
© The Khronos® Group Inc. 2019 - Page 1

SPIRV-Cross:
Taking SPIR-V to the next level

Hans-Kristian Arntzen
May 20th 2019 – Vulkanised 2019



© The Khronos® Group Inc. 2019 - Page 2

The gist of SPIRV-Cross



© The Khronos® Group Inc. 2019 - Page 3

Last year at Vulkanised ...
• The war stories

• Lots of technical detail

• Ranting is fun! :D

• Not trying to repeat



© The Khronos® Group Inc. 2019 - Page 4

What happened?
• Went independent to work on SPIRV-Cross and other things

- Been developing it since late 2015

• SPIRV-Cross development now funded by Valve ☺

• Committed to keep working on SPIRV-Cross going forward



© The Khronos® Group Inc. 2019 - Page 5

Compile to SPIR-V
• Three major compilers

- Glslang (Vulkan GLSL)

- Glslang (HLSL)

- DXC (HLSL)

• Emit SPIR-V directly from shader 

graph?

• Make your own language?

- Scopes by Leonard Ritter (@paniq)

OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"

OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main" %UV %_entryPointOutput
OpExecutionMode %main OriginUpperLeft
OpSource HLSL 500
OpName %main "main"
OpName %MyTexture "MyTexture"
OpName %MySampler "MySampler"
OpName %UV "UV"
OpName %_entryPointOutput "@entryPointOutput"
OpDecorate %MyTexture DescriptorSet 0
OpDecorate %MyTexture Binding 0
OpDecorate %MySampler DescriptorSet 0
OpDecorate %MySampler Binding 1
OpDecorate %UV Location 0
OpDecorate %_entryPointOutput Location 0

%void = OpTypeVoid
%3 = OpTypeFunction %void

%float = OpTypeFloat 32
%v2float = OpTypeVector %float 2
%v4float = OpTypeVector %float 4

%14 = OpTypeImage %float 2D 0 0 0 1 Unknown
%_ptr_UniformConstant_14 = OpTypePointer UniformConstant %14

%MyTexture = OpVariable %_ptr_UniformConstant_14 UniformConstant
%18 = OpTypeSampler

%_ptr_UniformConstant_18 = OpTypePointer UniformConstant %18
%MySampler = OpVariable %_ptr_UniformConstant_18 UniformConstant

%22 = OpTypeSampledImage %14
%_ptr_Input_v2float = OpTypePointer Input %v2float

%UV = OpVariable %_ptr_Input_v2float Input
%_ptr_Output_v4float = OpTypePointer Output %v4float
%_entryPointOutput = OpVariable %_ptr_Output_v4float Output

%main = OpFunction %void None %3
%5 = OpLabel

%31 = OpLoad %v2float %UV
%39 = OpLoad %14 %MyTexture
%40 = OpLoad %18 %MySampler
%41 = OpSampledImage %22 %39 %40
%43 = OpImageSampleImplicitLod %v4float %41 %31

OpStore %_entryPointOutput %43
OpReturn
OpFunctionEnd

Texture2D MyTexture : register(t0);
SamplerState MySampler : register(s1);

float4 main(float2 UV : TEXCOORD0) : SV_Target
{

return MyTexture.Sample(MySampler, UV);
}

Write in your favorite language once ...

I like GLSL though ;)



© The Khronos® Group Inc. 2019 - Page 6

Target all the things!
#version 100
precision mediump float;
precision highp int;

uniform highp sampler2D MyTextureMySampler;

varying highp vec2 UV;

void main()
{

gl_FragData[0] =
texture2D(MyTextureMySampler, UV);

}

ESSL 1.0 / GL2
#version 450

uniform sampler2D MyTextureMySampler;

layout(location = 0) in vec2 UV;
layout(location = 0) out vec4 _epOutput;

void main()
{

_epOutput =
texture(MyTextureMySampler, UV);

}

Modern GLSL / ESSL

#version 450

layout(set = 0, binding = 0) uniform texture2D MyTexture;
layout(set = 0, binding = 1) uniform sampler MySampler;

layout(location = 0) in vec2 UV;
layout(location = 0) out vec4 _entryPointOutput;

void main()
{

_entryPointOutput = texture(sampler2D(MyTexture, MySampler), UV);
}

Vulkan GLSL



© The Khronos® Group Inc. 2019 - Page 7

Texture2D<float4> MyTexture : register(t0);
SamplerState MySampler : register(s1);

static float2 UV;
static float4 _entryPointOutput;

struct SPIRV_Cross_Input
{

float2 UV : TEXCOORD0;
};

struct SPIRV_Cross_Output
{

float4 _entryPointOutput : SV_Target0;
};

float4 _main(float2 UV_1)
{

return MyTexture.Sample(MySampler, UV_1);
}

void frag_main()
{

float2 UV_1 = UV;
float2 param = UV_1;
_entryPointOutput = _main(param);

}

SPIRV_Cross_Output main(SPIRV_Cross_Input stage_input)
{

UV = stage_input.UV;
frag_main();
SPIRV_Cross_Output stage_output;
stage_output._entryPointOutput = _entryPointOutput;
return stage_output;

}

HLSL SM 5.0+ 

(D3D11+)

uniform sampler2D SPIRV_Cross_CombinedMyTextureMySampler;

static float2 UV;
static float4 _entryPointOutput;

struct SPIRV_Cross_Input
{

float2 UV : TEXCOORD0;
};

struct SPIRV_Cross_Output
{

float4 _entryPointOutput : COLOR0;
};

float4 _main(float2 UV_1)
{

return tex2D(SPIRV_Cross_CombinedMyTextureMySampler, UV_1);
}

void frag_main()
{

float2 UV_1 = UV;
float2 param = UV_1;
_entryPointOutput = _main(param);

}

SPIRV_Cross_Output main(SPIRV_Cross_Input stage_input)
{

UV = stage_input.UV;
frag_main();
SPIRV_Cross_Output stage_output;
stage_output._entryPointOutput = float4(_entryPointOutput);
return stage_output;

}

HLSL SM 3.0

(D3D9)



© The Khronos® Group Inc. 2019 - Page 8

#include <metal_stdlib>
#include <simd/simd.h>

using namespace metal;

struct main0_out
{

float4 _entryPointOutput [[color(0)]];
};

struct main0_in
{

float2 UV [[user(locn0)]];
};

fragment main0_out main0(main0_in in [[stage_in]],
texture2d<float> MyTexture [[texture(0)]],
sampler MySampler [[sampler(1)]])

{
main0_out out = {};
out._entryPointOutput = MyTexture.sample(MySampler, in.UV);
return out;

}

Metal 1.x/2.x



© The Khronos® Group Inc. 2019 - Page 9

The new wave of shader cross compilation



© The Khronos® Group Inc. 2019 - Page 10

Vulkan portability initiative



© The Khronos® Group Inc. 2019 - Page 11

Cross compilation to Vulkan GLSL is useful
• De-optimizer can be useful

- SPIR-V -> Vulkan GLSL -> glslang

- De-optimizes aggressive SSA to classic Load/Store

- Has helped isolate driver bugs

• Debugging is very important

• Vulkan applications are captured with SPIR-V



© The Khronos® Group Inc. 2019 - Page 12

The shader debugging cycle - RenderDoc
Decompile -> Edit -> Recompile -> See results

You don’t want to edit SPIR-V assembly ☺



© The Khronos® Group Inc. 2019 - Page 13

Assembly horror
SPIR-V is not something you write by hand ...



© The Khronos® Group Inc. 2019 - Page 14

Explore SPIRV-Cross output online

http://shader-playground.timjones.io/

http://shader-playground.timjones.io/


© The Khronos® Group Inc. 2019 - Page 15

The goal of SPIRV-Cross
• Enable SPIR-V to be the de-facto standard shader format

- Ecosystem problem, not specification problem

• Portable shader pipelines are tedious and painful

- HLSL

- GLSL / ESSL / WebGL

- MSL

• SPIR-V deserves better than being just the thing you throw into Vulkan

• Wider SPIR-V use drives better toolchains

- Validation

- Optimizers

- GLSL/HLSL compilers targeting SPIR-V

- New languages targeting SPIR-V, e.g. Scopes

- Encourages new tooling around SPIR-V

• SPIR-V all the things!



© The Khronos® Group Inc. 2019 - Page 16

Responsiveness in tooling projects
• Tools like SPIRV-Cross won’t ever be 100 % complete and perfect

- Too many edge cases

- New extensions released all the time

• Compensate by being as responsive as possible

- Quick bug fixes

- Quick response and review of pull requests

• Don’t let issue count spiral out of control

- Every issue gets visibility and is not lost

• Build trust with users

- High confidence that reported issues will be fixed quickly

- More likely that issues will actually be reported

• Easy to reproduce bugs

- Standalone SPIR-V files reproduce > 90% of the time

- Compiler projects are generally very lucky here

Don’t hesitate to file issues or feature 

requests



© The Khronos® Group Inc. 2019 - Page 17

Commits over time



© The Khronos® Group Inc. 2019 - Page 18

GLSL backend
• Keeping up with latest additions to Vulkan GLSL

• Recent advanced additions to Vulkan GLSL

- 8/16-bit arithmetic and storage support

- Subgroup operations

- Scalar block layout

- Buffer reference (look ma’, pointers in GLSL!)

- Bindless (nonuniformEXT qualifier)

• Advanced vendor extensions

- VK_NV_ray_tracing support contributed by NVIDIA

- All the AMD specific Vulkan GLSL extensions contributed by AMD

• A lot small fixes and tweaks to codegen which affects all backends



© The Khronos® Group Inc. 2019 - Page 19

HLSL backend
• HLSL has been fairly quiet

- Mostly minor bug fixes

• Little need for developers to target HLSL?

- Most developers write in HLSL to begin with

• Mostly simple shaders?

- Rare that bugs would be found?

• Still missing geometry shaders and tesellation support

- One day ... ☺



© The Khronos® Group Inc. 2019 - Page 20

The state of CPU targets
• An experimental C++ backend was added very early on

- Relied on GLM for GLSL math

- Never went anywhere

- Deprecated/discontinued

• Intel picked up the torch

• SPIRV-Cross fork targeting ISPC!

- No more terrible performance

- Vectorized compute shaders on CPU

- Subgroup threads map to vector lanes, just like GPUs

- https://github.com/GameTechDev/SPIRV-Cross

https://github.com/GameTechDev/SPIRV-Cross


© The Khronos® Group Inc. 2019 - Page 21

Metal remains the most impactful backend
• A ton of work has gone into 

Metal backend support

• Only practical way to target 

MSL from a cross compiler 

with open source tools (I think?)

• Portability initiative

• Special thanks for Chip Davis 

for a lot of excellent 

contributions to the Metal 

backend over the last year



© The Khronos® Group Inc. 2019 - Page 22

Metal tessellation
• Tessellation interface on Metal is very different from all previous APIs

- «Think different»

• Vertex / tessellation control (Hull) must be emulated

- Vertex shader with side effects for vertex stage

- Compute kernel for control shaders

• Tessellator stage takes a GPU buffer of tessellation factors

• Supported in MoltenVK

- Primary motivation seems to be running DXVK content

• Probably best to avoid tessellation if you can



© The Khronos® Group Inc. 2019 - Page 23

#version 450

layout(vertices = 4) out;

void main()
{

gl_out[gl_InvocationID].gl_Position =
gl_in[0].gl_Position +
gl_in[1].gl_Position;

if (gl_InvocationID == 0)
{

gl_TessLevelOuter[0] = 1.0;
gl_TessLevelOuter[1] = 2.0;
gl_TessLevelOuter[2] = 3.0;
gl_TessLevelOuter[3] = 4.0;
gl_TessLevelInner[0] = 5.0;
gl_TessLevelInner[1] = 6.0;

}
}

// ...
kernel void main0(/* A LOT OF STUFF */)
{

// Write stage out to memory.
device main0_out* gl_out =

&spvOut[gl_PrimitiveID * 4];

// Vertex -> Tess shenanigans.
if (gl_InvocationID < spvIndirectParams[0])

gl_in[gl_InvocationID] = in;
threadgroup_barrier(mem_flags::mem_threadgroup);
if (gl_InvocationID >= 4)

return;

// Shader
gl_out[gl_InvocationID].gl_Position =

gl_in[0].gl_Position +
gl_in[1].gl_Position;

if (gl_InvocationID == 0)
{

spvTessLevel[gl_PrimitiveID].
edgeTessellationFactor[0] = half(1.0);

// etc ...
}

}

Pure pain



© The Khronos® Group Inc. 2019 - Page 24

Metal horror story – Image view swizzling
• Gotta have some horror stories!

• VkImageView swizzle is not supported in Metal

- Even GLES 3 supports this ...

• Optional path to dynamically swizzle in shader ...

- Some games just need it

• Showing generated code here is a sin

- Look up u32 swizzle code based on binding

- Loop over all components and throw data into a switch block

• Try not to rely on VkImageView if targeting Metal



© The Khronos® Group Inc. 2019 - Page 25

Metal indirect argument buffers
• Metal 2.0 feature

• Essentially VkDescriptorSet

• Less CPU overhead

struct spvDescriptorSetBuffer0
{

texture2d<float> MyTexture [[id(0)]];
sampler MySampler [[id(1)]];

};

struct main0_out
{

float4 _entryPointOutput [[color(0)]];
};

struct main0_in
{

float2 UV [[user(locn0)]];
};

fragment main0_out main0(main0_in in [[stage_in]],
constant spvDescriptorSetBuffer0& spvDescriptorSet0 [[buffer(0)]])

{
main0_out out = {};
out._entryPointOutput = spvDescriptorSet0.MyTexture.sample(spvDescriptorSet0.MySampler, in.UV);
return out;

}



© The Khronos® Group Inc. 2019 - Page 26

Variable pointer support
• VK_KHR_variable_pointers: OpenCL-on-Vulkan (clspv)

• MSL has pointer support (C++ dialect)

struct foo
{

int a;
};

struct bar
{

int b;
};

device int* _24(device foo& a, device bar& b, thread uint3& gl_GlobalInvocationID)
{

return (gl_GlobalInvocationID.x != 0u) ? &a.a : &b.b;
}

kernel void main0(device foo& x [[buffer(0)]], device bar& y [[buffer(1)]],
uint3 gl_GlobalInvocationID [[thread_position_in_grid]])

{
device int* _34 = _24(x, y, gl_GlobalInvocationID);
device int* _33 = _34;
int _37 = x.a;
*_33 = 0;
y.b = _37 + _37;

}



© The Khronos® Group Inc. 2019 - Page 27

Challenges in future shading models
• Pointers

• ...

• Pointers!?

• Shader vs Kernel execution model

- OpenCL has full pointer support -> Physical pointers

- Vulkan 1.1 -> Logical pointers

• The shader model is inching towards pointer support

- SPV_KHR_variable_pointers -> Pointer to anything, but logical

- SPV_EXT_physical_storage_buffer -> Bastard child of physical and logical

• GLSL and HLSL are too awkward to express all of this

• Flexible buffer packing rules keep me up at night



© The Khronos® Group Inc. 2019 - Page 28

A new C API
• SPIRV-Cross’ interfaces are not API/ABI stable

- C++ with lots of data structures flying around? Yeah ...

- Always intended SPIRV-Cross to be linked statically

• Spent a lot of time wrapping almost all of the C++ API in C

- Committing to a stable API

- ... and stable ABI

- Shared library support w/ so-versioning

- Should be shippable in Linux distros

• Rust is all the rage right now

- A Rust wrapper for the C API would be nice, if it does not exist already



© The Khronos® Group Inc. 2019 - Page 29

Takeaways
• Make SPIR-V the main target for your shader pipeline

• Target all the things from SPIR-V

• File issues on GitHub: https://github.com/KhronosGroup/SPIRV-Cross

- Fixing bugs take priority
- Need SPIR-V repro case

- IP-sensitive repro cases can be arranged over e-mail

- Feature requests

- Missing target language functionality

- Questions / support

https://github.com/KhronosGroup/SPIRV-Cross


© The Khronos® Group Inc. 2019 - Page 30

Thanks!

Questions?
GitHub: Themaister / HansKristian-Work

Twitter: @themaister

E-mail: post@arntzen-software.no

mailto:post@arntzen-software.no

