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Vulkan cookbook

Runnable samples Tutorials
Performance 

analysis

Mobile-optimized, multi-platform framework
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Vulkan best practice for mobile developers

• https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers

• Multi-platform (Android, Windows, Linux)

• Hardware counters displayed on device (no need for root) with HWCPipe

• In-detail explanations, backed-up with data, of best-practice recommendations

• Guide to using performance profiling tools and analysing the results

https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers


Sample 1:
N-Buffering
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Presentation modes

FIFO

VSync bound

Best for mobile

Triple buffering
Presentation Drawing

VSync

Present

MAILBOX

Keep submitting

Low latency

Not optimal for mobile

VSync

Present

Presentation Drawing
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Double buffering

• Double buffering works well if frames can be processed within 16.6 ms
• At each VSync signal the processed image is presented on screen
• The previously presented one becomes available to the application again
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Double vs Triple buffering

• Double buffering breaks if frames take more than 16.6ms

• This idling behaviour caps frame rate at 30fps, while the application could achieve 50
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Double vs Triple buffering

• With triple buffering there will always be an image ready for presentation, no stalling
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N-Buffering: sample

• The application can ask for a minimum number of images by setting the 

minImageCount parameter in vkCreateSwapchainKHR

• 2 for double buffering

• 3 for triple buffering 

• VK_PRESENT_MODE_MAILBOX_KHR might reduce input latency, but it is not optimal 

for mobile because it keeps the CPU and GPU active while not strictly necessary

• Therefore we recommend VK_PRESENT_MODE_FIFO_KHR and minImageCount=3
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N-Buffering: sample

faster frame time

Up to  x2



Sample 2:
Pre-rotation
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Rotation in mobile devices
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Pre-rotation: theory

• The Display Processor will always draw top to bottom, left to right

• As far as the Display Processor is concerned, nothing changed
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Rotation in mobile devices

• Behind the scenes, a change in orientation requires:

1. An adjusted resolution

2. A rotation
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3. Present

• No pre-rotation:

Pre-rotation

• In OpenGL ES the driver transparently handles this rotation

• In Vulkan, it is the responsibility of the application

• If you rotate the scene after rendering, this extra pass consumes resources

• We recommend you render a rotated scene in the first place: pre-rotation

1. Draw 2. Rotate
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• With pre-rotation:

2. Present

Pre-rotation

• In OpenGL ES the driver transparently handles this rotation

• In Vulkan, it is the responsibility of the application

• If you rotate the scene after rendering, this extra pass consumes resources

• We recommend you render a rotated scene in the first place: pre-rotation

1. Draw 2. Rotate 3. Present
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Pre-rotation: sample

• On rotation, use vkGetPhysicalDeviceSurfaceCapabilitiesKHR to query:

• currentExtent 

• currentTransform e.g. VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR

• Re-create the swapchain ensuring that preTransform matches currentTransform

• This communicates that the application is handling the rotation, and no extra passes are 

needed, saving performance

• Do not change the images dimensions, instead draw a rotated version of the world
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Pre-rotation: sample

savings in external read stalls

Up to  88%

savings in external write stalls

Up to  91%

* Screen recording reduces the benefits to 27% and 47%
Only applicable in devices with 
no DPU rotation support



Sample 3: 
Load/Store 
operations



22 © 2019 Arm Limited 

Load operations

• loadOp operations define how to initialize memory at the start of a render pass

• Clear or invalidate each attachment at the start of a render pass using LOAD_OP_CLEAR
or LOAD_OP_DONT_CARE

LOAD_OP
_CLEAR

LOAD_OP_
DONT_CARE

LOAD_OP
_LOAD
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Store operations

• storeOp operations define what is written back to main memory at the end of a pass

• If they are not going to be used further, ensure that the contents are invalidated at the 
end of the render pass using STORE_OP_DONT_CARE

STORE_OP_
DONT_CARE

STORE_OP
_STORE
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Load/Store operations: sample

savings in external write cycles

Up to  50%

savings in external read cycles

Up to  12%



Sample 4:
AFBC
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Arm Framebuffer Compression (AFBC)

savings in external write cycles

Up to  33%



Framework
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Framework

• Platform independent (Android, Linux and Windows)

• Maintain close relationship with Vulkan objects

• Runtime GLSL shader variant generation + shader reflection (Khronos’ SPIRV-Cross)

• Simplify creation of Vulkan objects:

1. VkRenderPass

2. VkFramebuffer

3. VkPipelineLayout

4. VkDescriptorSetLayout

• Load 3D models (glTF 2.0 format)

• Internal scene graph
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Initialization
Render Pass

Framebuffer

Attachment Description

Input Attachment

Output Attachment

Render Pass

Image View

Image View

Descriptor Set 
Layout

Texture Binding

Uniform Binding

Pipeline Layout

Push constants

Descriptor Set Layout

Descriptor Set
Descriptor Set Layout

Image View

Image View

Descriptor Pool

Texture Binding

Uniform Binding

Descriptor Pool

Graphics Pipeline

Render Pass

Vertex Input

Input Assembly

Pipeline Layout

Subpass

Shader module

Shader module

Rasterization

Multisample

Depth Stencil

Color Blend

Shader Module

Image Resource

Input Resource

Texture Resource

Output Resource

Object/Dependency

Application defined
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Push constants

Initialization
Render Pass

Attachment Description

Input Attachment

Output Attachment

Descriptor Set 
Layout

Texture Binding

Uniform Binding

Descriptor Pool

Texture Binding

Uniform Binding

Shader Module

Image Resource

Input Resource

Texture Resource

Output Resource

GLSL Compiler

SPIRV Reflection

Framebuffer

Render Pass

Image View

Image View

Pipeline Layout

Descriptor Set Layout

Descriptor Set
Descriptor Set Layout

Image View

Image View

Descriptor Pool

Graphics Pipeline

Render Pass

Vertex Input

Input Assembly

Pipeline Layout

Subpass

Shader module

Shader module

Rasterization

Multisample

Depth Stencil

Color Blend

Generated resource

Object/Dependency

Application defined
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High-Level API

Vertex Buffer

Index Buffer

Command Buffer

Begin 
Render Pass

Render Pass

Bind 
resources

Graphics Pipeline

Pipeline Layout

Descriptor Sets

Draw End
Render Pass

Object/Dependency

Application defined

Color Image View

Color Image

Render Frame

Render Frame

Render Context

Render Frame

Offscreen Render Target

Shadow Render Target

Render Frame

Postprocess Render Target

Swapchain Render Target

Render Target

Depth Image

Depth Image View

Framebuffer
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High-Level API

Command Buffer

Acquire 
Next Image

Render Pass 
Shadow

Render Target

Bind Resources

Draw Scene

Render Pass 
Offscreen

Render Target

Bind Resources

Draw Scene

Render Pass 
Postprocess

Render Target

Bind Resources

Draw Quad

Render Pass 
Swapchain

Render Target

Bind Resources

Draw GUI + RT

Present 
Image

Begin Frame End Frame



What’s new
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General improvements

• Texture compression
• Support ASTC with mipmaps (fast decompression on desktop)
• Support KTX

• More scenes

• Filesystem

• Debug window
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Integrating Sascha Willems’s samples

• Proof of concept

• Wrapped into our Sample class for the launcher

• Aim to maintain the integrity of the samples
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Better profiling

• Platform-independent interface for HWCPipe
• CpuProfiler and GpuProfiler with counter definitions
• https://github.com/ARM-software/HWCPipe

• Counter sampling with 1 ms resolution

• Specify counters via code or via JSON string

// Begin profiling session
auto h = HWCPipe({CpuCounter::Cycles, CpuCounter::Instructions});
h.run();

// Sample counters
auto s = h.sample(); 
if (s.cpu) {

auto value = s.cpu->at(CpuCounter::Cycles).get<float>();
}

https://github.com/ARM-software/HWCPipe


What’s next
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Samples in flight

• Pipeline caching

• Specialization constants vs uniform buffers

• Workload synchronisation and pipeline barriers
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Next samples

• Roadmap on GitHub

• Feedback and contributions welcome!

• https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers

Multithreaded 
rendering

Descriptor 
management

Command 
buffer reuse

Deferred 
rendering

https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers
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