
Galaxy
GameDev

Vulkanised 2019 
Live Long and Optimise

Michael Parkin-White, Calum Shields
m.parkin-whi@samsung.com c.shields@samsung.com

mailto:m.parkin-whi@samsung.com
mailto:a.garrard@samsung.com


Galaxy
GameDev

Intro – Samsung Galaxy GameDev

Promoting use of Vulkan on Android

Support studios remotely & on-site

Help partners optimise 
their games through use of 
tools and best-practices



Galaxy
GameDev

Optimal Swapchain
Management

An in-depth investigation - beyond the basics



Galaxy
GameDev

Vulkan Swapchain & presentation

● Consists of three interactions w/ presentation engine:

○ vkAcquireNextImageKHR(..) – Potential blocking if no swapchain image is available

○ vkQueueSubmit(..) – Non blocking

○ vkQueuePresentKHR(..) – Non blocking

○ vkQueuePresentKHR(..) – Frequently blocks on Android - in some cases for > 20ms!



Galaxy
GameDev

● A standard approach to swapchain management:

● However, we have problems when blocking behaviour emerges – increased CPU time on 
main Vulkan thread:

Standard swapchain coordination

Acquire Image Submit Image

Present Image

Acquire Image Submit Image

Present Image

Command recording

Command recording



Galaxy
GameDev

Consideration – Delayed Acquire

● In games with highly variable frame timings, there is a benefit to having two points at which we attempt 
vkAcquireNextImageKHR. 

Attempt
Acquire Image

Submit Image

Command recording..

Delayed
Acquire Image

Present Image

…



Galaxy
GameDev

The blocking vkQueuePresentKHR issue

● We have observed that vkQueuePresentKHR can block for significant durations on Android

● In this trace, queueBuffer takes an average time of 12ms to return:

○ Multiple internal causes of this behaviour (SurfaceFlinger & Kernel)

queueBuffer (called by 
vkQueuePresentKHR) 

taking an average of 12ms



Galaxy
GameDev

Solution #1 – Delayed Present

● This delay is influenced by proximity to vkQueueSubmit – So we can instead delay the call to present

Acquire Image N Submit Image N

Present Image N

Command recording (Frame N)

Frame N Frame N+1

Acquire Image N Submit Image N

Present Image N

Command recording (Frame N)

Frame N Frame N+1

Command recording (Frame N+1)

Present Image N-1



Galaxy
GameDev

Results – Delayed Present

Default Present: queueBuffer takes an average of 12ms

Delayed Present: queueBuffer takes an average of 0.2ms



Galaxy
GameDev

● Another solution is to defer swapchain interaction calls to a separate thread:

● In this case, we move the calls off the work/recording thread – allowing the wait to be 
absorbed externally

● We can continue with useful CPU work on the main thread.

○ A synchronisation check should be added to prevent the CPU from getting too many frames ahead (i.e. more than 
2 ahead).

Solution #2 – Presentation Thread

Acquire Image Submit Image Present Image

Command recording Command recording

Thread #0

Thread #1



Galaxy
GameDev

Results – presentation thread

● With the presentation thread implemented in UE4 Sun-temple demo:

Standard UE4.22.0 
VulkanRHI

UE4.22.0 VulkanRHI With presentation thread

S960U – Locked 
Frequency FPS: 34 FPS: 41

Thread-2 is now used for 
presentation

RHI Thread is now free to 
get on with useful work!



Galaxy
GameDev

Pipeline Analysis
Optimising rendering workflow



Galaxy
GameDev

Example: Pipeline analysis

Poor pipelining results in 
pipeline bubbles – Not 
getting the most out of 
GPU

Fragment and vertex work never running in parallel

Caused by sub-optimal pipeline barrier and 
subpass-dependency stage masks

Current Frame Cost: 
62.5ms (16 fps!)



Galaxy
GameDev

Pipeline Barriers: Quick overview

● Used to specify execution dependencies between specific pipeline stages in two action 
commands

● Destination stage mask: Specifies where the 2nd (next) action item will wait for the 1st

(previous) action to complete its Source stage mask stages 

Draw
Indirect

Vertex 
Input

Vertex
Shader

Fragment
Shader

(Test) Early 
Fragment

(Test) Late
Fragment

Color
Attachment Graphi

cs 
Bit

Top of Pipe Bottom of 
Pipe

GRAPHICS PIPELINE STAGES



Galaxy
GameDev

Pipeline barriers example

● Simplified Example: Render with two passes. 
Shadow mapping and main render

● Main scene render needs to use the shadow 
map rendered in the first pass

● Naïve synchronisation assumes entire shadow 
pass needs to complete before we start the 
main scene’s rendering work

Shadow Pass 
Vertex (6ms)

Shadow Pass 
Fragment 

(8ms)

Main Scene
Vertex (6ms)

Main Scene
Fragment 

(8ms)

Naïve 
Pipeline Barrier

First Synchronisation 
Scope

Second Synchronisation 
Scope

dstStageMask: 
VK_PIPELINE_STAGE_TOP_OF_

PIPE_BIT

srcStageMask: 
VK_PIPELINE_STAGE_BOTTOM_OF_

PIPE_BIT



Galaxy
GameDev

Pipeline Barriers: Improved case!

Draw
Indirect

Vertex 
Input

Vertex
Shader

Fragment
Shader

(Test) Early 
Fragment

(Test) Late
Fragment

Color
Attachment Graphic

s 
Bit

Top of Pipe Bottom of 
Pipe

Draw
Indirect

Vertex 
Input

Vertex
Shader

Fragment
Shader

(Test) Early 
Fragment

(Test) Late
Fragment

Color
Attachment Graphic

s 
Bit

Top of Pipe Bottom of 
Pipe

Shadow – Render Pass

Main – Render Pass

Destination stage = 
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT

Source stage = 
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT



Galaxy
GameDev

Pipeline barriers example

● Optimal case: We can modify the stage 
masks and allow the main scene vertex work 
to overlap the shadow-pass fragment work.

● Results in 6ms saving! ALU-dependent vertex 
operations can run in parallel with Texture-
dependent fragment operations

Shadow Pass 
Vertex (6ms)

Shadow Pass 
Fragment 

(8ms)

Main Scene
Vertex (6ms)

Main Scene
Fragment 

(8ms)

Optimal
Pipeline Barrier

First Synchronisation 
Scope

Second Synchronisation 
Scope

dstStageMask: 
VK_PIPELINE_STAGE_FRAGMENT_

SHADER_BIT

srcStageMask: 
VK_PIPELINE_STAGE_COLOR_
ATTACHMENT_OUTPUT_BIT



Galaxy
GameDev

After – Optimal per-pass pipeline barriers

Before – General pipeline barriers

Frame-time: 40ms - 56% Performance increase - with one line of code!



Galaxy
GameDev

Further Pipeline Optimization – Removing Render Passes

● High Vertex Load – Vertex work expensive on tile-based 
GPUs

● AAA Engine ported to Android from PC/Console – Non-
optimal for mobile HW

Removing Depth pre-pass

Depth 
Pre-pass

Occlusion 
Queries

Potential performance: 35 fps!

(62.5ms -> 28ms/frame)

Standard Trace



Galaxy
GameDev

Subpasses
Optimising rendering for memory bandwidth



Galaxy
GameDev

Useful Vulkan Features - Subpasses

● Allows efficient performing of additional render workload where on-tile frame contents are preserved

○ Large bandwidth savings

○ Avoid GPU Idle time spent storing and loading framebuffer data to main memory

○ Potential power saving and performance increases

○ Use of transient attachments and lazy memory allocation



Galaxy
GameDev

Subpass Viability

• shaders in next render pass only sample local 
framebuffer data

• Next render pass uses the same framebuffer 
attachments

• Material nodes e.g. PixelDepth, SceneDepth and 
SceneColor *could* imply subpass compatibility!

Note: Many UE4 “Translucency-pass” 
shaders only sample the local depth 
value!

These are perfect candidates for Subpass 
optimisation.

Note: If we need sparse sampling of a framebuffer, 
we cannot benefit from subpasses.



Galaxy
GameDev

vec2 depth_sample_uv = ((v5.xy / v5.ww) * 
_18.pu_h[12].xy) + _18.pu_h[12].wz;

float DIFF = depth_sample_uv - vec2(gl_FragCoord.x / 
1376.0, gl_FragCoord.y / 720.0);

gl_FragColor.rgb = 1.0-vec3(DIFF);

- Test sample coordinate against local 
pixel coordinate – using RenderDoc

Allows us to determine whether depth sample in 
“Translucency pass” is local

Generic Shader Compatibility test

In this case, god ray shader is subpass 
compatible! 



Galaxy
GameDev

Depth, colour and stencil 
targets stored and re-loaded

Standard UE4 Render pass

Depth, colour and stencil 
remain on-tile

Using Subpasses

GPU spends ~1.0ms idle

GPU spends ~0.15ms idle

Bandwidth saving of 700MB/s
Reduced Fragment 
Idle Time by ~1ms!



Galaxy
GameDev

FPS CPU GPU

Default – No 
additional
Subpasses

52 11.1% 97%

Using Subpasses
(No Depth and 
Color load/store)

55 12.4% 97%

Subpass Performance Results

~6% Performance increase in GPU fragment-bound use case on Galaxy S9!



Galaxy
GameDev

Vulkan Tips and Tricks
Quick points for optimisation



Galaxy
GameDev

Load and Store Appropriately

● LOAD_OP_LOAD will read the attachment data in system memory into the tile buffer
○ Costs a lot of bandwidth

● LOAD_OP_CLEAR & LOAD_OP_DONT_CARE will set the clear value in the tile buffer directly

○ Costs no bandwidth

● STORE_OP_STORE will write the attachment back out to system memory

○ Costs a lot of bandwidth

● STORE_OP_DONT_CARE writes nothing out

○ Costs no bandwidth



Galaxy
GameDev

Clear Efficiently

● Don’t ever use vkCmdClearColorImage or vkCmdClearDepthStencilImage!!

○ Wastes Bandwidth unnecessarily 

○ Use loadOp Clear at beginning of renderpass

○ Use vkCmdClearAttachments mid renderpass

Optimal Clear 62.7MB/s

Unoptimal Clear 1.7GB/s



Galaxy
GameDev

Transient Attachments

● Attachments that exist solely in tile memory

○ Doesn’t need to be backed by memory

○ Reduces memory footprint

● Required flags

○ imageUsage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT

○ memoryProperty = VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT



Galaxy
GameDev

Upload buffer data to GPU

● No need to use staging buffers for copying CPU buffer data to GPU
● UMA on mobile devices
● Still required for uploading image data to GPU

Buffer raw 
data

VkBuffer
HOST_VISIBLE / 
DEVICE_LOCAL

memcpy

Buffer raw 
data

VkBuffer
DEVICE_LOCAL

memcpy Staging buffer
HOST_VISIBLE vkCmdCopyBuffer()

record proceed



Galaxy
GameDev

Tiling (of images)

● Raster order doesn’t usually suit textures
● TILING_LINEAR is useful for frequent updates
● Use TILING_OPTIMAL for better GPU cache access

?
TILING_OPTIMALTILING_LINEAR



Galaxy
GameDev

New Vulkan Feature – Depth Stencil Resolve

● MSAA is cheap on mobile tile-based architectures
● Resolving MSAA depth targets is currently expensive
● New Vulkan Extension to enable efficient on-tile resolve

What this Means:
● Depth-dependent Renderpass effects such as:

Translucency pass - decal projection - depth of field - god rays - fog

● Possible with MSAA enabled at no additional performance cost!



Galaxy
GameDev

Android Tools
Best tools for the job



Galaxy
GameDev

Tools - RenderDoc

Full static frame analysis.

Step-through scene

Verify API usage:
- Draw calls
- Renderpasses
- Barriers
- Resources

Informed content 
optimisation!

Works very well with 
Vulkan!



Galaxy
GameDev

Tools – Arm Streamline, Snapdragon Profiler
In-depth hardware analysis

Counters:
- Vertex Activity
- Fragment Activity
- CPU core utilisation
- Memory analysis

High-resolution data

Visually analyse render 
workload execution 

Improve app performance 
with high-quality Vulkan use

Identify bottlenecks!



Galaxy
GameDev

GPU Watch

● Performance monitoring tool
○ Direct result on the screen
○ Support Vulkan/OpenGL ES

FPS info. CPU/GPU 
utilization

GPU Profiling information
- Renderpass count
- GPU activity

Screenshot of the 
captured frame



Galaxy
GameDev

Thank You
• Correct Pipeline Barrier staging
• Use Subpasses where you can
• Load & Store Appropriately

• Use Transient Attachments
• Clear Efficiently


