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Several delphinid species have shown genetic population structure, both between and within ocean basins. We
investigated genetic differentiation in the rough-toothed dolphin, Steno bredanensis, using mitochondrial control
region sequences from several localities worldwide (V = 112). Preliminary analyses indicated high levels of genetic
differentiation between the Atlantic and Pacific/Indian Oceans, which were further investigated using complete
cytochrome b sequences and mitogenomes. Phylogenetic analyses were inconclusive about the existence of cryptic
speciation in the genus Steno. Notwithstanding this result, analysis of molecular variance and ®-statistics analy-
ses revealed strong population differentiation not only between the Atlantic and Pacific, but also within the At-
lantic, where three populations were detected: Caribbean, southeastern Brazil, and southern Brazil. We propose
that these populations be considered management units for conservation purposes. Our results provide the first
perspective on the worldwide genetic differentiation of S. bredanensis.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 949-962.
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INTRODUCTION comprises only one species: the rough-toothed dolphin
Steno bredanensis (Cuvier in Lesson, 1828). Amongst
the delphinids, S. bredanensis has greatest genetic af-
finity with the genus Sotalia. Recent molecular data
support the existence of the subfamily Stenoninae, which
would bring together these two genera (LeDuc, Perrin
*Corresponding author. E-mail: haydeecunha@yahoo.com.br & Dizon, 1999; Cunha et al., 2011).

The genus Steno, described by Gray in 1846, belongs
to the order Cetartiodactyla, family Delphinidae, and
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The rough-toothed dolphin has a wide distribution
range, being found in tropical, subtropical, and
warm temperate waters of the Atlantic, Pacific,
and Indian Oceans (Miyazaki & Perrin, 1994; West,
Mead & White, 2011). Sightings of this species are
usually reported in deep waters (Jefferson, 2009). For
example, in Hawaii the species shows a preference
for waters with depths greater than 1500 m (Gannier
& West, 2005; Baird et al., 2008). Contrastingly, in
the southwestern Atlantic sightings are reported in
nearshore, shallow waters, from southern to north-
eastern Brazil (Ott & Danilewicz, 1996; Flores &
Ximenes, 1997; Lodi & Hetzel, 1998; Wedekin et al.,
2004; Rossi-Santos, Wedekin & Sousa-Lima, 2006; Lodi
etal., 2012).

Although S. bredanensis is classified as Least Concern’
on the Red List of Threatened Species (IUCN, 2013),
in the southwestern Atlantic its coastal habits make
the species susceptible to anthropogenic threats such
as habitat degradation, chemical and noise pollution,
and bycatch (Di Beneditto, Ramos & Lima, 1998;
Monteiro-Neto et al., 2000; Dorneles et al., 2007; Netto
& Di Beneditto, 2008; Meirelles et al., 2009; Lailson-Brito
et al., 2012, Lemos et al., 2013, Bittencourt et al., 2014).
These studies suggest that rough-toothed dolphin popu-
lations in the southwestern Atlantic may be affected
negatively by human impacts upon the coastal zone,
but the magnitude of such adverse effects is present-
ly unknown.

The delimitation of genetic populations is a pre-
requisite to assess demographic parameters and, hence,
the threat status of a species (e.g. Allendorf & Luikart,
2007). The population structure of S. bredanensis
has been studied only in French Polynesia, where
genetic differentiation was observed between two islands
170 km apart (Oremus et al., 2012). The results
of that study suggest site fidelity with little dispersal
between populations, which is relevant for their
conservation.

This study aimed to describe the population struc-
ture of S. bredanensis, using mitochondrial control region
sequences from individuals collected in four localities
in the southwestern Atlantic Ocean and sequences
from the Caribbean, Pacific, and Indian Oceans, avail-
able from GenBank. As preliminary data analyses in-
dicated large amounts of differentiation between the
Atlantic and Pacific, phylogenetic analyses were also
performed using cytochrome b and mitogenome se-
quences to test the hypothesis of cryptic or semicryptic
speciation in the genus Steno. The existence of more
than a single species in the genus could have gone
undetected, especially considering that the morpho-
logical variation of S. bredanensis across its range
has not been studied yet. Our results provide the first
perspective on the worldwide genetic differentiation
of rough-toothed dolphins.

MATERIAL AND METHODS
SAMPLING

Forty-two samples of skin or muscle of S. bredanensis
were collected from stranded or incidentally caught car-
casses as well as through biopsy in four localities in
the southwestern Atlantic: Espirito Santo (N = 4), Rio
de Janeiro (N = 27), Santa Catarina (N = 1), and Rio
Grande do Sul (N = 10) (Fig. 1). Samples were stored
in 100% ethanol and frozen at —20 °C. For population
analyses, 67 control region sequences deposited in
GenBank were included, covering most of the species’
distribution (southeastern Brazil, N = 1, central south-
ern Pacific, N = 59; eastern tropical Pacific, N = 4; Car-
ibbean, N = 3) (Fig. 1, Table 1). For taxonomic analyses,
cytochrome b sequences from almost all the Delphinidae,
published in GenBank were used. The complete
mitochondrial genomes of 21 delphinid species (in-
cluding multiple sequences of some species), available
in GenBank, were also used for phylogenetic analyses.

GENETIC ANALYSIS

Total genomic DNA of all samples was extracted using
a DNeasy kit (Qiagen) following the manufacturer’s
instructions. The sex of biopsied and highly degrad-
ed individuals was determined by amplification of the
ZFX and ZFY genes through PCR using the protocol
of Bérubé & Palsbgll (1996) as adapted by Cunha &
Solé-Cava (2007).

A fragment of 550 bp of the mitochondrial control
region was amplified by PCR using primers H00034
— TACCAAATGTATGAAACCTCAG (Rosel, Dizon &
Heyning, 1994) and Dloop — TCACCCAAAGCTG
AARTTCTA (Cunha et al., 2005). All PCR reactions were
carried out in 25 pL volumes containing 1 unit of GoTaq
polymerase (Promega); 0.20 mM deoxynucleotides
(dANTP); 2.5 mM MgCl,; 15 pug bovine serum albumin
(BSA), and 0.5 uM of each primer. A blank control was
included in all PCR experiments.

PCR thermocycling was performed with an initial
denaturation step of 3 min at 93 °C, followed by 30 cycles
of amplification (1 min at 92 °C, 1 min annealing at
50 °C, and 1 min at 72 °C), and a final extension of
5 min at 72 °C. PCR products were purified using a
Illustra GFX PCR DNA and gel band purification kit
(GE) and sequenced in both directions in an ABI 3500
automated sequencer (Applied Biosystems). Sequenc-
ing reactions were prepared using the specific kit and
protocol (BigDye Terminator Sequencing Kit v 3.1 Cycle,
Applied Biosystems). Control region haplotype se-
quences were deposited in GenBank (accession numbers
KM260653-7).

DATA ANALYSES

Sequences were edited using the program SeqMan 7
(DNAStar — Lasergene Inc.) and aligned manually using
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Figure 1. Sampling of Steno bredanensis for this study. Black circles, new control region sequences; white circles, se-
quences available in GenBank. The inset shows sampling localities in the South Western Atlantic (SW Atl). CS Pac, central
southern Pacific; ET Pac, eastern tropical Pacific; Car, Caribbean; NW Pac, northwestern Pacific; Ind, Indian Ocean; CE,
Ceara State; ES, Espirito Santo State; RJ, Rio de Janeiro State; RS, Rio Grande do Sul State; SC, Santa Catarina State.

Table 1. Control region sequences used in this study, for
each analysis

Population

Geographical Phylogenetic Haplotype analyses
location tree network (AMOVA/®gr)
SW Atlantic 42 42 42

(this study)
SW Atlantic GB 1 1 2
Caribbean GB 3 3 3
ET Pacific GB 4 4 4
CS Pacific GB 59 59 59
NW Pacific GB 1 - -
Indian Ocean 1 - -

GB

GB, sequences from GenBank.
AMOVA, analysis of molecular variance; ®sr, ®-statistics.

MEGA 5 (Tamura et al., 2007). The definition of
haplotypes and the estimation of haplotype and
nucleotide diversities were carried out in DnaSP 5
(Librado & Rozas, 2009). A median-joining haplotype
network of control region sequences was built by the
program NETWORK 4.612 (Bandelt, Forster & Rohl,
1999).

For the study of population structure using control
region sequences, we used an analysis of molecular vari-
ance (AMOVA, Excoffier, Smouse & Quattro, 1992) per-
formed in ARLEQUIN 3.5.1.2 (Excoffier, Laval &
Schneider, 2005). This program computes ® statis-
tics, which are analogous to F statistics (Wright, 1978)
but incorporate information about the molecular dis-
tance, and separate molecular variance into hierar-
chical levels, enabling the test of different hypothetical
structure scenarios. The significance of the fixation
indices was tested by 10 000 permutations of haplotypes,
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individuals, or populations between individuals, popu-
lations, or groups of populations, respectively. We also
used ARLEQUIN to estimate pairwise ®sr indices and
test their significance with 10 000 permutations. A se-
quential Bonferroni procedure was used to adjust sig-
nificance for multiple tests (Holm, 1979).

Sequences from GenBank were used for phylogenetic
analyses, which followed two approaches: (1) com-
plete cytochrome b dataset of almost all delphinid species
(N = 35); (2) complete mitogenomes of all delphinids
available (N = 21). MEGA 5 (Tamura et al., 2007) was
used for building and testing phylogenetic neighbour-
joining (NJ) trees, using Kimura two-parameter (K2P)
distances and 10 000 bootstrap replicates. Bayesian (B)
phylogenetic trees were built by BEAST 1.8.0
(Drummond et al., 2012), using a Yule speciation process
and the nucleotide substitution model Hasegawa-
Kishino-Yano + gamma + invariant sites (HKY + G + 1),
as selected using jModelTest 2.1.5 (Posada, 2008). Ten
million Markov Chain Monte Carlo (MCMC) steps were
run, from which 10 000 trees were recorded. The first
1000 trees were regarded as ‘burn in’ and discarded.
After verification that all tree parameters had effec-
tive sampling sizes (ESS) > 200, the Maximal Clade
Credibility (MCC) search algorithm in TreeAnnotator
1.6.1 (Drummond et al., 2012) was used to find the best-
supported tree. Trees were visualized using FigTree
1.4 (http://tree.bio.ed.ac.uk/software/figtree/).

RESULTS
GENETIC VARIABILITY

The control region dataset comprised 112 sequences.
After alignment, sequences were 423 nucleotides long
and contained 28 polymorphic sites. In the total dataset,
we observed 19 haplotypes. Overall haplotype diver-
sity (Hd) was 0.839 and nucleotide diversity (1) was
0.019.

The control region haplotype network revealed wide
genetic divergence between rough-toothed dolphins of
the Atlantic and Pacific/Indian Oceans. Haplotypes from
the Atlantic are all closely related, except for H13, ob-
served in a single individual from northeastern Brazil
(Ceara State), which grouped with Pacific/Indian
haplotypes (Fig. 2). This sequence was available from
GenBank and was obtained from a specimen depos-
ited in the Southwest Fisheries Science Center (Na-
tional Oceanic and Atmospheric Administration/USA;
Caballero et al., 2008). As confirmation of that se-
quence was not possible, we decided to exclude it from
population analyses.

In the southwestern Atlantic, five of the six control
region haplotypes found were new. The exception, H2,
had been previously reported in the Caribbean
(Albertson et al., 2011), and was also observed in a
rough-toothed dolphin from Espirito Santo State (ES).

The most common haplotype (H16) was more fre-
quent in Rio de Janeiro State (RJ) and was shared by
ES and Rio Grande do Sul State (RS). The second most
common haplotype, H15, was at its highest frequen-
cy in RS and was shared with RJ and Santa Catarina
State (SC). Haplotype H17 was found in two individ-
uals of RJ and haplotypes H18 and H19 were each ob-
served in a single individual, from RS and RJ,
respectively. Besides haplotype H2, Caribbean samples
showed two other haplotypes.

In the Pacific, 11 control region haplotypes were ob-
served: one in the northwestern (Japan), four in the
eastern tropical, and five in the central southern Pacific.
One of those five haplotypes was shared with the Indian
Ocean (H10).

PHYLOGENETIC ANALYSES

A phylogenetic NJ tree built using control region se-
quences showed a deep divergence between rough-
toothed dolphins of the Atlantic and the other regions
analysed (Pacific and Indian Oceans) (Fig. 3, p-dis-
tance = 0.031, K2P = 0.016).

The phylogenetic NJ and B trees of the complete
cytochrome b sequences had similar topology and showed
modest genetic differentiation between rough-toothed
dolphins from the Atlantic and Pacific Oceans
(K2P = 0.003, Fig. 4). This divergence is within the range
observed for intraspecific comparisons of the Delphinidae
using cytochrome 6 (Fig. 5). The NJ and B analyses
of mitogenomes revealed a larger genetic divergence
between the Atlantic and Pacific/Indian Oceans
(K2P = 0.009, Fig. 6). However, considering intra- and
interspecific comparisons, this divergence is in the inter-
section zone where the two distributions overlap (Fig. 7).

POPULATION STRUCTURE ANALYSES

The single control region sequences from north-
eastern Brazil (CE) and the Indian and northwest-
ern Pacific Oceans were excluded from population
analyses. The sequence from SC, which had the same
haplotype as samples from RS, was grouped with those
individuals. The population structure hypotheses tested
with AMOVA included all possible groupings of the re-
maining localities.

The AMOVA indicated large differentiation between
the Atlantic and Pacific Oceans. The population struc-
ture scenario of two populations (Atlantic x Pacific) had
a significant ®cr of 0.769 (P < 1075, Tables 2 and 3).
However, two other scenarios had similar significant
®cr values: three populations, with two in the Atlan-
tic (Pacific/Caribbean/southwestern Atlantic, ®cr = 0.764,
P < 107%); and four populations, with three in the At-
lantic (Pacific/Caribbean/ES + RJ/SC + RS, ®¢r = 0.747,
P <107®) (Tables 2 and 3). In addition, the AMOVA re-
jected the scenarios of panmixia in the Atlantic and
also in the Brazilian coast (®gr = 0.385 and 0.415,
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Figure 2. Median-joining network of Steno bredanensis mtDNA control region haplotypes (IN = 112). Circle size is pro-
portional to frequency. Branch length reflects molecular distance. CE, Ceara State; ES, Espirito Santo State; RdJ, Rio de
Janeiro State; RS, Rio Grande do Sul State; SC, Santa Catarina State.

respectively, both with P < 1075, Table 2). When only
samples from the Atlantic and Brazilian coast were
considered, the scenario of three populations was sig-
nificant: Caribbean/RdJ + ES (southeastern Brazil)/
SC + RS (southern Brazil) (®cr = 0.386; P = 0.02, Table 2).
These two latter results give support to the existence
of at least four populations worldwide. Although
panmixia in Brazil was rejected, it was not possible
to test any scenario for the Brazilian populations owing
to insufficient power of the analysis (see Fitzpatrick,
2009).

Most pairwise ®sr comparisons were significantly
different from zero (Table 4). Thus, ®sr analysis fa-
voured four populations worldwide: three in the At-
lantic (Caribbean/RJ + ES/SC + RS) and one in the
Pacific (central south Pacific + eastern tropical Pacific).

DISCUSSION

This is the first study on the genetic population struc-
ture of rough-toothed dolphins in the Atlantic Ocean.

Our preliminary results indicated large amounts of
genetic differentiation between the Atlantic and Pacific/
Indian Oceans, prompting the need for molecular taxo-
nomic analyses. However, phylogenetic analyses using
cytochrome b and complete mitogenome data were not
conclusive about the existence of more than one Steno
species. Population analyses, by contrast, showed that
rough-toothed dolphins worldwide and in the Atlan-
tic are not panmictic.

PHYLOGENETIC ANALYSES

The mitogenomic phylogenetic trees revealed consid-
erable genetic distance between rough-toothed dol-
phins from the Atlantic and Pacific, but the observed
divergence was within the intersection zone where intra-
and interspecific distances overlap. However, only one
of the six delphinid species for which more than one
mitogenome is available had K2P distances higher than
S. bredanensis (0.009): Tursiops aduncus (0.013). A recent
study suggested that 7. aduncus may comprise
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Figure 3. Phylogenetic tree (neighbour-joining, Kimura two-parameter) showing the genetic divergence between se-
quences of the control region of the Atlantic (ES, Espirito Santo State; RJ, Rio de Janeiro State; SC, Santa Catarina
State; RS, Rio Grande do Sul State) and other regions analysed (Pacific and Indian Oceans). Numbers at nodes corre-
spond to bootstrap values >75% (10 000 replicates). CS Pac, central southern Pacific; ET Pac, eastern tropical Pacific;
NW Pac, northwestern Pacific; CE, Ceara State; Sb, Steno bredanensis. MQ and BG are field codes for samples from RdJ.
The scale bar shows the length of branch that corresponds to a Kimura two-parameter distance of 0.005.

different species (Moura et al., 2013); therefore, the right
tail of the intraspecific distribution may be signifi-
cantly overestimated. At the same time, the left tail
of the distribution of interspecific values is probably
skewed as a result of values of zero for comparisons
between the two Globicephala species, which have been
shown to be paraphyletic, possibly because of hybridi-
zation or recent divergence (Oremus et al., 2009).
Intraspecific distances for the other three species
(Peponocephala electra, Feresa attenuata, and Pseudorca
crassidens) were in the range 0.000-0.002.
Cytochrome b analysis had a denser taxon sam-
pling, including all recognized delphinid species (except
for Sousa teuszii). The divergence between the Atlan-
tic and Pacific rough-toothed dolphins was modest, lower
than other intraspecific comparisons (e.g. Orcaella
brevirostris, Delphinus capensis, Lagenorhynchus acutus,
Delphinus delphis, Globicephala macrorhynchus,

Lagenodelphis hosei, Lagenorhynchus obliquidens,
Lagenorhynchus obscurus, Orcinus orca, Sousa chinensis,
Stenella attenuata, Stenella longirostris, T. aduncus,
and Tursiops truncatus). Despite this, it is also worth
noting that most of the right tail of the intraspecific
distribution refers to comparisons between 7. truncatus
from several localities across the globe, which are be-
lieved to represent more than a single species (Moura
et al., 2013). In any case, as there are many more
cytochrome b sequences than mitogenomes from each
of the delphinid species, the cytochrome b histogram
depicts better the variability within and between species.

Although mitochondrial markers are reputed to be
good markers for mammalian taxonomy, a mitochondrial
tree may not always correctly depict the species tree.
Mitochondrial markers behave as a single locus and,
therefore, may result in trees that are more affected
by stochastic lineage sorting. Introgression is another
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Figure 4. Phylogenetic neighbour-joining (NJ) tree of delphinid cytochrome b sequences. Numbers above branches in-
dicate bootstrap/posterior probability values >75% (NJ, Kimura two-parameter/Bayesian, Hasegawa-Kishino-Yano + gamma

+ invariant sites).

possible source of noise in mitochondrial trees. Con-
sequently, basing taxonomic decisions on a single locus
is risky, and usually at least two independent lines of
evidence (such as genetics and morphology) are re-
quired to sustain a claim in favour of species recog-
nition. Morphological data could help to settle the
taxonomic issue raised by the mitochondrial diver-

gence found between Atlantic and Pacific/Indian rough-
toothed dolphins. Unfortunately, however, morphological
variation across the species range has not been studied
yet. Therefore, combining our phylogenetic analyses and
the fact that morphological data are still lacking, we
concluded that the available data are not sufficient to
support the existence of cryptic speciation in Steno,
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Figure 5. Intra- and interspecific genetic distances (Kimura two-parameter, K2P) in the cytochrome b sequences of delphinids,
and the divergence between Steno bredanensis in the Atlantic and Pacific/Indian Oceans.

and decided to treat the Atlantic and Pacific/Indian
populations as conspecific. However, the large amount
of differentiation between mitochondrial lineages from
these ocean basins deserves further examination, using
nuclear markers as well as morphological data.

POPULATION STRUCTURE ANALYSES

The AMOVAs revealed large amounts of genetic dif-
ferentiation between rough-toothed dolphins from the
Atlantic and Pacific Oceans, indicating that gene flow
between these ocean basins is insignificant.

The existence of genetic structure in S. bredanensis
worldwide could be anticipated because the only pre-
vious genetic study on the species detected microscale
population differentiation in French Polynesia (Oremus
et al., 2012). Restrictions to gene flow between two
islands 170 km apart were observed using control region
sequences (450 bp, Fsr = 0.63, P <0.001; ®gr = 0.58,
P <0.001) and microsatellites (14 loci, Fsr = 0.009,
P <0.001; Rer = 0.15, P <0.05). The authors suggest-
ed that the significant genetic divergence between
rough-toothed dolphins from the two islands is

explained by site fidelity and low dispersal (Oremus
et al., 2012).

Amongst the delphinids with circumglobal distribu-
tion, only a few have had their genetic population struc-
ture studied. A general pattern in these studies is the
existence of genetic differentiation between distinct ocean
basins. For example, the long-finned pilot whale
(Globicephala melas) showed strong population differ-
entiation amongst sampling sites in the southwest-
ern Pacific (New Zealand, Tasmania) and the North
Atlantic (USA, England, Scotland, and the Faeroe
Islands, Fsr = 0.495, P < 0.001; ®gr = 0.429, P < 0.001)
(Oremus et al., 2009). The same study verified that the
short-finned pilot whale (G. macrorhynchus) is also struc-
tured between the Atlantic and Pacific basins, with
AMOVA supporting four populations (North Japan,
South Japan, Atlantic, and South Pacific) (Fsr = 0.392,
P <0.001; &gy = 0.598, P <0.001).

The common dolphin (genus Delphinus) is also found
in the Atlantic, Pacific and Indian Oceans. Analyses
of mitochondrial and nuclear sequences and
microsatellites showed significant genetic differentia-
tion between the Atlantic and Pacific Oceans and within
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Figure 6. Phylogenetic neighbour-joining (NJ) tree of delphinid mitogenomes. Numbers above branches indicate bootstrap/
posterior probability values >75% (NJ, Kimura two-parameter/Bayesian, Hasegawa-Kishino-Yano + gamma + invariant

sites).

localities in the same ocean basin (Amaral et al., 2012a,
b), a result in agreement with previous studies using
mitochondrial and microsatellite data (Natoli et al., 2006;
Mirimin et al., 2009).

In the present study, AMOVA and ®sr analyses also
showed that there are restrictions to gene flow amongst
rough-toothed dolphins from the Atlantic Ocean. Com-
bining the two analyses, three Atlantic populations were
detected (Caribbean, ES + RJ, and SC + RS), and should
be provisionally accepted until the issue is further in-
vestigated using higher resolution genetic markers.

Delphinids can exhibit significant genetic differen-
tiation across small geographical distances, such as that
found here between ES + RJ and SC + RS (c. 700 km).
Along the coast of Brazil, for example, Cunha et al.
(2005) reported three populations of Sotalia guianensis,
using preliminary control region sequence data: north,

northeastern, and south—southeastern (®cr = 0.628,
P <107). Also in the southwestern Atlantic, Fruet et al.,
(2014) detected significant genetic differentiation in
T. truncatus from southern Brazil, Uruguay, and Ar-
gentina, using microsatellites (Fsr = 0.46, P < 0.001) and
mitochondrial DNA (®gr = 0.43, P < 0.0001). Microscale
genetic differentiation has been detected in other regions
in T! truncatus (Tezanos-Pinto et al., 2009; Richards et al.,
2013), T. aduncus (Wiszniewski et al., 2010), and
D. delphis (Bilgmann et al., 2008; Moller et al., 2011).
Finally, like S. bredanensis, the spinner dolphin Stenella
longirostris is also structured amongst the six islands
of French Polynesia (mtDNA: Fgr = 0.143; ®gr = 0.129,
P < 0.001; microsatellite: Fsr = 0.029, P < 0.001, Oremus
et al., 2007).

The significant genetic structuring observed here in
rough-toothed dolphins from the Atlantic mirrors a study
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Figure 7. Intra- and interspecific genetic distances (Kimura two-parameter, K2P) in the mitogenomes of delphinids, and
the divergence between Steno bredanensis in the Atlantic and Pacific Oceans.

Table 2. Analysis of molecular variance results of population structure hypotheses tested and the rejected scenarios of

panmixia

Scenarios tested @ statistics p
Scenarios of panmixia

Atlantic 0.385 (dgp) 10°°
Brazil 0.415 (dgy) 10
Worldwide

2 populations: Atlantic x Pacific 0.769 (dcr) 10°°
3 populations: Caribbean/SW Atlantic/Pacific 0.764 (Ocr) 107
4 populations: RJ + ES/SC + RS/Caribbean/ET Pacific + CS Pacific 0.747 (®cr) 10°°
5 populations: RJ/ES/SC + RS/Caribbean/ET Pacific + CS Pacific 0.696 (dcr) 10
5 populations: RJ + ES x SC + RS x Caribbean x ET Pacific x CS Pacific 0.781%* (®cr) 10
Atlantic only

3 populations: SC + RS/RJ + ES/Caribbean 0.386 (dcr) 0.01723

Significant results with the largest ®cr values are shown in bold.

*Qverestimated, because ®gc = —1.836.

ES, Espirito Santo State; RJ, Rio de Janeiro State; SC, Santa Catarina State; RS, Rio Grande do Sul State; ET, east
tropical; CS, central south.
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Table 3. Detailed analysis of molecular variance results for the most likely population structure scenarios

Sum of Variance Percentage

Source of variation squares component variation @ statistics P
(A) 4 populations: Caribbean/RdJ + ES/SC +

RS/CS Pacific + ET Pacific
Between groups = populations 286.165 4.498 74.70 0.747 10
Amongst localities within groups 5.122 0.166 2.75
Within localities 138.398 1.356 22.53
(B) 3 populations: Caribbean/SW Atlantic/Pacific
Between groups = populations 282.169 4.968 76.37 0.764 10
Amongst localities within groups 9.118 0.179 2.76
Within localities 138.398 1.356 20.85
(C) 2 populations: Atlantic/Pacific
Between groups = populations 279.488 5.166 76.87 0.769 10
Amongst localities within groups 11.799 0.197 2.93
Within localities 138.398 1.356 20.18

Significant results with the largest ®cr values are shown in bold. ES, Espirito Santo State; RJ, Rio de Janeiro State;
SC, Santa Catarina State; RS, Rio Grande do Sul State; ET, east tropical; CS, central south.

Table 4. Pairwise fixation index (®gr) values amongst sampling localities. Significant values (P < 0.008) are marked with

an *
Car ES RJ RS ET Pac CS Pac
Car 0.000
ES -0.044 0.000
RJ 0.451* 0.131 0.000
RS 0.524* 0.607* 0.465% 0.000
ET Pac 0.528 0.706 0.896* 0.822%* 0.000
CS Pac 0.694* 0.746* 0.798%* 0.753* 0.142 0.000

Car, Caribbean; ES, Espirito Santo State; RJ, Rio de Janeiro State; RS, Rio Grande do Sul State; ET Pac, eastern tropi-

cal Pacific; CS Pac, central south Pacific.

on the Atlantic spotted dolphin (Stenella frontalis).
Analyses of control region sequences showed genetic
differentiation between the Caribbean and southwest-
ern Atlantic (Fgr = 0.097 and ®sr = 0.930, P < 0.05;
Caballero et al., 2013). However, spotted dolphins from
the southwestern Atlantic were not different from those
sampled in the Madeira and Azores Islands, which could
indicate recent population fragmentation or ongoing
long-distance connectivity as supported by sightings
of this species in deep waters (Caballero et al., 2013).

In most of the sampled area in Brazil, S. bredanensis
occurs sympatrically with Sotalia guianensis (from ES
to SC). A study using control region sequences of
So. guianensis reported a single haplotype from RdJ to
SC (N = 20, Cunha et al., 2005). This homogeneity in
the control region has been confirmed with increased
sampling (H. A. Cunha, unpubl. data), and has been
attributed to a founder effect in the southern portion
of the species distribution (Cunha et al., 2005). The fact
that S. bredanensis presents variability across the same
region implies that the two species experienced dif-

ferent evolutionary pathways, or that S. bredanensis
could have been in the area for longer than
So. guianensis. In the present study, the south-
eastern Brazil population (ES + RJ) had haplotype and
nucleotide diversities roughly twice the values found
for the southern population (SC + RS) (Hd = 0.514 and
n=0.00152; Hd = 0.345 and & = 0.00086, respective-
ly), which could indicate that the southern popula-
tion is either smaller or younger. However, the lower
diversity may also be simply a result of the differ-
ence in sample sizes (N =31 and N =11).

It is important to note that population structure
results may change when more sequences are avail-
able. More specifically, the clustering of Central South-
ern Pacific and Eastern Tropical Pacific observed here
may be a result of the small number of sequences from
the latter (only four). With the inclusion of more
samples, it may be possible to detect population dif-
ferentiation across the Pacific, as found in the Atlan-
tic. In addition, samples from the Indian Ocean will
enable comparisons with the Pacific and Atlantic basins.
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The use of hypervariable, biparentally inherited
microsatellites may also improve analyses of the popu-
lation structure of rough-toothed dolphins.

IMPLICATIONS FOR CONSERVATION

The genetic differentiation between rough-toothed dol-
phins from the Atlantic and Pacific deserves further
attention, as it may indicate cryptic speciation in the
genus.

Our data revealed genetic population structure of
rough-toothed dolphins both worldwide (Atlan-
tic x Pacific Oceans) and also within the Atlantic Ocean
basin, where three populations were detected (ES + Rd,
SC + RS, and Caribbean). The restricted gene flow
amongst these areas shows that they are demographi-
cally independent and should be considered distinct
management units (MUs, sensu Moritz, 1994). In the
southwestern Atlantic, rough-toothed dolphins have
a coastal distribution and are exposed to several
anthropogenic threats (Di Beneditto et al., 1998;
Monteiro-Neto et al., 2000; Dorneles et al., 2007;
Meirelles et al., 2009; Lailson-Brito et al., 2012). With
respect to the delimitation of southwestern Atlantic
MUs, basic demographic data should be gathered to
allow for a proper assessment of the population status
and to define conservation strategies aimed at the main-
tenance of genetic diversity.
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