highly effective tool for assessing habitat and 

protected regions across broad, landscape scales (Nagendra et al. 2013). Understanding how 

remote sensing can be used to discriminate between intertidal habitat, and if that discrimination is 

universal between geographic locations, is an important step towards mapping and managing 
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shorebird habitat across flyways. Several approaches have been used to map the intertidal zone 

and to characterize sediment type using a variety of remote sensing platforms and analytical 

methods. Murray et al (2012, 2014, 2015) developed an effective method of isolating the 

intertidal zone across continental scale regions using Landsat multispectral remote sensing data, 

Normalized Difference Water Index, and differencing between high-tide and low-tide images.  

While extremely successful at designating the binary extent of intertidal regions, these methods 

do not classify the intertidal zone into different sediment grain size classes. Research elsewhere 

has demonstrated the feasibility of remotely sensed discrimination of general sediment size 

classes. In western England, optical and shortwave infrared reflectance data collected using 

airborne sensing platforms were classified by establishing spectral-end members of mud and 

sand, using linear mixture modelling to distinguish along the mud-sand gradient (Rainey et al 

2003).  Landsat 5 satellite imagery was analyzed using both regression-based and spectral 

mixture methods to determine sediment size in east England (Yates et al 1993). Both of these 

studies, and multispectral remote sensing of the intertidal zone in general (van der Wal and 

Herman 2007), relied on the low spectral reflectance of mud in the green and near infrared 

spectrum relative to sand, typically due to higher moisture and organic matter retention that 

increases absorption of these wavelengths. 

Microwave synthetic aperture radar (SAR) backscattering can be affected by both surface 

roughness and the dielectric properties of the soil due to the soil moisture retention (Jensen 2007). 

Typically, rough surface textures will have higher returns than smooth surfaces and very moist 

surfaces will have higher returns than dry surfaces (Jensen 2007). As such, microwave 

backscatter has been successfully used to classify mud and sand composition. Van der Wal et al 

(2005) correlated low backscatter from the ERS-1 and ERS-2 C-Band SAR satellite sensors with 

smoother surface textures and higher proportions of mud, while higher backscatter was associated 

with larger sediment sizes and rougher surface texture.  Gade et al. (2014) had similar 

conclusions using a combination of satellite platforms operating with a number of different radar 
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bands (L, C, and X bands from ALOS PALSAR, ERS SAR, Radarsat-2 and ENVISAT ASAR, 

and TerraSAR-X, respectively). In both of these studies, the authors suggested that soil moisture 

content was consistently high across the study sites, making surface roughness the primary 

predictor of sediment size. Finally, a fusion of image data from multiple platforms has also been 

used, combining the strengths of both optical/shortwave infrared’s response to moisture content 

and SAR’s response to surface roughness to successfully model sediment size using regression 

analysis (van der Wal and Herman 2007).  In all of the studies, using multispectral, radar data, or 

both, locations were focused on specific flats, estuaries, or coastlines, limiting the patterns 

observed to the specific regions examined. 

 Recent field work in two distinct intertidal regions (Figure 1.1), the northern coast of 

Brazil between Pará and Maranhão, and Bahia Lomas, Chile, in the Strait of Magellan, provides a 

unique opportunity for insights into the nuances of modeling intertidal habitat via remote sensing.  

These two locations are important wintering sites for migratory shorebirds along the Atlantic-

Americas Flyway (Colwell 2010). As part of an effort to better understand the flyway and its 

migrants, several shorebird and shorebird habitat surveys have been conducted recently; two in 

Brazil (2016 and 2017) and one Bahia Lomas (2018). Northern Brazil currently has twelve 

Marine Extractive Reserves (MERs) distributed along its coastline that encompass intertidal 

habitat. MERs are not created with shorebirds in mind, rather, they are designed and managed for 

protecting local artisanal fisheries by excluding highly disruptive extractive practices like 

dredging, mining, and industrial fishing (Santos and Schiavetti 2014). Understanding the patterns 

of remote sensing data and sediment types at these sites is a critical step for informing shorebird 

conservation, local management, understanding habitat use of other intertidal species, and 

understanding how these regions can change over time. In this chapter, two research predictions 

were evaluated:  

(1) multispectral reflectance and SAR backscatter can be used to discriminate between 

mud and sand intertidal types; and, 
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(2) the relationship between multispectral reflectance, SAR backscatter, and sediment 

type is applicable across a span of geographic locations.  

Then, I applied the findings about these predictions to classifying the intertidal land cover 

in northern Brazil using conventional unsupervised classification techniques and evaluated the 

accuracy and efficacy of using discrete classifications to characterize the intertidal zone. 

 

1.2 - Methods 

1.2a - Field Data Collection 

Qualitative habitat observations were collected during point counts of wading shorebirds 

in the winter of 2016 and 2017 in northern Brazil, and a similar survey was conducted in January 

2018 in Bahia Lomas (Figure 1.1). The surveys consisted of 250 meter fixed radius plots spaced 

along walking transects. Teams of surveyors would walk 500 meters, pause, record all birds 

across the intertidal area within a 250 meter radius of themselves, then walk another 500 meters 

and repeat the process. 700 survey points in Brazil and 200 points in Bahia Lomas were collected 

along walking transects with center points recorded using GPS units. Qualitative habitat 

observations were recorded for each point, focusing on the predominant sediment composition 

within the 250-meter radius plot including the approximate sediment size class, color, and 

firmness. Sediment type was distinguished into three classes from fine to coarse texture (i.e., 

mud/clay/silt, mixed/loam, sand) based on tactile observations using the “texture by feel” 

approach (Thien 1979).  A more rigorous determination of sediment composition using laboratory 

analytical techniques was not feasible due to the remote field setting and the lack of access to 

laboratory facilities or the ability to transport sediment samples. In some situations where 

physical access to the sediment was not possible, visual observations were taken (i.e., from a 

small boat < 10 m from shore). We complemented our sediment classification with observations 

on the surface from: 1) presence of fiddler crab colonies, which roughen surface textures while 

making their burrows; and 2) ripples in the sediment surface.  Finally, pictures were taken at most 
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sites and surrounding landscape from the central point of each survey plot (Figures 1.3 and 1.4). 

These pictures were used, in conjunction with field notes, in classifying the dominant sediment 

type of each survey point. Transect length and duration was determined largely by accessibility 

and tidal conditions during survey periods.  From these notes, 632 points in Brazil, and 180 points 

in Bahia Lomas had sufficient qualitative habitat data to be classified into the one of three habitat 

types: mud, mixed, and sand.  Circular vectors with 250-meter radii were generated for each 

survey point and used to extract the mean of the remote sensing data within the survey region. 

 

1.2b - Reflectance data acquisition/preparation 

Landsat 8 Surface Reflectance Code (LaSRC) imagery products were acquired from the 

USGS archive (http://earthexplorer.usgs.gov/) for the entirety of the study areas.  LaSRC 

imagery, produced by the USGS are processed to account for atmospheric interference due to 

scattering or absorption, resulting in normalized surface reflectance values for each image.  

Due to the equatorial location of the Brazilian study site a large number of available images had 

significant cloud cover (> 40%), severely limiting image choice.  As such, no preference was 

given to date or time of year for each image, only for cloud percentage and tidal stage.  To 

compensate, multiple high tide and low tide images for each scene were acquired, totaling in 20 

high tide and 27 low tide images from 2013 to 2018 for Brazil. Clouds and cloud shadows were 

removed using the Landsat 8 surface reflectance values and top-of-atmosphere thermal data via 

the methods outlined by Martinuzzi et al (2007).  In short, thresholds were used to create cloud 

cover masks, which were shifted and expanded to cover corresponding shadows. The clouds and 

shadows were masked by the combined cloud and shifted-expanded shadow rasters. For each 

scene, the cloud/shadow masked images were composited by filling in cloud/shadow gaps of one 

image, with the cloud/shadow free regions of the other images. Pixels that were cloud or cloud 

shadows in all available imagery were coded as NA. Composite images were created for each 
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scene in the Brazilian study region, then mosaicked together, to create a site-wide image for both 

high tide and low tide imagery for subsequent analysis. 

The Bahia Lomas study area proved much less troublesome being both smaller in size, 

encompassed by one Landsat Scene, and cloud cover was much less problematic, with one cloud 

free high tide (2017) and one cloud free low tide (2016) image acquired for the study region. 

For all images, tidal stage was determined by the methods outlined by Murray et al. 

(2012), using Oregon State University’s Tidal Model (Egbert and Erofeeva 2002), the date and 

time of each image’s acquisition, and a user established reference point for each scene.  The 

Oregon State University Tidal Model is a generalized inverse model of barotropic ocean tides, 

with versions designed at both global and select regional scales (http://volkov.oce.orst.edu/tides/).  

One of the regions with specifically calibrated tidal model was the Amazonian drainage basin, 

where the Brazil study is located. A second tidal model had been calibrated by OSU for the 

Patagonian Shelf where the Bahia Lomas study is located.   

 

1.2c - Surface roughness data acquisition/preparation 

Low tide vertical-vertical (VV) and vertical-horizontal (VH) images from the 

SENTINEL-1 C-SAR Level-1 Ground Range Detected products 

(https://sentinels.copernicus.eu/web/sentinel/home) by the European Space agency, accessed via 

Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) were acquired for the 

two study sites. SENTINEL-1 captures the “C band” portion of the electromagnetic spectrum in 

the microwave range of frequencies, ranging from 4.0 to 8.0 gigahertz and wavelengths of 3.9 to 

7.5 cm (Jensen 2007). Tidal stage was determined using the same methods outlined above, with 

three images acquired per scene, totaling in 15 images for Brazil and 3 for Bahia Lomas.  A 3x3 

mean filter was used for noise reduction and then images were coarsened to 30-meter pixels to 

match the resolution of the Landsat data. For each scene, the mean pixel value of the three 

processed images was used to account for minor variations in tidal stage, georegistered to the 
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Landsat 8 data, then mosaicked together resulting in a low tide vertical-vertical image and 

vertical-horizontal image for the study region. 

 

1.2d - Intertidal Mask 

While surveys were conducted to a maximum of 250-meters, significant portions of the 

survey region were often not intertidal habitat, e.g. water, sand dunes, or mangroves. To solve 

this issue an intertidal zone-only mask was developed for both locations using methods outlined 

by Murray et al. (2012).  A Normalized Difference Water Index (NDWI = (Green – Near 

Infrared)/(Green + Near Infrared)) was calculated using the mosaicked imagery, enhancing the 

presence of surface water. Water tends to have higher reflectance in the Green Wavelengths than 

in the Near Infrared; on land this is often reversed. Where water is present, the difference between 

Green and Near Infrared will be positive. A threshold was determined by visual inspection to 

designate all NDWI values above the threshold as water, all values below the threshold as land, 

for both high tide and low tide images. The high tide classified land image was then differenced 

from low tide land image, isolating the intertidal zone (Figure 1.2). This binary intertidal zone 

was used to mask the stacked images comprised of the cloud free Landsat 8 surface reflectance 

and smoothed Sentinel 1 backscatter data for subsequent analysis at both locations. To assess the 

accuracy of the intertidal isolation process, 174 random points were generated across the 

Brazilian study region and assigned to either “intertidal” or “other” land cover classes based on 

visual interpretation of all low tide Landsat and Sentinel 1 imagery. 

 

1.2e - Pixel Analysis 

The mean pixel value for each band within the intertidal zone was calculated for each 

plot using the intertidal-masked remote sensing data, the 250 meter radii vectors, and ArcGIS’s 

Spatial Analyst, Zonal Statistics to Table tool.  These means were compared via Tukey HSD tests 

to evaluate whether the habitat classes (mud, mixed, and sand) were significantly different at both 
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study sites. To compare the classes between locations, (e.g. Sand in Brazil vs Bahia Lomas), the 

mean pixel values were normalized as a percentage of the mean of the band values of that study 

site (e.g. (Mean Near IR pixel for plot [i] in Brazil/(Mean of all Brazil’s Near IR plots)), resulting 

in values that essentially represent the relative reflectance values rather than absolute reflectance.  

Absolute reflectance values can be different based on sensor characteristics (i.e. sensor azimuth) 

between dramatically different latitudes (Jensen 2007), so relative reflectance more accurately 

captures the different patterns between locations.  Statistics and relevant figures were produced 

with (R Core Team 2013), Rstudio software, and the ggplot2 package (Wickham 2016). 

 

1.2f - Cross-Tidal Transects 

Sediment moisture and surface structure are the dominant physical characteristics that 

drive spectral and radar responses (Jensen 2007). However, understanding which is playing a 

greater role can be challenging. To understand the relationship between moisture content and 

remote sensing response, spectral profiles of transects across the intertidal area and adjacent 

dunes were digitized across the Brazilian study site.  Eight randomly selected sand plots and eight 

randomly selected mud plots had transects digitized going from high tide to low tide lines within 

the intertidal area. Eight random dunes directly adjacent to sand plots had transects digitized 

extending from the high tide line back inland, ending where the land cover clearly changed from 

sand dunes to something else, typically some kind of vegetation, as determined by visual 

interpretation.  Theoretically, with surface texture remaining relatively consistent by staying 

within a single land cover class (sand vs mud), changes in spectral response would only to be due 

to changes in moisture content: more moisture when moving from high tide, seaward to low tide 

lines; less moisture moving from high tide inland over dunes.  Transects consisted of points 30 

meters apart where remote sensing data was extracted, starting at the high tide line and ending at 

either the low tide line, or upland vegetation (Figure 1.5).  These transects were done only at the 

Brazilian study site, because there were clear stretches of intertidal zone that could be classified 
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as entirely sand or mud, unlike Bahia Lomas, which is a single vast flat of heterogenous patches 

of mud, mixed, and sand sediments. 

 

1.2g - Classification 

The Landsat 8 and Sentinel intertidal imagery for the Brazilian study site was classified 

using Erdas Imagine’s unsupervised classification and cluster busting via isodata clustering 

across feature space.  Ten initial classes were identified and calibrated by using 60% of the 

qualitative survey data and spectral feature plots, with the remaining 40% (n = 245) of survey 

data reserved for validation. The classification process was also effective at removing the 

remaining cloud shadow artifacts missed by the cloud removal process. Five classes were initially 

designated, Mud, Sandy Mud, Muddy Sand, Wet Sand, and Dry Sand, corresponding to the 

sediment size continuum outlined by Folk (1954) and reflected in the spectral feature plots of 

both optical and radar data (Figure 1.12). End members, mud and sand, were respectively found 

at the low and high end of the spectral feature spaces. These five classes were eventually 

collapsed into Mud, Mixed, and Sand due to the limited nature of the qualitative field data. To 

validate the accuracy of the classification results, the reserved 40% of survey points (n = 245) 

were overlaid on top of the classified raster. Within each survey points’ 250 meter radius, the 

dominant classified land cover class was determined using zonal statistics (the “classified” class), 

and compared to the dominant land cover class determined by field notes and photographs (the 

“reference” class). 

 

 Inside vs Outside Marine Extractive Reserves 

To evaluate extent and composition of intertidal habitat inside and outside the Marine Extractive 

Reserves in Brazil, a simple mask was used. A vector consisting of the boundaries of all Marine 

Extractive Reserves within the study area (provided by ICMBio) was used to mask the respective 

raster files, with pixel counts converted into area. 
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1.3 - Results 

Field Observations 

Mud in both locations (Figure 1.3) were typified by pocked surface textures, and dark 

gray to dark tan coloring.  Unique to Bahia Lomas was the dried mud, with large plates or flakes 

and a brighter or lighter appearance (Figure 1.3).  Sand sediment exhibited a wide range of colors 

across Brazil, ranging from a yellow-orange to light gray.  Sand in Bahia Lomas was typically 

much darker and more consistent in appearance, though both locations often had a rippled or 

washboard-like surface (Figure 1.4). 

 

Intertidal Delineation 

Approximately 2005 square kilometers of intertidal zone was delineated across the 

Brazilian study region. The intertidal classification was found to a user’s accuracy of 98.8%, 

producer’s of 65.1%, overall of 73% (Table 1.1). Marine Extractive Reserves encompassed 

approximately 563 square kilometers, or 28% of the total Brazilian intertidal zone.  

 

Pixel Analysis 

Within Locations (Between classes) 

Significant differences (p < 0.05) were found between Sand and Mud plots within the 

respective study sites, based on Tukey’s HSD test of mean reflectance and backscatter values 

between sites (Table 1.2). In Brazil, all bands demonstrated significant differences between Mud 

and Sand classes (Figure 1.6 and Table 1.2). Similar patterns were observed in Bahia Lomas, with 

the exception of the Coastal/Aerosol Band from Landsat 8 (Figure 1.7 and Table 1.2). Depending 

on the location, some bands did not have significant differences between mixed and one of the 

two extremes (Brazil: Short-wave Infrared 2 and Vertical-Vertical for Mud-Mixed, Vertical-

Horizontal for Sand-Mixed; Bahia Lomas: Coastal/Aerosol for Mud-Mixed, Coastal/Aerosol, 

Green, Vertical-Horizontal, and Vertical-Vertical for Sand-Mixed). Overall, as sediment size 
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increased in Brazil (mud to sand habitat), reflectance increased (Figure 1.5 and Table 1.2); as 

sediment size increased in Bahia Lomas (mud to sand habitat), reflectance decreased (Figure 1.6 

and Table 1.2). Backscatter responds to sediment size more consistently, decreasing as sediment 

size increases in both study locations. 

 

Between Locations (Within Classes) 

Based on normalized remote sensing data, the reflectance of mud (Figure 1.8) and sand 

(Figure 1.9) classes for all Landsat 8 bands were significantly different between Brazil and Bahia 

Lomas (p < 0.05, Table 1.3). This was not the case with Sentinel 1 backscatter data, with sand’s 

Vertical-Vertical not being significantly different between locations (p > 0.05), and mud not 

being significantly different for both Vertical-Vertical and Vertical-Horizontal (Table, 1.3). 

 

Cross-Tidal Transects 

Spectral profiles of tidal transects showed significant relationships between distance from 

high tide line and spectral response for most bands across Mud and Sand intertidal transects 

(Figure 1.10). In most bands and for dunes, sand, and mud, remote sensing values decreased the 

farther away from the high tide line and into the intertidal zone the transect went. 

Coastal/Aerosol, Blue, and both radar bands, though not statistically significant, followed the 

same trend for Sand. Dune transects also had the same significant relationships for most bands, 

excluding Coastal/Aerosol and both radar bands, but typically weaker responses than Sand and 

Mud transects. The exceptions to this pattern were with the vertical-horizontal backscatter (no 

trend) and vertical-vertical backscatter (increasing) responses in Sand.  

 

Discrete Classification 

Unsupervised cluster-busting of the Brazilian intertidal zone, guided by spectral feature 

plots (Figure 1.11), resulted in 5 initial classes, which were recoded into mud, mixed, and sand to 
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reflect available ground data (i.e. mud to mud; wet and dry sand to sand; muddy sand and sandy 

mud to mixed). Of the area delineated by the intertidal mask, 26% was classified as mud, 64% as 

mixed, and 10% as sand. Marine Extractive Reserves did not have significantly preferential 

coverage of any of the three land cover types, with coverage reflecting relative proportions 

similar to the whole intertidal area (Table 1.8). Accuracy of the three classes was less than ideal, 

with sand and mud having reasonably high user’s accuracy (100% and 65.38% respectively), 

mixed having moderate producer’s accuracy (67.57%), and an overall accuracy of 36.73% (Table 

1.4). However, when evaluating end-members (mud and sand) alone, accuracy ratings were high 

(>83%) (Table 1.5). 

 A similar approach, in part informed by the spectral feature plots (Figure 1.12) was used 

in classifying the Bahia Lomas study region. While the accuracy of the discrete classes was even 

more suspect (e.g overall accuracy: 37.93%, Table 6), the relationships between approximate 

sediment size and remote sensing values (reflectance and backscatter) were clear in the spectral 

feature plots. Similar to the Brazilian classification, end-members were more clearly 

differentiated from each other compared to the “mixed” class, but accuracy in Bahia Lomas was 

still poor (Table 1.7). 

 

1.4 - Discussion 

Before tackling the first research question (evaluating the efficacy of characterizing the 

intertidal zone using multispectral reflectance and SAR backscatter), it was necessary to isolate 

the intertidal zone from adjacent land cover to prevent misclassification.  Isolating the intertidal 

zone using the methods developed by Murray et al. (2012) proved effective (overall accuracy of 

73.6%) though errors of omission did occur (~34.9%) (Table 1.1). Errors of omission may be the 

product of not finding ideal pairings of high-tide and low-tide imagery. If images were not at 

highest high tide, or lowest low tide, it is possible that portions of the intertidal zone would be 

omitted from the classification, with intertidal area either still covered by water (not lowest low), 
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or not covered by water (not highest high). The process of cloud removal and imagery 

substitution to create cloud free images may also have contributed to less-than-ideal imagery or 

designating ideal tidal conditions. This means that our designated intertidal zone may be 

considered a relatively conservative estimate of total intertidal area within the study regions. 

Murray et al. (2019) have since developed a new, and possibly more robust approach using 

machine learning and the entire Landsat data series that may be used for delineating the intertidal 

zone in future research. 

Remote sensing of the intertidal zone addressed the first research question on the efficacy 

of employing multispectral reflectance and SAR backscatter to discriminate between mud and 

sand intertidal habitat types in both northern Brazil, and Bahia Lomas. Sand and mud end-

members were readily distinguished at both sites based on the mean of survey plot remote sensing 

responses, though the middle “mixed” class was difficult to separate (Figures 1.6 and 1.7).  The 

patterns of distinct end-members (Tables 1.5 and 1.7) and muddled middle classes (Tables 1.4 

and 1.6) continued with the unsupervised, discrete classification approach. Previous research, 

conducted with more thorough quantitative sediment size data, also struggled with classifying the 

mud-sand continuum into discrete classes (Yates et al 1993). Based on these two approaches, 

remote sensing using multispectral reflectance and SAR backscatter can effectively discriminate 

between mud and sand extremes of the intertidal habitat types but disentangling the middle of the 

continuum remains challenging. This may be due to the temporally dynamic nature of tidal 

inundation with shifts in sediment characteristics, including mud-sand mixture, moisture, or 

surface texture happening each tidal cycle (Widdows et al. 2000), making the capture of specific 

states of sediment especially challenging. Inconsistencies between the timing of in-situ survey 

data and remote sensing data may also play a role, where remote sensing images and respective 

values are acquired at different times and states of intertidal structure and composition. This 

would be particularly challenging in areas where appropriate, cloud-free images are sparse. With 
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these challenges in mind, more investigation is needed regarding the effects on the spectral 

reflectance response due to temporal changes of wave-washed beaches and sand flats. 

The second research question examined the universality of the relationship between 

multispectral reflectance, SAR backscatter, and sediment size between the locations.  The 

differences found in radar response between the two sites (Table 1.3) are likely due to the nature 

of reflectance and backscatter, and how they interact with the physical properties of the intertidal 

substrate. General observations made while conducting the field surveys at the two locations hint 

at similarities and differences of the physical properties of the sediment. Mud substrates appear 

relatively similar in both visible color (i.e., the spectral reflectance in the visible wavelength 

regions) and surface texture between the two sites, both with pocked, complex surface structure, 

and dark gray to brown in color. Bahia Lomas does distinguish itself with the occasional cracked, 

dry, and plated mud surfaces (Figure 1.3). The surface texture of sand for both locations appears 

consistently similar, with rippled or washboard surfaces. However, visible color of sand differs 

noticeably between both sites, with Bahia Lomas consistently being darker and Brazil having 

some regions with a more orange or red tone (Figure 1.4). Two general patterns emerge: 

differences in substrate color, primarily due to differences in sand, and similarities in surface 

texture between both locations, with some exceptions in Bahia Lomas’ platey, cracked mud. The 

patterns of differences in color and surface texture continue to play out in the responses of the 

respective Landsat reflectance, and Sentinel backscatter data. 

 Typically, reflectance is influenced by soil moisture, with smaller grained soils (higher 

proportions of silt and clay, i.e. mud) retaining a higher concentration of water than larger sized 

soils (i.e., sand). Increased water retention results in lowered reflection across all visual and 

infrared bands.  Brazil followed the same patterns as previous studies (Yates et al 1993, Rainey et 

al 2003, van der Wal and Herman 2007), with reflectance increasing as sediment size increased 

(Figure 1.6). However, Bahia Lomas exhibited the inverse relationship, with reflectance 

decreasing as sediment size increased (Figure 1.7).  This trend is even more apparent when 
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comparing normalized reflectance data, with Bahia Lomas consistently having higher relative 

mud reflectance (Figure 1.8), and lower relative sand reflectance (Figure 1.9).  This may be due 

to differences in local surface soil properties, conflating the reflective properties of the mineral 

composition of the sediment with the moisture retention.  According to the UN-FAO’s 

Harmonized World Soil Dataset, the majority of topsoil found across the study site in Brazil is 

classified as Ferralsols, typified by high iron content that results in a distinctive red to yellow 

color, or Plinthosols, also with high iron content. The upland areas adjacent to Bahia Lomas, and 

much of the Strait of Magellan is dominated by Phaeozem top-soils, classified as dark and rich in 

organic matter (FAO 2014).  These dramatically different inland soil types, which are 

subsequently deposited onto the intertidal flats, may explain the different multispectral 

relationships observed. 

  The two physical characteristics driving radar backscatter values in sediment are surface 

roughness, and dielectric properties due to surface moisture content.  Van der Wal et al. (2005) 

found that smooth surfaces were associated with mud and lower backscatter, and rough surfaces 

associated with sand and higher backscatter.  Surface moisture can significantly influence how 

much electromagnetic energy penetrates, with high levels of moisture preventing penetration and 

increasing backscatter, while low levels of moisture facilitate penetration and reduce backscatter 

(Mikhail et al. 2001, Jensen 2007).  The similar patterns in backscatter between Bahia Lomas and 

Brazil (Figures 8 and 9, Table 3) suggest that the locations have similar responses to the 

combined effects of surface roughness and moisture content. Van der Wal et al (2005) also found 

that surface roughness was the strongest correlate with sediment size compared to other variables, 

including surface moisture.  Our results differed from Van der Wal’s, in that intertidal mud 

locations had higher backscatter values than intertidal sand in both study sites (Figures 1.6 and 

1.7). Cross-tidal transects conducted in muddy areas demonstrate visible, near-infrared and short-

wave infrared reflectance marginally decreasing, and moisture content presumably increasing 

while moving from the high tide towards the low tide line (Figure1.10). There is a similar trend of 
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decreasing  mud radar backscatter as one moves from the high tide towards the low tide line. 

Figure 1.10 shows great variability in the mud backscatter response in proximity to the high tide 

line. This pattern could be a product of increased surface roughness due to features close to the 

high tide line such as mangroves, debris, or fiddler crab colonies and smoother surfaces in the 

more regularly inundated areas lower in the tidal prism.  Distance from the high tide line had no 

significant effect on the radar backscatter of intertidal sand substrate. Dunes consist of 

persistently dry sand mostly above the high-tide line and exhibited similar spectral patterns to 

intertidal sand, but with higher reflectance values and a much broader variance.  One explanation 

of the broad variance could be due to the changes in aspect across the dune faces, influencing 

how much signal is returned to the sensor.  Taken together, our results for the main sampling 

protocol and the transects conducted in Brazil suggest that mud features have a higher backscatter 

response than sand due to both moisture retention. Visible, near-infrared, and short-wave infrared 

reflectance follow the trends of decreasing response as presumed moisture increases.  Backscatter 

response is less clear, as high variability in mud plots close to the high tide line may be the 

product of variability in surface roughness due to features not directly related to sediment size 

like mangroves, debris, and fiddler crab colonies. 

While significant relations were found between survey plots characterized by our 

methods using qualitative field data and remote sensing metrics, there are several known issues 

that could be addressed in future research.  Foremost amongst areas for improvement is the 

qualitative nature of the in-situ calibration/validation data. Limited access to in-country soil labs 

and the difficulties around exporting soil samples back to the United States was the primary 

reason for utilizing a qualitative approach, rather than laboratory-based measurement of 

proportions of soil sample sediment sizes.  Some of the issues with accurately classifying the 

mixed sediment types may be due to the challenges of surveyors accurately perceiving and 

qualifying sediment size. Mud and Sand endmembers are easily distinguished in both look 

(Figures 1.3 and 1.4) and texture (Thien 1979) but having approximately 12 different surveyors 
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accurately and consistently distinguishing between “muddy-sand” and “sandy-mud”, for example, 

is extremely difficult without rigorous prior training. Another potential problem is the reductive 

nature of utilizing a single dominant class to describe up to 0.2 km2 of intertidal area. Significant 

variation could exist within the survey region that is not being captured, resulting in potentially 

heterogeneous sediment composition being categorized as homogeneous. Addressing the issues 

of limited qualitative data and oversimplification of plot heterogeneity would require a systematic 

sediment sampling approach for each plot, similar other study sampling regimes (Rainey et al 

2003, van der Wal and Herman 2007). Our approach of qualitative habitat notes, while not as 

robust as systematic soil sampling, had the benefits of low costs and rapid data collection, while 

still successfully classifying end members and identifying sediment-size/remote sensing trends. 

Remote sensing of the intertidal zone has its own challenges. Common to many remote 

sensing applications, mismatch between when the remote sensing image was taken and when the 

in-situ data was collected could lead to conclusions that do not accurately reflect ground 

conditions (Jensen 2007). Remote sensing of the intertidal zone has this difficulty two-fold: 

seasonal variation and tidal variation of the images. Landsat 8 image selection was further limited 

by significant cloud cover over the northern Brazil study site, with cloud free imagery taken 

during the survey period and at the appropriate tidal stage neigh impossible to find. Our approach 

of compositing several cloud-removed images for each scene, may have mismatches between 

tidal (e.g. spring vs neap low tides) or seasonal variations in multispectral values.  Clouds were 

not problematic at all for the Sentinel 1 radar imagery acquisition because microwave radar 

penetrates atmospheric disturbance and cloud cover (Jensen 2007). Mismatch between tidal stage 

in the imagery vs exact tidal stage on the survey day still could occur. Our approach of acquiring 

multiple low tide images for each scene and calculating the average pixel value should produce a 

reasonable approximation of tidal conditions during survey dates, but discrepancies are still 

possible. 



23 
 

Future work characterizing the intertidal zone via remote sensing is viable, as clear 

relationships between remote sensing data and sediment size consistently emerge (Figures 1.6 and 

1.7). However, the properties of local substrate must be taken into consideration as these patterns 

can differ between sites.  Radar has great utility, as it has a more consistent response to physical 

properties of the soil (Figures 1.8 and 1.9) but, the dual response to surface moisture and surface 

roughness can be difficult to disentangle (Figure 1.10). Different radar frequencies respond very 

differently to soil moisture content, penetrating moist soils rather than being deflected (Williams 

and Greely 2004). These differences can be leveraged to distinguish between the surface 

moisture, and aid in sediment classification (Gade et al 2014). Current space-based radar 

platforms (namely Sentinel 1 and Envisat) are operating in the C-Band, and few have the 

temporal and spatial resolution of Sentinel 1, making a study using multiple radar bands in such a 

temporally specific topic like the intertidal zone challenging.  However, the NASA-ISRO SAR 

Mission (NISAR), set to launch in 2021, presents a likely option for such a study, with sampling 

intervals of 12 days or shorter, spatial resolution of 100 meters, and both L-Band and S-Band 

radar instruments (https://nisar.jpl.nasa.gov/nisarmission/). L-Band has demonstrated different 

capacities for penetrating surface sand, and even wet surface sand, unlike C-Band radar which is 

reflected (Williams and Greeley 2004). Regardless of the platform and radar frequency, ground 

truthing and calibration is critical to understanding the relationships between remote sensing and 

intertidal sediment in dramatically different geographic locations, and utilizing that information to 

inform management and conservation. 

Delineating the intertidal zone is an important first step towards identifying important 

shorebird foraging habitat and informing conservation practices of migratory shorebirds. The 

methods developed by Murray et al. (2012) were effective at accomplishing this at both study 

locations, including the Marine Extractive Reserves (MERs) within northern Brazil. MERs are a 

series of management regions designed for the protection of artisanal fishing and sustainable 

extractive practices, while excluding large-scale disruptive processes like dredging, drilling, or 
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industrial fishing (Santos and Schiavetti 2014). These protected zones cover a significant portion 

(28%) of the Maranhao-Para intertidal zone (Table 1.8), an extent of intertidal protection similar 

to other studied regions; for example, 39% of Australia's intertidal zone is protected in some way 

(Dhanjal-Adams et al. 2016). While our results suggest that the highly accurate discrimination of 

discrete classes of sediment type using medium resolution remotely sensed imagery is 

problematic, a broad scale mapping of the spatial distribution of intertidal habitat types is 

feasible. I found that the approximate composition of intertidal area found within the MERs is 

proportional to the area that is protected; in other words, no intertidal land cover is preferentially 

protected by the MERs (Table 1.8).  While this is reassuring, it is also clearly only the first step in 

understanding how MERs protect the intertidal zone, and the species that rely upon it.  

Unfortunately, this region is also similar to other regions, like Australia and the Yellow Sea 

(Murray et al. 2014, Murray et al. 2015), that share the same major threats to intertidal habitat; 

urbanization and development (Andrade et al 2016). Future management decisions should reflect 

the importance of the intertidal zone, the scope of that region that is affected by the Marine 

Extractive Reserves, and the potential risks of urbanization and development.  

Moving beyond simply delineating the intertidal zone, to characterizing habitat within the 

intertidal zone is the critical next step for managing the suite of shorebird species that utilize the 

different intertidal habitats. Our two research predictions (1 - that multispectral reflectance and 

SAR backscatter can be used to discriminate between mud and sand intertidal types; 2 - that the 

relationship between multispectral reflectance, SAR backscatter, and sediment type is applicable 

across a span of geographic locations) aimed to better understand this next step. By evaluating 

within-site plots, I confirmed that characterizing end-member classes of the mud-sand continuum 

is viable (Table 1.5), and that differentiating between mixed classes remains challenging (Table 

1.4). However, I also demonstrated consistent relationships between reflectance, radar 

backscatter, and sediment size within each location. Mud showed consistently lower visible, near 

infrared, and shortwave infrared reflectance and higher radar backscatter than sand in Brazil, 
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while mud in Bahia Lomas had consistently higher visible, near-infrared, and shortwave infrared 

reflectance and radar backscatter than sand (Figures 1.6, 1.7, and Table 1.2). Related to my 

second research prediction, I demonstrated the necessity for in situ calibration and validation 

data, as these relationships can differ between study locations (Figures 1.8, 1.9, and Table 1.3). 

This information could be leveraged for monitoring management and planning.  For example, 

many management practices can alter intertidal sediment composition, such as dredging and 

dredge dumping, which in turn affect the biological processes of the intertidal zone (Essink 1998, 

Jaffe et al. 2007, van Maren et al. 2015). Shorebirds have demonstrated clear resource 

partitioning across different intertidal sediment types (Colwell and Landrum 1993, Bocher et al. 

2014), and can have their distributions shifted by changes in sediment composition due to beach 

restoration management practices, like sand placement (Peterson et al. 2006). Based on our 

results, changes in remote sensing values of the intertidal substrate would reflect changes in 

intertidal sediment composition in these situations, though in situ data would be necessary for 

calibration and validation of the remote sensing-sediment size relationship at each site.   Using 

remote sensing, in conjunction with in-situ data, to understand the extent and approximate 

composition of intertidal sediment could be effective for evaluating intertidal habitat in a variety 

of applications; from shorebird habitat to the effects of human activities on intertidal sediments 

including beach restoration (Niles et al. 2013) and dredging. It is clear from this work that 

discrete classification of intertidal sediment is implausible, but that trends in remote sensing 

values reflect trends in sediment composition. As such, you would expect changes in remote 

sensing response to the intertidal zone to reflect changes in intertidal habitat due to sediment size 

differences between the original sediment, and sand used for beach-fill 

 

1.5 - Conclusion 

Similar to previous research, I confirmed significant relationships between sediment size 

and visual, infrared, and radar remote sensing. I also confirmed that the mud-sand sediment 
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continuum is reflected along a continuous gradient in spectral feature space, with mud and sand 

endmembers readily distinguished, but middle, mixed classes less so. However, unlike previous 

research, I demonstrated that these relationships are not universal and require in-situ data for the 

calibration and validation of site-specific relationships. Discretely classifying the mud-sand 

continuum is neigh impossible, but leveraging the clear relationship between remote sensing and 

sediment size could potentially be effective for characterizing the intertidal habitat using 

alternative techniques that incorporate the non-discrete nature of the sediment gradient. These 

approaches, such as spectral mixture analysis, maximum entropy modeling, or simple change 

detection could be used for a variety of applications, including beach restoration, the effects of 

dredging, understanding shorebirds intertidal habitat, and informing management and 

conservation decisions regarding the intertidal zone. 
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1.6 - Tables and Figures 

 

Figure 1.1: The two regions, northern Brazil and Bahia Lomas, with study sites roughly outlined 

in pink. 

 

Figure 1.2: Circumferences of 250 meter radii survey plots on the left, showing that using only 

the plot vectors would erroneously include pixels that were not intertidal habitat.  The right shows 

the region categorized as “intertidal”, in orange, using the methods outlined by Murray et al.  

Masking the remote sensing data with this mask prevents any data not surveyed within the 

intertidal surveys from being erroneously included in the analysis. 
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Figure 1.3: Pictures of typical mud sediment class found in Bahia Lomas (left) and Brazil (right).  

Both are typified by what appears to be rough surface texture, though the cracked, dry, plated 

surface (middle left) was unique to Bahia Lomas. 
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Figure 1.4: Pictures of typical sand sediment class found in Bahia Lomas (left) and Brazil (right). 

Sand in Brazil appeared to have a wider range of color, from pale gray to yellow-orange hue, 

relative to Bahia Lomas. Both are typified by rippled or washboard surface textures. 
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Figure 1.5: Example of cross-tidal transect, going from above tide vegetation, cross the dune, and 

to the edge of the intertidal zone. 

 

Table 1.1: Error matrix for the Brazilian study site’s intertidal mask accuracy assessment based 

on 174 randomly distributed points across the Brazilian study site. Land cover of each validation 

point was determined as either “intertidal” or “other” by studying numerous Landsat images. 

Cells filled with gray are where both the classified and reference land covers agree. Overall 

accuracy and Cohen’s Kappa coefficient are listed in the bottom right. 

 
Reference 

 

Intertidal Other Sum Users 

Classified Intertidal 84 1 85 98.8% 

Other 45 44 89 49.4% 

Sum 129 45 Kappa: 47.9% 

Producers 65.1% 97.8% Overall: 73.6% 
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Figure 1.6: Box-plots of mean reflectance and backscatter plots for each plot in Brazil. Box ends 

are the upper and lower quartiles with the central line representing the median. Whiskers 

represent values outside of the upper and lower quartile, while dots represent outliers. 

Coastal/Aerosol, Blue, Green, Red, NIR, SWIR 1, and SWIR 2 reflectance values are from the 

Landsat 8 platform, while Vertical-Horizontal and Vertical-Vertical are the respective polarized 

backscatter from Sentinel 1. 
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Figure 1.7: Box-plots of mean reflectance and backscatter plots for each plot in Bahia Lomas. 

Box ends are the upper and lower quartiles with the central line representing the median. 

Whiskers represent values outside of the upper and lower quartile, while dots represent outliers. 

Coastal/Aerosol, Blue, Green, Red, NIR, SWIR 1, and SWIR 2 reflectance values are from the 

Landsat 8 platform, while Vertical-Horizontal and Vertical-Vertical are the respective polarized 

backscatter from Sentinel 1. 
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Table 1.2: Tukey HSD P-values comparing Landsat 8 surface reflectance and Sentinel 1 

backscatter of Mud vs Mixed, Sand vs Mixed, and Sand vs Mud classes in Brazil and Bahia 

Lomas.  Each P-value represents a Tukey HSD pair-wise comparison of remote sensing data 

between sites designated as Mud, Mixed, or Sand based on in-situ field notes. 

 
 

 

 

 

 

 

 

 

 

 

   Bahia Lomas  Brazil 

Sensor Band  Mud-

Mixed 
 Sand-

Mixed 
 Sand-Mud  

Mud-

Mixed 
 Sand-

Mixed 
 Sand-Mud 

L
an

d
sa

t 
8

 

Coastal 

Aerosol 
 0.803  0.381  0.074  0.003  <0.001  <0.001 

Blue  0.46  0.031  0.002  <0.001  <0.001  <0.001 

Green  0.004  0.051  <0.001  <0.001  <0.001  <0.001 

Red  0.002  0.031  <0.001  <0.001  <0.001  <0.001 

Near IR  <0.001  0.012  <0.001  <0.001  <0.001  <0.001 

SWIR 1  <0.001  <0.001  <0.001  0.04  <0.001  <0.001 

SWIR 2  0.006  <0.001  <0.001  0.09  <0.001  <0.001 

S
en

ti
n

el
 1

 

Vertical-

Horizontal 
 <0.001  0.905  <0.001  <0.001  0.09  <0.001 

Vertical-

Vertical 
 <0.001  0.018  <0.001  0.14  0.018  <0.001 
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Figure 1.8: Comparison of normalized Landsat 8 surface reflectance and Sentinel 1 backscatter 

(e.g. (Blue reflectance for plot [i]) / (mean of blue reflectance for all plots in Brazil)) for Mud in 

Bahia Lomas and Brazil. Box ends are the upper and lower quartiles with the central line 

representing the median. Whiskers represent values outside of the upper and lower quartile, while 

dots represent outliers. 
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Figure 1.9: Comparison of normalized Landsat 8 surface reflectance and Sentinel 1 backscatter 

(e.g. (Blue reflectance for plot [i]) / (mean of blue reflectance for all plots in Brazil)) for Sand in 

Bahia Lomas and Brazil. Box ends are the upper and lower quartiles with the central line 

representing the median. Whiskers represent values outside of the upper and lower quartile, while 

dots represent outliers. 
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Table 1.3: P-values from Welch’s t-test comparing normalized Sand values between 

Brazil and Bahia Lomas, and normalized Mud values between Brazil and Bahia Lomas, 

with P-values < 0.05 highlighted in gray. 

Brazil vs Bahia Lomas 

Sensor Band  Normalized 

Sand 
 Normalized 

Mud 

L
an

d
sa

t 
8

 

Coastal Aerosol  <0.001  <0.001 

Blue  <0.001  <0.001 

Green  <0.001  <0.001 

Red  <0.001  <0.001 

Near IR  <0.001  <0.001 

SWIR 1  <0.001  <0.001 

SWIR 2  <0.001  <0.001 

S
en

ti
n
el

 1
 Vertical-

Horizontal 
 0.011  0.6368 

Vertical-

Vertical 
 0.553  0.082 
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Figure 1.10: Points from transects of spectral response relative to the high tide line from 8 randomly selected dunes (yellow 

circles), sand flats (orange squares), and mud flats (brown triangles) across the Brazilian study area (sediment class determined 

based on point data). Number of points per transects vary depending on the size of the area exposed at low tide, or the size of 

the contiguous dune feature between the high tide line and next clear land cover feature.
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Figure 1.11: Spectral feature plots for the Brazilian study site intertidal zone with ellipses 

representing two standard deviations from the mean of each class. The top two show the 

relationship between near-infrared and green surface reflectance (left), and short-wave infrared 

and green surface reflectance derived from Landsat 8 (right).  The bottom plots show the 

relationship between the vertical-vertical backscatter (left) and vertical-horizontal backscatter 

(right) via the Sentinel 1 SAR platform, and the green Landsat 8 surface reflectance values. 
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Table 1.4: Error matrix for the Brazilian study site’s accuracy assessment. Using the ground data 

(n = 245) reserved as validation data, each plot had both a “reference” land cover class, derived 

from qualitative field notes, and a “classified” class, derived from the mode of classified land 

cover pixels within the 250 meter radius survey plot. Cells filled with gray are where both the 

classified and reference land covers agree. Overall accuracy and Cohen’s Kappa coefficient are 

listed in the bottom right. 

  Reference  

  Sand Mixed Mud Sum User's 

Classified Sand 31 0 0 31 100.00% 

Mixed 84 25 53 162 15.43% 

Mud 6 12 34 52 65.38% 

Sum 121 37 87 Kappa: 17.01% 

Producer's 25.62% 67.57% 39.08% Overall: 36.73% 

 

Table 1.5: Error matrix for the Brazilian study site’s endmember accuracy assessment of the 

reserved ground data, excluding the Mixed classification (n = 71). Each plot had both a 

“reference” land cover class, derived from qualitative field notes, and a “classified” class, derived 

from the mode of classified land cover pixels within the 250 meter radius survey plot. Cells filled 

with gray are where both the classified and reference land covers agree. Overall accuracy and 

Cohen’s Kappa coefficient are listed in the bottom right. 

 
Reference 

 

Sand Mud Sum Users 

Classified Sand 31 0 31 100% 

Mud 6 34 40 85% 

Sum 37 34 Kappa: 83.19% 

Producers 83.8% 100% Overall: 91.5% 
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Figure 1.12: Spectral feature plots for the Bahia Lomas study site intertidal zone with ellipses 

representing two standard deviations from the mean of each class (Mud = maroon, Sandy mud = 

beige, Muddy sand = orange, Sand = yellow). The top two show the relationship between near-

infrared and green surface reflectance (left), and short-wave infrared and green surface 

reflectance derived from Landsat 8 (right).  The bottom plots show the relationship between the 

vertical-vertical backscatter (left) and vertical-horizontal backscatter (right) via the Sentinel 1 

SAR platform, and the green Landsat 8 surface reflectance values. 
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Table 1.6: Error matrix for the Bahia Lomas site’s accuracy assessment. Using the ground data (n 

= 180) reserved as validation data, each plot had both a “reference” land cover class, derived from 

qualitative field notes, and a “classified” class, derived from the mode of classified land cover 

pixels within the 250 meter radius survey plot. Cells filled with gray are where both the classified 

and reference land covers agree. Overall accuracy and Cohen’s Kappa coefficient are listed in the 

bottom right. 

  Reference  

  Sand Mixed Mud Sum User's 

Classified Sand 23 25 11 59 38.98% 

Mixed 29 35 20 84 41.67% 

Mud 12 11 8 31 25.81% 

Sum 64 71 39 Kappa: 2.77% 

Producer's 35.94% 49.30% 20.51% Overall: 37.93% 

 

Table 1.7: Error matrix for the Bahia Lomas study site’s endmember accuracy assessment of the 

reserved ground data, excluding the Mixed classification (n = 54). Each plot had both a 

“reference” land cover class, derived from qualitative field notes, and a “classified” class, derived 

from the mode of classified land cover pixels within the 250 meter radius survey plot. Cells filled 

with gray are where both the classified and reference land covers agree. Overall accuracy and 

Cohen’s Kappa coefficient are listed in the bottom right. 

 
Reference 

 

Sand Mud Sum Users 

Classified Sand 23 11 34 68% 

Mud 12 8 20 40% 

Sum 35 19 Kappa: 7.73% 

Producers 65.71% 42% Overall: 57.41% 
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Table 1.8: Intertidal land cover across the Brazilian study site (Total), broken down into the area 

(Km2) and relative composition (% of MER) within the Marine Extractive Reserves, and the area 

(Km2) and relative composition (% of Out) outside the Marine Extractive Reserves. 

 
Inside MER Outside MER Total 

 
Km2 % of MER % of total Km2 % of Out % of total Km2 % of total 

Mud 149 26.47% 28.33% 377 26.14% 71.67% 526 26.23% 

Mixed 348 61.81% 27.27% 928 64.36% 72.73% 1276 63.64% 

Sand 66 11.72% 32.51% 137 9.50% 67.49% 203 10.12% 

Total 563  28.08% 1442  71.92% 2005  
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Chapter 2: Distribution Modeling of Intertidal Shorebird Habitat 

 

2.1 - Introduction 

Many species of shorebirds migrate long distances from their overwintering feeding 

grounds in the southern hemisphere, to breeding grounds in the northern hemisphere (Colwell 

2010, Niles et al. 2010, Burger et al. 2012, Gratto-Trevor et al. 2012, Lathrop et al. 2018). During 

these migrations, species will utilize numerous stops along the migration route as staging grounds 

or launch points for the next step of the migration (Warnock 2010, Brown et al. 2017, Anderson 

et al. 2019). Due to their reliance on numerous, cross-continental locations, migratory shorebirds 

are particularly vulnerable, as disruptions at any migratory location can affect migratory and 

breeding success (Piersma and Lindstrom 2004, Mizrahi et al. 2012, Anderson et al. 2019). This 

risk is reflected in declining populations of many migratory species including Red Knots 

(Calidris canutus rufa, Niles and Cooper Ornithological Society 2008), Semipalmated Sandpipers 

(Calidris pusilla, Andres et al. 2012a, Morrison et al. 2012), Black-bellied (Gray) Plovers 

(Pluvialis squatarola), and Ruddy Turnstones (Arenaria interpres, von Numers et al. 2020). 

Affected populations are found globally, across flyways in North America (Bart et al. 2007, 

Morrison et al. 2012), to Europe (Stroud et al. 2004), and the Asian-Australasian flyway 

(Clemens et al. 2016). These declines are partly a product of a number of human-driven factors, 

including the overharvest of key food resources such as horseshoe crab eggs in Delaware Bay, 

U.S.A (Baker et al. 2004, Niles and Cooper Ornithological Society 2008), sea level rise 

(Galbraith et al. 2002, Iwamura et al. 2013, Galbraith et al. 2014), and massive intertidal habitat 

loss, like what is occurring across East Asia (Murray and Fuller 2015) and the Yellow Sea 

(Studds et al. 2017). 

One major overwintering and stopover locations in the Western Americas Flyway is the 

northern coast of Brazil, along the states of Pará and Maranhão (Niles and Cooper Ornithological 

Society 2008, Colwell 2010) (Figure 2.1). This region encompasses two Ramsar sites: the Maraja 

archipelago at the mouth of the Amazon River; and, the Reentracias Maranhenses. Both sites 
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consist of “complex estuarine system[s] of extensive islands, bays, coves, and rugged coastline 

covered mainly by mangrove forest.” The Marajo archipelago, in particular, contains one of the 

largest contiguous mangrove formations in the world, consisting of 8,900 km2 of mangrove 

forest, or approximately 70% of all mangroves in Brazil. The Reentrancias Maranhenses, located 

to the northwest of Sao Luis, is a complex series of bays and inlets, critically important for 

migratory shorebirds, fish, manatee, and the fishermen that subsist within the region (Ramsar 

Convention, https://www.ramsar.org/wetland/brazil). Accurately and logically predicting how 

migratory shorebirds are distributed across the Pará-Maranhão ecosystem is essential to making 

informed shorebird management and conservation decisions in the region. 

Species distribution models (SDM) can be effective tools for determining where a species 

is likely to occur by using records of a species’ presence and a suite of environmental variables to 

characterize the habitat most likely to contain said species (Franklin and Miller 2009).  One of the 

most widely adopted approaches is through the Maximum Entropy framework. Maximum 

entropy modeling, including the MaxEnt modeling package (Phillips et al 2006), utilizes machine 

learning to evaluate presence records and environmental variables associated with those presence 

records. Variables are considered both in isolation and in combination with the other 

environmental variables input into the model based on maximum likelihood and maximum 

entropy to determine what the most effective model is for estimating the predicted probability of 

presence for any given combination of environmental variables (Phillips et al 2006, Phillips et al 

2008, Elith et al. 2009, Elith et al 2011). MaxEnt has been utilized to model countless species and 

their distributions (Stabach et al. 2009, Illera et al 2010, Howell and Veloz 2011, Latif et al. 

2013) including the breeding habitat of the Atlantic Americas Flyway migratory shorebird, the 

Red Knot (Calidris canutus rufa) (Lathrop et al. 2018). Essential in these models are the 

environmental variables that characterize a species habitat. The most common variables include 

metrics of climate, landscape structure, and land cover (Bradie and Leung 2017). Understanding 

https://www.ramsar.org/wetland/brazil
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which variables are effective at characterizing intertidal foraging habitat of migratory shorebirds 

is key to developing distribution models for informing management and conservation. 

The intertidal zone, consisting of sand and mud flats exposed at low tide and covered at 

high tide, is used extensively by migratory shorebirds, with a majority of their time spent foraging 

for food (Burger et al. 1997, Jourdan et al. 2021). The intertidal zone is the primary foraging 

habitat of a majority of migratory shorebirds across the globe (Colwell 2010, Mu and Wilcove 

2020). Within this region, different species utilize different microhabitats, with species 

preferentially foraging on different substrates or at different times (Colwell and Landrum 1993, 

Bocher et al. 2014, Philippe et al. 2016, Faria et al. 2018, Burger et al. 2018). A primary driver of 

these distributions is the size of the intertidal mud-sand sediment, which, in turn, determines the 

distribution of the intertidal invertebrate microfauna that the shorebirds feed upon (Thrush et al. 

2003, van der Wal et al. 2008). Different sediments, such as larger-grained sand and smaller-

grained mud, host different, yet equally thriving invertebrate communities (Sheaves et al. 2016). 

Changing sediment size, through beach replenishment, for example, changes benthic invertebrate 

distributions and, subsequently, shorebird distributions (Peterson et al. 2006, Folmer et al. 2010). 

Other human activities, namely disturbance, has been shown to influence shorebird intertidal 

foraging behavior and distribution (Burger 1986, Pfister et al. 1992, Burger and Niles 2013, 

Martin et al. 2015), including pedestrians (Burger et al. 2007), use of all-terrain-vehicles (Tarr et 

al. 2010), and the presence of dogs (Navedo et al. 2019). Understanding the intertidal habitat 

composition, particularly sediment size distribution, across a migratory stopover is clearly a 

critical component for characterizing intertidal foraging habitat and the subsequent distributions 

of shorebirds. 

Remote sensing has been utilized to map the intertidal zone and to characterize sediment 

type using a variety of platforms and analytical methods. Murray et al. (2012) developed an 

effective method of isolating the intertidal zone across continental scale regions using optical 

remote sensing data, Normalized Difference Water Index, and differencing between high-tide and 
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low-tide images. Optical and shortwave infrared reflectance data collected using airborne (Rainey 

et al 2003) and satellite platforms (Yates et al 1993) have been analyzed using both regression 

based and spectral mixture methods that have relied on the low spectral reflectance of mud in the 

green and near infrared spectrum relative to sand.  Microwave synthetic aperture radar (SAR) 

backscattering has been used to measure surface roughness and successfully correlated with mud 

and sand composition (van der Wal et al 2005, Gade et al 2014).  Mud was associated with 

smoother surface textures and lower backscatter, while sand had higher backscatter due to its 

rippled surface.  Multiplatform methods have also been used, combining the strengths of both 

optical/shortwave infrared and SAR remote sensing to successfully model sediment size using 

regression analysis (van der Wal and Herman 2007).  Finally, in Chapter 1, I compared remote 

sensing in northern Brazil and Bahia Lomas, Chile, demonstrating that the relationship between 

remote sensing metrics and sediment size can vary between locations but is consistent within each 

location. Utilizing this established relationship between remote sensing and sediment size, I aim 

to bridge the final gap, linking remote sensing and shorebird distributions across northern Brazil. 

The objective of this chapter is to develop species distribution models for the intertidal 

foraging habitat of eight migratory shorebird species (black bellied plovers, red knot, ruddy 

turnstones, sanderlings, semipalmated plovers, semipalmated sandpipers, whimbrels, willets, 

Table 2.1) that occupy the Pará-Maranhão coastline in northern Brazil as either a migratory 

stopover location, or for the duration of the winter. Based on the established relationship between 

remote sensing metrics and sediment, as well as relevant landscape and climate metrics, these 

models will be parameterized using shorebird presence data collected during two field seasons in 

northern Brazil (Winter 2016 and 2017).  The efficacy of species distribution models based on 

remote sensing values, as well as the statistical and biological significance of the different classes 

of model variables (landscape, remote sensing, and climatic) will be evaluated, with the goal of 

informing future foraging habitat models and subsequent management. With those goals in mind, 

I predict that: 
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1.) Remote sensing metrics will play a significant role models that discriminate between 

predicted habitat and non-habitat in northern Brazil 

2.) Remote sensing metric response will follow previously established relationships 

between remote sensing and intertidal sediment size, reflecting known patterns in shorebird 

habitat preference 

 

2.2 - Methods 

2.2a - Survey methods 

Wading shorebird presence and abundance surveys were conducted during the winter 

migratory stopover period of 2016 and 2017 in northern Brazil (Figure 2.2). Survey methods 

consisted of point counts conducted by pairs of observers and recorders, using fixed radius plots 

positioned along transects, with all wading birds counted within a 250 meter radius of the 

observers. To maximize detection probability, survey size was set by consulting the surveyors, 

who determined, in situ, 250 meters as the maximum range for consistently and accurately 

detecting and identifying shorebirds under the present survey conditions. Transects were 

conducted by either walking or while in a boat when the shoreline was inaccessible or 

untraversable. Transect length and duration was determined largely by accessibility and tidal 

conditions during survey periods. Efforts were made to distribute transects across tidal stages and 

a variety of habitat types including mangrove creeks, sand flats, mudflats and beaches. A total of 

700 survey points were recorded across the study region between the two survey periods, with 

60% used for model calibration, and the remaining 40% for model validation. 

 

2.2b - Climatic Variables 

 Climate variables were derived from the WorldClim data set (Harris et al. 2014, Fick and 

Hijmans 2017) which provides historical climatic data in raster grid cell form (monthly averages 

from 2010 to 2018) at a scale of 30 seconds. Rasters were first masked to the study area to limit 
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processing time. Each variable was calculated based on averaging the pixels from the monthly 

data of the months between October and April, the approximate time that migratory species 

occupy northern Brazil.  These “averages during migration stay” rasters were then resampled to 

match the 30 meter2 resolution of the Landsat data. 

 

2.2c - Remote sensing methods 

 Landsat 8 

Landsat 8 Surface Reflectance Code (LaSRC) imagery products 

(https://www.usgs.gov/media/files/landsat-8-surface-reflectance-code-lasrc-product-guide) were 

acquired for the entirety of the study area.  LaSRC imagery, produced by the USGS are processed 

to account for atmospheric scattering or absorption, resulting in normalized surface reflectance 

values for each image. Due to the equatorial location of the Brazilian study site, cloud cover was 

a major issue, severely limiting image choice with a large number of available images having 

significant cloud cover (> 40%).  As such, no preference was given to date or time of year for 

each image, only for cloud percentage and tidal stage.  To compensate, multiple high tide and low 

tide images for each scene were acquired, totaling in 20 high tide and 27 low tide images from 

2013 to 2018. Clouds and cloud shadows were removed using the Landsat 8 surface reflectance 

values and top-of-atmosphere thermal data via the methods outlined by Martinuzzi et al (2007).  

In short, thresholds were used to determine cloud cover, which was shifted and expanded to cover 

corresponding shadows. The clouds and shadows were masked by the combined cloud and 

shifted-expanded shadow rasters. For each scene, the cloud-masked images were composited by 

filling in cloud/shadow gaps of one image, with the cloud/shadow free regions of the other 

images. Composite images were created for both high tide and low tide imagery for each scene in 

the Brazilian study region, then mosaicked together, to create a site-wide image for analysis that 

encompassed seven Landsat reference tiles, or approximately 207000 square kilometers. 
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For all images, tidal stage was determined by the methods outlined by Murray et al. 

(2012), using Oregon State University’s Tidal Model (Egbert and Erofeeva 2002), the date and 

time of each image’s acquisition, and a user established reference point for each scene.  The 

Oregon State University Tidal Model is a generalized inverse model of barotropic ocean tides, 

with versions designed at both global and select regional scales (http://volkov.oce.orst.edu/tides/).  

One of the regions with a specifically calibrated tidal model was the Amazonian drainage basin, 

where the Brazil study is located. 

 

Sentinel 1 

Vertical-vertical (VV) and vertical-horizontal (VH) polarized C-band images from the 

Sentinel 1 C-SAR Level-1 Ground Range Detected products 

(https://sentinels.copernicus.eu/web/sentinel/home) were acquired via Copernicus Open Access 

Hub (https://scihub.copernicus.eu/dhus/#/home). Tidal stage was determined using the same 

methods outlined above, with three images acquired per scene, totaling 15 low tide images for the 

Brazil study area.  A 3x3 mean filter was used for noise reduction and then images were 

coarsened to 30 meter pixels to match the resolution of the Landsat data. For each scene, the 

mean pixel value of the three processed images was used to account for minor variations in tidal 

stage, orthorectified to the Landsat 8 data, then mosaicked together resulting in a low tide 

vertical-vertical image and vertical-horizontal image for the study region. 

 

2.2d - Landscape Metrics (Figure 2.3) 

 Distance to rivers 

Rivers can influence both the nutrient content (Riera et al. 2000) and sediment composition 

(Yamada et al. 2012) of coastal ecosystems. The nutrient and sediment changes can influence 

invertebrate distributions, subsequently, shorebird distributions. To account for this possibility, a 

point was digitized for every river that empties into the study region, determined using 

https://sentinels.copernicus.eu/web/sentinel/home
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hydrological data and visual interpretation of satellite data, resulting in 228 points representing 

different river mouths. Using these points, a Euclidean distance raster was generated with a 30 

meter pixel resolution, estimating the distance of each 30 meter pixel from a river mouth. 

 

 Distance to developed areas 

Disturbance from human activities could influence shorebird foraging behavior and subsequent 

distributions across intertidal flats (Burger 1986, Burger et al. 2007, Burger and Niles 2013). As a 

proxy for disturbance potential, a raster of Euclidean distance to developed areas was generated. 

Developed areas were determined through satellite image interpretation, aided by Brazilian 

census data. Regions with significant populations and noticeable footprints, typically villages 

with a number of buildings and permanent infrastructure like docks and powerlines, were 

represented by digitized points where developed areas intersected with coastal habitat. Mean 

distance of each plot was used in the model. 

 

 Distance to Mangroves 

Mangroves are often utilized by a variety of shorebird species as refuge or roosting habitat. 

Proximity to mangroves has been demonstrated in previous research as an important component 

in habitat choice for some shorebirds species in some migratory locations (Lunardi et al 2012, 

Zwarts 1988). Mangroves are a dominant component of the landscape in northern Brazil and 

earlier work in the region indicates that they may play an important role there as well (Kober and 

Bairlein 2009). Mean distance was calculated for each plot and utilized in the Maxent model. 

 

Tidal exposure 

How often different segments of a tidal flat are exposed throughout a tidal period may also 

influence shorebird foraging patterns (Burger et al. 1977). To estimate what portions of flats are 

exposed at low and mid tides, additional imagery taken at mid-tide was acquired and processed in 
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the same fashion as described above to isolate the intertidal zone. This, combined with the low 

tide intertidal area already isolated, resulted in a raster where the intertidal zone was 

differentiated into two categories: areas exposed at low tide and areas exposed at mid tide. The 

most common value of each plot was then used as the habitat metric. 

 

 Permanence 

Site fidelity, or individuals using the same location from one year to the next, is highly prevalent 

in some overwintering locations for some species of migratory shorebirds (Leyerer et al. 2006, 

Warnock and Takekawa 2008). Permanence, or the approximately likelihood of any given patch 

of intertidal zone existing from one year to the next, may be an important characteristic that 

species use to determine habitat value. A crude metric of permanence was developed based on the 

intertidal imagery accrued for this project. For each pixel, the intertidal zone was delineated in 

two images, one from an earlier date and one from a later date. Because of the challenges 

associated with cloud-free, tide-specific image acquisition at the site, replicating consistent dates 

or even date ranges was impossible. As such, “old” and “new” imagery ranged between 1 and 3 

years apart in age. Each pixel was then categorized as: present only in the earlier image (1),  

present only in the later image (2), or present in both earlier and later images (3).  The mode, or 

most common value was then calculated for each plot. 

 

2.2e - Isolating intertidal region 

While surveys were conducted to a maximum of 250 meters from the tidal edge, 

significant portions of that survey region were often not intertidal foraging habitat, e.g. water, 

sand dunes, or mangroves. These features, while often noted, were not considered when counting 

foraging wading birds. Only regions clearly within the intertidal zone were examined and 

recorded for the purposes of identifying foraging habitat during the survey. Because of this, 

looking at all remote sensing and landscape data within the 250 meter plots could include features 
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not part of the intertidal region, leading inaccurate assessments of the spectral characteristics of 

the intertidal foraging area surveyed (Figure 2.2). To compensate for this issue an intertidal zone-

only mask was developed for both locations using methods outlined by Murray et al. (2012).  A 

Normalized Difference Water Index (NDWI = (Green – Near Infrared)/(Green + Near Infrared)) 

was calculated using the mosaicked imagery, enhancing the presence of surface water. Water 

tends to have higher reflectance in the Green Wavelengths than in the Near Infrared; on land this 

is often reversed. Where water is present, the difference between Green and Near Infrared will be 

positive. A threshold was determined by visual inspection to designate all NDWI values above 

the threshold as water, all values below the threshold as land, for both high tide and low tide 

images. The high tide classified land image was then differenced from low tide land image, 

isolating the intertidal zone. This binary intertidal zone was used to mask the cloud free Landsat 8 

surface reflectance, smoothed Sentinel 1 backscatter data, landscape metrics, and climate 

variables averaged over the migration stay. 

 

2.2f - Species Distribution Modeling 

Data Preparation 

A single value was estimated for each environmental parameter for each survey point based on 

summary statistics of the intertidal pixels that fell within the 250 meter radius region of each 

survey point: mean and standard deviation of pixel values for each remote sensing band, mean 

distance to rivers, mean distance to developed areas, mode of tidal exposure and permanence 

values, mean average temperature, lowest minimum temperature, highest maximum temperature, 

mean average solar radiation, mean average precipitation, and mean average wind speed. For 

each species, points were either designated as presence points, where a sighting was recorded, or 

absence, when no sighting of that species was recorded. Sixty percent of the data was then 

randomly assigned to “calibration data”, while the other forty percent was reserved as “validation 

data” (Table 2.1). Input data for MaxEnt were the records of presence for each species with the 
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summary of pixel values for each environmental variables within the intertidal masked 250 meter 

survey plots. To match the scale of survey plots and input data to projected data, environmental 

layers were generated using 250 meter radius moving window filters and the original layers. For 

example, each remote sensing band had two layers, one where each 30 meter pixel represented 

the mean of all 30 meter pixels within a 250 meter radius in the original raster; another where 

each 30 meter pixel represented the standard deviation of all 30 meter pixels within a 250 meter 

radius.  

 

MaxEnt Modeling Package 

Maxent estimates the probability of presence conditioned on the environment using 

presence-only data. Presence-absence models, with data sets of presence and absence records, 

determine the probability of presence as a function of environmental variables, utilizing the 

proportion of occupied sites in the landscape (prevalence). Presence-only models like Maxent, 

lack absence data and inherently cannot calculate prevalence. Maxent estimates the probability of 

presence starting with the ratio of the conditional density of the covariants at the presence sites, 

and the unconditional density of covariates across the whole landscape using an exponential 

model. The output is transformed to a logistic model, with the transformed prevalence value 

(transformed to “Tau”) arbitrarily set to a constant 0.5 (Elith et al. 2011).  I used MaxEnt version 

3.4.1  (https://biodiversityinformatics.amnh.org/open_source/maxent/) with the leave-one-out 

cross-validation approach where the calibration occurrence data (60% of all data) is randomly 

split into 10 equal-sized “folds”, the model is run 10 times with a different fold left out each time 

for evaluation, and then the average of all runs is used in the final evaluation. To account for 

overfitting of the model, a ‘bias’ file was generated using the 250-meter buffered survey points. 

Bias layers act as exclusionary regions by Maxent when generating the background samples so 

that the background data is sampled from where surveys occurred, so that the pseudo-absence 

background data has the same sample biases as the survey data itself.  For each of the eight 

https://biodiversityinformatics.amnh.org/open_source/maxent/
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species, seven models were run: one for each set of landscape, remote sensing, and Worldclim 

variables on their own; one for each pair of variable sets (landscape-remote sensing, landscape-

Worldclim, remote sensing-Worldclim); one using all three sets of variables (landscape-remote 

sensing-Worldclim). This resulted in a total of 56 models (eight species * seven models per 

species).  

Maxent evaluates each variable within the model based on the metrics of “percent 

contribution” and “permutation importance”. Percent contribution is derived during the iterative 

model training process, where variables contribute either negatively or positively to model 

response each iteration, with these contributions summarized by the percent contribution value. 

Permutation importance is derived when training presence and background variable data are 

randomly permutated, with subsequent models evaluated based on drop in training AUC scores, 

normalized as percentages. In other words, each variable is evaluated by assigning a random 

value to it, and seeing how poorly the models function with the randomly assigned valued 

compared to the actual data. The two metrics, percent contribution and permutation importance, 

can then be used to interpret the importance of different variables for model function (Phillips et 

al. 2006, Elith et al. 2009, Elith et al. 2011). 

A common approach to overall model evaluation uses measures of predictive success, 

specifically the area under the curve (AUC) scores generated by Maxent. Receiver operator 

curves (ROC) are generated by plotting model sensitivity (proportion of correctly classified 

presence) as a function of commission error using, not true absences, but pseudo-absences 

generated from background data. AUC scores serve as summaries of these plots, indicating the 

probability that true presence will have a higher model output than a true absence or, in the case 

of Maxent, a pseudo-absence (Phillips et al. 2006). AUC scores can be useful tools for 

discriminating between models, though some criticism points out that, unlike other metrics of 

model performance (e.g. AIC, BIC), AUC does not penalize models for the numbers of variables 
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it uses. In other words, AUC scores do not prioritize parsimony, and can result in exceptionally 

complex models whose biological significance is difficult to determine (Golicher et al. 2012). 

 

 Amarel Computer Cluster 

Because of the volume of models (56 total models), Rutgers’ Amarel Computer Cluster 

(https://oarc.rutgers.edu/amarel/) was utilized to dramatically increase the speed of model run-

times. Environmental variable rasters and presence records were imported into the Amarel 

system, and Maxent was run utilizing the Amarel Computing Cluster’s drastically increased 

processing power, reducing model run times from approximately 24 hours per model, to 

approximately 2 hours per model. A detailed explanation of this process is available in the 

Appendices. 

 Validation 

Outputs of Maxent models were summarized for the area within each of the reserved validation 

points. For each species, validation data was split into presence points, where the respective 

species was observed, and absence points, where the species was not observed (Table 2.2). 

Welch’s T-Test was used to determine if the mean predicted probability of presence (the Maxent 

output) values for the presence points were significantly different than the mean Maxent values 

for the absence point. Welch’s T-Test is designed for populations with unequal variances, but 

does assume a normal distribution of values within the population. This approach to validation 

was repeated for each species model, with their respective presence and absence points. 

 

2.3 - Results 

 Model AUC and Validation results 

Half of the models (Table 2.2) had higher AUC scores than the suggested minimum for useful 

discrimination of 0.75 (Elith et al. 2006), two had AUC scores near the minimum (semipalmated 

plovers 0.726, semipalmated sandpipers 0.718) and two were well below the minimum threshold 

https://oarc.rutgers.edu/amarel/
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(ruddy turnstones and red knots). The mean model outputs of the validation points were 

significantly different (Welch’s T-Test, p < 0.05) between presence and absence points for most 

models, with the exceptions of sanderling and black bellied plover models (Table 2.2). 

 

Variable significance 

Of the top reporting model for each of the eight species (highest AUC values with T-Test p < 

0.05), all but one (BBPL) used the landscape variables, and five (ruddy turnstones, sanderlings, 

semipalmated plovers, whimbrels, willets) utilized all landscape, remote sensing, and Worldclim 

variables (Table 2.2). 

Of the thirty-two models across all species that included remote sensing values, 23 of the 

32 (72%) included the mean of vertical-horizontal backscatter for the plot (“b8mean”), and 21 of 

the 32 models included the standard deviation of vertical-horizontal backscatter (“b8std”) in the 

top 5 contributing variables. Of the landscape variables, permanence was the most common with 

27 of the 32 models (84%) including it in the top 4 variables based on either percent contribution 

or permutation importance. Distance to mangroves was also prevalent in 24 of the 32 models 

(75%) that included landscape variables. For several species (black bellied plovers, ruddy 

turnstones, semipalmated sandpipers, whimbrels), mangrove distance played a significant role in 

every model it was included in. Distance to developed regions was in the top 4 for 18 of the 32 

models (56%). 

 

2.4 Discussion 

The models I developed successfully estimated the predicted probability of presence. 

Using the criterion of AUC ≥ 0.75 as a threshold metric for model suitability (Elith et al., 2006), 

the MaxEnt models for ruddy turnstone, whimbrel, and willet qualify as valid predicted 

probability of presence estimates (Table 2.2). The remaining species’ models (black bellied 

plovers, red knot, sanderlings, semipalmated plovers, semipalmated sandpipers), while having 
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AUC scores that suggest unreliability in terms of differentiating between likely and unlikely 

habitat (AUC < 0.75), all reported at least one model with significant differences of predicted 

probability of presence between presence and absence validation points (Table 2.2). Furthermore, 

presence validation points consistently reported higher predicted probability of presence 

compared to absence points for models of each species (Figure 2.4), indicating that models 

successfully discriminated between presence and absence points. Several models were considered 

viable in terms of both AUC and presence-absence validation, but model choice based on these 

two metrics presented its own questions.   

The two metrics of model efficacy, AUC and T-test comparing presence-absence 

validation points, did not always corroborate each other. For example, the only black bellied 

plover model to have significant differences between presence and absence validation points also 

had the second lowest AUC score for the species, which was below the suggested threshold 

(model AUC = 0.703 vs threshold AUC of 0.75, Table 2.2). With the goal of presence-only 

models accurately predicting presence of a species, it would be expected that model evaluation 

metrics reflect the effectiveness of models in discriminating between presence and absence 

points. With our models, this does not appear to be the case. Across all species, models with 

higher AUC scores were not more likely to pass the validation test, with no significant difference 

in AUC scores for models that passed the validation versus those that did not (T-Test p-value = 

0.2284). It is possible that further independent validation may be needed to confirm the 

effectiveness of these models, which could be possible in future work utilizing either 

independent, on-the-ground surveys, or aerial surveys like those conducted by Morrison et al. 

(2012). The model evaluation metric itself may contribute to this discrepancy. There has been 

criticism of using AUC scores for model evaluation, particularly in comparison to more 

conventional metrics like Akaike or Bayesian information criterions. Criticism is largely centered 

around AUC lacking penalization for the number of variables used in a model. This can result in 

prioritizing highly complex models with large numbers of variables whose biological significance 



58 
 

cannot be interpreted (Golicher et al. 2012). With AUC score held up as the standard metric for 

evaluating Maxent model efficacy, understanding the relationship between AUC scores and 

independent validation data needs further investigation. 

One possible explanation for the discrepancy in the two metrics of model efficacy is the 

bias layer that was utilized to prevent overfitting. A bias mask layer can be used in the Maxent 

package to compensate for areas that were oversampled by the survey effort, typically a mask of 

the survey area itself or occurrence data of taxonomically related species. In this case, surveys 

were typically conducted in areas that were easier to access via boat or walking. Areas outside the 

mask are then excluded from the background sampling, ensuring that the background 

pseudoabsences have the same sample biases as the occurrence data (Phillips et al. 2009). It is 

possible that our bias file may be overcompensating, as models run without the bias file had much 

higher AUC scores that more closely aligned with the T-Test of the validation points. For 

example, a red knot model with a bias layer included had an AUC score of 0.552, while the same 

model run without a bias layer reported an AUC score of 0.698, with both models reporting 

statistically significant differences between presence and absence validation data. It may be that 

our study design was still sufficiently random given the nature of how transects of survey plots 

were selected. 

Remote sensing metrics proved to be important variables for determining predicted 

probability of presence in 5 out of the 8 top performing models when defining “top performing” 

as the models with highest AUC score with significantly different presence and absence 

validation points (Table 2.2).  Models typically responded to the mean remote sensing values of 

plots in a manner consistent with previous findings on remote sensing and sediment size. Maxent 

generates two response curves for each variable: one where each other variable remains constant 

as the variable in question is varied, and one where the model was run only using the variable in 

question. I focused on the latter (Figures 2.4, 2.5, and 2.6), as they are easier to interpret if there 

are strong correlations between variables, which was likely for metrics like remote sensing 
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(Phillips et al. 2006). Black bellied plovers, ruddy turnstones, whimbrels, and willets all had 

model response negatively correlated with remote sensing reflectance values, with increased 

reflectance resulting in decreased model response. Radar backscatter had a positive correlation, 

with increasing model response as backscatter values increased (Figure 2.5). Based on previous 

research, northern Brazil exhibits decreasing reflectance and increasing backscatter in association 

with higher proportions of fine sediments, or mud (Chapter 1). Conversely, sanderlings had a 

positive correlation between model response and reflectance, with increasing responses as 

reflectance increased. Radar response was more ambiguous for sanderlings, though slightly 

stronger responses for lower radar backscatter values (Figure 2.5).  In northern Brazil, high 

reflectance is typically associated with larger sediment size, e.g. sand substrate, as was lower 

backscatter values (Chapter 1). These results are reasonably consistent with previous research, 

which identified shorebird niches based on intertidal sediment microhabitats at other migratory 

locations (Bocher et al 2014, Burger et al 2018). For example, both willets and whimbrels prey 

extensively on fiddler crabs (Backwell et al. 1998), which typically make their burrows in finer, 

muddy substrate. Furthermore, Kober and Bairlein (2009) found on the Bragantinian Peninsula in 

northern Brazil (which falls within this study region), that sanderlings preferred coarse substrate 

and black-bellied plovers preferred fine substrate, closely aligning with the model responses of 

both species. Remote sensing metrics responding consistently with shorebird ecology suggests 

potential future applications. MaxEnt models have regularly been used for projecting distributions 

of species by applying models calibrated on existing data to predicted future environmental 

variables (Araujo and New 2007, Phillips and Dudik 2008). The models developed here could be 

used to detect landscape-scale changes in habitat use by running the models on new, readily 

available remote sensing data acquired at future dates (Amici et al. 2017). Based on AUC scores, 

validation results, and prior understanding of the remote sensing-sediment relationship, MaxEnt 

models utilizing remote sensing metrics are viable estimates of predicted probability of presence, 
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grounded in ecological knowledge, and may be useful metrics for evaluating changes in habitat 

composition over time. 

Of the landscape variables, distance to mangrove and permanence were both highly 

prevalent, with distance to developed areas also playing a role in some models. Black-bellied 

plovers, willets, and whimbrels again had similar responses, specifically to mangrove distance, 

with higher model response closer to mangroves (Figure 2.6). Mangroves can provide important 

refuge to some species of shorebirds (Lunardi et al 2012, Kober and Bairlein 2009, Zwarts 1988) 

and a major prey species, fiddler crabs (Backwell et al. 1998), possibly explaining the variable’s 

impact on the models. When considering the two species most affected by the distance to 

developed regions variable, sanderlings and semipalmated sandpipers, the variable response was 

unclear.  Sanderlings had a generally inverse relationship between distance to developed and 

model response, but semipalmated sandpipers responded most to middle distances. There is 

significant research supporting the effects of human disturbance on shorebird behavior and 

foraging (Navedo et al 2019, Tarr et al. 2010, Burger et al. 2007, Burger et al. 1986), which may 

explain the response of the sanderlings, but the biological significance of the semipalmated 

sandpiper response to distance to developed remains unclear. The metric of distance to developed 

area used here does not differentiate between the types of development or human use within the 

region. It has been demonstrated that shorebird species have different responses to different types 

of human disturbance (Tarr et al. 2010, Burger and Niles 2013, Burger and Niles 2017), which 

our metric does not account for. This discrepancy may also influence the varying response of 

sanderlings and semipalmated sandpipers. 

While the crude metric of permanence that was developed appeared to be significant 

from a modeling perspective, interpreting its biological significance is tricky at best. Permanence 

was defined as one of three categories: intertidal only in an earlier image, intertidal only in a later 

image, or intertidal in both images. Image acquisition was limited based on relevant timeframes, 

tidal stages, and cloud cover, resulting in few images for comparison for each scene, with widely 
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ranging gaps between image dates. While there are obvious methodological limitations to this 

piloted approach, the results had significant effects on modeling. Many species, including 

sanderlings, semipalmated plovers, whimbrels and willets all responded most to pixels that fell 

into the second category, where most pixels in a plot were found in the later date, but not the 

earlier date (Figure 2.6). It could be interpreted that site fidelity is not as important to these 

species, otherwise sites that are consistently intertidal (the third category of the permanence 

metric) would be more highly ranked. As it stands, its biological significance remains unclear, 

though these results suggest a more thorough investigation of the concept of permanence would 

be beneficial. Recent work developing a set of global intertidal maps across the whole Landsat 

time series and Google Earth Engine (Murray et al. 2019) may prove to be a useful tool for 

developing a more robust metric of permanence. 

Climate variables were highly prevalent in many models but proved to be rather difficult 

to parse. For example, average wind-speed was significant for both whimbrels and willets which 

had wind-speed response graphs that were nearly identical. Models responded inversely to wind-

speed, with low wind speed having a higher response than high wind-speed (Figure 2.7). 

However, wind-speed only ranged from 1 to 2 meters per second, meaning that a relatively small 

increase in wind speed had a significant impact on model function. The models are supposed to 

reflect observed shorebird distributions which, in this case, suggests that shorebirds preferentially 

use intertidal habitat with slightly lower windspeeds. Similarly, temperature values ranged only 1 

degree across the study site and had equally significant differences in model response between the 

upper and lower bounds (Figure 2.7). While theoretically possible, it seems unlikely that such 

marginal changes in climate have real biological significance to habitat use of highly mobile, 

endothermic species like migratory shorebirds. Though climatic variables are significant in 

distribution modeling of many other species and locations (Bradie and Leung 2017), their 

biological significance towards intertidal foraging habitat in northern Brazil may be limited. The 

study site is both near the equator, covers a relatively narrow range of latitudes, and the specific 



62 
 

habitat in question, the intertidal zone, is relatively homogenous in elevation and topography 

(Figure 2.8) unlike other studies utilizing climatic variables that span continents and latitudes. 

Between these site qualities, the specific habitat, and the species being modeled, it seems unlikely 

that the climate variables have real biological significance in this context. 

There are areas for improvement with both the data and modeling approach. Some 

species, namely the red knot, had a very small sample size for calibration data (n=16). This likely 

is a major contributor to the poor model performance for the red knot and increasing sample sizes 

may also improve performance in the other species that had more moderate sample sizes. 

Increasing the sample size through either new sampling efforts or pulling from older records 

would be immensely helpful.  However, this may present new challenges with the already 

difficult task of matching surveys to available (and cloud free) satellite imagery. Because of the 

difficulty associated with acquiring cloud free, tide-specific imagery, imagery often was not from 

similar timeframes as survey efforts, with some mismatches as extreme as years apart. While 

obviously not ideal, models and remote sensing metrics still performed well. Another issue with 

that may be a factor with the surveys and model is detection probability. Detection probability is 

likely a minor issue in this particular study due to both the species of interest, survey design, and 

modeling approach. Migratory shorebirds foraging on open flats are not nearly as difficult to 

detect as, for example, grassland birds (Diefenbach et al. 2003). Furthermore, surveys design 

specifically incorporated conservative estimates of the maximum distance that the highly 

experienced surveyors could correctly and consistently identify shorebirds. Finally, like all 

MaxEnt presence-only modeling approaches, our models do not inherently account for issues of 

detection probability and assumes detection probability is constant across the study region 

(Yackulic et al. 2013). Detection errors may influence the distribution of habitat use predicted by 

the models. Commission errors incorrectly identifying presence locations where no birds were 

found, may result in a broader predicted habitat use, while omission errors could result in more 

restricted extents of predicted habitat. Other modeling approaches, namely abundance-based N-
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mixture models (Kéry and Royle 2016), can explicitly incorporate estimates of detection 

probability, and have successfully done so for shorebird abundance modeling (Studds et al. 2017). 

However, detection probability is still a significant issue in these types of models, and a MaxEnt 

approach significantly reduces those errors by ignoring absence data entirely, and requiring only a 

single confirmed sighting of a species, not accurate count estimates (Elith et al. 2011).  

There are alternative modeling tools to the presence-only Maxent approach I utilized. The 

survey data used to calibrate Maxent models is originally an abundance data set, with absences 

noted as well. I opted for the presence-only Maxent approach because of the simplicity in model 

execution, and robust literature that supports both the general approach of presence-only 

modeling, and the Maxent modeling package specifically. Alternative modeling approaches may 

be useful for further discriminating habitat use, including Bayesian hierarchical generalized linear 

models based on presence-absence or abundance (Franklin and Miller 2009). Presence-absence 

modeling has some advantages over presence-only modeling, namely how presence-absence 

models manage prevalence (proportion of occupied sites) and sample biasing issues. Prevalence 

can be directly estimated in presence-absence modeling, unlike in presence-only modeling where 

statistical work-arounds and estimations are used as a proxy (Phillips et al 2006, Elith et al 2011). 

Sampling bias remains a problem in presence-only models, but in presence-absence, the bias in 

the presence data generally cancels out with the bias in the absence data, making it a non-issue 

(Zadrozny 2004). Future work fully utilizing the abundance survey data may lead to new 

conclusions about alternative model approaches and their effects on management decision 

making. 

 

2.5 Conclusions 

Distribution modeling using remote sensing values was successful at accurately 

classifying predicted probability of presence for some species (ruddy turnstones, whimbrels, 

willets) Internal model metrics, like AUC values, do not always corroborate external validation 
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methods, which can be problematic from a model-choice perspective and needs further 

investigation. Based on the discrepancies between AUC and validation t-tests, even best 

performing models still will require significant validation and testing using independent survey 

data. Models performing poorly according to AUC scores (black bellied plovers, red knots, 

sanderlings, semipalmated plovers, semipalmated sandpipers) may still provide model results that 

effectively differentiate between presence and absence points. Remote sensing variables, 

particularly vertical-horizontal radar backscatter and near infrared reflectance, contributed 

significantly to model function and were logically consistent with known biology. Climate 

variables, while often statistically significant, were not logically consistent with known biology, 

which may be due to the climatically homogenous nature of the study site. Finally, some 

landscape variables, like permanence, demonstrated modeling significance but their relevance to 

biological processes was difficult to parse and requires further refinement. Future efforts of 

making parsimonious, statistically sound, and biologically relevant shorebird distribution models 

for use in conservation and management decision-making in northern Brazil should utilize remote 

sensing and landscape metrics, as climatic variables appear biologically inappropriate for this 

context. 
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2.6 – Tables and Figures 

Table 2.1: Common name, four-letter alpha code, and Latin name of the eight modeled migratory shorebird species. Listed for each 

species is the number of presence points used in model calibration, validation, and in total, as well as the number of reserved absence 

points used in validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Common Name Alpha Code Latin Name 

Presence points Absence points 

Calibration Validation Total Validation 

Black-bellied plover BBPL Pluvialis squatarola 126 83 209 159 

Red Knot REKN Calidris canutus rufa 16 10 26 232 

Ruddy Turnstone RUTU Arenaria interpres 76 53 129 189 

Sanderling SAND Calidris alba 120 30 150 212 

Semipalmated Plover SEPL Charadrius semipalmatus 109 64 173 178 

Semipalmated Sandpiper SESA Calidris pusilla 204 75 279 167 

Whimbrel WHIM Numenius phaeopus 183 105 288 140 

Willet WILL Tringa semipalmata 113 67 180 175 
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Figure 2.1: Study area located on the northern coast of Brazil (area in red on insert map, bottom 

left), straddling the states of Pará to the west, and Maranhão to the east. The coastline is roughly 

400 miles long (purple), with 300 miles (orange) between the respective capitals of Belém and 

São Luís. 
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Figure 2.2: Surveys consisted of 250 meter radius plots (black) conducted along transects across 

beach and mud flats accessed either by boat or foot. To ensure that environmental variables 

sampled for plot characteristics only represented the intertidal zone, a mask (orange) was utilized 

to limit plot statistics to the intertidal zone. 
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Figure 2.3: A sample of area of how the 6 landscape metrics are represented within the intertidal 

zone.
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Table 2.2: AUC scores and T-Test comparing presence and absence points of reserved validation data for models that used the variable 

sets (landscape, remote sensing, and Worldclim) in isolation, pairs, and all together. Boxes in pink indicate models with AUC scores 

greater than the 0.75 threshold suggested for useful discrimination of presence (Elith et al. 2006), while boxes in blue indicate a model that 

passed the validation test with mean predicted probability of presence higher in presence points compared to absence points of the 

reserved validation data. 

 

Landscape Only 
Remote Sensing 

Only 
Worldclim Only 

Landscape and 

Remote Sensing 

Landscape and 

Worldclim 

Remote Sensing 

and Worldclim 

Landscape, Remote 

Sensing, and 

Worldclim 

 AUC T-Test AUC T-Test AUC T-Test AUC T-Test AUC T-Test AUC T-Test AUC T-Test 

BBPL 0.775 0.4392 0.629 0.5562 0.703 0.001166 0.783 0.5562 0.806 0.2746 0.746 0.0892 0.781 0.3675 

REKN 0.572 0.0073 0.493 0.003 0.642 0.1747 0.504 0.003 0.561 0.05429 0.55 0.0395 0.552 0.046 

RUTU 0.696 0.0545 0.671 <0.001 0.644 0.00389 0.709 <0.001 0.727 0.03675 0.734 <0.001 0.761 0.0011 

SAND 0.584 0.8685 0.618 0.1941 0.709 <0.001 0.707 0.1941 0.73 0.00575 0.681 <0.001 0.744 0.0237 

SEPL 0.654 0.6228 0.646 0.03546 0.712 0.4591 0.695 0.0354 0.724 0.0109 0.709 <0.001 0.726 0.029 

SESA 0.652 0.1872 0.578 0.2321 0.67 <0.001 0.69 0.2321 0.721 <0.001 0.655 <0.001 0.718 0.0034 

WHIM 0.752 0.0013 0.644 0.1543 0.672 <0.001 0.776 <0.001 0.789 <0.001 0.75 <0.001 0.791 <0.001 

WILL 0.767 0.0023 0.712 <0.001 0.788 <0.001 0.841 <0.001 0.841 <0.001 0.827 <0.001 0.85 <0.001 
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Table 2.3.a: Top four contributing variables, either due to percent contribution or permutation 

importance, for each model based on species (left) and variable category (top). Boxes with pink 

highlight indicate models with AUC scores above the threshold for use based on previous 

literature (> 0.75). Boxes in blue represent models that pass the validation test, with presence 

validation points having significantly different (p < 0.05) predicted probability of presence from 

absence validation points based on a T-Test of plot means. Boxes in purple have both AUC 

scores above the threshold (> 0.75), and passed the validation test (p < 0.05). Red boxes indicate 

the best performing model for a given species, defined by the highest AUC score that passed the 

validation T-Test. 

 
 

 

  



71 
 

Table 2.3.b: Top four contributing variables, either due to percent contribution or permutation 

importance, for each model based on species (left) and variable category (top). Boxes with pink 

highlight indicate models with AUC scores above the threshold for use based on previous 

literature (> 0.75). Boxes in blue represent models that pass the validation test, with presence 

validation points having significantly different (p < 0.05) predicted probability of presence from 

absence validation points based on a T-Test of plot means. Boxes in purple have both AUC 

scores above the threshold (> 0.75), and passed the validation test (p < 0.05). Red boxes indicate 

the best performing model for a given species, defined by the highest AUC score that passed the 

validation T-Test. 
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Table 2.3.c: Top four contributing variables, either due to percent contribution or permutation 

importance, for each model based on species (left) and variable category (top). Boxes with pink 

highlight indicate models with AUC scores above the threshold for use based on previous 

literature (> 0.75). Boxes in blue represent models that pass the validation test, with presence 

validation points having significantly different (p < 0.05) predicted probability of presence from 

absence validation points based on a T-Test of plot means. Boxes in purple have both AUC 

scores above the threshold (> 0.75), and passed the validation test (p < 0.05). Red boxes indicate 

the best performing model for a given species, defined by the highest AUC score that passed the 

validation T-Test. 
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Percent 
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Contribution

Permutation 

Importance

Percent 

Contribution

Permutation 

Importance

Percent 

Contribution

Permutation 

Importance

Percent 

Contribution

Permutation 

Importance

Percent 

Contribution

Permutation 

Importance

1 mangdist, 67.1 mangdist, 50.3 b8std, 36 b3mean, 24.4 tminmin, 38.4 precavg, 67.9 mangdist, 36.6 mangdist, 20.9 mangdist, 49 mangdist, 36.4 b8std, 19.2 b8mean, 21.2 mangdist, 32.8 mangdist, 19.9

2 exposure, 12.2 devdist, 28.5 b8mean, 11.1 b4std, 11.6 precavg, 26 tmaxmax, 15.1 b8mean, 8.8 b6mean, 9.5 devdist, 10.1 devdist, 24.7 tminmin, 17.5 b3mean, 16.7 windavg, 7 b8mean, 16.2

3 devdist, 10.1 riverdist, 12.8 b9std, 7.8 b8mean, 11.6 tmaxmax, 15.2 tminmin, 9.1 b8std, 7.4 b5mean, 9.2 windavg, 8.8 precavg, 19.7 windavg, 11.2 b2mean, 10.1 devdist, 6.8 b5mean, 12.1

4 permanence, 6.5 exposure, 7.8 b1mean, 7.5 b1mean, 11.2 windavg, 15.1 windavg, 5.8 exposure, 7.2 b8mean, 8.6 precavg, 7.6 windavg, 6 b8mean, 9.8 b9mean, 6.7 b8std, 6.3 devdist, 7

1 permanence, 75.2 exposure, 57.1 b8mean, 66.4 b8mean, 41.9 tmaxmax, 58 tmaxmax, 57.8 permanence, 44.2 permanence, 28.3 tmaxmax, 40 permanence, 31.5 tmaxmax, 41.6 tmaxmax, 25.6 tmaxmax, 26.9 b8std, 22.3

2 riverdist, 11.6 permanence, 42.3 b1mean, 9.5 b8std, 16.9 windavg, 23.1 windavg, 29.4 b8std, 11.1 b8std, 23.5 permanence, 36.2 exposure, 26.1 windavg, 16.8 b8std, 15.5 permanence, 25.9 tmaxmax, 14.3

3 exposure 11.4 devdist, 0.4 b6std, 5.1 b6std, 10.7 tavgavg, 16.5 precavg, 7.8 exposure 8.5 exposure, 11.6 tavgavg, 8.6 tmaxmax, 17.5 tavgavg, 12 b9std, 12.9 b8std, 11.3 exposure, 14.1

4 devdist, 1.3 riverdist, 0.1 b8std, 4.4 b5mean, 9.7 precavg, 2.3 sradavg, 4.8 b2std, 6.8 riverdist, 7.3 windavg, 6 riverdist, 13.5 b1std, 5.6 b6std, 10.7 b1std, 5.9 permanence, 9.1

1 mangdist, 48.5 mangdist, 48.9 b8std, 38.5 b5mean, 34.8 precavg, 45.7 precavg, 44.3 b8std, 35.2 b5mean, 26.6 mangdist, 45.3 mangdist, 51 b8std, 36.3 b5mean, 33.5 precavg, 17.2 precavg, 12.8

2 permanence, 21.8 riverdist, 24.5 b9std, 20.8 b8std, 12.6 sradavg, 35.1 sradavg, 29.1 permanence, 14.5 b1std, 9.7 permanence, 21.4 precavg, 15.3 precavg, 9.3 b8mean, 11.1 b8mean, 11.9 b8std, 11.1

3 riverdist, 13.8 devdist, 14.5 b1std, 9.5 b1std, 10.6 tavgavg, 12.9 tavgavg, 12.6 mangdist, 11.2 b6mean, 8.5 devdist, 9.2 riverdist, 9.8 b5mean, 8.8 b6mean, 9.6 permanence, 11.1 mangdist, 10.7

4 devdist, 10.5 permanence, 8.6 b5mean, 8.3 b4std, 8.6 windavg, 3.7 tminmin, 12.9 riverdist, 7.1 b8std, 7.4 riverdist, 7.3 devdist, 7.7 sradavg, 8.5 b1std, 9.4 b9mean, 10.4 riverdist, 9.5

1 permanence, 53 permanence, 49.3 b7mean, 20.1 b3mean, 21.2 sradavg, 46.2 sradavg, 23.6 permanence, 21 permanence, 26 permanence, 28.7 sradavg, 25.5 b7mean, 21.4 sradavg, 22 permanence, 19.2 sradavg, 11.9

2 devdist, 20 devdist, 23 b4mean, 18.3 b4mean, 16.2 tminmin, 18.3 tmaxmax, 22.7 b8mean, 13.6 b1std, 13.3 sradavg, 21.3 permanence, 16.6 sradavg, 19.8 b1std, 12.5 b6mean, 11.1 devdist, 11.4

3 riverdist, 17.2 riverdist, 18.4 b8mean, 18 b4std, 15.2 precavg, 17.9 tminmin, 21.5 b6mean, 13.4 b7mean, 12.4 precavg, 10.8 precavg, 15.2 tminmin, 13.8 b4mean, 9 b1mean, 9.8 permanence, 11.1

4 mangdist, 9.6 mangdist, 9.3 b4std, 10.7 b1mean, 10.5 tmaxmax, 7.5 windavg, 20.1 b1mean, 9.8 b8mean, 10 riverdist, 9.7 tmaxmax, 12.3 b1mean, 8.6 tminmin, 6.6 sradavg, 9.6 b4mean, 8.3

1 mangdist, 47.8 mangdist, 50.4 b9std, 24.3 b2mean 18.6 tmaxmax, 42.2 tminmin, 37.7 b8mean, 18.6 b8mean, 20.7 tmaxmax, 38.5 mangdist, 21.1 tmaxmax, 29.6 b1mean, 13.8 tmaxmax, 25.7 b8mean, 13.6

2 permanence, 26.9 permanence, 17.2 b8mean, 17.8 b6mean 10.9 tminmin, 32.2 tmaxmax, 33.1 b8std, 17.7 b9mean, 11.3 permanence, 11.7 riverdist, 16.6 tminmin, 21.7 b5mean, 10.1 b8std, 8.4 b1mean, 10.1

3 devdist, 13.6 devdist, 16.6 b8std 13.7 b4std, 10.6 windavg, 12.8 precavg, 20.6 permanence, 12.6 b4std, 9.1 tminmin, 11.4 precavg, 12.8 windavg, 8.5 b9mean, 9.9 permanence, 7.9 b9mean, 8

4 riverdist, 8.4 riverdist, 8.4 b2mean 10.3 b5mean, 10.5 precavg, 6.2 sradavg, 6.7 mangdist, 10.3 mangdist, 8.1 windavg, 10.7 permranence, 11.6 b8mean, 7.4 b8mean, 8.9 tminmin, 7.7 b5mean, 7.5

1 mangdist, 36.8 mangdist, 44.8 b1mean, 19.4 b5mean, 18.4 windavg, 44 windavg, 40 permanence, 18.3 b7mean, 9.3 tmaxmax, 24.4 precavg, 34.9 windavg, 26.7 b5mean, 23.6 tmaxmax, 15.4 b5mean, 19.2

2 permanence, 35.4 devdist, 24 b8std, 15.8 b2mean, 13.1 tmaxmax, 36 precavg, 34 mangdist, 16.6 mangdist, 7.5 permanence, 18 devdist, 21.5 tmaxmax, 22.2 b1mean, 13.4 mangdist, 12.5 devdist, 8.3

3 devdist, 20 permanence 19.9 b5mean, 12.2 b8mean, 9.9 precavg, 9.1 tmaxmax, 19.9 devdist, 11.4 b3mean, 6.7 mangdist, 17.3 mangdist, 16.2 prpecavg, 6.8 windavg, 9.1 permanence, 11.9 mangdist, 8.2

4 riverdist, 6.1 riverdist, 9.6 b8mean, 10.1 b4std, 9.5 tminmin, 5 tminmin, 2.5 b8mean, 9.6 b8mean, 6.3 windavg, 14 windavg, 8.1 b5mean, 6.5 b7mean, 8.9 windavg, 10 b8mean, 7.6

1 mangdist, 62.7 mangdist, 51.5 b4mean, 43.5 b4mean, 16.5 windavg, 35.6 precavg, 81.6 mangdist, 40.4 mangdist, 17.7 mangdist, 49.9 precavg, 33.5 b8std, 17.6 b8mean, 15.8 mangdist, 35.2 b8mean, 18

2 permanence, 19.4 devdist, 25.8 b8std, 10.6 b9std, 12.2 tavgavg, 20.7 tmaxmax, 9.2 permanence, 13.1 b4mean, 13.9 permanence, 15.8 mangdist, 26.1 windavg, 13.8 windavg, 10.8 permanence, 11.4 b5mean, 13.2

3 devdist, 7.9 permanence, 11.9 b9std, 8.3 b6std, 11.7 precavg, 20.6 tavgavg, 5.1 b4mean, 11.4 devdist, 10.5 windavg, 6.8 devdist, 17.6 tavgavg, 7.9 b5mean, 9.6 windavg, 6.8 windavg, 8

4 exposure, 5.9 riverdist, 6.9 b1mean, 7.8 b4std, 9.8 tmaxmax, 13.9 tminmin, 3.6 b9std, 5 b8mean, 9.9 devdist, 5.2 permanence 4.4 b4mean, 7.8 b2mean, 8.8 b8std, 4.5 mangdist, 7.9

1 mangdist, 61.6 mangdist, 73.7 b3mean, 38 b3mean, 29.1 windavg, 43.8 windavg, 29.4 mangdist, 24.1 b5mean, 21 mangdist, 27.8 mangdist, 46.2 windavg, 30 b9mean, 14.6 mangdist, 21.8 windavg, 16.7

2 permanence, 18.8 riverdist, 8.1 b8std, 13.2 b2mean, 10.7 tmaxmax, 22.4 tmaxmax, 25.5 b3mean, 18.4 mangdist, 14.8 windavg, 22.8 windavg, 15 tmaxmax, 13.2 b5mean, 12.8 windavg, 19.1 b8mean, 15.3

3 devdist, 8.8 devdist, 7.8 b8mean, 8.8 b8mean, 8.3 tavgavg, 19.8 precavg, 16.8 permanence, 10 b8mean, 9.9 tmaxmax, 13.9 precavg, 13.4 tavgavg, 12.8 windavg, 9.8 tavgavg, 11.1 mangdist, 14.8

4 riverdist, 8.3 permanence, 7.3 b4mean, 7.7 b4std, 7.6 tminmin, 8.9 tminmin, 13.3 b8mean, 7.3 riverdist, 5.4 tavgavg, 13 devdist. 8.6 b8std, 7.8 b8mean, 9.6 tmaxmax, 10.8 b5mean, 13
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1 mangdist, 67.1 mangdist, 50.3 b8std, 36 b3mean, 24.4 tminmin, 38.4 precavg, 67.9 mangdist, 36.6 mangdist, 20.9 mangdist, 49 mangdist, 36.4 b8std, 19.2 b8mean, 21.2 mangdist, 32.8 mangdist, 19.9

2 exposure, 12.2 devdist, 28.5 b8mean, 11.1 b4std, 11.6 precavg, 26 tmaxmax, 15.1 b8mean, 8.8 b6mean, 9.5 devdist, 10.1 devdist, 24.7 tminmin, 17.5 b3mean, 16.7 windavg, 7 b8mean, 16.2

3 devdist, 10.1 riverdist, 12.8 b9std, 7.8 b8mean, 11.6 tmaxmax, 15.2 tminmin, 9.1 b8std, 7.4 b5mean, 9.2 windavg, 8.8 precavg, 19.7 windavg, 11.2 b2mean, 10.1 devdist, 6.8 b5mean, 12.1

4 permanence, 6.5 exposure, 7.8 b1mean, 7.5 b1mean, 11.2 windavg, 15.1 windavg, 5.8 exposure, 7.2 b8mean, 8.6 precavg, 7.6 windavg, 6 b8mean, 9.8 b9mean, 6.7 b8std, 6.3 devdist, 7

1 permanence, 75.2 exposure, 57.1 b8mean, 66.4 b8mean, 41.9 tmaxmax, 58 tmaxmax, 57.8 permanence, 44.2 permanence, 28.3 tmaxmax, 40 permanence, 31.5 tmaxmax, 41.6 tmaxmax, 25.6 tmaxmax, 26.9 b8std, 22.3

2 riverdist, 11.6 permanence, 42.3 b1mean, 9.5 b8std, 16.9 windavg, 23.1 windavg, 29.4 b8std, 11.1 b8std, 23.5 permanence, 36.2 exposure, 26.1 windavg, 16.8 b8std, 15.5 permanence, 25.9 tmaxmax, 14.3

3 exposure 11.4 devdist, 0.4 b6std, 5.1 b6std, 10.7 tavgavg, 16.5 precavg, 7.8 exposure 8.5 exposure, 11.6 tavgavg, 8.6 tmaxmax, 17.5 tavgavg, 12 b9std, 12.9 b8std, 11.3 exposure, 14.1

4 devdist, 1.3 riverdist, 0.1 b8std, 4.4 b5mean, 9.7 precavg, 2.3 sradavg, 4.8 b2std, 6.8 riverdist, 7.3 windavg, 6 riverdist, 13.5 b1std, 5.6 b6std, 10.7 b1std, 5.9 permanence, 9.1

1 mangdist, 48.5 mangdist, 48.9 b8std, 38.5 b5mean, 34.8 precavg, 45.7 precavg, 44.3 b8std, 35.2 b5mean, 26.6 mangdist, 45.3 mangdist, 51 b8std, 36.3 b5mean, 33.5 precavg, 17.2 precavg, 12.8

2 permanence, 21.8 riverdist, 24.5 b9std, 20.8 b8std, 12.6 sradavg, 35.1 sradavg, 29.1 permanence, 14.5 b1std, 9.7 permanence, 21.4 precavg, 15.3 precavg, 9.3 b8mean, 11.1 b8mean, 11.9 b8std, 11.1

3 riverdist, 13.8 devdist, 14.5 b1std, 9.5 b1std, 10.6 tavgavg, 12.9 tavgavg, 12.6 mangdist, 11.2 b6mean, 8.5 devdist, 9.2 riverdist, 9.8 b5mean, 8.8 b6mean, 9.6 permanence, 11.1 mangdist, 10.7

4 devdist, 10.5 permanence, 8.6 b5mean, 8.3 b4std, 8.6 windavg, 3.7 tminmin, 12.9 riverdist, 7.1 b8std, 7.4 riverdist, 7.3 devdist, 7.7 sradavg, 8.5 b1std, 9.4 b9mean, 10.4 riverdist, 9.5

1 permanence, 53 permanence, 49.3 b7mean, 20.1 b3mean, 21.2 sradavg, 46.2 sradavg, 23.6 permanence, 21 permanence, 26 permanence, 28.7 sradavg, 25.5 b7mean, 21.4 sradavg, 22 permanence, 19.2 sradavg, 11.9

2 devdist, 20 devdist, 23 b4mean, 18.3 b4mean, 16.2 tminmin, 18.3 tmaxmax, 22.7 b8mean, 13.6 b1std, 13.3 sradavg, 21.3 permanence, 16.6 sradavg, 19.8 b1std, 12.5 b6mean, 11.1 devdist, 11.4

3 riverdist, 17.2 riverdist, 18.4 b8mean, 18 b4std, 15.2 precavg, 17.9 tminmin, 21.5 b6mean, 13.4 b7mean, 12.4 precavg, 10.8 precavg, 15.2 tminmin, 13.8 b4mean, 9 b1mean, 9.8 permanence, 11.1

4 mangdist, 9.6 mangdist, 9.3 b4std, 10.7 b1mean, 10.5 tmaxmax, 7.5 windavg, 20.1 b1mean, 9.8 b8mean, 10 riverdist, 9.7 tmaxmax, 12.3 b1mean, 8.6 tminmin, 6.6 sradavg, 9.6 b4mean, 8.3

1 mangdist, 47.8 mangdist, 50.4 b9std, 24.3 b2mean 18.6 tmaxmax, 42.2 tminmin, 37.7 b8mean, 18.6 b8mean, 20.7 tmaxmax, 38.5 mangdist, 21.1 tmaxmax, 29.6 b1mean, 13.8 tmaxmax, 25.7 b8mean, 13.6

2 permanence, 26.9 permanence, 17.2 b8mean, 17.8 b6mean 10.9 tminmin, 32.2 tmaxmax, 33.1 b8std, 17.7 b9mean, 11.3 permanence, 11.7 riverdist, 16.6 tminmin, 21.7 b5mean, 10.1 b8std, 8.4 b1mean, 10.1

3 devdist, 13.6 devdist, 16.6 b8std 13.7 b4std, 10.6 windavg, 12.8 precavg, 20.6 permanence, 12.6 b4std, 9.1 tminmin, 11.4 precavg, 12.8 windavg, 8.5 b9mean, 9.9 permanence, 7.9 b9mean, 8

4 riverdist, 8.4 riverdist, 8.4 b2mean 10.3 b5mean, 10.5 precavg, 6.2 sradavg, 6.7 mangdist, 10.3 mangdist, 8.1 windavg, 10.7 permranence, 11.6 b8mean, 7.4 b8mean, 8.9 tminmin, 7.7 b5mean, 7.5

1 mangdist, 36.8 mangdist, 44.8 b1mean, 19.4 b5mean, 18.4 windavg, 44 windavg, 40 permanence, 18.3 b7mean, 9.3 tmaxmax, 24.4 precavg, 34.9 windavg, 26.7 b5mean, 23.6 tmaxmax, 15.4 b5mean, 19.2

2 permanence, 35.4 devdist, 24 b8std, 15.8 b2mean, 13.1 tmaxmax, 36 precavg, 34 mangdist, 16.6 mangdist, 7.5 permanence, 18 devdist, 21.5 tmaxmax, 22.2 b1mean, 13.4 mangdist, 12.5 devdist, 8.3

3 devdist, 20 permanence 19.9 b5mean, 12.2 b8mean, 9.9 precavg, 9.1 tmaxmax, 19.9 devdist, 11.4 b3mean, 6.7 mangdist, 17.3 mangdist, 16.2 prpecavg, 6.8 windavg, 9.1 permanence, 11.9 mangdist, 8.2

4 riverdist, 6.1 riverdist, 9.6 b8mean, 10.1 b4std, 9.5 tminmin, 5 tminmin, 2.5 b8mean, 9.6 b8mean, 6.3 windavg, 14 windavg, 8.1 b5mean, 6.5 b7mean, 8.9 windavg, 10 b8mean, 7.6

1 mangdist, 62.7 mangdist, 51.5 b4mean, 43.5 b4mean, 16.5 windavg, 35.6 precavg, 81.6 mangdist, 40.4 mangdist, 17.7 mangdist, 49.9 precavg, 33.5 b8std, 17.6 b8mean, 15.8 mangdist, 35.2 b8mean, 18

2 permanence, 19.4 devdist, 25.8 b8std, 10.6 b9std, 12.2 tavgavg, 20.7 tmaxmax, 9.2 permanence, 13.1 b4mean, 13.9 permanence, 15.8 mangdist, 26.1 windavg, 13.8 windavg, 10.8 permanence, 11.4 b5mean, 13.2

3 devdist, 7.9 permanence, 11.9 b9std, 8.3 b6std, 11.7 precavg, 20.6 tavgavg, 5.1 b4mean, 11.4 devdist, 10.5 windavg, 6.8 devdist, 17.6 tavgavg, 7.9 b5mean, 9.6 windavg, 6.8 windavg, 8

4 exposure, 5.9 riverdist, 6.9 b1mean, 7.8 b4std, 9.8 tmaxmax, 13.9 tminmin, 3.6 b9std, 5 b8mean, 9.9 devdist, 5.2 permanence 4.4 b4mean, 7.8 b2mean, 8.8 b8std, 4.5 mangdist, 7.9

1 mangdist, 61.6 mangdist, 73.7 b3mean, 38 b3mean, 29.1 windavg, 43.8 windavg, 29.4 mangdist, 24.1 b5mean, 21 mangdist, 27.8 mangdist, 46.2 windavg, 30 b9mean, 14.6 mangdist, 21.8 windavg, 16.7

2 permanence, 18.8 riverdist, 8.1 b8std, 13.2 b2mean, 10.7 tmaxmax, 22.4 tmaxmax, 25.5 b3mean, 18.4 mangdist, 14.8 windavg, 22.8 windavg, 15 tmaxmax, 13.2 b5mean, 12.8 windavg, 19.1 b8mean, 15.3

3 devdist, 8.8 devdist, 7.8 b8mean, 8.8 b8mean, 8.3 tavgavg, 19.8 precavg, 16.8 permanence, 10 b8mean, 9.9 tmaxmax, 13.9 precavg, 13.4 tavgavg, 12.8 windavg, 9.8 tavgavg, 11.1 mangdist, 14.8

4 riverdist, 8.3 permanence, 7.3 b4mean, 7.7 b4std, 7.6 tminmin, 8.9 tminmin, 13.3 b8mean, 7.3 riverdist, 5.4 tavgavg, 13 devdist. 8.6 b8std, 7.8 b8mean, 9.6 tmaxmax, 10.8 b5mean, 13
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Figure 2.4: Box-and-whisker plots comparing the mean predicted probability of presence between presence and absence validation points 

of the top performing model for each species. Top models were the Worldclim only model for Black-bellied plovers (BBPL), Landscape 

only model for Red Knots (REKN), the Landscape and Worldclim model for Semipalmated Sandpipers, and the model using all three sets 

of variables was the top performing model for the remaining species (Ruddy Turnstones - RUTU, Sanderlings – Sand, Semipalmated 

Plovers – SEPL, Whimbrels – WHIM, and Willets – WILL). Mid-lines of the boxes represent the median, while the boxes above and 

below the midline represent the first upper and lower quartiles, vertical lines represent the upper and lower second quartiles, and dotes 

represent outliers.
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Figure 2.5: Model response for selected remote sensing variables of Willet and Sanderling models that used all variable classes (landscape, 

remote sensing, and climatic variables). Variable value is on the x-axis while model response is on the y axis. Red lines represent the 

average model response based on all 10 replicate runs, with the blue band represent the standard deviation based on those replicate runs. 

Also provided on the right are graphs representing the approximate relationship between optical reflectance (y-axis top), radar backscatter 

(y-axis bottom), and sediment size (x-axis both), as determined for Northern Brazil (Merchant et al. 2020).
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Figure 2.6: Model response for selected landscape variables of Willet and Sanderling models that used all variable classes (landscape, 

remote sensing, and climatic variables). Variable value is on the x-axis while model response is on the y axis. Red lines represent the 

average model response based on all 10 replicate runs, with the blue band represent the standard deviation based on those replicate runs. 
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Figure 2.7: Model response for selected climatic variables of willet models that used all variable classes (landscape, remote sensing, and 

climatic variables). Variable value is on the x-axis while model response is on the y axis. Red lines represent the average model response 

based on all 10 replicate runs, with the blue band represent the standard deviation based on those replicate runs. 
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Figure 2.8: Map of study area with latitude lines denoted. Study area is limited to a narrow 

latitudinal range between the equator and about 3 degrees south of the equator, making it 

relatively homogenous from a climatic perspective. 
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Chapter 3: Multispecies Conservation Decision Making 

3.1 - Introduction 

 Shorebird species along the Atlantic American coastline, like Red Knots (Canutus rufa 

rufa) and Semipalmated Sandpipers (Calidris pusilla), make annual migrations from breeding 

grounds in the Canadian high Arctic, to overwintering grounds across South America, including 

the northern coast of Brazil (Colwell 2010, Niles et al. 2010, Gratto-Trevor et al. 2012, Brown et 

al. 2017). Because of their reliance on numerous, widely dispersed geographic regions for 

migratory and breeding success (Warnock 2010, Mizrahi et al. 2012), disruption to any 

component of their migratory route could lead to dramatic population declines. This fragility 

means that shorebirds can function as an indicator species, where population declines at any stage 

of their migration may indicate problems or disruption elsewhere (Piersma and Lindstrom 2004). 

Unfortunately, the current indication is that Neararctic migratory shorebirds are imperiled, with 

population numbers dropping globally (Clemens et al. 2016, Studds et al. 2017). The Atlantic 

Americas Flyway is no exception, with significant loss of populations during the 1980’s and 90’s, 

with more recent counts stable but well below conservation targets (Bart et al. 2007, Andres et al 

2012b). Loss for many species has been closely linked to disruption at a key stopover location, 

Delaware Bay U.S.A (Baker et al. 2004), which has subsequently been intensely studied with 

management steps taken to address the problem (Burger et al. 2012, Niles et al. 2013, Burger et 

al. 2018). Other migratory stops are less thoroughly understood, including northern Brazil, which 

hosts one of the largest populations of overwintering shorebirds (Niles and Cooper Ornithological 

Society 2008). Understanding how migratory shorebird habitat is managed at this location is 

important for setting and meeting conservation planning goals. 

Current protections of the key ecosystem in northern Brazil is largely structured around 

the Brazilian Extractive Reserve (ER) system.  Managed by the Brazilian federal Chico Mendes 

Institute for Biological Diversity Conservation (ICMBio), Extractive Reserves are a type of 

protected area that differ from classic “fortress” conservation which aims to prevent any use or 
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disruption to the ecosystem. Instead they “explicitly aim to safeguard the livelihoods and cultures 

of traditional human populations” that subsist within the region (De Moura et al. 2009).  They do 

this by allowing extraction of resources by local populations, with the regulation coming not from 

top-down, but bottom-up in the form of local community-based control systems.  Originating in 

the Amazon in 1990, the ER strategy quickly expanded to the marine environment, with the first 

Marine Extractive Reserve (MER) established in 1992, and 22 Marine Extractive Reserves 

(MERs) currently along the Brazilian coast (De Moura et al. 2009, Santos and Schiavetti 2014).  

While the primary intention of the MERs was to protect the fisheries and livelihood of the 

resident fishermen through regulations on fishing practices, catch limits, or exclusion zones (De 

Moura et al. 2009), the intertidal foraging habitat that is critical to overwintering shorebirds also 

falls within the MERs’ boundaries (Kober and Bairlein 2009, Mu and Wilcove 2020).  However, 

the effectiveness of MERs as protected areas is not necessarily clear, with only a small fraction of 

MERs meeting the management goals they set (Santos and Schiavetti 2014).  There are 

approximately 12 Marine Extractive Reserves that cover the migratory stopover location in 

northern Brazil (Figure 3.1). Identifying and characterizing areas that serve as habitat for a variety 

of shorebirds is critical for understanding how these MERs currently protect shorebirds, and for 

making future conservation and management decisions that may benefit shorebirds while still 

fulfilling the MERs original mission. 

There are several common frameworks for multi-species conservation planning: umbrella 

species, flagship species, and an overall biodiversity approach. Umbrella species conservation 

focuses on a single species with a wide geographic range that encompasses the distributions of 

other valued and important species. Conservation efforts focus on protecting a single umbrella 

species, with the understanding that a variety of other species will tangentially be protected 

(Shrader-Frechette and McCoy 1993, Wilcove 1993, Simberloff 1998, Andelman and Fagan 

2000). A similar approach, flagship species are species that generate significant public interest, 

useful when drumming up support for conservation and management efforts (Caro and O’Doherty 
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1999). Typically, they are large, showy, charismatic vertebrate species that have already garnered 

some level of public interest. Flagship species can serve as umbrella species if they have wide 

geographic ranges that encompass other, less charismatic species. However, this is not necessarily 

the case, as their primary merit is their public appeal (Caro and O’Doherty 1999). Finally, 

prioritizing maximum biological diversity in the form of diversity hot-spots has also been 

proposed as an approach to conservation (Myers et al. 2000, Meir et al. 2004). Areas with the 

highest diversity of species would be given priority, regardless of the community assemblage of 

the prioritized areas. These approaches may lead to vastly different, even conflicting conservation 

and management decisions. 

Evaluating the migratory shorebird assemblages of northern Brazil presents an 

opportunity for better understanding the effects that umbrella, flagship, and biodiversity 

approaches might have on conservation decision making in northern Brazil. Semipalmated 

sandpipers are of the most ubiquitous shorebirds across the flyway, occupying the breadth of 

available habitat (Rodrigues 2000, Colwell 2010), making them an ideal umbrella species. Red 

knots have received significant attention from both the conservation community and the public 

with their dramatic life history (Baker et al. 2004), a PBS documentary made about their 

conservation issues (Argo 2008), and their addition to the Endangered Species Act (US Fish and 

Wildlife Service 2013), making them a viable flagship migratory shorebird species. However, red 

knots are significantly less abundant than semipalmated sandpipers in northern Brazil, potentially 

covering much less with their “umbrella” (Rodrigues 2000, Lunardi et al. 2012). This provides an 

opportunity to understand the effects of managing solely for a species of particular conservation 

interest (red knots) or for species that cast wider shadows (semipalmated sandpipers), and how 

those management approaches protect the biodiversity of the full shorebird assemblage. 

 I evaluated the three “shadows” cast by the three different approaches to conservation 

prioritization, flagship (red knot), umbrella (semipalmated sandpipers) and biodiversity (all eight 

species), identifying the both the extent of the “shadows” and the communities that fall under 
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each. Utilizing Maxent species distribution modeling, I estimated the potential habitat 

distributions of eight migratory shorebird species across northern Brazil, including the flagship 

red knots and umbrella semipalmated sandpipers. Based on these models, I identified areas of 

conservation interest under each management perspective (flagship, umbrella, and biodiversity), 

evaluated the composition of species protected by each method, and evaluated similarities and 

differences between each management scenario. Finally, I overlaid existing MER boundaries on 

top of the predicted conservation regions in order to identify gaps and inform future management 

decisions under the different management scenarios. 

 

3.2 - Methods 

Location and Survey methods 

 The study site is located in northern Brazil, across the coastline between the city of 

Belem in Pará state, and the city of São Luís in Maranhão state. Across this region are 12 

Marine Extractive Reserves (Figure 1), ranging in size from Reserva Extractivista (Resex) de São 

João da Ponta (34 km2) to the west, and Resex de Cururupu (1852 km2) in the east. Point-

counts of shorebirds were conducted in the winters of 2016 and 2017, with 250 meter fixed radius 

plots conducted along transects running parallel to the tide line (Figure 2.2). More detailed 

methodologies are available in Chapter 2. 

 

3.2a - MaxEnt Modeling 

 Presence-only-based distribution models were derived for each of the eight species using 

a maximum entropy modeling approach via the Maxent modeling package for the intertidal 

foraging habitat of each of the eight species. Maxent, developed by Phillips et al. (2006), 

estimates the predicted probability as a function of environmental variables and presence-only 

survey data for pixels across a rasterized landscape. Environmental variables for the models 
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consisted of landscape metrics (distance to rivers, distance to developed areas, distance to 

mangroves, tidal exposure, and tidal permanence), remote sensing metrics that characterized the 

intertidal sediment (seven bands of optical, near infrared, and short wave infrared from the 

Landsat 8 platform, and two bands of vertical-horizontal and vertical-vertical polarized C-band 

synthetic aperture radar from the Sentinel 1 platform), as well as climatic variables from the 

WorldClim data set (Harris et al. 2014, Fick and Hijmans 2017). Two classes of models were 

used to delineate habitat in this study, one that utilized all of the landscape, remote sensing, and 

WorldClim variables (LsRsWc) and one that utilized only the landscape and remote sensing 

metrics (LsRs). While WorldClim proved to be statistically important for model function, its 

biological significance was suspect in this particular setting (Chapter 2). For more details on the 

approach to using Maxent, including the environmental variables used and model evaluation, 

refer to the methods detailed in Chapter 2. 

 

Thresholding 

Predicted probability of presence derived by Maxent is not an absolute value, but rather, 

relative to the model itself. The pixel with a value of 0.3 for “Species A” may not be as important 

as the same pixel value for a model of “Species B” (Phillips et al. 2006). In order to more directly 

compare the predicted distributions, the continuous model output can be converted into the binary 

categories of “predicted presence” (1) or “predicted absence” (0) using thresholds based on model 

performance metrics. There are a number of metrics used, but the most common is the equal 

training sensitivity and specificity metric derived by Maxent. Equal training sensitivity and 

specificity aims to balance errors of commission and omission with model outputs above the 

threshold considered presence pixels (1), while values below are considered absence pixels (0) 

(Cao et al. 2013). Species richness can then be predicted by overlaying the binary rasters and 

adding the rasters together, in this case, producing pixel values ranging between 0 (not predicted 

habitat for any species) to 8 (predicted habitat for eight different species) (Holmes et al. 2015). 
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Similarly, to estimate species assemblages, or which species were predicted to co-occur with 

others, a unique number was assigned to each species (1, 10, 100, etc.). The binary distribution 

rasters were then multiplied by their respective unique numbers, and added together, resulting in 

each pixel ranging in numbers of 1 (black bellied plovers only) to 11111111 (all species predicted 

in this pixel). Because of the sheer number of potential combinations (8!), only the top 10 most 

common by area were evaluated in depth. 

 

3.2b - Comparing Conservation Strategies 

 To compare coverage of habitat based on the three approaches to conservation 

prioritization (flagship species, umbrella species, and biodiversity), the threshold-derived binary 

rasters of presence were used for the flagship species, red knot, and the umbrella species, 

semipalmated sandpiper. For the biodiversity approach, a binary layer was derived by designating 

all areas that had 5 or more species as high priority, and areas with 4 species or less as not 

prioritized. These binary layers were then used to assess how much habitat was protected 

underneath each scenario across the whole landscape and within the Marine Extractive Reserves. 

To evaluate how the approaches differentially protected species diversity, the protected regions 

under each scenario were used to mask the species richness raster, producing rasters that 

designated species richness of each pixel and protected by either the Flagship (red knot) or 

Umbrella (semipalmated sandpiper), or Biodiversity (richness >= 5) scenarios. To more directly 

compare species richness under each scenario, an area-weighted or area-normalized species 

richness value was calculated where species richness values (0 through 8) were multiplied by the 

area those values occupied, and divided by the total area under the specific scenario. 

 

3.2c - Identifying New Conservation Zones 

 Overlaying coverages of each conservation approach resulted in rasters for each 

modeling method where each pixel represents whether or not one, two, or all three approaches 
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designated that pixel as important habitat, as well as the specific combination of conservation 

scenarios. Using these rasters and image interpretation, a gap analysis (Scott et al. 1993) was 

undertaken to identify areas outside of existing Marine Extractive Reserve protections that 

appeared to have a high proportion of protected area based on the flagship, umbrella, and 

biodiversity conservation strategies, and the respective models that utilized landscape and remote 

sensing (LsRs) and landscape, remote sensing, and WorldClim (LsRsWc).  

  

3.2 - Results 

Areas Protected by Strategies 

 Approximately 198 km2 (LsRsWc) or 248 km2 (LsRs) of habitat were designated by the 

flagship red knot species models, 488 km2 or 461 km2 designated by the umbrella semipalmated 

sandpiper models, and 259 km2 or 246 km2 by the biodiversity approach (Table 3.1). For the 

LsRsWc models, Marine Extractive Reserves protected approximately 44%, 17%, and 22% of the 

areas designated as important by the flagship, umbrella, and diversity approaches, respectively. 

LsRs models had approximately 33%, 19%, and 22% of the flagship, umbrella, and diversity 

priority areas protected by the Marine Extractive Reserves (Table 3.1). There was significant 

overlap of coverage between the two modeling approaches across all management regimes, 

ranging from 61% (flagship, LsRs) to 76% (umbrella, LsRs) (Table 3.2). The umbrella species 

approach protected approximately 36% of the red knot habitat designated by the red knot models, 

regardless of modeling approach. The biodiversity approach (species richness >= 5), protected 

slightly less red knot habitat, at about 27% (Table 3.3). The different management approaches 

resulted in different, often overlapping coverages. The categories with broadest spatial extent 

were solely designated as habitat by the umbrella approach (30.8% and 35.5% for LsRs and 

LsRsWc models respectively, Figures 3.2 and 3.3), followed by areas designated as important by 

both biodiversity and umbrella (28.8% and 31.3% for LsRs and LsRsWc models respectively, 

Figures 3.2 and 3.3) and finally flagship (24.6% and 19.4% for LsRs and LsRsWc models 
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respectively, Figures 3.2 and 3.3). Only 9.7% or 7.2% of habitat was considered important by all 

three approaches to management decision making (Figures 3.2 and 3.3). 

 

Species Richness Protected 

 Using species richness as a metric of biodiversity, each pixel within the study area was 

assigned a species richness value based on the number of species whose distribution models 

designated that pixel as suitable habitat. The landscape followed a predictable pattern, with an 

inverse relationship between species richness and area across the landscape for both modeling 

approaches (R2 ~0.7 for LsRs and 0.8 for LsRsWc, Figure 4). LsRs models designated 18.43% 

(246 km2) of the intertidal zone as habitat for 5 or more species, and 36.30% (487 km2) not 

designated as habitat for any species (Table 3.4). LsRsWc models designated 19.43% (260 km2) 

of the intertidal zone as habitat for 5 or more species, and only 19.53% (261 km2) not designated 

as habitat for any species (Table 3.5). In both modeling approaches, MERs protected an average 

of ~25% of each level of species richness (1 through 8). There was a slight bias towards 

protecting species rich habitats (8 species), though the bias is far more pronounced in the LsRsWc 

model (58%, Table 3.5 vs 36%, Table 3.6). To evaluate the percent of each richness class 

protected under each management scenario, percent of each richness class in the total landscape 

was plotted versus each species richness class. In other words, if a model covered 100% of 

species richness 8, 100% of the pixels with species richness 8 across the whole landscape would 

be protected. In both modeling regimes, flagship red knots protected a much lower percentage of 

each richness class than the umbrella semipalmated sandpipers, though, based on a simple linear 

regression between species richness and % of area protected, both species had at least a slight 

bias towards high species richness of 7 or 8 (Figures 3.5 and 3.6). Species richness, normalized 

by area based on each community, was significantly higher under the umbrella (semipalmated 

sandpipers) and biodiversity approach (~4.5 and 6 respectively) than both a flagship (red knot) 

scenario, or the study site as a whole (~2.4 for both) (Tables 3.4 and 3.5). 
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Community Assemblages Protected 

 Over 250 unique combinations of shorebird species were produced. The top 10 most 

frequent communities by area were focused on. The most prevalent “community” often consisted 

of either a single species (red knot or ruddy turnstones), or six species communities that exclude 

red knots and sanderlings (black bellied plovers, ruddy turnstones, semipalmated plovers, 

semipalmated sandpipers, willets, whimbrels). This was consistent across both modeling 

approaches, management scenarios, and the study site as a whole (Tables 3.6 and 3.7). The most 

prevalent assemblage that featured red knots were either red knots by themselves, or with a single 

additional species such as sanderlings (LsRs MER and Flagship, Table 3.6) and ruddy turnstones 

(LsRsWc MER and Flagship, Table 3.7). A majority of umbrella species assemblages included 

willets (nine and six of the ten communities considered) and whimbrels (eight and nine of the ten 

communities considered. Black bellied plovers coexisted nearly as regularly, appearing in six out 

of ten communities for both modeling approaches (Tables 3.6 and 3.7). 

 

Comparison of Modeling Approaches 

Models overlapped between 60% (Flagship, LsRs) and 76% of coverage (Umbrella, 

LsRs) with umbrella species models the most similar, and the biodiversity models the most 

different (Table 3.2). Comparing conservation strategies under each modeling approach, the 

umbrella approach consistently had the largest coverage across the intertidal zone (460 and 488 

km2, Table 3.1), similar area-normalized species richness (4.35 and 4.46, Tables 3 and 4), 

prioritization of more species rich areas (R2 = 0.893 and 0.813, Figures 3.3 and 3.4), and most-

common community assemblages protected (Table 3.6 and Table 3.7). The biodiversity approach 

demonstrated similar consistencies between modeling approaches. The largest difference appears 

to be with the red knot “flagship” habitat models, with predicted the “shadow” 50 km2 larger in 
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LsRs models than LsRsWc models, compared to the differences of 28 km2 and 14 km2 for the 

umbrella and biodiversity approaches, respectively (Table 3.2).  

 

New Conservation Zones 

Gap analysis identified three areas outside of existing Marine Extractive Reserves that 

contained significant shorebird habitat under the different management scenarios. Baía do Cumã 

is found between the municipalities of Guimaraes and Alcantara in Maranhão state (Figure 3.7), 

and has approximately 35.5 km2 of intertidal habitat (Table 3.8). Though only a small portion is 

designated as important habitat by flagship red knot models, the area-weighted species richness 

for the region is high, relative to the landscape at large (3.84 and 4.71 for the LsRs and LsRsWc, 

respectively, Table 3.8). Baía de São José is found to the southeast of São Luís, the state capital 

of Maranhão (Figure 3.8), and has approximately 90 km2 of total intertidal habitat. Similar to Baía 

do Cumã, only a small portion of the area (less than 10%, Table 3.9) is designated as flagship red 

knot habitat, though it also has a high relative area-weighted species richness (3.81 and 3.55 for 

the LsRs and LsRsWc models respectively, Table 3.8). Finally, directly adjacent to the largest 

existing marine extractive reserve, Resex Cururupu, is an area consisting of several islands that 

has a significant portion of its 98 km2 of intertidal area designated as important habitat by the 

flagship red knot models (approximately 35 km2, or 35%, from either or both models, Table 3.9) 

(Figure 3.9). This area does have a relatively high proportion of red knot habitat, but has a lower 

area-weighted species richness value (2.65 and 2.95 for the respective LsRs and LsRsWc models) 

compared to the first two conservation zones (Table 3.8). 

 

3.4 - Discussion 
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The conclusions drawn from a modeling-based management approach, like the one 

presented here, are only as valid as the models that serve as the foundation. As was discussed in 

Chapter 2, the models are far from perfect, often with AUC scores below the suggested threshold 

for discerning between presence and absence (Table 2.2). The red knot models from Chapter 2 

demonstrated that this may be due to small sample sizes of data used to calibrate the model (n = 

16) or an overcompensation for sampling bias. I addressed these issues in this chapter by using all 

available red knot presence data for calibration (n = 26) and running the red knot model without a 

background sample bias mask. This resulted in an AUC score of 0.749, just shy of the 

recommended benchmark of 0.75, while still demonstrating significant differences between 

presence and absence points. Further external validation of these models would be advisable and 

possible with reference to previously conducted aerial surveys (Morrison et al. 2012) or even data 

from geolocators used in tracking migration patterns (Smith et al. 2020). However, there may be 

challenges matching the scale of models based on point-count surveys with that of aerial surveys 

or geolocators designed for tracking content-spanning movement. Confirmation of modeled 

distributions with independent, spatially explicit point count surveys may be advisable before 

significant resources are dedicated to conservation decisions based on this approach. Despite this 

caution, it can be said with confidence that the delineated extents of shorebird distributions 

demonstrate significant difference between presence and absence points, making a strong case for 

any inferences regarding shorebird distributions under different conservation scenarios across 

northern Brazil. 

In terms of simple coverage, similar patterns emerge between conservation scenarios 

across both modeling regimes. The flagship approach is the most conservative (~225 km2), 

umbrella the widest (~470 km2), and the biodiversity approach similar to the flagship (~250 km2) 

(Table 3.1). This generally follows the convention that the relatively smaller population of 

flagship red knots would have a more restrictive range than a high-population, generalist species 

like the umbrella semipalmated sandpipers (Rodrigues 2000, Colwell 2010). The extent of these 
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coverages differ significantly, particularly when considering the overlap between all three. A 

majority of flagship (61% in both models) and significant portion of umbrella coverage (~43% 

for both models) is found in isolation from the other management regimes. Less than 10% of the 

total area designated by any of the regimes is protected by all three (Figures 3.2 and 3.3). This is 

problematic when considering how the umbrella species and biodiversity approaches protect the 

numerically sensitive red knots. Umbrella species protect only ~36% of the delineated red knot 

habitat, with biodiversity even more restricted to ~26% (Table 3.5). Maxent variables of red knots 

had higher model responses to lower values of vertical-horizontal radar backscatter, and higher 

model response closer to river mouths. Semipalmated sanderlings had responded differently, with 

higher model response to high vertical-horizontal radar backscatter and no clear preference for 

distance to rivers. Based on the modeling discussion in Chapter 2, this would suggest that red 

knots prefer larger grain substrate (low vertical-horizontal backscatter) with relatively frequent 

inundation from freshwater, while semipalmated sandpipers prefer smaller sediment (high 

vertical-horizontal backscatter) with no preference to rivers. This discrepancy in apparent habitat 

preference may explain the widely differing shadows cast by each management perspective.  

Making management decisions solely on the spatial extent of either umbrella or biodiversity 

frameworks may leave more numerically and spatially restricted species, like the flagship red 

knot, at risk. 

 Very little of the total landscape was highly species rich with pixels of species richness 7 

covering about 45 km2 (less than 4% for both models, Tables 3.3 and 3.4), even less so for all 8 

species (less than 1% for both models, Tables 3.3 and 3.4). All conservation strategies (flagship, 

umbrella, and biodiversity) disproportionately protected more species rich habitat (Figures 3.3 

and 3.4). While not surprising for a biodiversity approach, it may be less obvious for the single 

species approaches. As richness increases, it would be more likely for the focal species (flagship 

red knot or umbrella semipalmated sandpipers) to be included in the richness count. However, the 

umbrella approach had an even higher preference for species richness than the biodiversity 
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approach that explicitly preferred species rich habitat (richness > 4).  This may be a product of 

semipalmated sandpipers’ broad niche and ability to utilize a wide range of habitats and resources 

(Baker and Baker 1973). Furthermore, previous research within the northern Brazil study site 

indicates that food scarcity may be a limiting factor (Kober and Bairlein 2009), resulting in 

greatly overlapping niches between shorebirds. Limited resources result in more overlapping 

niches as species utilize the same resources, while abundant resources can lead to more distinct 

niches or specialization (Emlen 1966, MacArthur and Pianka 1966, Zwarts and Wanink 1993). 

Semipalmated sandpipers’ broad use of a diversity of otherwise limited resources may result in 

them cooccurring regularly with more specialist species. 

 The single most frequent assemblage delineated across the landscape and within marine 

extractive reserves, were actually single species  ‘assemblages’, either red knots (LsRs, Table 3.6) 

or ruddy turnstones (LsRsWc, Table 3.7), depending on the model choice. Marine extractive 

reserves appear to protect similar species richness as the landscape (weighted richness of 1.99 

versus 1.7 or 1.61 vs 1.68, Tables 3.4 and 3.5 respectively), as well as similar assemblages, with a 

slight preference for richer assemblages (Figures 3.5 and 3.6). While interpreting the species 

assemblages is challenging, one trend from the modeling is apparent: red knots and sanderlings 

do not regularly co-occur with multiple species simultaneously.  This may be a function of them 

flocking in single species flocks or foraging individually. Research on Delaware Bay, U.S.A. 

suggests that red knots can regularly co-occur with ruddy turnstones at other flyway locations 

(Burger et al. 2018). However, the food resources between the two locations, horseshoe crab eggs 

in Delaware Bay (Baker et al. 2004) and benthic macroinvertebrates in northern Brazil (Kober 

and Bairlein 2006), may result in different flocking-foraging behaviors. The most prevalent 

species rich assemblage (e.g. richness >4) across the landscape, extractive reserves, and 

management scenarios is one that consists of all species except red knots and sanderlings. With 

the exception of the flagship regions based on red knots, assemblages with both red knots and 

sanderlings are apparently rare, according to the models. Aside from assemblages with all species 
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present, only the seven-species assemblages lacking whimbrels have both red knots and 

sanderlings (Flagship and Diversity, LsRs models, Table 3.6). These modeling results run 

somewhat contradictory to the survey data used to calibrate and validate them. Survey data 

suggests that red knots regularly occurred with other species (only 3.4% of presence points did 

not co-occur), though they co-occurred with sanderlings the least. Sanderlings were the least 

likely to occur with other species, but that was still a relatively small proportion of their 

occurrence (18.9%, Table 3.10).  Previous research sheds some light on these patterns. A more 

direct approach at evaluating shorebird assemblages used cluster analysis and PCA to identify 

three distinct foraging guilds in the Bragancian Peninsula, located within the Maranhão-Pará 

coast (Kober and Bairlein 2009). The most separate of these guilds consisted of sanderlings and 

marbled godwits, and the most inclusive guild included ruddy turnstones, black bellied plovers 

(grey plovers in their manuscript), red knots, semipalmated sandpipers, and semipalmated 

plovers. These guilds align reasonably well with both the models and the survey records, with 

sanderlings designated as the most distinct. However, the discrepancy with models indicating that 

red knots are more regularly alone remains unexplained. 

Species distribution models generally predict realized niches based on environmental 

characteristics (Guisan and Zimmermann 2000), though models that incorporate species 

interactions, known as joint species distribution models, are possible (Pollock et al. 2014). Our 

models did not account for species interactions which may result in the misrepresentation of 

community assemblages. This representation may not be entirely inaccurate, but rather a product 

of scale. Foraging niche partitioning in shorebirds has been widely documented to be 

exceptionally fine-scaled, with different species preferentially feeding on microhabitats mere 

meters apart (Backwell et al. 1998, Burger et al. 2007, Lunardi et al. 2012). With our surveys of 

250 meter radius circles, and pixel sizes of 900 square meters, it is possible that significant 

microhabitat variation exists within each pixel, thus allowing for the diverse assemblages 

predicted by the models. Temporal niche partitioning may also play a role, as many species will 
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utilize the same habitat, but at different tidal stages (Burger et al. 1977). Species may be using the 

same patch of foraging habitat, as predicted by our model, but at different times or tidal stages. 

The models used in this analysis do not incorporate or consider tidal stage explicitly, which may 

also contribute to the discrepancy between our predicted species assemblages, and those seen in 

other literature Some assemblage types may be inferred based on the qualitative habitat notes 

taken during surveys. For example, ruddy turnstones and sanderlings showed clear preference of 

areas associated with mangroves compared to areas associated with fiddler crabs (locally referred 

to as crab flats), which may be reflected in the relative prevalence of the ruddy 

turnstone/sanderling “assemblage” (Table 3.7). Willets and semipalmated sandpipers both 

slightly preferred crab flats over mangroves (19% vs 12% and 13.9% vs 10.2%, Table 11), which 

could likewise be reflected in the semipalmated sandpipers/willet assemblage s (Table 3.7). 

 Marine extractive reserves covered a fairly representative sample of the landscape (~25% 

of most species richness categories, Tables 3 and 4) with a slight preference for highly rich areas, 

depending on the modeling methods (R2 = 0.011 or R2 = 0.157 respectively for LsRs and LsRsWc 

models, Figures 3.3 and 3.4). Coastal protected areas in northern Brazil encompass similar 

percentages of intertidal flats as important stopover locations found in other flyways. In the East 

Asian-Australasian Flyway, approximately 23% of tidal flats in China, and only 12% of flats in 

South Korea are protected by existing management (Murray and Fuller 2015). Australia has 

slightly better protections continent wide (39%), though areas most used by shorebirds may also 

be the least protected (Dhanjal-Adams et al. 2016). While northern Brazil is reasonably protected 

compared to other flyways, those protections likely do not have shorebird conservation as their 

raison d’etre. Based on the distribution models and estimated species richness, MERs do not 

currently demonstrate prioritization of shorebird-important regions (Tables 3.3 and 3.4). More 

importantly, current management regulations are designed to protect the local artisanal fisheries 

(De Moura et al. 2009), so that even the areas currently under the MERs may not be adequately 

managed for shorebird-centric conservation. Shorebirds can be particularly susceptible to 
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interruptions to foraging due to human disturbance during migratory stops (Burger et al. 2007, 

Burger and Niles 2013). More directly, subsistence hunting is a serious pressure on shorebird 

populations in the Caribbean and neighboring regions of South America, with significant annual 

harvest (Ottema and Spaans 2008, Andres et al. 2011). Ensuring cooperation with diverse 

stakeholders, like local fishing communities that use beaches for vehicle transport or 

supplementally hunt shorebirds, is critical for the success of biodiversity conservation (Gavin et 

al. 2018). Incorporation of shorebird conservation management into existing MER regulations, 

such as seasonal limits to vehicle use or hunting, managed and enforced by the local 

communities, will be an important step to protecting shorebird habitat already under the wing of 

MERs. 

 Identifying important shorebird conservation zones outside of the MERs is critical for 

future shorebird management decisions. Using the three conservation strategies (flagship, 

umbrella, and biodiversity), three potential areas for shorebird conservation prioritization were 

identified, Baía do Cumã (Figure 3.7), Baía de São José (Figure 3.8), and a region directly 

adjacent to the largest existing MER, Resex Cururupu (Figure 3.9). Umbrella and biodiversity 

approaches highlighted Baía do Cumã and Baía de São José, which subsequently had much 

higher area-weighted species richness (~4.3 and ~3.7, Table 3.8) compared to existing marine 

extractive reserves and the landscape as a whole (~1.7, Tables 3.3 and 3.4). The high species 

richness may not be surprising, given the bias towards diversity that both umbrella and 

biodiversity demonstrated compared to the landscape (Figures 3.3 and 3.4). The area adjacent to 

Resex Cururupu is quite different, with more moderate coverage by both the umbrella and 

biodiversity regimes, possibly contributing to its area-weighted richness scores closer to the 

landscape (2.65 and 2.95, Table 3.8). However, the Cururupu area is distinct because of its 

relatively high proportion of habitat designated by the flagship red knot models (36%) compared 

to the other two conservation zones (16% and 10%, respectively, Table 3.9).  
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The two modeling approaches produced different absolute numbers of areas protected 

and did not precisely overlap in coverage (Table 3.2), but trends in conservation effects of the 

different modeling approaches were similar (Tables 3.3 and 3.4). The discrepancy in area-

normalized species richness (2.96 vs 3.23, Tables 3.3 and 3.4) and biases towards more species 

rich areas (R2 = 0.294 vs 0.294, Figures 3.3 and 3.4) may be a product of the different extent of 

red knot habitat delineated by each method. LsRs models have approximately 25% more habitat 

identified as presence habitat compared to the LsRsWc model (248 km2 vs 198 km2, Table 3.2). 

Climatic data has been proven to be highly impactful on large-scale distribution models, which 

may explain its influence on distributions of flagship red knots (Hirzel and Le Lay 2008). 

However, in the case of equatorial northern Brazil, climate is relatively homogenous so the 

biological significance is difficult to determine at best (Chapter 2). Considering both the relative 

corroboration between modeling approaches, and the uncertainty around the importance of 

climatic variables in the context of northern Brazil, a simplified approach could utilize only the 

landscape-remote sensing based models with confidence. 

These three locations could be archetypal examples of locations chosen under the 

different conservation strategies. Both Baía do Cumã and Baía de São José have high coverage by 

the umbrella semipalmated sandpipers, though Baía do Cumã has 67% of its extent delineated by 

the biodiversity approach (Table 3.9), and has a subsequently higher area-weighted species 

richness (Table 3.8). An umbrella-only approach may not differentiate between the locations, 

where a biodiversity approach clearly would. Finally, while the area adjacent to Resex Cururupu 

does not have the same coverage by the umbrella and biodiversity scenarios, nor does it have the 

subsequent elevated area-weighted richness, it does have a much higher proportion habitat for the 

flagship species, red knots (Figure 3.10). Efforts specific to protecting the red knot may prioritize 

similar areas, at the potential cost of protecting much more diverse communities. A hybrid 

approach utilizing both flagship and biodiversity approaches could compensate for these issues. 

Using only the LsRs models, total area covered by the hybrid approach (430 km2, Table 3.12) is 
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more much more inclusive than either flagship (248 km2) or biodiversity (246 km2), but more 

conservative than the umbrella species perspective (460 km2, Table 3.2).  A hybrid flagship-

biodiversity approach still results in considerably higher weighted richness than the landscape 

(4.1 vs 1.99), as well as 100% coverage of the species rich areas and the rarer flagship red knots 

(Table 3.12). Baía do Cumã, Baía de São José, and the area west of Resex Cururupu are still 

identified as important gaps in existing conservation (Figures 3.11).  

 

3.5 - Conclusion 

Existing coastal management in northern Brazil, the Marine Extractive Reserves, protects 

26% of intertidal habitat, but without clear preference for areas utilized by shorebird species.  

Different modeling approaches, those that utilize WorldClim data and those that do not, may 

produce different spatial extents, but still identify similar trends in species richness and 

community composition protected under the different management scenarios. These similarities, 

in addition to the uncertainty around WorldClim variables in Brazil and an eye towards 

parsimonious modeling, mean that models based only on landscape and remote sensing variables 

appear sufficient for management decision making. Between the three management scenarios, 

with the expansive umbrella approach covered the most habitat and reasonably high diversity, the 

diversity approach effectively produced diverse, if more conservative ranges, and the flagship red 

knots generally protected less, both in terms of range and diversity. While umbrella and diversity 

approaches are successful at protecting diverse communities, community assemblages of rarer or 

specialist species, like the red knots, may fall outside their protective shadows. A hybrid approach 

that uses both diversity and the extent of rarer species produces results that meet the management 

goals identifying gaps in existing conservation to protect the most at-risk species, while 

conserving the diverse assemblages they coexist with. 
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3.6 – Tables and Figures 

 
Figure 3.1. Borders of the 12 Extractive Reserves (MERs) or Reserva Extrativistas (Resex) 

located across the study site in northern Brazil. Extractive Reserves are conservation regions 

designed with both conservation and local subsistence use in mind. 
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Table 3.1.  Area of habitat inside and outside the Marine Extractive Reserves (MERs) that would 

be designated as important based on the either the flagship approach (red knots, REKN), the 

umbrella species approach (semipalmated sandpipers, SESA), or a biodiversity approach (species 

richness ≥ 5). Results include both modeling approaches, one utilizing all variables, and the other 

only using landscape and remote sensing variables 

 

Landscape, Remote Sensing, and 

Worldclim 
 Landscape and Remote Sensing 

 Flagship Umbrella Diversity  Flagship Umbrella Diversity 

Total (km2) 198.32 488.18 259.79  248.48 460.7 246.43 

In MER (km2) 87.91 82.19 57.75  83.10 86.47 54.34 

Out MER (km2) 110.41 405.99 202.04  165.08 374.23 192.05 

In MER (%) 44.33% 16.84% 22.23%  33.48% 18.77% 22.07% 
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Table 3.2. How much each modeling approach, landscape and remote Sensing (LsRs) versus 

models run with all variables (LsRsWc), overlap in their predicted management priority areas. 

“Overlap” designates percentage of each model that both modeling approaches highlighted, while 

“Unique” are what percentage of coverage that only that modeling method (LsRs or LsRsWc) 

delineated. Total coverage area for each model at the bottom 

 Flagship (REKN) Umbrella (SESA) Biodiversity 

 LsRs LsRsWc LsRs LsRsWc LsRs LsRsWc 

Overlap 60.69% 75.95% 76.04% 71.76% 66.15% 62.75% 

Unique 39.31% 24.05% 23.96% 28.24% 33.85% 37.25% 

Total (km2) 248.18 198.32 460.7 488.17 246.43 259.79 

 

 

Table 3.3. Total predicted red knot (REKN) intertidal foraging habitat based on Maxent models 

using either all model variables, or only landscape and remote sensing variables. Additionally 

shown is how much of the delineated REKN habitat is protected by either the umbrella species 

(semipalmated sandpipers) approach, or by the biodiversity approach, with pixels having species 

richness greater than or equal to 5 designated as priority conservation. 

Predicted Red Knot Intertidal 

Foraging Habitat 

Total 

REKN 

Habitat 

(km2) 

Under Umbrella (SESA) Under Biodiversity 

km2 % km2 % 

Landscape, Remote Sensing, 

and WorldClim Models 
198.32 68.60 34.59% 53.50 26.98% 

Landscape and Remote 

Sensing models 
248.18 90.54 38.92% 64.84 26.13% 
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Figure 3.2: Relative composition of the 621 km2 of the sum total of intertidal area designated by 

the different management approaches using the landscape-remote sensing based models. The 

most common area were areas solely designated as habitat by the umbrella approach (30.8%), 

followed by areas designated as important by both biodiversity and umbrella (28.8%) and finally 

flagship (24.6%). Only 9.7% of habitat was considered important by all three approaches to 

management decision making. 
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Figure 3.3: Relative composition of the 628 km2 of the sum total of intertidal area designated by 

the different management approaches using the landscape-remote sensing-WorldClim based 

models. The most common area were areas solely designated as habitat by the umbrella approach 

(35.5%), followed by areas designated as important by both biodiversity and umbrella (31.3%) 

and finally flagship (19.4%). Only 7.2% of habitat was considered important by all three 

approaches to management decision making. 
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Figure 3.4. Area in square kilometers across the entirety of the landscape that is encompassed by 

each species richness value. Species richness was determined by overlaying binary presence 

rasters, delineated from Maxent models for eight shorebird species using environmental metrics 

of either landscape and remote sensing (blue) or landscape, remote sensing, and WorldClim 

climatic variables (red). 
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Table 3.4: Species richness derived from Maxent models of eight shorebirds species using only landscape and remote sensing variables. 

Model outputs were converted to binary rasters using equal training and specificity as a threshold, adding them together, approximating 

species richness for each pixel. 0 indicates that zero species had the pixel designated as habitat, while 8 indicates eight species had the 

pixel designated as habitat. Richness was weighted by area for each category to more accurately compare the relative species richness 

found under each scenario. Two weighted richness values were calculated for the total intertidal area and area within Marine Extractive 

Reserves (MER), since the total landscape and marine extractive reserves both had pixels where no species was located (richness = 0) and 

the management scenarios did not. 

 
Landscape and Remote Sensing Models 

Species 

Richness 

Total Intertidal Within MER 
Protected by Flagship, 

REKN 

Protected by Umbrella, 

SESA 
Protected by Biodiversity 

Area (km2) % of Total Area (km2) 
% of 

Category 
Area (km2) 

% of 

Category 
Area (km2) 

% of 

Category 
Area (km2) 

% of 

Category 

0 487.04 36.42% 156.32 32.10% NA  NA  NA  

1 276.06 20.65% 66.14 23.96% 103.59 37.53% 22.52 8.16% 0 0% 

2 130.80 9.78% 30.41 23.25% 39.80 30.43% 50.35 38.49% 0 0% 

3 100.50 7.52% 20.51 20.40% 23.20 23.09% 67.42 67.08% 0 0% 

4 96.30 7.20% 19.32 20.07% 16.74 17.39% 81.33 84.45% 0 0% 

5 96.86 7.24% 18.93 19.54% 16.23 16.76% 91.49 94.45% 96.86 100% 

6 96.41 7.21% 20.12 20.87% 16.42 17.03% 94.74 98.27% 96.41 100% 

7 43.94 3.29% 12.23 27.83% 22.97 52.27% 43.65 99.33% 43.94 100% 

8 9.21 0.69% 3.10 33.67% 9.21 100.00% 9.21 100.00% 9.21 100% 

Weighted 

richness 
With 0: 1.99 

Without 0: 3.14 
 

With 0: 1.7 
Without 0: 3.1 

 Without 0: 2.96  Without 0: 4.46  Without 0: 5.86  
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Table 3.5: Species richness derived from Maxent models of eight shorebirds species using either all landscape, remote sensing, and 

WorldClim variables. Model outputs were converted to binary rasters using equal training and specificity as a threshold, adding them 

together, and approximating species richness for each pixel. 0 indicates that zero species had the pixel designated as habitat, while 8 

indicates eight species had the pixel designated as habitat. Richness was weighted by area for each category to more accurately compare 

the relative species richness found under each scenario. Two weighted richness values were calculated for the total intertidal area and area 

within Marine Extractive Reserves (MER), since the total landscape and marine extractive reserves both had pixels where no species was 

located (richness = 0) and the management scenarios did not. 

 
Landscape, Remote Sensing, and WorldClim Models 

Species 

Richness 

Total Intertidal Within MER 
Protected by Flagship, 

REKN 

Protected by Umbrella, 

SESA 
Protected by Biodiversity 

Area (km2) % of Total Area (km2) 
% of 

Category 
Area (km2) 

% of 

Category 
Area (km2) 

% of 

Category 
Area (km2) 

% of 

Category 

0 261.10 19.53% 83.25 31.89% NA  NA  NA  

1 358.57 26.82% 85.33 23.80% 45.04 12.56% 27.68 7.72% 0 0% 

2 217.52 16.27% 59.65 27.42% 55.42 25.48% 62.17 28.58% 0 0% 

3 131.28 9.82% 33.24 25.32% 26.47 20.16% 75.58 57.57% 0 0% 

4 108.89 8.14% 27.85 25.58% 17.89 16.43% 80.76 74.17% 0 0% 

5 103.19 7.72% 20.84 20.20% 15.14 14.68% 89.22 86.46% 103.19 100% 

6 103.41 7.73% 19.20 18.57% 15.70 15.18% 99.94 96.64% 103.41 100% 

7 47.78 3.57% 14.58 30.52% 17.24 36.09% 47.41 99.23% 47.78 100% 

8 5.41 0.40% 3.13 57.76% 5.41 100.00% 5.41 100.00% 5.41 100% 

Weighted 

richness 
With 0: 1.61 

Without 0: 1.89 
 

With 0:1.68 

Without 0: 2.89 
 Without 0: 3.23  Without 0: 4.35  Without 0: 5.83  
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Figure 3.5: Percentage of area of each species richness value found across the landscape that is 

protected under each management scenario. Species richness was determined by overlaying 

Maxent models and summing the total number of species that would designate each pixel as 

potential habitat. Trend lines, in faded colors, represent the approximate linear relationship 

between species richness and percent of area protected under each scenario. 
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Figure 3.6: Percentage of area of each species richness value found across the landscape that is 

protected under each management scenario. Species richness was determined by overlaying 

Maxent models and summing the total number of species that would designate each pixel as 

potential habitat. Trend lines, in faded colors, represent the approximate linear relationship 

between species richness and percent of area protected under each scenario. 
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Table 3.6: The ten most common species assemblages (“Asmbl.”) based on area across the whole 

landscape (All), within Marine Extractive Reserves. and protected by the three different 

management regimes (flagship, umbrella, and diversity). Assemblages are based on overlapping 

Maxent model outputs, generated using survey data and landscape and remote sensing metrics as 

environmental variables. 

Landscape and Remote Sensing Models 

All 
Marine Extractive 

Reserves 
Flagship (REKN) Umbrella (SESA) 

Diversity  

(Richness > 4) 

Asmbl. 
Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 

REKN 103.6 1 REKN 36.8 1 REKN 103.6 1 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

61.9 6 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

61.9 6 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

61.9 6 SAND 11.7 1 
REKN 

SAND 
20.4 2 

BBPL 

SEPL 

SESA 

WILL 

WHIM 

29.8 5 

BBPL 

SEPL 

SESA 

WILL 

WHIM 

29.8 5 

SAND 55.7 1 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

11.4 6 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

16.5 7 
SESA 

WILL 
24.5 2 

BBPL 

RUTU 

SESA 

WILL 

WHIM 

22.8 5 

RUTU 33.1 1 
REKN 

SAND 
8.2 2 

BBPL 

REKN 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

9.2 8 

BBPL 

SESA 

WILL 

WHIM 

24.0 4 

BBPL 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

21.0 7 

WHIM 31.0 1 RUTU 6.9 1 
REKN 

SESA 
6.8 2 

BBPL 

RUTU 

SESA 

WILL 

WHIM 

22.8 4 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

16.5 7 

BBPL 

SEPL 

SESA 

WILL 

WHIM 

29.8 5 

BBPL 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

6.1 7 

REKN 

SESA 

WILL 

6.7 3 SESA 22.5 1 

BBPL 

REKN 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

9.2 8 

SESA 

WHIM 
24.5 2 

BBPL 

SEPL 

SESA 

WILL 

WHIM 

4.9 5 
REKN 

RUTU 
5.7 2 

SESA 

WILL 

WHIM 

21.2 3 

BBPL 

SAND 

SEPL 

SESA 

WILL 

WHIM 

9.1 6 
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BBPL 

SESA 

WILL 

WHIM 

24.0 4 WILL 4.7 1 

BBPL 

REKN 

RUTU 

SAND 

SEPL 

SESA 

WILL 

4.2 7 

BBPL 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

21.0 7 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

5.7 5 

BBPL 

RUTU 

SESA 

WILL 

WHIM 

22.8 5 

BBPL 

SESA 

WILL 

WHIM 

4.4 4 

REKN 

SAND 

SESA 

3.4 3 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

16.5 7 

SAND 

SEPL 

SESA 

WILL 

WHIM 

4.4 5 

SESA 22.5 1 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

3.8 7 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

3.4 6 

 

SEPL 

SESA 

WILL 

WHIM 

12.4 4 

BBPL 

REKN 

RUTU 

SAND 

SEPL 

SESA 

WILL 

4.2 7 

Total 409  Total 99  Total 179.9  Total 256.7  Total 184.6  

 

 

 

 

 

 

 

 

  



108 
 

Table 3.7: The ten most common species assemblages (“Asmbl.”) based on area across the whole 

landscape (All), within Marine Extractive Reserves. and protected by the three different 

management regimes (flagship, umbrella, and diversity). Assemblages are based on overlapping 

Maxent model outputs, generated using survey data and landscape, remote sensing, and 

WorldClim metrics as environmental variables. 

Landscape, Remote Sensing and WorldClim Models 

All 
Marine Extractive 

Reserves 
Flagship (REKN) Umbrella (SESA) 

Diversity  

(Richness > 4) 

Asmbl. 
Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 
Asmbl. 

Area 

(km2) 

Sp. 

Rich. 

RUTU 229.1 1 RUTU 56.2 1 REKN 45.0 1 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

61.0 6 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

61.0 6 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

61.0 6 
RUTU 

SAND 
20.9 2 

REKN 

RUTU 
41.2 2 

BBPL 

SEPL 

SESA 

WILL 

WHIM 

37.2 5 

BBPL 

SEPL 

SESA 

WILL 

WHIM 

37.2 5 

REKN 45.0 1 REKN 18.8 1 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

11.9 7 

BBPL 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

30.5 7 

BBPL 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

30.5 7 

RUTU 

SAND 
41.4 2 

REKN 

RUTU 
15.1 2 

REKN 

RUTU 

SAND 

10.5 3 SESA 27.7 1 

BBPL 

SAND 

SEPL 

SESA 

WILL 

WHIM 

15.5 6 

REKN, 

RUTU 
41.2 2 

BBPL 

RUTU 
7.8 2 

REKN 

SAND 
7.0 2 

SESA 

WHIM 
26.0 2 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

11.9 7 

BBPL 

SEPL 

SESA 

WILL 

WHIM 

37.2 5 

BBPL 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

7.5 7 

BBPL 

REKN 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

5.4 8 

BBPL 

SAND 

SEPL 

SESA 

WILL 

WHIM 

15.5 6 

BBPL 

RUTU 

SESA 

WILL 

WHIM 

10.1 5 

BBPL 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

30.5 7 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

7.0 6 

REKN 

RUTU 

SESA 

4.8 3 
RUTU 

SESA 
14.4 2 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

7.5 5 



109 
 

SESA 27.7 1 

REKN 

RUTU 

SAND 

6.3 3 
REKN 

SESA 
4.6 2 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

11.9 7 

BBPL 

RUTU 

SEPL 

SESA 

WILL 

6.4 5 

WHIM, 

SESA 
26.0 2 

BBPL 

RUTU 

SAND 

5.4 3 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

3.7 6 

RUTU 

SESA 

WHIM 

11.7 3 

BBPL 

RUTU 

SEPL 

WILL 

WHIM 

5.7 5 

SAND 23.5 1 

BBPL 

REKN 

RUTU 

SEPL 

SESA 

WILL 

WHIM 

4.3 7 

REKN 

RUTU 

SESA 

WILL 

3.7 4 

BBPL 

SESA 

WILL 

WHIM 

10.8 4 

BBPL 

REKN 

RUTU 

SAND 

SEPL 

SESA 

WILL 

WHIM 

5.4 8 

Total 562.8  Total 149.3  Total 137.9  Total 246.8  Total 191.2  
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Figure 3.7: The potential conservation zone, Baía do Cumã, located between the municipalities of 

Guimaraes and Alcantara in the state of Maranhão. Conservation zones were identified by visual 

interpretation of overlaid coverage of flagship, umbrella, and biodiversity approaches to 

conservation. Areas in red are designated by flagship (“flag”), umbrella (“umbrl”), and 

biodiversity (bio) approaches. Dark orange are umbrella and biodiversity, light orange is flagship 

and biodiversity, and yellow is flagship and umbrella. Dark green, light green, and green-yellow 

represent pixels only designated as important by flagship, umbrella, and biodiversity approaches, 

respectively. Inset map in the bottom right shows approximate location of Baía do Cumã relative 

to the Maranhão state capital, Sao Luis. 
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Figure 3.8: The potential conservation zone, Baía de São José, located to the south east of the 

state capital of Maranhão, São Luís. Conservation zones were identified by visual interpretation 

of overlaid coverage of flagship, umbrella, and biodiversity approaches to conservation. Areas in 

red are designated by flagship (“flag”), umbrella (“umbrl”), and biodiversity (bio) approaches. 

Dark orange are umbrella and biodiversity, light orange is flagship and biodiversity, and yellow is 

flagship and umbrella. Dark green, light green, and green-yellow represent pixels only designated 

as important by flagship, umbrella, and biodiversity approaches, respectively. Inset map in the 

bottom right shows approximate location of Baía de São José relative to Sao Luis. 

 

 



112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The potential conservation zone adjacent to the existing marine extractive reserve, 

Resex Cururupu, northeast of the state capital of Maranhão, São Luís. Conservation zones were 

identified by visual interpretation of overlaid coverage of flagship, umbrella, and biodiversity 

approaches to conservation. Areas in red are designated by flagship (“flag”), umbrella (“umbrl”), 

and biodiversity (bio) approaches. Dark orange are umbrella and biodiversity, light orange is 

flagship and biodiversity, and yellow is flagship and umbrella. Dark green, light green, and green-

yellow represent pixels only designated as important by flagship, umbrella, and biodiversity 

approaches, respectively. Inset map in the bottom right shows approximate location of the 

conservation zone and Resex Cururupu. 
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Table 3.8: The top metric, area designated by flagship, is the breakdown of how much area of 

each potential conservation zone is considered habitat for the flagship red knot species by no 

models (None), landscape and remote sensing models only (LsRs), landscape, remote sensing, 

and WorldClim models only (LsRsWc), and by both models (Both). Area weighted richness is the 

species richness weighted by the area that each richness value occupies across the potential 

conservation zone. Species richness for each pixel was determined by overlaying the extent of 

species distributions based on either landscape and remote sensing models (LsRs), or landscape, 

remote sensing, and WorldClim models, then masking that coverage by the respective 

conservation zones. 
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None 29.96 81.28 62.93 
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None 3.91 10.48 47.04 

LsRs 0.82 14.48 6.72 

LsRsWc 5.89 2.47 2.28 

Both 24.85 62.75 41.83 
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None 11.74 44.58 65.31 

LsRs 1.05 9.52 2.56 

LsRsWc 8.54 10.38 7.01 

Both 14.16 25.70 22.98 

A
re

a 
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ei
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te
d

 

R
ic

h
n

es
s LsRs 3.84 3.81 2.65 

LsRsWc 4.71 3.55 2.95 
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Table 3.9: Percent of each potential conservation zone delineated by either model of each 

management scenario. 

 Flagship Umbrella Biodiversity 

Baía do Cumã 15.56% 88.97% 66.91% 

Baía de São José 9.87% 88.38% 50.57% 

Resex Cururupu 35.70% 51.93% 33.26% 

 

Table 3.10: Co-occurrence matrix of species based on in-situ surveys. Numbers below represent 

how many presence points exist where both species were recorded, as well as how many points 

where only that species was recorded, what percentage of total presence points that consists of, 

and the total presence points for that species recorded during the field surveys. Data below 

includes both calibration data, and reserved validation data used in model development and 

evaluation. 

All Surveys BBPL REKN RUTU SAND SEPL SESA WHIM WILL 

BBPL X 22 83 66 106 126 173 124 

REKN 22 X 15 10 16 25 23 16 

RUTU 83 15 X 22 64 68 104 58 

SAND 66 10 22 X 42 46 39 15 

SEPL 106 16 64 42 X 124 133 96 

SESA 126 25 68 46 124 X 161 124 

WHIM 173 23 104 39 133 161 X 169 

WILL 124 16 58 15 96 124 169 X 

Solo Presence 

Points 
16 1 12 18 9 10 25 2 

Percent Solo 7.4% 3.4% 8.8% 18.9% 5.0% 4.6% 8.4% 1.1% 

Total Presence 

Points 
216 29 136 95 179 216 299 184 
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Table 3.11: Presence records of each species associated with either mangroves or fiddler crabs. 

Associations were determined using qualitative habitat notes taken during surveys which 

indicated whether or not fiddler crab colonies or mangroves were adjacent to or incorporated in 

the survey area. Percent of each category represents what percent of the total number of recorded 

presence points were associated with either mangroves or crabs. 

Mangroves BBPL REKN RUTU SAND SEPL SESA WHIM WILL 

Mangrove Presences 32 2 24 10 16 22 49 22 

Mangrove Percent 14.8% 6.9% 17.6% 10.5% 8.9% 10.2% 16.4% 12.0% 

Crab Presences 28 2 11 3 13 30 40 35 

Crab Percent 13.0% 6.9% 8.1% 3.2% 7.3% 13.9% 13.4% 19.0% 

Total Presence Points 216 29 136 95 179 216 299 184 
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Figure 3.10: Extent of flagship red knot habitat predicted by neither model (white), LsRs models 

only (blue), LsRsWc models only (pink), and both models (purple). 
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Table 3.12: Coverage of species richness classes based on a hybrid flagship-biodiversity approach 

across the whole landscape. Weighted richness was calculated by multiplying the area of each 

richness category by the richness value, and dividing by the total intertidal area. 

 Landscape 
Hybrid 

(Flagship and Bio) 

Richness Km2 Km2 
Percent of 

Landscape 

0 487.04   

1 276.06 103.59 38% 

2 130.80 39.80 30% 

3 100.50 23.20 23% 

4 96.30 16.74 17% 

5 96.86 96.86 100% 

6 96.41 96.41 100% 

7 43.94 43.94 100% 

8 9.21 9.21 100% 

Total 850.10 429.77  

Weighted 

Richness 
1.99 4.10  
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Figure 3.11: Coverage of prioritized habitat based on a hybrid flagship-biodiversity approach 

within selected potential conservation zones. 
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CONCLUSIONS 

Previous research identified relationships between remote sensing metrics and intertidal 

sediment, while other work delineated broad extents of intertidal zone. I successfully 

accomplished both, delineating broad regions of intertidal habitat and characterizing the sediment 

within that habitat. Similar to previous research on remote sensing and intertidal sediment, I 

found that remote sensing consistently characterizes intertidal habitat within a location. Unlike 

previous research, I also found that the relationships between intertidal sediment and remote 

sensing response are not universal. One site’s mud may be another site’s sand, and, while we 

have some suggestions on why this may occur, more research is likely needed to fully understand 

this relationship. These results can inform future research and management of intertidal habitat 

across broad scales, from identifying changes in sediment due to beach filling, to utilization in 

habitat modeling. 

Identifying which intertidal habitat characteristics predict shorebird distributions, and 

thus, where shorebirds can be found, is critical for conservation efforts across a migratory stop 

location, like northern Brazil. Based on the findings in Chapter 1, remote sensing metrics were 

successfully leveraged as proxies for intertidal sediment composition in Maxent species 

distribution models for eight shorebird species of conservation interest. The models, while not 

always demonstrating favorable internal metrics of modeling success, did consistently predict 

significantly different probabilities of presence when comparing presence and absence validation 

data. This discrepancy between internal metrics of model performance and external validation 

likely needs further investigation. Remote sensing variables contributed significantly to model 

performance, and models responded to the remote sensing metrics in ways consistent with known 

biology of the different shorebird species. Landscape variables often contributed significantly, but 

the biological significance of model response was sometimes vague. Climatic variables, often 

found to be highly influential in other studies, did have significant impacts on model function. 

However, the biological relevance of, for example, a few tenths of a degree difference is 
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somewhat suspect, particularly for such a climatically homogenous location like equatorial 

northern Brazil. Ultimately, novel remote sensing metrics, in conjunction with other conventional 

environmental variables, successfully distinguished between habitat (presence) and non-habitat 

for eight migratory shorebird species of conservation concern across a large, geographically 

complex region of intertidal habitat. The distributions models are useful for both identifying 

important habitat at a crucial stopover along the Western Atlantic Flyway, but also demonstrated 

methods that are easily transferable to other migratory locations and flyways. 

Identifying the extent of habitat is informative, but conservation efforts across such a 

large region need to be focused and directed. The lens that is used to guide that decision making 

can influence what conclusions are drawn and which areas are targeted for conservation. Northern 

Brazil already has an extensive Marine Extractive Reserve network, but how those reserves 

protect shorebird habitat was unclear. In Chapter 3, the distribution models developed and vetted 

during Chapter 2 were used to investigate the effect of changing conservation priorities, 

effectiveness of current protections, and identify important regions of shorebird habitat currently 

unprotected. Three planning approaches were used: flagship species using red knots, umbrella 

species using semipalmated plovers, and biodiversity prioritizing areas with relatively high 

species richness.   In this context, the more parsimonious distribution models had similar results 

to those that used the questionable climatic variables. Each conservation approach had its 

strengths, with flagship species protecting the relatively rare red knots, umbrella species casting a 

wide shadow that protected a diverse community, and a biodiversity approach protecting just the 

species rich areas. However, the flagship approach failed to prioritize particularly diverse 

communities, and the umbrella and biodiversity perspectives did not sufficiently protect the 

relatively rare and red knots. A hybrid approach that used both flagship and biodiversity 

approaches ensured that both red knots and diverse communities could be sheltered. Based on 

these results, three distinct regions for potential conservation efforts were located outside of 

existing protected areas. 
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Results presented in this dissertation are designed to inform and direct shorebird 

conservation efforts within Northern Brazil, a critical link in the Western Atlantic Flyway (Niles 

and Cooper Ornithological Society 2008, Colwell 2010), though their applications are not 

geographically limited. With shorebird populations declining across the North American (Bart et 

al. 2007, Morrison et al. 2012), European (Stroud et al. 2004), and the Asian-Australasian 

flyways (Clemens et al. 2016), identifying critical shorebird habitat within stopover locations is a 

key step to protecting the at-risk species that use these flyways. The methods developed here can 

act as a framework for future conservation at these other locations, identifying important habitat 

and gaps in existing protections, using readily available or easily developed remote sensing and 

landscape environmental metrics at broad spatial scales. Shaping conservation decision making at 

key stopover locations, focusing flagship species while protecting biodiversity, can help prioritize 

the wellbeing of the particularly vulnerable species, like red knots and other shorebirds. With 

these species serving as indicators of global change (Piersma and Lindstrom 2004), it is important 

to develop management decision making tools that can address the breadth of threats to their 

critical intertidal foraging habitat; from hunting (Andres et al. 2011) to coastal development 

(Murray et al. 2015), to sea level rise (Galbraith et al. 2002).  
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APPENDICES 

Below is a rough outline for running the Maxent distribution modeling package via the Amarel 

Computing Clusters at Rutgers University. 

Access Amarel 

● Amarel info: https://oarc.rutgers.edu/resources/amarel/  

● GUI access:  https://ondemand.hpc.rutgers.edu 

○ Interactive access for starting Amarel desktop session and managing files 

Load Maxent into Amarel 

● Via OnDemand GUI, file folder transferred to “home/[username]/Maxent/App” 

Load files into Amarel 

● Input Tables 

○ Via OnDemand GUI, new folder added, 

“home/[username]/Maxent/InputTables/” 

● Envi Rasters 

○ Via OnDemand GUI, new folder added, “home/[username]/Maxent/Envi/” 

○ Note: rasters need to be in .ascii format to run on Maxent 

Run Maxent 

● Run an Amarel Desktop (interactive gui version) session 

○ Interactive Apps → Amarel Desktop → Hours 12, Num cores 4, Gig of mem, 8, 

Partition (nothing) 

● Once GUI is open, click on black box at top (MATE terminal) to open command line 

input 

● Load Java 

○ module load java/11.0.7 

● Set working directory 

○ cd Maxent/App/ 

● Run Maxent  

○ ./maxent.sh 

○ **note, it is possible to configure the Maxent package to run using more 

resources including RAM. That configuration process was done by someone 

other than myself. I would suggest contacting either your IT professional or the 

folks over at Amarel for help in this process if you want to maximize the run-

speed of your models. 

● Access outputs 

○ Outputs will go to folder designated by use 

○ Results must be downloaded to native drive to access results 

○ Download via OnDemand GUI 

  

https://oarc.rutgers.edu/resources/amarel/
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fondemand.hpc.rutgers.edu&data=02%7C01%7Cdmerchan%40dls.rutgers.edu%7C60abc7fdc4b84651b6ad08d72449040e%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C637017768338233162&sdata=aHiWbmAD0S9dfGo1EPmV2WR1nY03k3IU0w4XY74Pl4c%3D&reserved=0


123 
 

BIBLIOGRAPHY 

 

Amici, V., M. Marcantonio, N. La Porta, and D. Rocchini. 2017. A multi-temporal approach 

in MaxEnt modelling: A new frontier for land use/land cover change detection. 

Ecological Informatics 40:40–49. 

Andelman, S. J., and W. F. Fagan. 2000. Umbrellas and flagships: Efficient conservation 

surrogates or expensive mistakes? Proceedings of the National Academy of Sciences 

97:5954–5959. 

Anderson, A. M., S. Duijns, P. A. Smith, C. Friis, and E. Nol. 2019. Migration distance and 

body condition influence shorebird migration strategies and stopover decisions during 

southbound migration. Frontiers in Ecology and Evolution 7:251. 

Andrade, L. P., H. M. L. Silva-Andrade, R. M. Lyra-Neves, U. P. Albuquerque, and W. R. 

Telino-Júnior. 2016. Do artisanal fishers perceive declining migratory shorebird 

populations? Journal of Ethnobiology and Ethnomedicine 12. 

Andres, B. A., C. Gratto-Trevor, P. Hicklin, D. Mizrahi, R. G. Morrison, and P. A. Smith. 

2012. Status of the semipalmated sandpiper. Waterbirds 35:146–148. 

Andres, B., P. Smith, R. I. G. Morrison, C. L. Gratto-Trevor, S. Brown, and C. Friis. 1 

December 12. Population estimates of North American shorebirds, 2012. Wader Study 

Group Bulletin 119:178–194. 

Andres, B., R. C. Ydenberg, and D. B. Lank. 2011. Shorebird hunting in the Caribbean. Pages 

11–15 Western Hemisphere Shorebird Group: Fourth meeting. 

Araujo, M., and M. New. 2007. Ensemble forecasting of species distributions. Trends in 

Ecology & Evolution 22:42–47. 



124 
 

Backwell, P. R. Y., P. D. O’Hara, and J. H. Christy. 1998. Prey availability and selective 

foraging in shorebirds. Animal Behaviour 55:1659–1667. 

Baker, A. J., P. M. Gonzalez, T. Piersma, L. J. Niles, I. de Lima Serrano do Nascimento, P. W. 

Atkinson, N. A. Clark, C. D. T. Minton, M. K. Peck, and G. Aarts. 2004. Rapid 

population decline in red knots: fitness consequences of decreased refuelling rates and 

late arrival in Delaware Bay. Proceedings of the Royal Society B: Biological Sciences 

271:875–882. 

Baker, M. C., and A. E. M. Baker. 1973. Niche Relationships Among Six Species of 

Shorebirds on Their Wintering and Breeding Ranges. Ecological Monographs 43:193–

212. 

Bart, J., S. Brown, B. Harrington, and R. I. Guy Morrison. 2007. Survey trends of North 

American shorebirds: population declines or shifting distributions? Journal of Avian 

Biology 38:73–82. 

Bocher, P., F. Robin, J. Kojadinovic, P. Delaporte, P. Rousseau, C. Dupuy, and P. 

Bustamante. 2014. Trophic resource partitioning within a shorebird community feeding 

on intertidal mudflat habitats. Journal of Sea Research 92:115–124. 

Bouma, T. J., J. van Belzen, T. Balke, Z. Zhu, L. Airoldi, A. J. Blight, A. J. Davies, C. Galvan, 

S. J. Hawkins, S. P. G. Hoggart, J. L. Lara, I. J. Losada, M. Maza, B. Ondiviela, M. W. 

Skov, E. M. Strain, R. C. Thompson, S. Yang, B. Zanuttigh, L. Zhang, and P. M. J. 

Herman. 2014. Identifying knowledge gaps hampering application of intertidal habitats in 

coastal protection: Opportunities & steps to take. Coastal Engineering 87:147–157. 

Bradie, J., and B. Leung. 2017. A quantitative synthesis of the importance of variables used in 

MaxEnt species distribution models. Journal of Biogeography 44:1344–1361. 



125 
 

Brown, S., C. Gratto-Trevor, R. Porter, E. L. Weiser, D. Mizrahi, R. Bentzen, M. Boldenow, 

R. Clay, S. Freeman, M.-A. Giroux, E. Kwon, D. B. Lank, N. Lecomte, J. Liebezeit, V. 

Loverti, J. Rausch, B. K. Sandercock, S. Schulte, P. Smith, A. Taylor, B. Winn, S. 

Yezerinac, and R. B. Lanctot. 2017. Migratory connectivity of Semipalmated Sandpipers 

and implications for conservation. The Condor 119:207–224. 

Burger, J. 1986. The Effect of Human Activity on Shorebirds in Two Coastal Bays in 

Northeastern United States. Environmental Conservation 13:123. 

Burger, J., S. A. Carlucci, C. W. Jeitner, and L. Niles. 2007. Habitat Choice, Disturbance, and 

Management of Foraging Shorebirds and Gulls at a Migratory Stopover. Journal of 

Coastal Research 23:1159. 

Burger, J., M. A. Howe, D. C. Hahn, and J. Chase. 1977. Effects of Tide Cycles on Habitat 

Selection and Habitat Partitioning by Migrating Shorebirds. The Auk 94:743–758. 

Burger, J., L. Niles, and K. E. Clark. 1997. Importance of beach, mudflat and marsh habitats to 

migrant shorebirds on Delaware Bay. Biological Conservation 79:283–292. 

Burger, J., and L. Niles. 2013. Shorebirds and stakeholders: Effects of beach closure and 

human activities on shorebirds at a New Jersey coastal beach. Urban Ecosystems 16:657–

673. 

Burger, J., and L. Niles. 2017. Shorebirds, Stakeholders, and Competing Claims to the Beach 

and Intertidal Habitat in Delaware Bay, New Jersey, USA. Natural Science 09:181–205. 

Burger, J., L. J. Niles, R. R. Porter, A. D. Dey, S. Koch, and C. Gordon. 2012. Migration and 

Over-Wintering of Red Knots ( Calidris canutus rufa ) along the Atlantic Coast of the 

United States. The Condor 114:302–313. 



126 
 

Burger, J., L. Niles, C. Jeitner, and M. Gochfeld. 2018. Habitat risk: Use of intertidal flats by 

foraging red knots ( Calidris canutus rufa ), ruddy turnstones, ( Arenaria interpres ), 

semipalmated sandpipers ( Calidris pusilla ), and sanderling ( Calidris alba ) on Delaware 

Bay beaches. Environmental Research 165:237–246. 

Cao, Y., R. E. DeWalt, J. L. Robinson, T. Tweddale, L. Hinz, and M. Pessino. 2013. Using 

Maxent to model the historic distributions of stonefly species in Illinois streams: The 

effects of regularization and threshold selections. Ecological Modelling 259:30–39. 

Caro, T. M., and G. O’Doherty. 1999. On the Use of Surrogate Species in Conservation 

Biology. Conservation Biology 13:805–814. 

Clemens, R., D. I. Rogers, B. D. Hansen, K. Gosbell, C. D. T. Minton, P. Straw, M. Bamford, 

E. J. Woehler, D. A. Milton, M. A. Weston, B. Venables, D. Wellet, C. Hassell, B. 

Rutherford, K. Onton, A. Herrod, C. E. Studds, C.-Y. Choi, K. L. Dhanjal-Adams, N. J. 

Murray, G. A. Skilleter, and R. A. Fuller. 2016. Continental-scale decreases in shorebird 

populations in Australia. Emu - Austral Ornithology 116:119–135. 

Colwell, M. A. 2010. Shorebird ecology, conservation, and management. University of 

California Press, Berkeley. 

Colwell, M. A., and S. L. Landrum. 1993. Nonrandom Shorebird Distribution and Fine-Scale 

Variation in Prey Abundance. The Condor 95:94–103. 

D.A. Stroud, N. C. Davidson, R. West, D. A. Scott, L. Haanstra, O. Thorup, B. Ganter, and S. 

Delany. 2004. Status of migratory wader populations in Africa and Western Eurasia in 

the 1990s. International Wader Studies 15:1–259. 

De Moura, R. L., C. V. Minte-Vera, I. B. Curado, R. B. Francini-Filho, H. D. C. L. Rodrigues, 

G. F. Dutra, D. C. Alves, and F. J. B. Souto. 2009. Challenges and Prospects of Fisheries 



127 
 

Co-Management under a Marine Extractive Reserve Framework in Northeastern Brazil. 

Coastal Management 37:617–632. 

Dhanjal-Adams, K. L., J. O. Hanson, N. J. Murray, S. R. Phinn, V. R. Wingate, K. Mustin, J. 

R. Lee, J. R. Allan, J. L. Cappadonna, C. E. Studds, R. S. Clemens, C. M. Roelfsema, and 

R. A. Fuller. 2016. The distribution and protection of intertidal habitats in Australia. Emu 

116:208. 

Diefenbach, D. R., D. W. Brauning, and J. A. Mattice. 2003. VARIABILITY IN 

GRASSLAND BIRD COUNTS RELATED TO OBSERVER DIFFERENCES AND 

SPECIES DETECTION RATES. The Auk 120:1168. 

Dube, T. 2012. Primary productivity of intertidal mudflats in the Wadden Sea: a remote 

sensing method. University of Twente. 

Egbert, G. D., and S. Y. Erofeeva. 2002. Efficient Inverse Modeling of Barotropic Ocean 

Tides. Journal of Atmospheric and Oceanic Technology 19:183–204. 

Elith, J., and J. R. Leathwick. 2009. Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time. Annual Review of Ecology, Evolution, and 

Systematics 40:677–697. 

Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical 

explanation of MaxEnt for ecologists: Statistical explanation of MaxEnt. Diversity and 

Distributions 17:43–57. 

Elith*, J., C. H. Graham*, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. 

Huettmann, J. R. Leathwick, and A. Lehmann. 2006. Novel methods improve prediction 

of species’ distributions from occurrence data. Ecography 29:129–151. 



128 
 

Emlen, J. M. 1966. The Role of Time and Energy in Food Preference. The American 

Naturalist 100:611–617. 

Erwin, R. M. 1996. Dependence of Waterbirds and Shorebirds on Shallow-Water Habitats in 

the Mid-Atlantic Coastal Region: An Ecological Profile and Management 

Recommendations. Estuaries 19:213. 

Essink, K. 1999. Ecological effects of dumping of dredged sediments; options for 

management. Journal of Coastal Conservation 5:69–80. 

FAO. 2014. World reference base for soil resources 2014: international soil classification 

system for naming soils and creating legends for soil maps. FAO, Rome. 

Faria, F. A., E. F. Albertoni, and L. Bugoni. 2018. Trophic niches and feeding relationships of 

shorebirds in southern Brazil. Aquatic Ecology 52:281–296. 

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1‐km spatial resolution climate 

surfaces for global land areas. International Journal of Climatology 37:4302–4315. 

Folmer, E. O., H. Olff, and T. Piersma. 2010. How well do food distributions predict spatial 

distributions of shorebirds with different degrees of self-organization? Journal of Animal 

Ecology. 

Franklin, J., and J. A. Miller. 2009. Mapping species distributions: spatial inference and 

prediction. Cambridge University Press, Cambridge ; New York. 

Gade, M., S. Melchionna, K. Stelzer, and J. Kohlus. 2014. Multi-frequency SAR data help 

improving the monitoring of intertidal flats on the German North Sea coast. Estuarine, 

Coastal and Shelf Science 140:32–42. 

Galbraith, H., D. W. DesRochers, S. Brown, and J. M. Reed. 2014. Predicting vulnerabilities 

of North American shorebirds to climate change. PLoS One 9:e108899. 



129 
 

Galbraith, H., R. Jones, R. Park, J. Clough, S. Herrod-Julius, B. Harrington, and G. Page. 

2002. Global Climate Change and Sea Level Rise: Potential Losses of Intertidal Habitat 

for Shorebirds. Waterbirds 25:173. 

Gavin, M., J. McCarter, F. Berkes, A. Mead, E. Sterling, R. Tang, and N. Turner. 2018. 

Effective Biodiversity Conservation Requires Dynamic, Pluralistic, Partnership-Based 

Approaches. Sustainability 10:1846. 

Golicher, D., A. Ford, L. Cayuela, and A. Newton. 2012. Pseudo-absences, pseudo-models 

and pseudo-niches: pitfalls of model selection based on the area under the curve. 

International Journal of Geographical Information Science 26:2049–2063. 

Gratto-Trevor, C., R. I. G. Morrison, D. Mizrahi, D. B. Lank, P. Hicklin, and A. L. Spaans. 

2012. Migratory Connectivity of Semipalmated Sandpipers: Winter Distribution and 

Migration Routes of Breeding Populations. Waterbirds 35:83–95. 

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. 

Ecological Modelling 135:147–186. 

Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister. 2014. Updated high-resolution grids of 

monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-

RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS. International 

Journal of Climatology 34:623–642. 

Herman, P. M. J., J. J. Middelburg, J. Van De Koppel, and C. H. R. Heip. 1999. Ecology of 

Estuarine Macrobenthos. Pages 195–240 Advances in Ecological Research. Elsevier. 

Hirzel, A. H., and G. Le Lay. 2008. Habitat suitability modelling and niche theory. Journal of 

Applied Ecology 45:1372–1381. 



130 
 

Holmes, I., K. McLaren, and B. Wilson. 2015. Niche modeling for management-ready 

information in little-studied, threatened frog species assemblages. Journal for Nature 

Conservation 28:26–34. 

Howell, C. A., and S. D. Veloz. (n.d.). Priority Areas for Breeding Birds within the Planning 

Area of the Desert Renewable Energy Conservation Plan. 

Illera, J. C., H. Von Wehrden, and J. Wehner. 2010. Nest site selection and the effects of land 

use in a multi-scale approach on the distribution of a passerine in an island arid 

environment. Journal of Arid Environments 74:1408–1412. 

Iwamura, T., H. P. Possingham, I. Chadès, C. Minton, N. J. Murray, D. I. Rogers, E. A. Treml, 

and R. A. Fuller. 2013. Migratory connectivity magnifies the consequences of habitat loss 

from sea-level rise for shorebird populations. Proceedings of the Royal Society B: 

Biological Sciences 280:20130325. 

Jaffe, B. E., R. E. Smith, and A. C. Foxgrover. 2007. Anthropogenic influence on 

sedimentation and intertidal mudflat change in San Pablo Bay, California: 1856–1983. 

Estuarine, Coastal and Shelf Science 73:175–187. 

Jensen, J. R. 2007. Remote sensing of the environment: an earth resource perspective. 2nd ed. 

Pearson Prentice Hall, Upper Saddle River, NJ. 

Jourdan, C., J. Fort, D. Pinaud, P. Delaporte, J. Gernigon, N. Lachaussée, J.-C. Lemesle, C. 

Pignon-Mussaud, P. Pineau, F. Robin, P. Rousseau, and P. Bocher. 2021. Nycthemeral 

Movements of Wintering Shorebirds Reveal Important Differences in Habitat Uses of 

Feeding Areas and Roosts. Estuaries and Coasts. 



131 
 

Kéry, M., and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis of 

distribution, abundance and species richness in R and BUGS. Elsevier/AP, Academic 

Press is an imprint of Elsevier, Amsterdam ; Boston. 

Kober, K., and F. Bairlein. 2006. Shorebirds of the Bragantinian Peninsula I. Prey Availability 

and Shorebird Consumption at a Tropical Site in Northern Brazil. Ornitologia 

Neotropical 17:531–548. 

Kober, K., and F. Bairlein. 2009. Habitat Choice and Niche Characteristics Under Poor Food 

Conditions. A Study on Migratory Nearctic Shorebirds in the Intertidal Flats of Brazil. 

Ardea 97:31–42. 

Lathrop, R. G., L. Niles, P. Smith, M. Peck, A. Dey, R. Sacatelli, and J. Bognar. 2018. 

Mapping and modeling the breeding habitat of the Western Atlantic Red Knot ( Calidris 

canutus rufa ) at local and regional scales. The Condor 120:650–665. 

Latif, Q. S., V. A. Saab, J. G. Dudley, and J. P. Hollenbeck. 2013. Ensemble modeling to 

predict habitat suitability for a large‐scale disturbance specialist. Ecology and evolution 

3:4348–4364. 

Leyrer, J., B. Spaans, M. Camara, and T. Piersma. 2006. Small home ranges and high site 

fidelity in red knots (Calidris c. canutus) wintering on the Banc d’Arguin, Mauritania. 

Journal of Ornithology 147:376–384. 

Lunardi, V. O., R. H. Macedo, J. P. Granadeiro, and J. M. Palmeirim. 2012. Migratory flows 

and foraging habitat selection by shorebirds along the northeastern coast of Brazil: The 

case of Baía de Todos os Santos. Estuarine, Coastal and Shelf Science 96:179–187. 

MacArthur, R. H., and E. R. Pianka. 1966. On Optimal Use of a Patchy Environment. The 

American Naturalist 100:603–609. 



132 
 

MacIntyre, H. L., R. J. Geider, and D. C. Miller. 1996. Microphytobenthos: The Ecological 

Role of the “Secret Garden” of Unvegetated, Shallow-Water Marine Habitats. I. 

Distribution, Abundance and Primary Production. Estuaries 19:186. 

Martín, B., S. Delgado, A. De la Cruz, S. Tirado, and M. Ferrer. 2015. Effects of human 

presence on the long‐term trends of migrant and resident shorebirds: evidence of local 

population declines. Animal Conservation 18:73–81. 

Martinuzzi, S., W. A. Gould, and O. M. Ramos Gonzalez. 2007. Creating Cloud-Free Landsat 

ETM+ Data Sets In Tropical Landscapes: Cloud and Cloud-Shadow Removal. U.S. 

Department of Agriculture, Forest Service, International Institue of Tropical Forestry. 

Meir, E., S. Andelman, and H. P. Possingham. 2004. Does conservation planning matter in a 

dynamic and uncertain world? Ecology Letters 7:615–622. 

Mikhail, E. M., J. S. Bethel, and J. C. McGlone. 2001. Introduction to modern 

photogrammetry. John Wiley & Sons, New York. 

Millennium Ecosystem Assessment (Program), editor. 2005. Ecosystems and human well-

being: synthesis. Island Press, Washington, DC. 

Mizrahi, D. S., K. A. Peters, and P. A. Hodgetts. 2012. Energetic Condition of Semipalmated 

and Least Sandpipers during Northbound Migration Staging Periods in Delaware Bay. 

Waterbirds 35:135–145. 

Morrison, R. I. G., D. S. Mizrahi, R. K. Ross, O. H. Ottema, N. de Pracontal, and A. Narine. 

2012. Dramatic Declines of Semipalmated Sandpipers on their Major Wintering Areas in 

the Guianas, Northern South America. Waterbirds: The International Journal of 

Waterbird Biology 35:120–134. 



133 
 

Mu, T., and D. S. Wilcove. 2020. Upper tidal flats are disproportionately important for the 

conservation of migratory shorebirds. Proceedings of the Royal Society B: Biological 

Sciences 287:20200278. 

Murray, N. J., R. S. Clemens, S. R. Phinn, H. P. Possingham, and R. A. Fuller. 2014. Tracking 

the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and the 

Environment 12:267–272. 

Murray, N. J., and R. A. Fuller. 2015. Protecting stopover habitat for migratory shorebirds in 

East Asia. Journal of Ornithology 156:217–225. 

Murray, N. J., Z. Ma, and R. A. Fuller. 2015. Tidal flats of the Yellow Sea: A review of 

ecosystem status and anthropogenic threats: Status of Yellow Sea tidal flats. Austral 

Ecology 40:472–481. 

Murray, N. J., S. R. Phinn, M. DeWitt, R. Ferrari, R. Johnston, M. B. Lyons, N. Clinton, D. 

Thau, and R. A. Fuller. 2019. The global distribution and trajectory of tidal flats. Nature 

565:222–225. 

Murray, N., S. Phinn, R. Clemens, C. Roelfsema, and R. Fuller. 2012. Continental Scale 

Mapping of Tidal Flats across East Asia Using the Landsat Archive. Remote Sensing 

4:3417–3426. 

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. 

Biodiversity hotspots for conservation priorities. Nature 403:853–858. 

Nagendra, H., R. Lucas, J. P. Honrado, R. H. G. Jongman, C. Tarantino, M. Adamo, and P. 

Mairota. 2013. Remote sensing for conservation monitoring: Assessing protected areas, 

habitat extent, habitat condition, species diversity, and threats. Ecological Indicators 

33:45–59. 



134 
 

Navedo, J. G., C. Verdugo, I. A. Rodríguez-Jorquera, J. M. Abad-Gómez, C. G. Suazo, L. E. 

Castañeda, V. Araya, J. Ruiz, and J. S. Gutiérrez. 2019. Assessing the effects of human 

activities on the foraging opportunities of migratory shorebirds in Austral high-latitude 

bays. PLOS ONE 14:e0212441. 

Niles, L. and Cooper Ornithological Society, editors. 2008. Status of the red knot (Calidris 

canutus rufa) in the Western Hemisphere. Cooper Ornithological Society, Camarillo, CA. 

Niles, L. J., J. Burger, R. R. Porter, A. D. Dey, C. D. Minton, P. M. González, A. J. Baker, J. 

W. Fox, and C. Gordon. 2010. First results using light level geolocators to track Red 

Knots in the Western Hemisphere show rapid and long intercontinental flights and new 

details of migration pathways. Wader Study Group Bulletin 117:123–130. 

Niles, L. J., J. A. M. Smith, D. F. Daly, T. Dillingham, W. Shadel, A. D. Dey, M. S. Danihel, 

S. Hafner, and D. Wheeler. 2013. Restoration of Horseshoe Crab and Migratory 

Shorebird Habitat on Five Delaware Bay Beaches Damaged by Superstorm Sandy. 

von Numers, S., M. Öst, and M. von Numers. 2020. Population changes in the declining 

Turnstone (Arenaria interpres) and other waders in the northern Baltic Sea based on past 

and current breeding observations. Ornis Fennica 97:149–164. 

Nybakken, J. W., and M. D. Bertness. 2005. Marine biology: an ecological approach. 6th ed. 

Pearson/Benjamin Cummings, San Francisco. 

Ottema, O. H., and A. L. Spaans. 2008. Challenges and advances in shorebird conservation in 

the Guianas, with a focus on Suriname. Ornitologia Neotropical 19:339–346. 

Peterson, C. H., M. J. Bishop, G. A. Johnson, L. M. D’Anna, and L. M. Manning. 2006. 

Exploiting beach filling as an unaffordable experiment: Benthic intertidal impacts 



135 
 

propagating upwards to shorebirds. Journal of Experimental Marine Biology and Ecology 

338:205–221. 

Pfister, C., B. A. Harrington, and M. Lavine. 1992. The impact of human disturbance on 

shorebirds at a migration staging area. Biological Conservation 60:115–126. 

Philippe, A. S., D. Pinaud, M.-L. Cayatte, C. Goulevant, N. Lachaussée, P. Pineau, M. 

Karpytchev, and P. Bocher. 2016. Influence of environmental gradients on the 

distribution of benthic resources available for shorebirds on intertidal mudflats of Yves 

Bay, France. Estuarine, Coastal and Shelf Science 174:71–81. 

Phillips, S. J., M. Dudík, and R. E. Schapire. 2004. A maximum entropy approach to species 

distribution modeling. Page 83. ACM Press. 

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of 

species geographic distributions. Ecological Modelling 190:231–259. 

Phillips, S. J., and M. Dudík. 2008. Modeling of species distributions with Maxent: new 

extensions and a comprehensive evaluation. Ecography 31:161–175. 

Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, and S. Ferrier. 

2009. Sample selection bias and presence-only distribution models: implications for 

background and pseudo-absence data. Ecological Applications 19:181–197. 

Piersma, T., and Å. Lindström. 2004. Migrating shorebirds as integrative sentinels of global 

environmental change: Shorebirds integrate global environmental information. Ibis 

146:61–69. 

Pollock, L. J., R. Tingley, W. K. Morris, N. Golding, R. B. O’Hara, K. M. Parris, P. A. Vesk, 

and M. A. McCarthy. 2014. Understanding co‐occurrence by modelling species 



136 
 

simultaneously with a Joint Species Distribution Model ( JSDM ). Methods in Ecology 

and Evolution 5:397–406. 

Rainey, M. P., A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald. 2003. Mapping 

intertidal estuarine sediment grain size distributions through airborne remote sensing. 

Remote Sensing of Environment 86:480–490. 

Rodrigues, A. A. F. 2000. SEASONAL ABUNDANCE OF NEARTIC SHOREBIRDS IN 

THE GULF OF MARANHÃO, BRAZIL. Journal of Field Ornithology 71:665–675. 

Riera, P., L. J. Stal, and J. Nieuwenhuize. 2000. Heavy δ15N in Intertidal Benthic Algae and 

Invertebrates in the Scheldt Estuary (The Netherlands): Effect of River Nitrogen Inputs. 

Estuarine, Coastal and Shelf Science 51:365–372. 

Santos, C. Z., and A. Schiavetti. 2014. Assessment of the management in Brazilian Marine 

Extractive Reserves. Ocean & Coastal Management 93:26–36. 

Sheaves, M., L. Dingle, and C. Mattone. 2016. Biotic hotspots in mangrove-dominated 

estuaries: macro-invertebrate aggregation in unvegetated lower intertidal flats. Marine 

Ecology Progress Series 556:31–43. 

Shrader-Frechette, K. S., and E. D. McCoy. 1993. Method in ecology: strategies for 

conservation. Cambridge University Press, Cambridge [England] ; New York, NY, USA. 

Simberloff, D. 1998. Flagships, umbrellas, and keystones: Is single-species management passé 

in the landscape era? Biological Conservation 83:247–257. 

Smith, J. A. M., K. Regan, N. W. Cooper, L. Johnson, E. Olson, A. Green, J. Tash, D. C. 

Evers, and P. P. Marra. 2020. A green wave of saltmarsh productivity predicts the timing 

of the annual cycle in a long-distance migratory shorebird. Scientific Reports 10:20658. 



137 
 

Stabach, J. A., N. Laporte, and W. Olupot. 2009. Modeling habitat suitability for Grey 

Crowned-cranes (Balearica regulorum gibbericeps) throughout Uganda. International 

Journal of Biodiversity and Conservation 1:177–186. 

Studds, C. E., B. E. Kendall, N. J. Murray, H. B. Wilson, D. I. Rogers, R. S. Clemens, K. 

Gosbell, C. J. Hassell, R. Jessop, D. S. Melville, D. A. Milton, C. D. T. Minton, H. P. 

Possingham, A. C. Riegen, P. Straw, E. J. Woehler, and R. A. Fuller. 2017. Rapid 

population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as 

stopover sites. Nature Communications 8:14895. 

Tarr, N. M., T. R. Simons, and K. H. Pollock. 2010. An Experimental Assessment of Vehicle 

Disturbance Effects on Migratory Shorebirds. Journal of Wildlife Management 74:1776–

1783. 

Thien, S. J. 1979. A flow diagram for teaching texture‐by‐feel analysis. Journal of Agronomic 

Education 8:54–55. 

Thrush, S., J. Hewitt, A. Norkko, P. Nicholls, G. Funnell, and J. Ellis. 2003. Habitat change in 

estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud 

content. Marine Ecology Progress Series 263:101–112. 

van der Wal, D., P. Herman, R. Forster, T. Ysebaert, F. Rossi, E. Knaeps, Y. Plancke, and S. 

Ides. 2008. Distribution and dynamics of intertidal macrobenthos predicted from remote 

sensing: response to microphytobenthos and environment. Marine Ecology Progress 

Series 367:57–72. 

van der Wal, D., and P. M. J. Herman. 2007. Regression-based synergy of optical, shortwave 

infrared and microwave remote sensing for monitoring the grain-size of intertidal 

sediments. Remote Sensing of Environment 111:89–106. 



138 
 

van der Wal, D., P. M. J. Herman, and A. Wielemaker-van den Dool. 2005. Characterisation 

of surface roughness and sediment texture of intertidal flats using ERS SAR imagery. 

Remote Sensing of Environment 98:96–109. 

van Maren, D. S., T. van Kessel, K. Cronin, and L. Sittoni. 2015. The impact of channel 

deepening and dredging on estuarine sediment concentration. Continental Shelf Research 

95:1–14. 

Warnock, N. 2010. Stopping vs. staging: the difference between a hop and a jump. Journal of 

Avian Biology 41:621–626. 

Warnock, S. E., and J. Y. Takekawa. 2008. Wintering site fidelity and movement patterns of 

Western Sandpipers Calidris mauri in the San Francisco Bay estuary. Ibis 138:160–167. 

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. 2016. Springer 

International Publishing : Imprint: Springer, Cham. 

Widdows, J., S. Brown, M. D. Brinsley, P. N. Salkeld, and M. Elliott. 2000. Temporal changes 

in intertidal sediment erodability: influence of biological and climatic factors. Continental 

Shelf Research 20:1275–1289. 

Wilcove, D. 1993. Getting Ahead of the Extinction Curve. Ecological Applications 3:218–

220. 

Williams, K. K., and R. Greeley. 2004. Laboratory and field measurements of the modification 

of radar backscatter by sand. Remote Sensing of Environment 89:29–40. 

Yackulic, C. B., R. Chandler, E. F. Zipkin, J. A. Royle, J. D. Nichols, E. H. Campbell Grant, 

and S. Veran. 2013. Presence-only modelling using MAXENT: when can we trust the 

inferences? Methods in Ecology and Evolution 4:236–243. 



139 
 

Yamada, F., N. Kobayashi, Y. Shirakawa, Y. Watabe, S. Sassa, and A. Tamaki. 2012. Effects 

of Tide and River Discharge on Mud Transport on Intertidal Flat. 

Yates, M. G., A. R. Jones, S. McGrorty, and J. D. Goss-Custard. 1993. The Use of Satellite 

Imagery to Determine the Distribution of Intertidal Surface Sediments of The Wash, 

England. Estuarine, Coastal and Shelf Science 36:333–344. 

Zadrozny, B. 2004. Learning and evaluating classifiers under sample selection bias. Page 114 

Twenty-first international conference on Machine learning  - ICML ’04. ACM Press, 

Banff, Alberta, Canada. 

Zwarts, L. 1988. Numbers and distribution of coastal waders in Guinea-Bissau. Ardea 76:42–

55. 

Zwarts, L., and J. H. Wanink. 1993. How the food supply harvestable by waders in the 

Wadden Sea depends on the variation in energy density, body weight, biomass, burying 

depth and behaviour of tidal-flat invertebrates. Netherlands Journal of Sea Research 

31:441–476. 

 


