Andrew Gottesdiener

Andrew Gottesdiener

New York, New York, United States
924 followers 500+ connections

Activity

Join now to see all activity

Experience

  • Venrock Graphic

    Venrock

    New York, New York, United States

  • -

  • -

    Greater New York City Area

  • -

  • -

    New Jersey

  • -

    Rockefeller University

  • -

    Greater Boston Area

  • -

  • -

Education

Licenses & Certifications

Volunteer Experience

  • Tutor

    Health Professionals Recruitment and Education Program

    Education

    Mentored high school students interested in careers as healthcare professionals. Specifically worked to chart an educational path that would help them achieve their goals and optimized college applications and personal statements.

Publications

  • Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models.

    Neurobiology of Aging

    The common apolipoprotein E alleles (ε4, ε3, and ε2) are important genetic risk factors for late-onset Alzheimer's disease, with the ε4 allele increasing risk and reducing the age of onset and the ε2 allele decreasing risk and markedly delaying the age of onset. Preclinical and clinical studies have shown that apolipoprotein E (APOE) genotype also predicts the timing and amount of brain amyloid-β (Aβ) peptide deposition and amyloid burden (ε4 >ε3 >ε2). Using several administration…

    The common apolipoprotein E alleles (ε4, ε3, and ε2) are important genetic risk factors for late-onset Alzheimer's disease, with the ε4 allele increasing risk and reducing the age of onset and the ε2 allele decreasing risk and markedly delaying the age of onset. Preclinical and clinical studies have shown that apolipoprotein E (APOE) genotype also predicts the timing and amount of brain amyloid-β (Aβ) peptide deposition and amyloid burden (ε4 >ε3 >ε2). Using several administration protocols, we now report that direct intracerebral adeno-associated virus (AAV)-mediated delivery of APOE2 markedly reduces brain soluble (including oligomeric) and insoluble Aβ levels as well as amyloid burden in 2 mouse models of brain amyloidosis whose pathology is dependent on either the expression of murine Apoe or more importantly on human APOE4. The efficacy of APOE2 to reduce brain Aβ burden in either model, however, was highly dependent on brain APOE2 levels and the amount of pre-existing Aβ and amyloid deposition. We further demonstrate that a widespread reduction of brain Aβ burden can be achieved through a single injection of vector via intrathalamic delivery of AAV expressing APOE2 gene. Our results demonstrate that AAV gene delivery of APOE2 using an AAV vector rescues the detrimental effects of APOE4 on brain amyloid pathology and may represent a viable therapeutic approach for treating or preventing Alzheimer's disease especially if sufficient brain APOE2 levels can be achieved early in the course of the disease.

    See publication
  • Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells

    Biotechnology & Bioengineering

    Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His…

    Remote activation of specific cells of a heterogeneous population can provide a useful research tool for clinical and therapeutic applications. Here, we demonstrate that photostimulation of gold nanorods (AuNRs) using a tunable near-infrared (NIR) laser at specific longitudinal surface plasmon resonance wavelengths can induce the selective and temporal internalization of calcium in HEK 293T cells. Biotin-PEG-Au nanorods coated with streptavidin Alexa Fluor-633 and biotinylated anti-His antibodies were used to decorate cells genetically modified with His-tagged TRPV1 temperature-sensitive ion channel and AuNRs conjugated to biotinylated RGD peptide were used to decorate integrins in unmodified cells. Plasmonic activation can be stimulated at weak laser power (0.7-4.0 W/cm(2) ) without causing cell damage. Selective activation of TRPV1 channels could be controlled by laser power between 1.0 and 1.5 W/cm(2) . Integrin targeting robustly stimulated calcium signaling due to a dense cellular distribution of nanoparticles. Such an approach represents a functional tool for combinatorial activation of cell signaling in heterogeneous cell populations. Our results suggest that it is possible to induce cell activation via NIR-induced gold nanorod heating through the selective targeting of membrane proteins in unmodified cells to produce calcium signaling and downstream expression of specific genes with significant relevance for both in vitro and therapeutic applications.

    See publication
  • Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40

    Molecular Neurodegeneration

    The relationship between the pathogenic amyloid β-peptide species Aβ1-42, and tau pathology has been well studied and suggests that Aβ1-42 can accelerate tau pathology in vitro and in vivo. The manners, if any, in which Aβ1-40 interacts with tau remains poorly understood. In order to answer this question, we used a cell-based system, a transgenic fly model and a transgenic mouse model to study the interaction between Aβ1-40, Aβ1-42 and tau.

    See publication
  • LDLR overexpression enhances brain to blood Aβ clearance in a mouse model of β-amyloidosis

    PNAS

    The apolipoprotein E (APOE)-ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease, likely increasing risk by altering amyloid-β (Aβ) accumulation. We recently demonstrated that the low-density lipoprotein receptor (LDLR) is a major apoE receptor in the brain that strongly regulates amyloid plaque deposition. In the current study, we sought to understand the mechanism by which LDLR regulates Aβ accumulation by altering Aβ clearance from brain interstitial…

    The apolipoprotein E (APOE)-ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease, likely increasing risk by altering amyloid-β (Aβ) accumulation. We recently demonstrated that the low-density lipoprotein receptor (LDLR) is a major apoE receptor in the brain that strongly regulates amyloid plaque deposition. In the current study, we sought to understand the mechanism by which LDLR regulates Aβ accumulation by altering Aβ clearance from brain interstitial fluid. We hypothesized that increasing LDLR levels enhances blood-brain barrier-mediated Aβ clearance, thus leading to reduced Aβ accumulation. Using the brain Aβ efflux index method, we found that blood-brain barrier-mediated clearance of exogenously administered Aβ is enhanced with LDLR overexpression. We next developed a method to directly assess the elimination of centrally derived, endogenous Aβ into the plasma of mice using an anti-Aβ antibody that prevents degradation of plasma Aβ, allowing its rate of appearance from the brain to be measured. Using this plasma Aβ accumulation technique, we found that LDLR overexpression enhances brain-to-blood Aβ transport. Together, our results suggest a unique mechanism by which LDLR regulates brain-to-blood Aβ clearance, which may serve as a useful therapeutic avenue in targeting Aβ clearance from the brain.

    See publication

Honors & Awards

  • 1st Prize, Columbia Graduate School Consulting Case Competition

    Columbia University

    Won first prize out of a field of 30-teams.

    Competition consisted of two presentations regarding the strategy recommendations for PNC Bank and its potential entry into the mobile banking sector.

    Presentations were judged by professional consultants working in New York City.

  • Howard Hughes Medical Institute Summer Medical Fellow

    Howard Hughes Medical Institute

Languages

  • English

    Native or bilingual proficiency

More activity by Andrew

View Andrew’s full profile

  • See who you know in common
  • Get introduced
  • Contact Andrew directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Add new skills with these courses