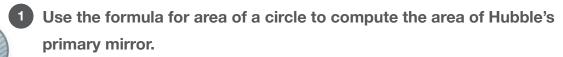

π IN THE SKY¹⁰

TUBULAR TALLY

What is the volume of the rock in the sample tube?

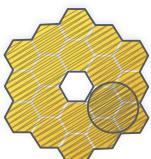
1 Use the formula for the volume of a cylinder to compute the volume of the cylindrical rock sample.

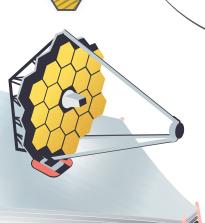


TT IN THE SKY 10

RAD REFLECTION

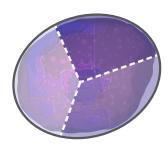
How much bigger is the surface of Webb's primary mirror than Hubble's?

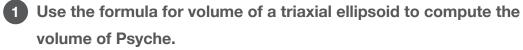


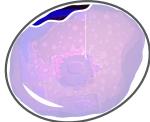

$$A = \pi r^2$$

$$\pi (1.2 \text{ m})^2 \approx 4.5 \text{ m}^2$$

2 Subtract the area of Hubble's primary mirror from the area of Webb's primary mirror.

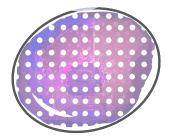

26.4
$$\text{m}^2$$
 - 4.5 m^2 = 21.9 m^2


TI IN THE SKY¹⁰


METAL MATH

Compute the approximate density of asteroid (16) Psyche.

 $V = 4/3\pi abc$


$$V = 4/3 \pi (145 \text{ km}) \cdot (122.5 \text{ km}) \cdot (85 \text{ km}) \approx 6,300,000 \text{ km}^3$$

2 Use the formula for density to compute the approximate density of Psyche.

D = m/V

D =
$$(2.7 \cdot 10^{19} \text{ kg}) / (6.3 \cdot 10^6 \text{ km}^3) \approx 4.3 \cdot 10^{12} \text{ kg/km}^3$$

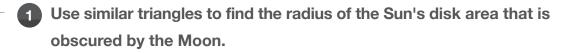
Does the density of Psyche support the observations indicating the presence of metal?

1 Convert the units to match the density units given.

$$4.3 \cdot 10^{12} \text{ kg/km}^3 \cdot (1 \text{ km}^3 / 10^9 \text{ m}^3) = 4.3 \cdot 10^3 \text{ kg/m}^3$$

= 4,300 kg/m³

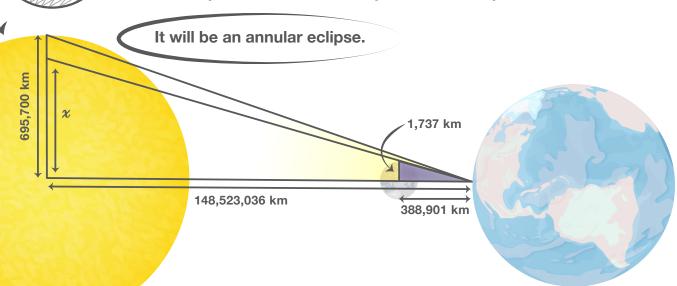
analyzing asteroid makeup ...
comparing density to ...
ice: 917 kg/m^3
water: 997 kg/m^3
rock: 1600 - 3500 kg/m^3
metal: 534 - 22590 kg/m^3
result: match found for metal


This is higher density than rock, so Psyche must contain some metal.

TT IN THE SKY 10

ECLIPSING ENIGMA

What percentage of the Sun's disk area will be obscured by the Moon?



$$\frac{1,737 \text{ km}}{388,901 \text{ km}} = \frac{x}{148,523,036 \text{ km}} \Rightarrow x \approx 663,400 \text{ km}$$

2 Calculate the ratio of the obscured area to the Sun's total disk area using the formula for area of a circle.

$$\frac{A_{Moon}}{A_{Sun}} = \frac{\pi r^2}{\pi r^2} \approx \frac{\pi (663,400 \text{ km})^2}{\pi (695,700 \text{ km})^2} \approx 0.91 = 91\%$$

Will the eclipse be an annular eclipse or total eclipse?

