
Attilio Provenzano
20th May 2019

Vulkan Best Practice for 
Mobile Developers

Vulkanised 2019



2 © 2019 Arm Limited 

Vulkan cookbook

Runnable samples Tutorials
Performance 

analysis

Mobile-optimized, multi-platform framework



3 © 2019 Arm Limited 

Vulkan best practice for mobile developers

• https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers

• Multi-platform (Android, Windows, Linux)

• Hardware counters displayed on device (no need for root) with HWCPipe

• In-detail explanations, backed-up with data, of best-practice recommendations

• Guide to using performance profiling tools and analysing the results

https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers


Sample 1:
N-Buffering



5 © 2019 Arm Limited 

Presentation modes

FIFO

VSync bound

Best for mobile

Triple buffering
Presentation Drawing

VSync

Present

MAILBOX

Keep submitting

Low latency

Not optimal for mobile

VSync

Present

Presentation Drawing



6 © 2019 Arm Limited 

Double buffering

• Double buffering works well if frames can be processed within 16.6 ms
• At each VSync signal the processed image is presented on screen
• The previously presented one becomes available to the application again



7 © 2019 Arm Limited 

Double vs Triple buffering

• Double buffering breaks if frames take more than 16.6ms

• This idling behaviour caps frame rate at 30fps, while the application could achieve 50



8 © 2019 Arm Limited 

Double vs Triple buffering

• With triple buffering there will always be an image ready for presentation, no stalling



9 © 2019 Arm Limited 

N-Buffering: sample

• The application can ask for a minimum number of images by setting the 

minImageCount parameter in vkCreateSwapchainKHR

• 2 for double buffering

• 3 for triple buffering 

• VK_PRESENT_MODE_MAILBOX_KHR might reduce input latency, but it is not optimal 

for mobile because it keeps the CPU and GPU active while not strictly necessary

• Therefore we recommend VK_PRESENT_MODE_FIFO_KHR and minImageCount=3



10 © 2019 Arm Limited 

N-Buffering: sample

faster frame time

Up to  x2



Sample 2:
Pre-rotation



12 © 2019 Arm Limited 

Rotation in mobile devices



13 © 2019 Arm Limited 

Pre-rotation: theory

• The Display Processor will always draw top to bottom, left to right

• As far as the Display Processor is concerned, nothing changed



14 © 2019 Arm Limited 

Rotation in mobile devices

• Behind the scenes, a change in orientation requires:

1. An adjusted resolution

2. A rotation



17 © 2019 Arm Limited 

3. Present

• No pre-rotation:

Pre-rotation

• In OpenGL ES the driver transparently handles this rotation

• In Vulkan, it is the responsibility of the application

• If you rotate the scene after rendering, this extra pass consumes resources

• We recommend you render a rotated scene in the first place: pre-rotation

1. Draw 2. Rotate



18 © 2019 Arm Limited 

• With pre-rotation:

2. Present

Pre-rotation

• In OpenGL ES the driver transparently handles this rotation

• In Vulkan, it is the responsibility of the application

• If you rotate the scene after rendering, this extra pass consumes resources

• We recommend you render a rotated scene in the first place: pre-rotation

1. Draw 2. Rotate 3. Present



19 © 2019 Arm Limited 

Pre-rotation: sample

• On rotation, use vkGetPhysicalDeviceSurfaceCapabilitiesKHR to query:

• currentExtent 

• currentTransform e.g. VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR

• Re-create the swapchain ensuring that preTransform matches currentTransform

• This communicates that the application is handling the rotation, and no extra passes are 

needed, saving performance

• Do not change the images dimensions, instead draw a rotated version of the world



20 © 2019 Arm Limited 

Pre-rotation: sample

savings in external read stalls

Up to  88%

savings in external write stalls

Up to  91%

* Screen recording reduces the benefits to 27% and 47%
Only applicable in devices with 
no DPU rotation support



Sample 3: 
Load/Store 
operations



22 © 2019 Arm Limited 

Load operations

• loadOp operations define how to initialize memory at the start of a render pass

• Clear or invalidate each attachment at the start of a render pass using LOAD_OP_CLEAR
or LOAD_OP_DONT_CARE

LOAD_OP
_CLEAR

LOAD_OP_
DONT_CARE

LOAD_OP
_LOAD



23 © 2019 Arm Limited 

Store operations

• storeOp operations define what is written back to main memory at the end of a pass

• If they are not going to be used further, ensure that the contents are invalidated at the 
end of the render pass using STORE_OP_DONT_CARE

STORE_OP_
DONT_CARE

STORE_OP
_STORE



24 © 2019 Arm Limited 

Load/Store operations: sample

savings in external write cycles

Up to  50%

savings in external read cycles

Up to  12%



Sample 4:
AFBC



26 © 2019 Arm Limited 

Arm Framebuffer Compression (AFBC)

savings in external write cycles

Up to  33%



Framework



28 © 2019 Arm Limited 

Framework

• Platform independent (Android, Linux and Windows)

• Maintain close relationship with Vulkan objects

• Runtime GLSL shader variant generation + shader reflection (Khronos’ SPIRV-Cross)

• Simplify creation of Vulkan objects:

1. VkRenderPass

2. VkFramebuffer

3. VkPipelineLayout

4. VkDescriptorSetLayout

• Load 3D models (glTF 2.0 format)

• Internal scene graph



29 © 2019 Arm Limited 

Initialization
Render Pass

Framebuffer

Attachment Description

Input Attachment

Output Attachment

Render Pass

Image View

Image View

Descriptor Set 
Layout

Texture Binding

Uniform Binding

Pipeline Layout

Push constants

Descriptor Set Layout

Descriptor Set
Descriptor Set Layout

Image View

Image View

Descriptor Pool

Texture Binding

Uniform Binding

Descriptor Pool

Graphics Pipeline

Render Pass

Vertex Input

Input Assembly

Pipeline Layout

Subpass

Shader module

Shader module

Rasterization

Multisample

Depth Stencil

Color Blend

Shader Module

Image Resource

Input Resource

Texture Resource

Output Resource

Object/Dependency

Application defined



30 © 2019 Arm Limited 

Push constants

Initialization
Render Pass

Attachment Description

Input Attachment

Output Attachment

Descriptor Set 
Layout

Texture Binding

Uniform Binding

Descriptor Pool

Texture Binding

Uniform Binding

Shader Module

Image Resource

Input Resource

Texture Resource

Output Resource

GLSL Compiler

SPIRV Reflection

Framebuffer

Render Pass

Image View

Image View

Pipeline Layout

Descriptor Set Layout

Descriptor Set
Descriptor Set Layout

Image View

Image View

Descriptor Pool

Graphics Pipeline

Render Pass

Vertex Input

Input Assembly

Pipeline Layout

Subpass

Shader module

Shader module

Rasterization

Multisample

Depth Stencil

Color Blend

Generated resource

Object/Dependency

Application defined



31 © 2019 Arm Limited 

High-Level API

Vertex Buffer

Index Buffer

Command Buffer

Begin 
Render Pass

Render Pass

Bind 
resources

Graphics Pipeline

Pipeline Layout

Descriptor Sets

Draw End
Render Pass

Object/Dependency

Application defined

Color Image View

Color Image

Render Frame

Render Frame

Render Context

Render Frame

Offscreen Render Target

Shadow Render Target

Render Frame

Postprocess Render Target

Swapchain Render Target

Render Target

Depth Image

Depth Image View

Framebuffer



32 © 2019 Arm Limited 

High-Level API

Command Buffer

Acquire 
Next Image

Render Pass 
Shadow

Render Target

Bind Resources

Draw Scene

Render Pass 
Offscreen

Render Target

Bind Resources

Draw Scene

Render Pass 
Postprocess

Render Target

Bind Resources

Draw Quad

Render Pass 
Swapchain

Render Target

Bind Resources

Draw GUI + RT

Present 
Image

Begin Frame End Frame



What’s new



34 © 2019 Arm Limited 

General improvements

• Texture compression
• Support ASTC with mipmaps (fast decompression on desktop)
• Support KTX

• More scenes

• Filesystem

• Debug window



35 © 2019 Arm Limited 

Integrating Sascha Willems’s samples

• Proof of concept

• Wrapped into our Sample class for the launcher

• Aim to maintain the integrity of the samples



36 © 2019 Arm Limited 

Better profiling

• Platform-independent interface for HWCPipe
• CpuProfiler and GpuProfiler with counter definitions
• https://github.com/ARM-software/HWCPipe

• Counter sampling with 1 ms resolution

• Specify counters via code or via JSON string

// Begin profiling session
auto h = HWCPipe({CpuCounter::Cycles, CpuCounter::Instructions});
h.run();

// Sample counters
auto s = h.sample(); 
if (s.cpu) {

auto value = s.cpu->at(CpuCounter::Cycles).get<float>();
}

https://github.com/ARM-software/HWCPipe


What’s next



38 © 2019 Arm Limited 

Samples in flight

• Pipeline caching

• Specialization constants vs uniform buffers

• Workload synchronisation and pipeline barriers



39 © 2019 Arm Limited 

Next samples

• Roadmap on GitHub

• Feedback and contributions welcome!

• https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers

Multithreaded 
rendering

Descriptor 
management

Command 
buffer reuse

Deferred 
rendering

https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers


Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
תודה

© 2019 Arm Limited 



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks


