

Using OpenMAX Integration Layer
with GStreamer

- WHITE PAPER -

Author: D. Melpignano, P. Sen
Version: 1.0
Date: 24st April, 2006

Using OpenMAX Integration Layer with GStreamer Page 2 of 21

White paper STMicroelectronics

REVISION HISTORY

VERSION DATE AUTHORS COMMENTS
0.9 21st April 2006 D. Melpignano,

P. Sen
Final draft

1.0 24th April 2006 Released

GStreamer is a plugin-based framework licensed under the LGPL:
http://gstreamer.freedesktop.org

OpenMAX is a registered trademark of the Khronos Group. All references to
OpenMAX components in this whitepaper are referenced from the publicly available

OpenMAX IL specification on the Khronos web-site at:

http://khronos.org/openmax

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
Nomadik is a trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

Using OpenMAX Integration Layer with GStreamer Page 3 of 21

White paper STMicroelectronics

Table of Contents

1 Scope...4
2 Introduction...4
3 Gstreamer concepts ...5
3.1 GST terminology ...5
3.2 GStreamer Elements...5
3.3 GStreamer Object Hierarchy...6
4 Gstreamer – IL integration ...7
4.1 GST element and OMX component states..8
4.2 Comparison of methods ..9
4.3 Comparison of data structures ..10
4.4 Initialization ...14
4.5 Data flow ...17
4.6 Example of IL-enabled GST plugin set..19
4.7 Optimizations ..20
5 Conclusions ..21
6 References ..21

Using OpenMAX Integration Layer with GStreamer Page 4 of 21

White paper STMicroelectronics

1 SCOPE

The purpose of this document is showing how the OpenMAX Integration Layer API
can be used in the Linux GStreamer framework to enable access to multimedia
components, including HW acceleration on platforms that provide it.
The white paper does not enter into implementation details and is intended to just
provide indications of how the OpenMAX Integration Layer API might be used in the
GStreamer multimedia framework.
Intended audience is the Linux development community, especially the development
community around GStreamer.
It is assumed that the reader is familiar with the OpenMAX Integration Layer API
(defined in �[1]).

2 INTRODUCTION

GStreamer is a fully featured Multimedia framework for the Linux operating system.
The purpose of this white paper is to discuss how access to multimedia components -
as offered by the OpenMAX Integration Layer (OMX IL) API - can be exploited by
GStreamer.

Adding support for OMX IL inside GStreamer has the advantage of enabling access
to multimedia components in a standardized way. Applications using the GStreamer
API would take advantage of hardware acceleration on platforms that provide it, when
OMX IL support is integrated.

Although the OpenMAX Integration Layer API may initially look similar to GStreamer
in terms of concepts, it is aimed at a different purpose and lacks many advanced
features that can be found in GStreamer.

This white paper briefly discusses the main concepts of the GStreamer framework,
then it analyzes the main differences with OMX IL in terms of data structures and
methods.
A simple approach for using the OpenMAX IL API with GStreamer is suggested,
which does not require modifications to the GStreamer core framework.
Sequence diagrams show the interaction among GStreamer and OpenMAX IL
function calls during the initialization and pipeline execution phases.

In the rest of the document, GStreamer version 0.8 is used as a reference.
GStreamer 0.10 slightly differs in the API, but not in the fundamental concepts that
are herein described. Where appropriate, footnotes are used to highlight the
differences among version 0.8 and 0.10.

Using OpenMAX Integration Layer with GStreamer Page 5 of 21

White paper STMicroelectronics

3 GSTREAMER CONCEPTS
In this section we briefly summarize the main concepts used in the GStreamer
multimedia framework (see �[2]).

3.1 GST terminology
The following definitions are taken from the GStreamer official documentation.

• A GStreamer plugin is a container for features (elements) loaded from a
shared object module.

• A GstRegistry is an Abstract base class for management of GstPlugin objects

• A GstObject is a Base class for the GStreamer object hierarchy

• A GstPad is an object contained by elements that allows links to other

elements

• A GstRealPad is a Real link pads

• A GstGhostPad is a Pseudo link pads

• A GstElement in an Abstract base class for all pipeline elements

• A GstBin is a Base class for elements that contain other elements

• A GstPipeline is a Top-level bin with scheduling and pipeline management
functionality.

3.2 GStreamer Elements
GStreamer elements can be classified as sources, sinks and filters (or codecs) as
depicted below. Elements can exchange data buffers and events through pads.
A source pad produces data buffers, while a sink pad consumes data buffers.

Source Element Filter and Codecs Sink Element

Pads

Using OpenMAX Integration Layer with GStreamer Page 6 of 21

White paper STMicroelectronics

Linked elements

Elements can be linked together by connecting their pads. Furthermore, they can be
grouped in a bin, which can be seen as a complex element from the outside, thereby
providing a hierarchical structure in the GST elements available to application
programmers.

3.3 GStreamer Object Hierarchy

The Gstreamer framework is based on Glib, a C library that allows object-oriented
code to be developed. What follows is a simplified representation of the GStreamer
class hierarchy.

GObject
 |----�GstRegistry
 | |----�GstXMLRegistry
 |
 |----�GstObject
 |----�GstPad
 | |----�GstRealPad
 | |----�GstGhostPad
 |
 |----�GstElement
 |----�GstBin
 |----�GstPipeline

Bin

Using OpenMAX Integration Layer with GStreamer Page 7 of 21

White paper STMicroelectronics

4 GSTREAMER – IL INTEGRATION

This section discusses how the OMX IL API can be used by GStreamer (GST)
elements to access multimedia components.
The relationship between GST elements and OMX components is analyzed, in terms
of states, data structures and methods. We analyze similarities and differences
between GStreamer and OpenMAX IL and we suggest a simple approach for using
OpenMAX base profile components inside the Linux GStreamer multimedia
framework.

As shown in Figure 1, a GST element can use the OMX core to load an OMX
component. Through the OMX IL API, a GST element can manage allocation and
exchange of data buffers with an OMX component as well as configure component
operating parameters. Using OpenMAX IL terminology, a GST element is an IL client.
GST element pads have their logical counterpart in OMX component ports, with the
main difference being that pads can be added dynamically to a GST element,
whereas component ports are static and can only be enabled or disabled at runtime.

cd gs t-omx i l

«in terface»

GSTelement_If

GSTILElem ent

Si nkPad [0..*] SourcePad [0 ..*]

OM X_Component

InPort [0..*] OutPort [0..*]

OM X_IL

OM XCore

loads

OM X_IL

«rea l ize»

Figure 1: Mapping GStreamer elements to OMX components.

Differences in features and nomenclature between the two environments are also
shown in Table 1.

GStreamer OpenMAX IL Remarks
element component The basic computing or interface

block (granularity is not defined in
either cases)

sink pad input port Interface for receiving data buffers
source pad output port Interface for transmitting data buffers

Using OpenMAX Integration Layer with GStreamer Page 8 of 21

White paper STMicroelectronics

property (or
capability)

param &
config

Init time and run time parameters

bin, pipeline - No concept of chains of components
in OpenMAX (except for resource
management purposes)

plugin - Container for GST elements
(dynamic library)

event event GST has an event propagation
feature, which in OMX must be
implemented by the IL client

buffer buffer A data unit with associated meta-data
such as offset, timestamps,…

caps port definition The capabilities of pads/ports,
including the supported data format

Table 1: GStreamer and OpenMAX IL features compared.

The next sections analyze differences in data structures and methods between the
two environments. The reader interested in showing how OpenMAX Integration Layer
API is used in practice by GStreamer elements can directly jump to section �4.4.

4.1 GST element and OMX component states
States of Gstreamer elements and OMX components are rather similar and a
comparison can be found in Table 2.

GST element state OMX component state comments
GST_STATE_VOID_PENDING
GST_STATE_NULL OMX_STATELOADED Initial state with no

resources allocated
GST_STATE_READY OMX_STATEIDLE Ready with resources

allocated
GST_STATE_PLAYING OMX_STATEEXECUTING Processing buffers
GST_STATE_PAUSED OMX_STATEPAUSE Paused with resources

allocated, can queue
buffers

 OMX_STATEWAITFORRESOURCES HW resource conflict
pending

 OMX_STATEINVALID Component corruption

Table 2: GST element and OMX component states.

OpenMAX IL defines two states, which do not have counterparts in the Gstreamer
world, namely OMX_STATEWAITFORRESOURCES and OMX_STATEINVALID. The first one is
entered by a component in case of hardware resource conflicts, whereas the second
one is a pseudo-state, which is entered in case of unrecoverable errors and which
results in the OMX component being unloaded by the IL client.

One notable difference between GST and OMX environments relates to state
transitions. In fact, it is possible for a GST application to request a state transition for
a GST element from NULL to PLAYING. The GStreamer framework then takes care
of managing all the intermediate element transitions (NULL to READY, READY to

Using OpenMAX Integration Layer with GStreamer Page 9 of 21

White paper STMicroelectronics

PAUSED and finally PAUSED to PLAYING). In OpenMAX, state transitions are
specified in �[1], page 44. In that context, an IL client cannot request a component to
go from LOADED to EXECUTING state, as this command would return an error.

4.2 Comparison of methods

In Table 3 we compare common methods that are used by GST applications and by
IL clients, respectively. As stated above, a GST element that uses the OMX IL API
becomes an IL client. Therefore the implementation of a GStreamer method inside an
element, may call the corresponding OMX IL function.

Purpose GStreamer method OMX IL method
Initializing the
environment

gst_init() OMX_Init()

Instantiating an
element

gst_element_factory_make() OMX_GetHandle()

Changing an
element state

gst_element_set_state() OMX_CommandSendCommand
(<state>)

Connecting two
elements

gst_element_link() or
gst_element_link_pads()

OMX_SetupTunnel()

Setting/getting an
element property at
init time

g_object_set()
g_object_get()

OMX_SetParameter()
OMX_GetParameter()

Setting/getting an
element property at
run time1

g_object_set()
g_object_get()

OMX_SetConfig()
OMX_GetConfig()

Buffer structure
allocation2

gst_buffer_new() OMX_UseBuffer()

Buffer structure and
data buffer
allocation

gst_buffer_new_and_alloc() OMX_AllocateBuffer()

Free a buffer gst_buffer_unref() OMX_FreeBuffer()

Table 3: Comparison of methods used by applications.

1 As a matter of fact, GStreamer is much richer in terms of interfaces and methods to define properties
for elements and pads, also dynamically, here we only mention g_object_get/set for simplicity.
2 gst_buffer_new() has no input parameters and it only allocates a structure to hold buffer metadata;
OMX_UseBuffer() allocates the equivalent buffer header but a pointer to an already allocated memory
region is passed as an input parameter to the function.

Using OpenMAX Integration Layer with GStreamer Page 10 of 21

White paper STMicroelectronics

4.3 Comparison of data structures
In this section we compare the main data structures used by GStreamer and OMX IL.
In general, GStreamer provides a superset of the functionality found in OMX IL, but
using OMX IL in GST elements is still possible without introducing big limitations.

4.3.1 Buffers
The following table compares buffer structures found in Gstreamer (GstBuffer) and
OpenMAX IL (OMX_BUFFERHEADERTYPE), respectively.

Purpose GstBuffer OMX_BUFFERHEADERTYPE
size of the structure in bytes nSize
OMX specification version
information

 nVersion

pointer to buffer data data pBuffer
size of buffer data size nFilledLen
max size of this buffer maxsize nAllocLen
Timestamp Timestamp nTimeStamp
Tick count Duration nTickCount
start offset of valid data in
bytes from the start of the
buffer

Offset nOffset

 offset_end
 free_data
Pointer to application private
data

buffer_private pAppPrivate

 _gst_reserved
Pointer to platform specific
data

 pPlatformPrivate

pointer to any data the input
port wants to associate with
this buffer

 pInputPortPrivate

pointer to any data the output
port wants to associate with
this buffer

 pOutputPortPrivate

The component that will
generate a mark event upon
processing this buffer

 hMarkTargetComponent

 pMarkData
buffer specific flags nFlags
The index of the output port
(if any) using this buffer

 nOutputPortIndex

The index of the input port (if
any) using this buffer

 nInputPortIndex

Table 4: GST and OMX IL buffer structures compared.

Buffers contain the data that will flow through the GST pipeline. In GStreamer a
source element will typically create a new buffer and pass it through a pad to the next
element in the chain by calling gst_pad_push().
A GstBuffer consists of a pointer to a piece of memory, the size of the memory, a
timestamp for the buffer, a refcount that indicates how many elements are using this
buffer.
This refcount will be used to destroy the buffer when no element has a reference to it.
After using a buffer an element can return the buffer to its provider immediately or
pass it to the next element but finally it comes back to its allocator.

Using OpenMAX Integration Layer with GStreamer Page 11 of 21

White paper STMicroelectronics

GStreamer provides functions to create custom buffer create/destroy algorithms,
called a GstBufferPool3. This makes it possible to efficiently allocate and destroy
buffer memory. It also makes it possible to exchange memory between elements by
passing the GstBufferPool. A video element can, for example, create a custom buffer
allocation algorithm that creates buffers with XSHM as the buffer memory. An
element can use this algorithm to create and fill the buffer with data.
The simple case is that a buffer is created, memory allocated, data put in it, and
passed to the next element. That element reads the data, does something (like
creating a new buffer and decoding into it), and unreferences the buffer. This causes
the data to be freed and the buffer to be destroyed. A typical MPEG audio decoder
works like this.
A more complex case is when the filter modifies the data in place. It does so and
simply passes on the buffer to the next element. This is just as easy to deal with. An
element that works in place has to be careful when the buffer is used in more than
one element; a copy on write has to make in this situation.
Buffer can be allocated at any time during the execution, when ever needed.
In contrast, in case of OpenMAX IL, a buffer can be allocated by its client, or by either
of the components connected using a tunnel. If the IL client allocates a buffer then it
requests the component to use the buffer and to allocate the buffer header; the IL
client can also request the component to allocate a buffer along with its header.
In case of data tunneling a negotiation is made among components that implement
the interop profile, in order to decide which component will allocate the buffer and
which will use it. When ports become disabled or flushed, the buffers are returned to
its allocator and freed subsequently when state changes from OMX_StateIdle to
OMX_StateLoaded.
Buffers are allocated only when state is changing from OMX_StateLoaded to
OMX_StateIdle.

4.3.2 Buffer Flags
On GStreamer as well as in OpenMAX IL data buffers have flags which carry
properties associated with the buffer itself. From the table below, it is clear that buffer
flags in the two environments are hardly comparable.

Purpose GStreamer OMX IL
The buffer is read-only GST_BUFFER_READONLY
The buffer is a sub buffer GST_BUFFER_SUBBUFFER
Buffer is not a copy of
another buffer

GST_BUFFER_ORIGINAL

Do not try to free the data
when this buffer is
unreferenced

GST_BUFFER_DONTFREE

The buffer holds a key
unit, a unit that can be
decoded independently
of other buffers

GST_BUFFER_KEY_UNIT

The buffer should not be
ref () ed, but copied
instead before doing
anything with it (for
specially allocated hw

GST_BUFFER_DONTKEEP

3 This class is no longer found on GStreamer 0.10. The same functionality might be achieved using
gst_pad_alloc_buffer and gst_pad_set_bufferalloc_function.

Using OpenMAX Integration Layer with GStreamer Page 12 of 21

White paper STMicroelectronics

buffers and such)
The buffer has been
added as a field in a
GstCaps

 GST_BUFFER_IN_CAPS

Additional flags can be
added starting from this
flag

GST_BUFFER_FLAG_LAST

Sets EOS when it has no
more data to emit

 OMX_BUFFERFLAG_EOS

STARTTIME flag is
directly associated with
the buffers timestamp

 OMX_BUFFERFLAG_STARTTIME

Sets the DECODEONLY
flag on any buffer that
should shall be decoded
but should not be
displayed

 OMX_BUFFERFLAG_DECODEONLY

Set when the IL client
believes the data in the
associated buffer is
corrupt

 OMX_BUFFERFLAG_DATACORRUPT

The buffer contains
exactly one end of frame

 OMX_BUFFERFLAG_ENDOFFRAME

Table 5: Buffer flags.

4.3.3 Pads and ports
Pads have capabilities that describe media type formats, so that only pads with
compatible capabilities can be linked.
Similarly, OMX ports parameters can be found using the
OMX_PARAM_PORTDEFINITIONTYPE structure defined in �[1] at page 64. Port
compatibility is checked among OMX interop profile components during the data
tunneling setup phase.

4.3.4 Events
Both Gstreamer elements and OpenMAX IL components can generate asynchronous
events, as detailed below.

Description GStreamer OpenMAX IL
Unknown event. GST_EVENT_UNKNOWN OMX_EventMax
An end-of-stream event. GST_EVENT_EOS OMX_EventBufferFlag
A flush event. GST_EVENT_FLUSH
An empty event GST_EVENT_EMPTY

A discontinuous event to
indicate the stream has a
discontinuity.

GST_EVENT_DISCONTINU
OUS

A quality of service event GST_EVENT_QOS
A seek event GST_EVENT_SEEK
A segment seek with start
and stop position

GST_EVENT_SEEK_SEGME
NT

The event that will be emited
when the segment seek has
ended

GST_EVENT_SEGMENT_DO
NE

A size suggestion for a peer
element

GST_EVENT_SIZE

Adjust the output rate of an GST_EVENT_RATE

Using OpenMAX Integration Layer with GStreamer Page 13 of 21

White paper STMicroelectronics

element
A dummy event that should
be ignored by plugins

GST_EVENT_FILLER

An event to set the time
offset on buffers

GST_EVENT_TS_OFFSET

Mainly used by _get based
elements when they were
interrupted while waiting for
a buffer.

GST_EVENT_INTERRUPT

Navigation events are
usually used for
communicating user
requests, such as mouse or
keyboard movements, to
upstream elements.

GST_EVENT_NAVIGATION

A new set of metadata tags
has been found in the
stream.

GST_EVENT_TAG

Component has successfully
completed a command

 OMX_EventCmdComplete

Component has detected an
error condition

 OMX_EventError

Component has detected a
buffer mark

 OMX_EventMark

Component has reported a
port settings change

 OMX_EventPortSettingsCh
anged

Component has been
granted resources and is
automatically starting the
state change from
OMX_StateWaitForResource
s to OMX_StateIdle

 OMX_EventResourcesAcqui
red

Table 6: Events.

Using OpenMAX Integration Layer with GStreamer Page 14 of 21

White paper STMicroelectronics

4.4 Initialization
In order to show how Gstreamer elements and OMX components interact at init time,
we use the sequence diagram in Figure 2 as a reference.
Here, both initialization and buffer allocation steps are shown. It should be noted that
this is just an example of how OMX could be used from GST elements and the buffer
management strategy could be different in other implementations.
Having used a push model in this example, we adopt the convention that the OMX
component output port is the buffer allocator.

s d gs treamer

MP3decoder
:GST ILElement

M P3decoder
:OMX_Com ponent

GST framework OMX_Core

1.0 gst_change_state(NULLtoREADY)
1.0 The framework requests a change in the e lement state
from NULL to READY

1.1 OM X_Ini t()
1.1 OpenMAX in i tia lization

1.2 OMX_GetHandle(OMX.ST.AUDIO.MP3DEC)
1.2 The e lement request an OpenM AX component

1.3 OMX_SetParameter()
1.3 sets it parameters

1.4 OM X_sendCommand(LOADEDtoIDLE)
1.4 then puts the com ponent in to IDLE state (asynchronous
command).

1.5 OMX_UseBuffer()
1.5 buffers are al located for input port (buffer al ready
a llocated by GStreamer)

1.6 *OMX_Al locateBuffer()
1.6 GST element asks the component to a l locate its own
buffers for the output port

1.7

1.8 gst_change_state(READYtoPAUSED)
1.8 elem ent state change from READY to PAUSED

1.9 wai t4callback()
1.9 The e lement wai ts unti l the OMX com ponent has gone
into IDLE (al l resources al located).

1.10 eventHandler(cm d_com plete, IDLE)

1.11

1.12 gst_change_state(PAUSEDtoPLAYING)
1.12 PAUSED to PLAYING transi tion

1.13 *OMX_Fi llT hisBuffer()
1.13 A few empty buffers are sent for the output port

1.14 OM X_sendCommand(IDLEtoEXECUT ING)
1.14 Com ponent is put in to EXECUT ING state

1.15 wai t4cal lback()
1.15 wai t unti l com ponent has gone in to EXECUT ING state.

1.16 eventHandler(cmd_complete, EXECUT ING)
1.17

2.0 gst_chain()
2.0 the framework sends a buffer to process

2.1 OM X_EmptyT hisBuffer()
2.1 The buffer is sent to the OM X component

2.2 *OMX_Fi l lBufferDone()
2.2 Component has one output buffer avai lab le. 2.3 *gst_pad_push()
2.3 The buffer is pushed back to the framework, which wil l
sned i t to the next element in the p ipel ine, using another
nested cal l to gst_chain().

2.4
2.4 When gst_pad_push returns, the buffer can be reused.

2.5 OMX_Fil lT hisBuffer()

2.6 OMX_Em ptyBufferDone()
2.6 Input buffer has been complete ly processed. 2.7
2.7 gst_chain returns.

Figure 2: Data flow sequence diagram.

The GStreamer model for passing data among elements is usually a push model, i.e.,
when a component has finished producing an output buffer, it sends it through its
source pad to the downstream element by calling the gst_pad_push function.
However, a pull model can also be supported, if so desired.
The gst_pad_push() function is then handled by the gst_chain() entry point of the
downstream element and returns as soon as the buffer has been consumed, unless

Using OpenMAX Integration Layer with GStreamer Page 15 of 21

White paper STMicroelectronics

in-place processing occurs in the component. In this case the same buffer is reused
and further sent down in the pipeline by incrementing a refcount.
Referring to Figure 2, when an element goes from NULL to READY state, the
corresponding OMX component handle can be requested (steps 1.0 to 1.2). In the
OMX_GetHandle() function the GST element can pass the IL core and the OMX
component a pointer to a private structure (pAppData). In this private structure, the
GST element may store relevant parameters like upstream and downstream GST
elements, pads as well as OMX port information and buffer pointers. A pointer to
pAppData is returned by the OMX component during callbacks, so that the GST
element can retrieve all references to buffers, ports and pads.
If a valid OMX component handle is returned, then the element can configure the
component parameters by using the OMX_SetParameter macro with the correct data
structure, which depends on the component domain and type4. At this point (step 1.4)
the GST element can request the OMX component to go to the IDLE state.
Since this is an asynchronous call, it will return immediately and buffer allocation
must take place at this point.
In our example, we assume to use a buffer that was previously allocated by the
GStreamer framework for the component input port. Therefore the OMX_UseBuffer
function is called, which will allocate an OMX buffer header. The OMX buffer header
will point to the same memory area of the originally GST-allocated buffer.
In step 1.6 the allocation of buffers for the component output port is performed by
calling OMX_AllocateBuffer() multiple times, depending on the number of buffers that
the component requires. In this case, the OMX component will allocate both a
memory area for the data and an OMX buffer header pointing to it.
If the allocation process is successful, the OMX component will eventually go to the
IDLE state and generate a callback. However, the GStreamer element just returns
after calling the buffer allocation functions and does not wait for the callback at this
point (this is to allow buffer negotiation among multiple GST elements when data
tunneling is used to connect OMX components).
When the GST element is requested by the framework to go from READY to
PAUSED state by the framework, then it must make sure that the component is in the
IDLE state (all resources have been allocated) and it will then block until an event is
received that indicates the new expected state for the component (step 1.10).
Alternatively in step 1.8, the GST element may command the OMX component to go
to PAUSED state, but this is implementation dependent.
The GST element can now go to the PLAYING state where it can start processing
input buffers (1.12). At this point (1.13), the GST element can pass a number of
buffers to be used by the OMX component for its output port. The OMX component is
now ready to process input data and therefore a command is sent by the GST
element to go to EXECUTING state. Since the command is asynchronous, the GST
element waits until the corresponding callback is received, which indicates the
component has entered the expected state (1.16).
Then, the GST element can return from the gst_change_state function (1.12 � 1.17)
and is now ready to receive data buffers to be processed.

4 Depending on the implementation of the OMX component it might be required to specify some port
properties that depend on the input media stream. These properties might only be obtained by parsing
the stream. Properties like the dimensions of video frames (width x height) might be only required as a
parameter by the OMX component. This means it might be needed to get all the way to the playing
state before setting the parameters of the OMX component.

Using OpenMAX Integration Layer with GStreamer Page 16 of 21

White paper STMicroelectronics

When one data buffer arrives to the GST element as a parameter of the gst_chain()
function (2.0), an OMX buffer header is filled in with relevant information (timestamp,
size,…) derived from the GSTBuffer structure and passed down to the component by
means of the OMX_EmptyThisBuffer asynchronous function (2.1).
As soon as one output buffer is available form the output port of the OMX component,
the OMX_FillBufferDone callback is invoked on the GST element. As anticipated
above, the pAppData parameter can be used to retrieve the application private
structure where all relevant information can be found. The OMX buffer is also passed
as a parameter to the callback. One of the GST buffers associated with the GST
element source pad is then prepared; this step does not involve memory copies, only
buffer metadata will be copied from the OMX buffer header. The GST element then
pushes this buffer through the source pad with gst_pad_push (2.3). The
gst_pad_push function will pass the buffer to the downstream element, where the
gst_*_chain() entry point will be invoked. As soon as this buffer has been completely
consumed by the downstream element, the gst_pad_push function will return (2.4).
The same buffer can then be recycled by the OMX component, therefore the GST
element calls OMX_FillThisBuffer (step 2.5).
The gst_chain() function (step 2.0) returns as soon as the input buffer has been
completely consumed by the GST element – and by the underlying OMX component.
This corresponds to the OMX_EmptyBufferDone callback being generated by the
OMX component (step 2.6).

Using OpenMAX Integration Layer with GStreamer Page 17 of 21

White paper STMicroelectronics

4.5 Data flow
In order to show how buffers are managed in a pipeline of IL-enabled GST elements,
let us consider a simple MP3 playback example.
In the sequence diagram below, the following notation is used for buffers: A
represents a GStreamer buffer, whereas A’ is an OpenMAX IL buffer. Although the
data structures are different, the payload of A and A’ is the same and no memory
copy is involved in translating buffers.
It is assumed that the MP3 decoder OMX component output port allocates buffers
and such buffers are passed by the IL client to the audio renderer OMX component
input port. The sequence diagram shows how the OMX API is used to guarantee
correctly synchronized buffer circulation among OMX component ports using the
base profile.

s d bufferpass ing

Fi leSrc
:GST ILElem ent

M P3decoder
:GST ILElement

AudioSink
:GST ILElement

AudioRenderer
:OMX_Com ponent

MP3decoder
:OMX_Component

1.0 gst_chain(IN)
1.0 T he file src sends an input buffer
to the decoder by cal l ing
gst_pad_push, which in turn cal ls
gst_chain on the next elem ent.

1.1 OM X_EmptyT hisBuffer(IN')
1.1 decoder adapts the buffer and
passes i t to the decoder OMX element

1.2 OM X_Fil lBufferDone(A')
1.2 First output buffer available from
the decoder

1.3 gst_chain(A)
1.3 passed to the next e lement

1.4 OM X_EmptyT hisBuffer(A')
1.4 the GST sink sends the buffer to
the OMX audiorenderer for p layback 1.5
1.5 As em ptyT hisBuffer is
asynchronous it returns immediately

1.6 OM X_Fil lBufferDone(B')
1.6 second buffer avai lable from MP3
decoder component

1.7 gst_chain(B)
1.7 passed to next GST element

1.8 OM X_EmptyT hisBuffer(B')
1.8 and again to the audiorenderer
com ponent

1.9
1.9 immediately returns

1.10 OM X_EmptyBufferDone(A')
1.10 buffer A' consumed

1.11 gstEventHandler(A'_com plete)
1.11 Gst upstream event

1.12 OMX_Fi llT hisBuffer(A')
1.12 A' is sent back to MP3 decoder
output port for reuse

1.13 OM X_EmptyBufferDone(B')
1.13 buffer B' consumed

1.14 gstEventHandler(B'_complete)
1.14 GST upstream event

1.15 OMX_Fi llT hisBuffer(B')
1.15 B' sent back for reuse

1.16 OMX_Em ptyBufferDone(IN')
1.16 the input buffer has been
com plete ly decoded

1.17
1.17 the gst_chain returns, the fi le
source wi ll then cal l another
gst_pad_push and the process restarts
again

Figure 3: Buffer passing using OMX base profile.

Using OpenMAX Integration Layer with GStreamer Page 18 of 21

White paper STMicroelectronics

It should also be noted that IL v.1.0 does not specify a file reader component,
therefore reading a file and parsing its content is accomplished by using a standard
GStreamer “filesrc” element.
When the file source GST element starts reading the input file, it fills a buffer (IN),
which is passed to the next downstream element by invoking the gst_pad_push()
function of the GStreamer framework. This call then results in the gst_chain()
functionentry point of the next element being invoked (step 1.0 in Figure 3). The MP3
decoder element, prepares an IN’ OMX buffer and passes it to the MP3 decoder
component input port using OMX_EmptyThisBuffer (step 1.1). It is assumed that all
the GST elements and corresponding OpenMAX components are in the
PLAYING/EXECUTING state, meaning that buffer allocation has been made, for
example using the approach of Figure 2. Component ports are also all enabled. In
particular, the MP3 decoder component output port has been passed two empty
buffers (A’ and B’) to be filled with raw PCM data as a result of MP3 decoding (not
shown for simplicity).
As soon as the first output buffer of the MP3 decoder OMX component is ready, it is
passed to the MP3 decoder GST element by means of the OMX_FillBufferDone
callback (step 1.2). This buffer is translated into a GST buffer and passed on to the
audio sink GST element (step 1.3). This in turn calls OMX_EmptyThisBuffer on the
OMX audio renderer component. Since the call is asynchronous, it does not block
until the buffer has been consumed and returns immediately. And so does the
gst_chain() (step 1.5).
As soon as a second buffer B’ is ready on the MP3 OMX component output port, it is
sent to the GST element using the OMX_FillBufferDone callback (1.6) and, again, the
buffer is passed to next element (1.7) and then to the OMX audio renderer
component for playback (1.8).
Let us now see how synchronization is achieved. When the audio renderer OMX
component is finished processing the first buffer A’, it sends an
OMX_EmptyBufferDone callback to its GST audio sink; this means that the buffer has
been completely consumed and can be reused on the MP3 decoder output port.
When the GST element receives the OMX_EmptyBufferDone callback, it sends a
GST event to the upstream element (step 1.11). The MP3 decoder then calls an
OMX_FillThisBuffer on the MP3 decoder OMX component, passing A’ as a parameter
(1.12).
Similarly, as soon as B’ is consumed, the same process is followed (1.13 to 1.15).
When the MP3 decoder OMX component is finished processing the IN’ buffer, it
sends a OMX_EmptyBufferDone callback (1.16), so that the initial gst_chain function
returns (1.17).
The file source element will then send a new buffer for decoding and the process
loops until EOF is reached.

Using OpenMAX Integration Layer with GStreamer Page 19 of 21

White paper STMicroelectronics

4.6 Example of IL-enabled GST plugin set
In this section we describe an example of plugins that use the OMX IL API.
Figure 4 shows the gst-editor that is used to build a simple pipeline for an MP3
playback application.

Figure 4: IL-enabled Gstreamer plugins as seen in gst-editor.

Elements that use the OMX IL API have been grouped under the “IL” category and
then further hierarchical levels have been created for Audio, Video and Imaging
domains.
In order to use data path optimization, a property has been added to GST IL
elements, indicating if OMX data tunneling should be used for a pad. The next section
explains this optimization technique, whose main advantage is power consumption
reduction on mobile platforms.

Using OpenMAX Integration Layer with GStreamer Page 20 of 21

White paper STMicroelectronics

4.7 Optimizations
One of the key optimizations enabled by the OpenMAX Integration Layer API is data
tunneling. With data tunneling, two component ports can be connected so that the
output buffers of one component can be directly sent to the next component input
port, without being returned to the IL client. When a data tunnel is setup between two
components whose implementation run on a HW or DSP-accelerated platform, it is
possible to exploit proprietary communication mechanisms to transfer data (e.g. DMA
or shared memory) among them. This translates into considerable power
consumption savings.
An example of such an optimization is shown in Figure 5.

File
Reader

MP3
decoder

Audio
sink

MP3
decoder

MP3
decoder

Audio
sink

Audio
sink

GStreamer
pipeline

OMX
components

Hardware accelerator

Figure 5: Using OMX IL data tunneling with GStreamer.

The application programmer uses the GStreamer API to build a pipeline using IL
enabled elements. In the example above, a simple MP3 playback application is
considered.
The MP3 decoder and audio sink elements map onto corresponding OMX
components. In turn, such components are simply wrappers on top of a hardware
accelerator, where the actual processing takes place. OMX components control
hardware accelerator blocks through dedicated device drivers, but this aspect is
outside the scope of this document.
During the creation process of the Gstreamer pipeline5, each element can use the
OMX IL API to create data tunnels with a downstream component, if so desired. This
behaviour can be controlled by the application through a specific GST element
property. If OMX components being tunneled are compatible, a data tunnel can be
established, which can be implemented by setting up direct communication between
the MP3 decoder and the audio sink inside the HW accelerator.
When a data buffer is routed by the GStreamer framework from the file reader
element to the MP3 decoder element (as in the example above), the buffer payload is
encapsulated in an OMX buffer and passed to the hardware accelerator. Since no
output buffer will be returned by the component to the IL client, the gst_pad_push()
function will never be called by the GStreamer MP3 decoder element, which acts as a
sink as far as the GStreamer data flow in concerned.

5 In particular, in the gst_*_link() entry point of the GST v.0.8 element or the equivalent
gst_pad_set_setcaps_function and gst_pad_set_getcaps_function functions in GStreamer 0.10.

Using OpenMAX Integration Layer with GStreamer Page 21 of 21

White paper STMicroelectronics

5 CONCLUSIONS
In this white paper we have discussed how the OpenMAX Integration Layer API
specified by the Khronos group can be used in the Linux GStreamer multimedia
framework.
The interaction among GST elements and OpenMAX base profile components has
been shown for a simple MP3 decoding example.
By just providing GST plugins with elements that use the Integration Layer API, it is
possible to exploit standardized access to multimedia components in a platform
independent way.
If hardware acceleration is available, OpenMAX IL provides a convenient mechanism
to exploit it, including data path optimization features that concur in reducing power
consumption and offloading the host CPU.

6 REFERENCES

[1] http://www.khronos.org/openmax, OpenMAX Integration Layer 1.0 API
specification, Khronos Group.
[2] http://gstreamer.freedesktop.org, Gstreamer User’s Manual, v.0.8.

