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Abstract
Real-time spatiotemporal population data is attract-
ing a great deal of attention for understanding
crowd movements in cities. The data is the ag-
gregation of personal location information and con-
sists of just areas and the number of people in each
area at certain time instants. Accordingly, it does
not explicitly represent crowd movement. This pa-
per proposes a probabilistic model based on col-
lective graphical models that can estimate crowd
movement from spatiotemporal population data.
There are two technical challenges: (i) poor esti-
mation accuracy as the traditional approach means
the model would have too many degrees of free-
dom, (ii) excessive computation cost. Our key idea
for overcoming these two difficulties is to model
the transition probability between grid cells (cells
hereafter) in a geospatial grid space by using three
factors: departure probability of cells, gathering
score of cells, and geographical distance between
cells. These advances enable us to reduce the de-
grees of freedom of the model appropriately and
derive an efficient estimation algorithm. To eval-
uate the performance of our method, we conduct
experiments using real-world spatiotemporal popu-
lation data. The results confirm the effectiveness of
our method, both in estimation accuracy and com-
putation cost.

1 Introduction
Spatiotemporal population data are considered to be impor-
tant in various fields, such as demand prediction for taxi op-
erating systems 1, marketing [Hess et al., 2004], and simu-
lating human movements after massive disasters [Sudo et al.,
2016]. Spatiotemporal population data contains population
snapshots of each area, and is created by aggregating per-
sonal location information obtained from mobile network op-
erationing data [Terada et al., 2013], GPS [Witayangkurn et
al., 2013] or Wi-Fi. This data format has the advantage that
privacy is addressed while providing a sufficient amount of

1https://www.nttdocomo.co.jp/english/info/media center/event/
mwc2017/pdf/about ai taxi.pdf
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Figure 1: Task description. We consider a grid space created by di-
viding the geospatial space into cells at equal intervals by lines par-
allel to latitude and longitude; this is a common space-discretization
approach. The input is spatiotemporal population data, which is the
number of people in each cell at each time step. The output is the
number of people who moved between cells over time.

position information to understand macroscopic human be-
havior. Therefore, information sets using this data format
are becoming popular. For example, mobile spatial statis-
tics [Terada et al., 2013] are calculated from mobile network
operational data, the hourly population data of square grids
(fixed size) in Japan. The XData project in France consid-
ered releasing hourly spatiotemporal population density data
of each region of Paris [Acs and Castelluccia, 2014].

This paper tackles the task of estimating people flows from
spatiotemporal population data as shown in Figure 1. Re-
alizing this task will greatly extend the applicability of spa-
tiotemporal population data, such as predicting taxi demand
with consideration of flow direction, designing transportation
systems tailored to mass movements, and detecting anomalies
in the movement patterns of people.

One method for solving this task is based on the Collec-
tive Graphical Model (CGM) [Sheldon and Dietterich, 2011],
which is a general framework for analyzing aggregated data.
In this framework, the number of people who moved between
cells is treated as a hidden variable, and this hidden variable
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and transition probabilities between cells are estimated simul-
taneously. Iwata et al. applied CGM to the task of estimating
people movement (just movement hereafter) from spatiotem-
poral population data, the same task as ours, and reported the
effectiveness of their method [Iwata et al., 2017]. However,
their method is designed for estimating movements from one
cell to neighboring cells. Thus the method cannot estimate
movements over longer distances. When the discretization
width of space (i.e. cell size) is small or time discretiza-
tion width is large, many people move from one cell to non-
neighboring cells between time steps. In such cases, the pre-
vious method offers poor estimation accuracy. In addition,
since movement speeds vary widely with the mode of move-
ment (walking, train, car, etc.), considering only movement
to neighbor cells may undercount the number moving. This
may yield wrong conclusions and hinder analysis.

At first sight, estimation that considers non-neighbor
movement can be easily realized by preparing hidden vari-
ables and transition probability parameters to non-neighbor
cells. However, this naive solution suffers from two crucial
difficulties. (i) When the number of hidden variables and
transition probability parameters is large, too many solutions
are consistent with the observed population data. As a result,
the estimation process readily falls into local optima, result-
ing in low estimation accuracy. (ii) As the number of hidden
variables increases, the computation cost of updating the hid-
den variables becomes excessive. Since we have to update
hidden variables iteratively to estimate them, the total algo-
rithm is not really scalable.

This paper proposes a new model (based on CGM) and
its inference algorithm for estimating people flows from spa-
tiotemporal population data. Our key idea for overcoming
the two difficulties described above is to model the transition
probability from cell i to cell j by using three factors; (i) de-
parture probability of i which represents how likely people at
i are to move to other cells, (ii) gathering score of j which
represents how likely people are to gather at cell j, and (iii)
the geographical distance between i and j. This model en-
ables us to appropriately reduce the degrees of freedom in the
parameter inference procedure. As a result, estimation be-
comes less likely to be trapped in local optima which makes
highly accurate estimates possible. Moreover, this model en-
ables us to derive an approximate scalable inference algo-
rithm; by utilizing sufficient statistics of parameters in this
model, it is possible to drastically reduce the hidden variables
that need to be processed in the algorithm, resulting in much
lighter computation cost. This paper proposes both exact and
approximate estimation algorithms and compares them.

To evaluate the performance of our method, we conduct
experiments on a real-world spatiotemporal population data
set created by aggregating GPS trace data of cars obtained
via car navigation systems. The results confirmed the high
estimation accuracy of our method and light computation cost
of the proposed approximate estimation algorithm.

2 Problem Formulation
We consider a grid space created by dividing the geospa-
tial space at equal intervals by lines parallel to latitude and

Symbol Definition
V set of all cells
T number of timesteps
Nti population of cell i at time step t
Mtij # of people who moved from cell i to cell j

between time step t and t+ 1
θij transition probability from cell i to cell j
Γi set of destination candidate cells for transition

from cell i
K parameter for controlling the size of Γi

d(i, j) distance between cell i and cell j
πi departure probability of cell iwhich represents

how likely people at cell i are to move to cells
other than cell i

si gathering score of cell i which represents how
likely people are to gather at cell i

β parameter representing transition probability
decay (depends on distance between cells)

λ hyperparameter for controlling the penalty

Table 1: Notation

longitude. The problem we tackle with in this paper is for-
mulated as follows. Suppose we have population of cell i
at timestep t, Nti(i ∈ V, t = 0, . . . , T − 1), where V is
the set of all cells in the grid space and T is the number
of timesteps. Our goal is to estimate the population who
leave cell i at time t and whose next cell is j at time t + 1,
Mtij(i ∈ V, j ∈ V, t = 0, . . . , T − 2). Note that, we can ap-
ply our method to spatiotemporal population data discretized
in other ways; all that is required is to design an appropriate
distance function between discretized areas.

The notations used in this paper are listed in Table 1.

3 Related Work
3.1 Collective Graphical Model
Collective Graphical Model (CGM) [Sheldon and Dietterich,
2011] is a general framework for inferring the hidden prob-
abilistic model underlying a set of aggregated data. This
framework has been applied to the analysis of transition pat-
terns of vehicles in road networks [Sheldon et al., 2013], and
pedestrian data analysis for a large amusement park [Du et
al., 2014]. Of particular interest, Iwata et al. deal with the
problem of estimating transition population from the popula-
tion data of each cell, which is the same task we tackle in this
paper [Iwata et al., 2017]. The relationship of these methods
and our proposed method is explained in Section 4.1.

Various estimation techniques for CGM have been pub-
lished, such as Gibbs sampler method [Sheldon and Diet-
terich, 2011], the message passing based method [Sun et al.,
2015], and theMAP-based estimation method [Sheldon et al.,
2013]. Our estimation scheme is based on MAP-based esti-
mation [Sheldon et al., 2013].

3.2 Transition Estimation From Aggregated Data
Kumar et al. deal with the problem of inferring transition
tendencies between items (e.g. web pages) based on aggre-
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gate data containing the relative popularity of items (e.g. the
number of views of web pages) [Kumar et al., 2015]. They
formulate this problem as reconstructing the transition ma-
trix of a Markov chain from an observed stationary distribu-
tion. Although this problem is ill-posed and has infinitely
many solutions in general, they showed that a unique solu-
tion can be determined using Luce’s Choice model [Luce,
1959]. Maystre et al. extended this approach and proposed an
algorithm named Choice Rank for reconstructing the transi-
tion matrix of a Markov chain on a graph from the incoming
and outgoing population of each vertex under Luce’s choice
model [Maystre and Grossglauser, 2017]. These methods are
not designed to treat time-discretized population data, and so
cannot be applied to our problem setting.

Xu et al. propose an algorithm for restoring personal move-
ment histories from spatiotemporal population data in order
to evaluate the privacy risk of publishing spatiotemporal pop-
ulation data [Xu et al., 2017]. Their method solves the linear
sum assignment problem under cost functions decided via an
analysis of real mobility data. Although this method is similar
to methods based on CGM (including ours) in terms of solv-
ing optimization problem under cost functions, this method
has no mechanism to estimate the parameters (i.e. transition
probabilities between cells) that determine the cost functions.
Therefore, the data to which this method can be applied is
limited. Our method estimate people’s movements without
heuristic assignment of transition probabilities between cells.

3.3 Future Prediction of Population
A lot of studies have attempted to predict future popula-
tion from past population data or other features. For exam-
ple, Hoang et al. tackle the problem of predicting incoming
and outgoing population of each area in a city and proposed
a prediction method based on decomposing dynamics into
seasons, social trends, and other components [Hoang et al.,
2016]. Zhang et al. treated the same problem in proposing
ST-ResNet, which is a deep-learning-based method [Zhang
et al., 2017]. They are supervised methods and so require
both input (e.g. past incoming population) and output vari-
ables (e.g. future incoming population) to train their predic-
tors. On the other hand, our proposed method is an unsu-
pervised learning method and so needs only input variables
(spatiotemporal population data) and does not need output
variables (transition population between cells).

4 Proposed Method
4.1 Preliminary
We first explain the method proposed by Iwata et al. [Iwata
et al., 2017] that uses CGM to estimate transition populations
from the observed number of people in each cell.

Let Γi be a set of candidate cells that can be destina-
tions of movements from cell i. In previous work, Γi is
a set of cells within L∞-distance 1 from cell i, since the
method is designed for estimating movements from one cell
to its neighbors. Given population Nti and transition prob-
ability θi = {θij}j∈Γi

, the transition population Mti =

{Mtij}j∈Γi
(t = 0, 1, . . . , T−2, i ∈ V ) given populationNti

is assumed to be decided by the following multinomial distri-
bution: P (Mti | Nti,θi) =

Nti!∏
j∈Γi

Mtij !

∏
j∈Γi

θ
Mtij

ij . Given

N = {Nti | t = 0, . . . , T −1, i ∈ V } and θ = {θi | i ∈ V },
the likelihood function ofM = {Mti | t = 0, . . . , T −2, i ∈
V } is calculated as

P (M |N ,θ) =
T−2∏
t=0

∏
i∈V

 Nti!∏
j∈Γi

Mtij !

∏
j∈Γi

θ
Mtij

ij

 .

The population in cell Nti and the transition population be-
tween cells Mti satisfy the following two relationships, they
represent the law of conservation in the number of peo-
ple: Nti =

∑
j∈Γi

Mtij , Nt+1,i =
∑

j∈Γi
Mtji (t =

0, 1, . . . , T − 2). Estimation is done by maximizing the log-
likelihood function logP (M | N ,θ) under constraints of
the law of conservation described above. These constraints
might not be satisfied strictly in real-world datasets, because
observations are always noisy and obscuration may be used
to preserve user privacy. To deal with these problems, these
constraints are treated as soft constraints and we try to mini-
mize the penalty term defined as below:

C(M) ≡
T−2∑
t=0

∣∣∣∣∣∣Nti −
∑
j∈Γi

Mtij

∣∣∣∣∣∣
2

+

T−2∑
t=0

∣∣∣∣∣∣Nt+1,i −
∑
j∈Γi

Mtji

∣∣∣∣∣∣
2

.

It follows that objective function L(M ,θ) is given by

L(M ,θ) ≡ logP (M |N ,θ)− λ

2
· C(M)

≈
T−2∑
t=0

∑
i∈V

∑
j∈Γi

(Mtij log θij +Mtij −Mtij logMtij)

− λ

2
· C(M), (1)

where constants that do not depend onM ,θ are omitted, and
we apply Stirling’s approximation to the logMtij ! term, in
order to calculate logMtij ! efficiently [Sheldon et al., 2013].
λ is a hyperparameter that controls the penalty. Optimization
is done by updating M and θ alternately. This optimization
process can be interpreted as the EM algorithm whose E-step
is approximately calculated [Sheldon et al., 2013].

4.2 Technical Challenges and Main Ideas
The previous method described in the previous section is de-
signed for estimating movements from one cell to its neigh-
boring cells, and so cannot estimate movements over longer
distances. At first sight, estimation that considers non-
neighbor movement can be easily realized by preparing hid-
den variables and transition probability parameters to non-
neighbor cells. However, there are two technical challenges
to estimate the number of people who moved between cells
including non-neighbor movements: (i) As the number of
hidden variables M and transition probability parameters θ
increases, the degree of freedom of the model becomes too
high (i.e., too many solutions are consistent with the obser-
vations). As a result, estimation is easily trapped in local
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Algorithm 1 Exact Inference Algorithm
1: Input: population data: N
2: Output: movementM , parameter π, s, β
3: Initialize parametersM ,π, s, β
4: while condition L′ do
5: M ← arg max

M
L′(M ,π, s, β)

6: π ← arg max
π

L′(M ,π, s, β)

7: s, β ← arg max
s,β

L′(M ,π, s, β)

8: end while
9: return M ,π, s, β

optima, resulting in output M far from the correct answer.
(ii) As the number ofM elements increases, the computation
cost of updating M becomes very heavy. Since we have to
conduct update iteratively, the total algorithm becomes non-
scalable.

Our key idea to overcome the two difficulties described
above is using three factors to describe the transition prob-
ability from cell i to cell j: departure probability of i, gath-
ering score of j, distance between i and j. Adopting this
model makes it possible to appropriately reduce the degree of
freedom of the model while considering movement to non-
neighbor cells. As a result, estimation becomes less likely to
be trapped in bad local optima and highly accurate estima-
tion becomes possible. Moreover, this model enables us to
derive an approximate scalable inference algorithm; by uti-
lizing sufficient statistics of parameters in this model, it is
possible to drastically reduce the hidden variables that need
to be processed in the algorithm, resulting in much lighter
computation cost.

4.3 Proposed Model
Modeling Transition Probability. In our model, we set
Γi to be a set of cells within distance K from cell i (i.e.
Γi = {j | j ∈ V, d(i, j) ≤ K}, where d(i, j) is the distance
between i and j). As a distance function, we use Li-distance
(i = 1, 2,∞, etc) between cells. We assume that the transi-
tion probability from cell i to cell j can be written as

θij =


1− πi (i = j)

πi
sj ·e−β·d(i,j)∑

k∈Γi\{i}
sk·e−β·d(i,k) (j ∈ Γi \ {i})

0 (o.w.)

, (2)

where πi is departure probability, which is the probability of
moving to cells other than the current timestep cell. sj > 0 is
a value that represents how likely people are to gather at cell
j. The exponential decay function e−β·d(i,j) determines how
likely cell j is to be chosen after current timestep considering
the distance between cell i and cell j. Parameter β describes
the shape of the decay function.

We provide an intuitive explanation of the transition prob-
ability modeling method (2). The next cell of a person who
was at cell i is decided as follows:
• First, probability πi determines whether the person
leaves cell i or stays.

• If the person is deemed to leave cell i, the next cell is
decided according to the probability proportional to the
score which is determined for each candidate cell j ∈
Γi \ {i}. The score represents how likely cell j is to
be chosen after i, and is calculated by multiplying sj by
e−β·d(i,j).

For example, in the morning hours, cell j, which includes the
business district, is expected to have high gathering score sj
since many people head to work in cell j, while cell i, which
includes a residential area, is expected to have high departure
probability πi. In the evening hours, the converse is expected
to be true. Moreover, the next cell that a person will move
to largely depends on the current cell. For example, a person
who lives in Oakland is more likely to commute to Union
Square in San Francisco than Manhattan in New York City
because Union Square is much closer. Although our distance
factor is based on an exponential function for simplicity, other
functions such as power function can be used as the distance
factor.
Log-Likelihood Function. By substituting (2) into (1), we
get the following new objective function

L′(M ,π, s, β) ≡
T−2∑
t=0

∑
i∈V

log(1− πi)Mtii

+

T−2∑
t=0

∑
i∈V

∑
j∈Γi\{i}

[{
log πi + log sj − β · d(i, j)

− log
∑

k∈Γi\{i}

sk · e−β·d(i,k)

}
·Mtij

]

+

T−2∑
t=0

∑
i∈V

∑
j∈Γi

(Mtij −Mtij logMtij)−
λ

2
· C(M), (3)

where constants are omitted.

4.4 Exact Inference
We present an exact inference algorithm for the proposed
model. We maximize L′(M ,π, s, β) by optimizing each pa-
rameter, M , π, s, and β, alternately, as shown below. The
proposed algorithm is summarized in Algorithm 1.

Update of M . Given the current estimates π̂, ŝ, β̂, the opti-
mization problem for M is given by

Max. L′(M , π̂, ŝ, β̂),

s.t. Mtij ≥ 0 (t = 0, . . . , T − 2, i ∈ V, j ∈ Γi).
(4)

Because the objective function is concave for M , we can get
a global optimum by gradient-based methods such as the L-
BFGS-B method [Byrd et al., 1995].

Update of π. Given the current estimates M̂ , a closed form
maximizer of the objective function (3) under constraints 0 ≤
πi ≤ 1 (i ∈ V ) can be obtained by using the Lagrangian
multiplier method:

πi =

∑T−2
t=0

∑
j∈Γi\{i} M̂tij∑T−2

t=0

∑
j∈Γi

M̂tij

. (5)
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Update of s, β. By extracting the terms dependent on s, β
from objective function (3), we get∑
i∈V

[
Ai log si −Bi log

( ∑
k∈Γi\{i}

sk · e−β·d(i,k)
)]
− βD,

(6)

where
Ai ≡

∑T−2
t=0

∑
j∈Γi\{i} M̂tji, Bi ≡

∑T−2
t=0

∑
j∈Γi\{i} M̂tij ,

D ≡
∑T−2

t=0

∑
i∈V

∑
j∈Γi\{i} d(i, j) · M̂tij . We denote (6)

by f(s, β).
In order to maximize f(s, β), we utilize the framework

called the Minorization-Maximization algorithm (MM algo-
rithm) [Hunter, 2003]. MM algorithm is an optimization tech-
nique that generates series of solution candidates by maxi-
mizing the lower bound of the objective function sequentially,
instead of maximizing the objective function directly.

We explain the maximization procedure in detail here. Us-
ing the inequality

− log x ≥ 1− log y − x

y
(x, y > 0) (7)

for

xi =
∑

k∈Γi\{i}

sk exp(−β · d(i, k)),

yi =
∑

k∈Γi\{i}

s
(u)
k exp(−β(u) · d(i, k)),

we get

f(s, β) ≥ f (u)(s, β) (8)

with

f (u)(s, β) ≡∑
i∈V

[
Ai log si − C

(u)
i

∑
k∈Γi\{i}

sk exp(−β · d(i, k))

]
− βD,

C
(u)
i ≡ Bi∑

k∈Γi\{i} s
(u)
k exp(−β(u) · d(i, k))

.

In other words, f (u)(s, β) is a lower bound of f(s, β). In
the proposed algorithm, we maximize f(s, β) by maximiz-
ing this lower bound function iteratively. An overview of the
proposed algorithm is given in Algorithm 2

Update of s in Algorithm 2 can be done in closed form as
follows

si =
Ai∑

k∈Γi\{i} C
(u)
k exp

(
−β(u) · d(k, i)

) .
While β in Algorithm 2 cannot be updated in closed form, we
can get β(u+1) efficiently using golden section search [Kiefer,
1953] or Newton’s method [Boyd and Vandenberghe, 2004]
because f (u)(s(u+1), β) is concave for β.
Because equality holds in (7) when x = y,

f(s(u), β(u)) = f (u)(s(u), β(u)) (9)

Algorithm 2Maximization of f(s, β)

1: Initialize s(0), β(0)

2: u← 0
3: while improving f do
4: s(u+1) ← arg max

s
f (u)(s, β(u))

5: β(u+1) ← arg max
β

f (u)(s(u+1), β)

6: u← u+ 1
7: end while
8: return s(u), β(u)

holds. Using (8)(9), we get

f(s(u+1), β(u+1)) ≥ f (u)(s(u+1), β(u+1)) (∵ (8))

≥ f (u)(s(u+1), β(u)) ≥ f (u)(s(u), β(u))

= f(s(u), β(u)) (∵ (9)).

This means it is guaranteed that the objective function f(s, β)
montonically increases in Algorithm 2.

4.5 Approximate Inference
The computation bottleneck of the exact inference (Algo-
rithm 1) is the update of M , since we have to solve a con-
vex optimization problem with a large number of variables.
For example, if we use an L2-distance function, the num-
ber of variables to be optimized is (T − 1) ·

(∑
i∈V |Γi|

)
≈

O(|V |K2T ). Therefore, if K is large, that is to say we con-
sider large movements, the number of variables becomes ex-
cessive. Because we have to solve this convex optimization
problem iteratively, computation cost becomes excessive.

In order to avoid this, we propose here an efficient approx-
imate estimation algorithm that has significantly fewer vari-
ables. The key observation is as follows: if we set

Xtiδ ≡
∑
j∈Γiδ

Mtji, Yti ≡
∑

j∈Γi\{i}

Mtij , Zti ≡Mtii,

where Γiδ ≡ {j ∈ Γi | d(i, j) = δ} (i ∈ V, δ ∈ ∆) and
∆ ≡ {r | ∃i ∈ V, ∃j ∈ Γi \ {i}, d(i, j) = r}, we can rewrite
two Eqs.(5) (6) as follows:

πi =

∑T−2
t=0 Yti∑T−2

t=0 Yti +
∑T−2

t=0 Zti

, (10)

f(s, β) =
∑
i∈V

[(
T−2∑
t=0

∑
δ∈∆

Xtiδ

)
log si

−

(
T−2∑
t=0

Yti

)
log

( ∑
k∈Γi\{i}

sk exp(−β · d(i, k))
)]

− β ·
T−2∑
t=0

∑
i∈V

∑
δ∈∆

δ ·Xtiδ. (11)

These two equations imply that π, s, β can be updated by
using only X,Y ,Z (i.e. X,Y ,Z are sufficient statistics
of π, s, β), and M is not necessary. Based on this obser-
vation, we propose here an estimation algorithm that holds
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Algorithm 3 Approximate Inference Algorithm

1: Input: population data: N
2: Output: movementM , parameter π, s, β
3: Initialize parametersM ,X,Y ,Z,π, s, β
4: while condition Lapprox do
5: X,Y ,Z ← arg max

X,Y ,Z
Lapprox(X,Y ,Z,π, s, β)

6: Update π by (10)
7: Update s, β by maximizing f(s, β) calculated by (11)
8: end while
9: Final calculation ofM

10: return M ,π, s, β

X,Y ,Z instead of M . Since the total number of elements
of X,Y ,Z is about O(|V ||∆|T ), which is significantly less
than the number of variables to be optimized in exact infer-
ence, O(|V |K2T ), updating X,Y ,Z is dramatically faster
than updatingM . Since∆ is a set consisting of distance val-
ues between all pairs of cells, |∆| varies depending on the dis-
tance function we adopt in the algorithm. To make |∆| small,
we should use an integer-valued distance function, such as L1

or L∞-distance function. The proposed algorithm is summa-
rized in Algorithm 3.
Update of X,Y ,Z. In order to update X,Y ,Z, we have
to minimize the objective function (1), where θ is calcu-
lated using the current parameter π̂, ŝ, β̂ by Eq.(2). How-
ever, since M is not held in the algorithm, we cannot cal-
culate the objective function (1) exactly. To overcome this
issue, we minimize the approximate objective function of (1).
We approximateMtij , which is generated from binomial dis-
tribution Bin(Ntj , θij), by independent Poisson distribution
Po (Nti · θij). Then, by utilizing the reproductive property
of Poisson distributions, Xtiδ =

∑
j∈Γiδ

Mtji can be ap-
proximated as being generated from Po(µiδ) where µiδ ≡∑

j∈Γiδ
Ntj · θji. Similarly, we generate Yti from Po(Ntiπi)

and Zti from Po(Nti(1 − πi)). Using these approximations,
we get the following approximated log-likelihood function:

Lapprox(X,Y ,Z)

≡
T−2∑
t=0

∑
i∈V

∑
δ∈∆

{Xtiδ log µiδ +Xtiδ −Xtiδ logXtiδ}

+
T−2∑
t=0

∑
i∈V

{Yti log (Ntiπi) + Yti − Yti log Yti}

+
T−2∑
t=0

∑
i∈V

{Zti log (Nti(1− πi)) + Zti − Zti logZti} .

We maximize Lapprox under the constraint of the conserva-
tion of the number of people

Nti = Yti + Zti (t = 0, . . . , T − 2, i ∈ V ),

Nt+1,i =
∑
δ∈∆

Xtiδ + Zti (t = 0, . . . , T − 2, i ∈ V ).

We treat these constraints as penalty terms as we did in Sec-
tion 4.1 and maximize the sum of Lapprox and the penalty

terms under constraints X,Y ,Z ≥ 0. Because the objec-
tive function is concave for X,Y ,Z, we can get a global
optimum by gradient-based methods such as the L-BFGS-B
method [Byrd et al., 1995].
Update of π, s, β. We can update π, s, β in the same way as
explained in Section 4.4 using Eqs. (10) (11).
Final Calculation of M . After iteratively updating
X,Y ,Z,π, s, β, we calculate the estimated value of M ,
which is what is needed to solve our problem. To do this,
we solve the optimization problem (4) using π̂, ŝ, β̂, which
are the parameter values estimated by the iteration.

5 Experiments
We conducted experiments using real-world datasets to eval-
uate the estimation performance of our model; we estimated
the number of people who moved between cells.

5.1 Settings
The datasets used in our experiments were generated from
GPS trace data of cars in the Greater Tokyo Area collected
by a car navigation application 2. This car data contains tra-
jectory data of each car, where each entry is a tuple of lati-
tude, longitude, and time. We then calculated spatiotemporal
cell populations from the trajectories, where the time inter-
val is 60 minutes (from 6:00 to 21:00 at 1 hour intervals) and
grid size was 10km × 10km or 5km × 5km. The number of
unique users present in the datasets was 8694, and the num-
ber of cells was 8× 7 = 56 for the 10km× 10km grid space
and 16 × 13 = 208 for the 5km × 5km grid space. We also
obtained the true values of the number of people who moved
between cells from the car data in order to evaluate how close
the outputs of our models were to the true values.

We evaluated the estimation accuracy using normalized ab-
solute error (NAE), which is defined as∑T−2

t=0

∑
i∈V

∑
j∈V

∣∣M∗
tij −Mtij

∣∣∑T−2
t=0

∑
i∈V

∑
j∈V M∗

tij

,

where M∗
tij is the true value of the number of people who

moved from i to j at timestep t, and Mtij is the estimated
value. Because the estimated values are real-valued, we round
them (i.e., convert them into integer values).

The entire experimental procedure is explained as follows:
1) We calculated spatiotemporal cell populations Nti from
the original car trajectories. 2) Also, from the original trajec-
tories, we calculated the true values of the number of people
who moved between cells M∗

tij . 3) Given Nti, we ran the
proposed and baseline methods and got the estimated num-
ber of people who moved between cells Mtij . 4) By using
normalized absolute error, we evaluated how closely the out-
puts of proposed and baseline methods,Mtij , were to the true
values,M∗

tij .
Since the tendency of human flows (i.e. transition proba-

bility between cells) is expected to change with time of day,
2We use the car data collected by the smartphone car

navigation application of NAVITIME JAPAN Co., Ltd.
(http://corporate.navitime.co.jp/en/index.html)
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we split the population data into 5 subsets based on time-of-
day (6:00–9:00, 9:00–12:00, 12:00–15:00, 15:00–18:00, and
18:00–21:00). We then applied our models (and the baseline)
to each subset. As a result, the model parameters including
transition probabilities are common in each subset. It is rea-
sonable that accuracy will be improved by choosing the time
periods to suit human movement patterns. For example, an
approach to infer the time periods of each subset that are suit-
able for given data was detailed in [Iwata et al., 2017], and
the same method can be applied to our proposal. However,
our experiment focuses on ”accuracy degradation due to high
degree of freedom” and ”the computational complexity prob-
lem”. To concentrate on the key advances, we did not conduct
an experiment on the subject of choosing optimum time sub-
sets, but left it as future work.

5.2 Accuracy of Estimation
We compared proposed methods with the baseline method,
which was described in Section 4.1. Note that the baseline
method directly infers the elements of θ. For the baseline
method, we set Γi to be a set of cells within L∞-distance
K(K = 1, 5, 10) from cell i. For proposed methods, we set
Γi to be a set of cells within L1-distance 10 from cell i.

Results are shown in Figure 2. We first address the per-
formance improvements attained by our two methods in to-
tal score (6:00-21:00). Of particular interest, our method is
noticeably better in the time zone 6:00–9:00, in which there
are many movements to distant cells due to commuting etc.
Second, the superiority of our proposed methods over the
baseline with K = 1 on the 5km × 5km grid space was
stronger than that on the 10km × 10km grid space (23.5–
26.3% and 6.5–12.7% rel. improvements on 5km× 5km and
10km× 10km, respectively). This thought to be because the
finer the grid becomes, the more often the movements are
to remote cells. Third, although estimation performance of
the approximation method is slightly worse than that of exact
method with the 10km × 10km grid space, they achieve al-
most the same performance with the 5km× 5km grid space.
This indicates that the approximation method is a valid al-
ternative to the exact method. We conducted experiments
and verified that the proposed methods outperformed baseline
methods using L1-distance, though we omitted this result to
enhance the clarity of the bar graphs. We found similar re-
sults using other evaluation metrics, such as MAPE (mean
absolute percentage error).

5.3 Computation Time
We evaluated the computation time of the two proposed meth-
ods and the baseline method in the 5km×5km grid space. For
all methods, we set Γi to be a set of cells within L1-distance
10 from cell i. Figure 3 shows the relationship between com-
putation time and NAE of each method in the time zones of
6:00–9:00 and 18:00–21:00. For each method, we performed
estimation 10 times and obtained the average value. It shows
that the approximate method can output accurate values more
quickly than the exact method and the baseline method. For
example, in the time zone 18:00–21:00, it took the exact
method about 178 seconds to reach 0.55 for NAE. The ap-
proximate method, on the other hand, took only 38 seconds

total
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Figure 2: Results of experiments on estimation accuracy. We used
NAE as evaluation metric for evaluating performance using two
datasets with different grid size, 10km (left) and 5km (right).
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Figure 3: Results of experiments on computation time.

or so, which is about 4.7 times faster. Similar results are seen
in all other time zones.

6 Conclusion
This paper proposed a new probabilistic model to estimate the
movement of people from spatiotemporal population data. In
order to consider movements to remote cells, there are two
technical challenges: (i) poor estimation accuracy due to ex-
cessively high degrees of freedom of the model, (ii) large
computation cost. We address these difficulties by using three
factors to model transition probabilities. This enables us to re-
duce the degrees of freedom of the model and derive efficient
estimation algorithms. Experiments confirmed the high esti-
mation accuracy of our methods and light computation cost
of the proposed approximate estimation algorithm.
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