
 

 

 

 

 

 

 

CELLULAR SYSTEMS WHITE PAPER 

Document   Revision:  0.1 DRAFT 
Issue Date:  20 April 2006 

OpenMAX IL Dshow Filter Integration 



 

 

 

 ii 

 

 

 

 

 

 

 

 

“Texas Instruments™” and “TI™” are trademarks of Texas Instruments 

The TI logo is a trademark of Texas Instruments 

OMAP™ is a trademark of Texas Instruments 

OMAP-Vox™ is a Trademark of Texas Instruments 

Innovator™ is a Trademark of Texas Instruments 

Code Composer Studio™ is a Trademark of Texas Instruments 

DSP/BIOS™ is a Trademark of Texas Instruments 

eXpressDSP™ is a Trademark of Texas Instruments 

TMS320™ is a Trademark of Texas Instruments 

TMS320C28x™ is a Trademark of Texas Instruments 

TMS320C6000™ is a Trademark of Texas Instruments 

TMS320C5000™ is a Trademark of Texas Instruments 

TMS320C2000™ is a Trademark of Texas Instruments 

 

All other trademarks are the property of the respective owner. 

 

DirectShow is a registered trademark belonging to Microsoft.  All references to DirectShow filter APIs and 
descriptions in this whitepaper are referenced from publicly accessible Microsoft web pages at: 

 

http://msdn.microsoft.com/library/default.asp?url=/library/enus/directshow/htm/introductiontodirectshowfilt
erdevelopment.asp 

 

OpenMAX is a registered trademark of the Khronos Group. All references to OpenMAX components in 
this whitepaper are referenced from the publicly available OpenMAX IL specification on the Khronos web-

site at: 

 

http://khronos.org/openmax 

 

Copyright © 2006 Texas Instruments Incorporated.  All rights reserved. 

Information in this document is subject to change without notice.  Texas Instruments may have pending patent 
applications, trademarks, copyrights, or other intellectual property rights covering matter in this document. Texas 
Instruments makes no implied or expressed warranties in this document and is not responsible for the products 

based from this document. 

 



 

 

 

 

 iii 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Table of Contents 
Table of Contents................................................................................................................................. iii 
1 Introduction & Architecture........................................................................................................... 1 
2 DShow to OMX interface mapping ................................................................................................ 3 
3 Buffer Management & Communication....................................................................................... 10 
4 Building Filter Graphs ................................................................................................................. 14 

  

 

Please read the “Important Notice” on the next page. 



 

 

 

 

 iv 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

IMPORTANT NOTICE 

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, 
enhancements, improvements, and other changes to its products and services at any time and to 
discontinue any product or service without notice. Customers should obtain the latest relevant information 
before placing orders and should verify that such information is current and complete. All products are sold 
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. 

TI warrants performance of its hardware products to the specifications applicable at the time of sale in 
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent 
TI deems necessary to support this warranty. Except where mandated by government requirements, testing 
of all parameters of each product is not necessarily performed. 

TI assumes no liability for applications assistance or customer product design. Customers are responsible 
for their products and applications using TI components. To minimize the risks associated with customer 
products and applications, customers should provide adequate design and operating safeguards. 

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent 
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, 
or process in which TI products or services are used. Information published by TI regarding third-party 
products or services does not constitute a license from TI to use such products or services or a warranty or 
endorsement thereof. Use of such information may require a license from a third party under the patents or 
other intellectual property of the third party, or a license from TI under the patents or other intellectual 
property of TI. 

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without 
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. 
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not 
responsible or liable for such altered documentation. 

Resale of TI products or services with statements different from or beyond the parameters stated by TI for 
that product or service voids all express and any implied warranties for the associated TI product or service 
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. 

Following are URLs where you can obtain information on other Texas Instruments products and application 
solutions: 
1  Products  2  Applications  

Amplifiers amplifier.ti.com Audio www.ti.com/audio 

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive 

DSP dsp.ti.com Broadband www.ti.com/broadband 

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol 

Logic logic.ti.com Military www.ti.com/military 

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork 

Microcontrollers microcontroller.ti.com Security www.ti.com/security 

  Telephony www.ti.com/telephony 

  Video & Imaging www.ti.com/video 

  Wireless www.ti.com/wireless 

      Mailing Address:  Texas Instruments  
    Post Office Box 655303 Dallas, Texas 75265 
 

Copyright © 2006, Texas Instruments Incorporated 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 1 of 1 

1  Introduction & Architecture 
This whitepaper briefly describes how the Microsoft DirectShow Filter interface may be translated to the 
OpenMAX IL base profile interface for integration with Microsoft Windows Mobile Enabled devices with a 
pull and a push communication model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 As the diagram above depicts, a multimedia application is abstracted from the underlying 
hardware via the DirectShow Filter Graph which is constructed by the Filter Graph Manager. Filters in this 
system abstract I/O device drivers and transforms(such as codecs). These Filters are connected using 
Pins. It is the underlying Filter interface that this paper will map to OpenMAX IL component interface so 
the capture devices, decoders, and rendering interfaces are abstracted in an OS independent way. 

Whereas a Filter may be in any one of three states (stopped, running, paused) an OMX base profile 
component can be in any one of five states (loaded, idle, executing, paused, invalid). The mapping 
difference between loaded and idle for OMX components is in whether or not hardware resources have 
been allocated. The invalid state is intended primarily for multi-core system error handling and should not 
be entered throughout the normal operation of an OMX component. 

The architectural mapping between DirectShow filters and OpenMAX components appears in the figure 
below. Filter Pins correspond to OMX component ports. Although OMX ports generally share the same 
states as OMX components, they can be independently enabled and disabled. 

 

 

 

 

 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 2 of 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COM
Filter

COM
Pin

COM
Pin

OMX
Component

OMX
Port

OMX
Port

IMediaSample

OMX_Buffer

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 3 of 3 

2  DShow to OMX interface mapping 
This section briefly outlines a workable mapping between Dshow Interfaces and OpenMAX IL interfaces. 

 

CBaseFilter Class to OMX Mapping 

The CBaseFilter class is the base class and comprises the following methods and variables: 

Protected Member Variables OMX IL Method or Variable  Description 

m_State OMX_STATETYPE Current state of the filter. 

m_pClock Corresponds to OMX Clock 
Component 

Pointer to the filter's reference 
clock. 

m_tStart NA Reference time that corresponds 
to stream time 0. 

m_clsid NA Class identifier (CLSID) of the 
filter. 

m_pLock NA Pointer to a critical section that is 
used to serialize state changes. 

m_pName pName Filter name. 

m_pGraph NA Pointer to the filter graph 
manager. 

m_pSink NA Pointer to the IMediaEventSink 
interface on the filter graph 
manager. 

m_PinVersion nVersion Current version of the set of pins 
on this filter. 

Public Methods    

CBaseFilter OMX_GetHandle  Constructor method. 

~CBaseFilter OMX_FreeHandle Destructor method. 

StreamTime Applicable only to OMX Clock 
Component 

Retrieves the current stream 
time. Virtual. 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 4 of 4 

IsActive OMX_GetState 

 

Determines whether the filter is 
currently active (running or 
paused). 

IsStopped OMX_GetState Determines whether the filter is 
currently stopped. 

NotifyEvent SetCallbacks(hHandle, 
pCallBacks, pAppData) 

Sets up events from the 
component which may be 
translated into NotifyEvents. 

Sends an event notification to the 
filter graph manager. 

GetFilterGraph NA Retrieves a pointer to the filter 
graph manager. 

ReconnectPin OMX_SetupTunnel Breaks an existing pin connection 
and reconnects it to the same 
pin, using a specified media type. 

GetPinVersion OMX_GetComponentVersion Retrieves a version number for 
the set of pins on this filter. 
Virtual. 

IncrementPinVersion NA Increments the version number 
on the set of pins. 

GetSetupData NA Retrieves the registration data for 
the filter. Virtual. 

Pure Virtual Methods    

GetPinCount OMX_GetParameter Retrieves the number of pins. 

GetPin OMX_GetParameter Retrieves a pin. 

IPersist Methods    

GetClassID NA Retrieves the class identifier. 

IMediaFilter Methods    

GetState OMX_GetState Retrieves the filter's state 
(running, stopped, or paused). 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 5 of 5 

SetSyncSource NA Sets a reference clock for the 
filter. 

GetSyncSource NA Retrieves the reference clock that 
the filter is using. 

Stop OMX_SendCommand(hComp, 
OMX_CommandStateSet, 
OMX_StateIdle, 
0)OMX_SendCommand(hComp, 
OMX_CommandStateSet, 
OMX_StateLoaded, 0) 

First transitions the OMX 
component to Idle and then 
transitions the component to 
Loaded. (the OMX component 
does not have resources in this 
state)  

Pause OMX_SendCommand(hComp, 
OMX_CommandStateSet, 
OMX_StateIdle, 0) (when 
stopped) 

OMX_SendCommand(hComp, 
OMX_CommandStateSet, 
OMX_StatePaused, 0) 

Pauses the filter if it is executing. 
If the filter is stopped, the OMX 
component is first transitioned to 
Idle and then to Paused. (the 
OMX component has resources in 
this state � it is always required 
to Pause before Running.) 

Run OMX_SendCommand(hComp, 
OMX_CommandStateSet, 
OMX_StateExecuting, 0) 

Runs the filter. 

IBaseFilter Methods    

EnumPins NA Enumerates the pins on this filter. 

FindPin NA Retrieves the pin with the 
specified identifier. 

QueryFilterInfo OMX_GetParameter Retrieves information about the 
filter. 

JoinFilterGraph NA Notifies the filter that it has 
joined or left a filter graph. 

QueryVendorInfo NA Retrieves a string containing 
vendor information. 

IAMovieSetup Merthods    

Register NA Adds the filter to the registry. 

Unregister NA Removes the filter from the 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 6 of 5 

registry. 

 

 

CBaseInputPin to OMX Port Mapping 

 

Protected Member Variables  OMX IL Method or Variable Description 

m_pAllocator Points to OMX_AllocateBuffer Pointer to the memory allocator. 

m_bReadOnly NA Flag that indicates whether the 
allocator produces read-only 
media samples. 

m_bFlushing NA Flag that indicates whether the 
pin is currently flushing. 

m_SampleProps NA Properties of the most recent 
sample. 

Public Methods    

CBaseInputPin NA Constructor method. 

~CBaseInputPin NA Destructor method. 

BreakConnect OMX_CommandPortDisable Releases the pin from a 
connection. 

IsReadOnly NA Queries whether the allocator 
uses read-only media samples. 

IsFlushing NA Queries whether the filter is 
currently flushing. 

CheckStreaming NA Determines whether the pin can 
accept samples. Virtual. 

PassNotify NA Passes a quality-control message 
to the appropriate object. 

Inactive NA Notifies the pin that the filter is 
no longer active. Virtual. 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 7 of 7 

SampleProps NA Retrieves the properties of the 
most recent sample. 

IPin Methods    

BeginFlush OMX_CommandFlush Begins a flush operation. 

EndFlush NA Ends a flush operation. 

IMemInputPin Methods (Used in Push Communication)   

GetAllocator OMX_UseBuffer Retrieves the memory allocator 
proposed by this pin. 

NotifyAllocator NA Specifies an allocator for the 
connection. 

GetAllocatorRequirements OMX_GetParameter Retrieves the allocator properties 
requested by the input pin. 

Receive OMX_EmptyThisBuffer Receives the next media sample 
in the stream. 

ReceiveMultiple NA Receives multiple samples in the 
stream. 

ReceiveCanBlock NA Determines whether calls to the 
CBaseInputPin::Receive 
method might block. 

IQualityControl Methods    

Notify NA Receives a quality-control 
message. 

 

CBaseOutputPin to OMX Port Mapping 

 

Protected Member Variables OMX IL Method or Variable  Description 

m_pAllocator Points to OMX_AllocateBuffers Pointer to the memory allocator. 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 8 of 8 

m_pInputPin NA Pointer to the input pin connected 
to this pin. 

Public Methods    

CBaseOutputPin NA Constructor method. 

CompleteConnect ComponentTunnelRequest Completes a connection to an 
input pin. Virtual. 

DecideAllocator Determines whether 
OMX_UseBuffers or 
OMX_AllocateBuffers is called 

Selects a memory allocator. 
Virtual. 

GetDeliveryBuffer (push communication) 

OMX_FillThisBuffer 

Retrieves a media sample that 
contains an empty buffer. Virtual. 

Deliver (push communication)  

OMX_FillBufferDone 

Delivers a media sample to the 
connected input pin. Virtual. 

InitAllocator NA Creates a memory allocator. 
Virtual. 

CheckConnect ComponentTunnelRequest Determines whether a pin 
connection is suitable. 

BreakConnect OMX_PortDisable Releases the pin from a 
connection. 

Active NA Notifies the pin that the filter is 
now active. 

Inactive NA Notifies the pin that the filter is 
no longer active. 

DeliverEndOfStream NA Delivers an end-of-stream 
notification to the connected input 
pin. Virtual. 

DeliverBeginFlush NA Requests the connected input pin 
to begin a flush operation. 
Virtual. 

DeliverEndFlush NA Requests the connected input pin 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 9 of 8 

to end a flush operation. Virtual. 

DeliverNewSegment NA Delivers a new-segment 
notification to the connected input 
pin. Virtual. 

Pure Virtual Methods    

DecideBufferSize NA Sets the buffer requirements. 

IPin Methods    

BeginFlush OMX_CommandFlush Begins a flush operation. 

EndFlush NA Ends a flush operation. 

EndOfStream NA Notifies the pin that no additional 
data is expected. 

 

IMemAllocator to OMX IL Mapping  

 

Method OMX IL Method Description 

SetProperties OMX_SetParameter Specifies the number of buffers to 
allocate and the size of each 
buffer. 

GetProperties OMX_GetParameter Retrieves the number of buffers 
that the allocator will create, and 
the buffer properties. 

Commit OMX_CommandPortEnable Allocates the buffer memory. 

Decommit OMX_CommandPortDisable Releases the buffer memory. 

GetBuffer This method will block until the 
underlying OMX component port 
has received and processed a 
buffer when no other buffers are 
available. 

Retrieves a media sample that 
contains an empty buffer. 

ReleaseBuffer This method releases a buffer to 
the allocation pool. 

Releases a media sample. 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 10 of 10 

 

 

 

IAsyncReader to OMX IL Mapping (Used in Pull Communication) 

 

Method OMX IL Method Description 

BeginFlush  OMX_CommandFlush Causes all outstanding reads to 
return.  

EndFlush  NA Ends the flushing operation.  

Length  OMX_GetParameter Retrieves the total length of the 
stream, and the currently available 
length.  

RequestAllocator  Returns pointer to allocator which 
calls an underlying 
OMX_AllocateBuffers 

Retrieves the actual allocator to be 
used.  

Request  OMX_FillThisBuffer Queues a request for data.  

SyncReadAligned  NA Performs an aligned synchronized 
read.  

SyncRead  NA Performs a synchronized read.  

WaitForNext  OMX_FillBufferDone unblocks this 
call. 

Blocks until the next sample is 
completed or the time-out occurs.  

 

3  Buffer Management & Communication 
The buffer management scenario between two OMX based filters varies dependant on whether a push or 
pull model is desired. This paper assumes a pull model is adopted. Although all OMX components must 
be capable of both allocating or using externally allocated buffers, a specific allocation method may be 
desired in order to maximize memory efficiency or performance. The allocator between output and input 
pin must be negotiated.  

One of the primary differences between DirectShow filters and OMX components is that filters are 
implemented as COM objects with pins that are also implemented as COM objects. OMX components 
have “ports” which although considered part of the component, have two independent states 
(enabled(resources allocated), disabled(resources de-allocated)) and also have independent buffering 
and configuration interfaces within the component. 

For pull communication, the IAsyncReader interface is used as follows: 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 11 of 11 

1. The input pin begins the negotiation by calling IAsyncReader::RequestAllocator on the output 
pin. The input pin provides its buffer requirements and a pointer to an allocator which calls the 
underlying OMX_AllocateBuffer method. 

2. The output pin must then select an allocator. It has the option of using the one provided by the 
input pin, if any, or it can create its own. If it creates its own, it will provide a pointer to an 
allocator which calls the underlying OMX_AllocateBuffers method. If it chooses to use the input 
pin allocator, it will provide a pointer to an allocator which call the underlying OMX_UseBuffers 
method. 

3. The output pin must return the allocator as an outgoing parameter in the RequestAllocator 
method. The input pin should check the allocator properties by making a call to 
OMX_GetParameter on the associated port.   

4. The input pin is responsible for allocating resources. The input pin is responsible for calling the 
output port’s allocator (underlying OMX_AllocateBuffers or OMX_UseBuffers method) and 
enabling or disabling both the input and output ports. 

5. At any time during the negoriation process, either pin can fail the connection requiring an 
alternate component to be used or an event to be generated to the Filter Graph Manager. 

6. If the output pin uses the input pin's allocator, it can use that allocator only for samples delivered 
to that input pin.  This is also true for the underlying OMX components – allocated buffers may 
only be exchanged between the associated input and output ports. 

 

The output pin (or port) in the scenario above is responsible for determining whether to allocate buffers 
locally or at the input.  For pull communications the input pin or port is required to allocate/de-
allocate/commit/decommit buffers.  

Buffer communication in a DirectShow filter graph utilizing pull communication might take place as 
depicted below with OMX IL integrated components. While parser configuration parameters are not 
specified in OMX IL 1.0, a parser component may still be implemented using the standard interfaces. 

Parser Decoder Renderer

Allocator 1 Allocator 2

Compressed
Video Frame

Decoded
Video Frame

1 2 3 4

GetBufferGetBuffer

Waiting to Decode Holding until
Presentation time

WaitForNext/
FillBufferDone

Request /FillThisBufferRequest/FillThisBuffer

WaitForNext/
FillBufferDone

 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 12 of 12 

For OpenMAX pull components, FillBufferDone callbacks are made to trigger the use and 
subsequent re-circulation of buffers to the designated allocator (where the allocator in the above example 
is the input pin for all connections). Although the allocator in an underlying OpenMAX component may be 
part of the input or output port, we have adopted the convention where the allocator is part of the input 
port for this example. Throughout this document, a Pin refers to the Microsoft specified part of a 
DirectShow Filter while a Port refers to the Khronos specified part of an OpenMAX IL Component. 

The sequence diagram below details how the above configuration might work for pull 
communication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In an IMemInputPin connection(where push communication is desired), allocator negotiation 

works as follows:  

1. Optionally, the output pin calls IMemInputPin::GetAllocatorRequirements. This 
method retrieves the input pin's buffer requirements, such as memory alignment. The input 
pin calls OMX_GetParameter to retrieve its port buffer requirements.  

2. Optionally, the output pin calls IMemInputPin::GetAllocator. This method requests an 
allocator from the input pin. The input pin provides one, or returns an error code. If one is 
provided, the underlying OMX_AllocateBuffers method may be called during allocation. 

3. The output pin selects an allocator. It can use one provided by the input pin, or create its 
own. In the following example we assume the output pin uses its own allocator by calling its 
underlying OMX_AllocateBuffers method. 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 13 of 13 

4. The output pin calls IMemAllocator::SetProperties to set the allocator properties. 
However, the allocator might not honor the requested properties. (For example, this can 
happen if the input pin provides the allocator.) The allocator returns the actual properties 
as an output parameter in the SetProperties method. This translates into an OMX_SetParam 
call.  

5. The outpin calls IMemInputPin::NotifyAllocator to inform the input pin of the 
selection.  

6. The input pin should call IMemAllocator::GetProperties to verify whether the allocator 
properties are acceptable. This translates into an OMX_GetParameter call. 

7. The output pin is responsible for committing and decommitting the allocator. This occurs 
when streaming starts and stops. This translates into enabling or disabling a given port. 

In the sequence diagram below, it is assumed that the parser’s output port is the allocator. This diagram 
represents the same filter graph constructed for the pull example but is shown below utilizing the 
IMemInputPin(instead of IAsyncReader)  interfaces with push communication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Document NAME     Program Name 
White Paper 
  Revision 0.1 DRAFT 20 April 2006 

Page 14 of 14 

4  Building Filter Graphs 
DirectShow filter graphs are built using IFilterGraph and the inherited class IGraphBuilder. Although these 
classes don’t map to OpenMAX components, some of the methods in these classes can leverage 
OpenMAX Core Methods when OMX Filters are in use. The IGraphBuilder:Connect method or 
IFilterGraph:ConnectDirect method may make an underlying OMX_SetupTunnel call. 

 

 

 


