Ahmed Busnaina

Ahmed Busnaina

Boston, Massachusetts, United States
3K followers 500+ connections

About

Ahmed A. Busnaina, Ph.D. is the William Lincoln Smith Chair Professor, Distinguished…

Articles by Ahmed

See all articles

Activity

Join now to see all activity

Experience

Education

Volunteer Experience

Publications

  • High–rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials

    Advanced Materials, 2015, 27: 1759–1766.

    High-rate nanoscale offset printing using a newly developed reusable template enables the assembly of nanomaterials into nanostructures followed by their transfer onto a flexible substrate in a few minutes. The developed template can potentially be reused more than 100 times in the offset printing process without any additional functionalization. This approach provides a new way for the printing of flexible devices with nanoscale patterns.

    Other authors
    • Hanchul Cho, Sivasubramanian Somu, Jin-young Lee, Hobin Jeong
    See publication
  • Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed-Assembly of Nanoparticles

    ACS Nano

    Directed assembly of nano building blocks offers a versatile route to the creation of complex nanostructures with unique properties. Bottom-up directed assembly of nanoparticles have been considered as one of the best approaches to fabricate such functional and novel nanostructures. However, there is a dearth of studies on making crystalline, solid, and homogeneous nanostructures. This requires a fundamental understanding of the forces driving the assembly of nanoparticles and precise control…

    Directed assembly of nano building blocks offers a versatile route to the creation of complex nanostructures with unique properties. Bottom-up directed assembly of nanoparticles have been considered as one of the best approaches to fabricate such functional and novel nanostructures. However, there is a dearth of studies on making crystalline, solid, and homogeneous nanostructures. This requires a fundamental understanding of the forces driving the assembly of nanoparticles and precise control of these forces to enable the formation of desired nanostructures. Here, we demonstrate that colloidal nanoparticles can be assembled and simultaneously fused into 3-D solid nanostructures in a single step using externally applied electric field. By understanding the influence of various assembly parameters, we showed the fabrication of 3-D metallic materials with complex geometries such as nanopillars, nanoboxes, and nanorings with feature sizes as small as 25 nm in less than a minute. The fabricated gold nanopillars have a polycrystalline nature, have an electrical resistivity that is lower than or equivalent to electroplated gold, and support strong plasmonic resonances. We also demonstrate that the fabrication process is versatile, as fast as electroplating, and scalable to the millimeter scale. These results indicate that the presented approach will facilitate fabrication of novel 3-D nanomaterials (homogeneous or hybrid) in an aqueous solution at room temperature and pressure, while addressing many of the manufacturing challenges in semiconductor nanoelectronics and nanophotonics.

    Other authors
    • Cihan Yilmaz , Arif E. Cetin , Georgia Goutzamanidis , Jun Huang
    • Sivasubramanian Somu , Hatice Altug and, Dongguang Wei
    See publication
  • Double oxide deposition and etching nanolithography for wafer-scale nanopatterning with high-aspect-ratio using photolithography

    Applied Physics Letters

    We report a nanolithography technique for the high aspect-ratio nanostructure manufacturing using DODE (double oxide deposition and etching) process. Conventional microfabrication processes are integrated to manufacture nanostructure arrays with sub-100 nm of linewidth. This lithography method is developed to overcome resolution limits of photolithography. High aspect-ratio nanostructures with sub-100 nm of lindewidth were fabricated on wafer-scale substrate without nanolithography techniques…

    We report a nanolithography technique for the high aspect-ratio nanostructure manufacturing using DODE (double oxide deposition and etching) process. Conventional microfabrication processes are integrated to manufacture nanostructure arrays with sub-100 nm of linewidth. This lithography method is developed to overcome resolution limits of photolithography. High aspect-ratio nanostructures with sub-100 nm of lindewidth were fabricated on wafer-scale substrate without nanolithography techniques. The DODE lithography process presented enabled to pave a way to overcome limitations of nanolithography processes and allowed to manufacture large-scale nanostructures using photolithography and thin film deposition and dry etching processes.

    See publication
  • Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection

    Lab on a Chip

    This paper describes a microscale in vivo sensor platform device for the simultaneous detection of multiple biomarkers. We designed the polymer-based biosensors incorporating multiple active isolated areas, as small as 70μm × 70μm, for antigen detection. The fabrication approach involved conventional micro- and nano-fabrication processes followed by site-specific electrophoretic directed assembly of antibody-functionalized nanoparticles. To ensure precise and large-scale manufacturing of these…

    This paper describes a microscale in vivo sensor platform device for the simultaneous detection of multiple biomarkers. We designed the polymer-based biosensors incorporating multiple active isolated areas, as small as 70μm × 70μm, for antigen detection. The fabrication approach involved conventional micro- and nano-fabrication processes followed by site-specific electrophoretic directed assembly of antibody-functionalized nanoparticles. To ensure precise and large-scale manufacturing of these biosensors, we developed a semi-automated system for the attachment of the 250-μm biosensor to a 300-μm catheter probe. Our fabrication and post-processing procedures should enable large-scale production of such biosensor devices at lower manufacturing cost. The principle of detection with these biosensors involved a simple fluorescence-based enzyme-linked immunosorbent assay. These biosensors exhibit high selectivity (ability to selectively detect multiple biomarkers of different diseases), specificity (ability to target generic to specific disease biomarkers), rapid antigen uptake, and low detection limits (for carcinoembryonic antigen, 31.25 pg mL−1; for nucleosomes, 62.5 pg mL−1), laying the foundation for potential early detection of various diseases.

    See publication
  • Monopole antenna arrays for optical trapping, spectroscopy, and sensing

    Applied Physics Letters

    We introduce a nanoplasmonic platform merging multiple modalities for optical trapping, nanospectroscopy, and biosensing applications. Our platform is based on surface plasmon polariton driven monopole antenna arrays combining complementary strengths of localized and extended surface plasmons. Tailoring of spectrally narrow resonances lead to large index sensitivities (S∼675 nm/RIU) with record high figure of merits (FOM∼112.5). These monopole antennas supporting strong light localization with…

    We introduce a nanoplasmonic platform merging multiple modalities for optical trapping, nanospectroscopy, and biosensing applications. Our platform is based on surface plasmon polariton driven monopole antenna arrays combining complementary strengths of localized and extended surface plasmons. Tailoring of spectrally narrow resonances lead to large index sensitivities (S∼675 nm/RIU) with record high figure of merits (FOM∼112.5). These monopole antennas supporting strong light localization with easily accessible near-field enhanced hotspots are suitable for vibrational nanospectroscopy and optical trapping. Strong optical forces (350 pN/W/μm2) are shown at these hotspots enabling directional control with incident light polarization.

    See publication
  • Scalable Nanotemplate Assisted Directed Assembly of Single Walled Carbon Nanotubes for Nanoscale Devices

    Applied Physics Letters

    The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical…

    The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.

    See publication
  • Nano's Big Bang: Transforming Engineering Education and Outreach

    Proceedings of the American Society for Engineering Education Annual Conference and Exposition

Patents

  • Template for directed Assembly and Transfer of Nanoelements

    Issued US 9,365,946

    Abstract
    Damascene templates have two-dimensionally patterned raised metal features disposed on an underlying conductive layer extending across a substrate. The templates are topographically flat overall, and the patterned conductive features establish micron-scale and nanometer-scale patterns for the assembly of nanoelements into nanoscale circuits and sensors. The templates are made using microfabrication techniques together with chemical mechanical polishing. These templates are…

    Abstract
    Damascene templates have two-dimensionally patterned raised metal features disposed on an underlying conductive layer extending across a substrate. The templates are topographically flat overall, and the patterned conductive features establish micron-scale and nanometer-scale patterns for the assembly of nanoelements into nanoscale circuits and sensors. The templates are made using microfabrication techniques together with chemical mechanical polishing. These templates are compatible with various directed assembly techniques, including electrophoresis, and offer essentially 100% efficient assembly and transfer of nanoelements in a continuous operation cycle. The templates can be repeatedly used for transfer of patterned nanoelements thousands of times with minimal or no damage, and the transfer process involves no intermediate processes between cycles. The assembly and transfer processes employed are carried out at room temperature and pressure and are thus amenable to low cost, high-rate device production.

    See patent
  • Multi-biomarker Biosensor

    Issued US US20110117582 A1

    Nanosubstrates as biosensors, methods of making such nanosubstrates, and methods of using such nanosubstrates to detect biomarkers are described.

    See patent
  • Three dimensional nanoscale circuit interconnect and method of assembly by dielectrophoresis

    Issued USPTO 08362618

    An assembly of nanoelements forms a three-dimensional nanoscale circuit interconnect for use in microelectronic devices. A process for producing the circuit interconnect includes using dielectrophoresis by applying an electrical field across a gap between vertically displaced non-coplanar microelectrodes in the presence of a liquid suspension of nanoelements such as nanoparticles or single-walled carbon nanotubes to form a nanoelement bridge connecting the microelectrodes. The assembly process…

    An assembly of nanoelements forms a three-dimensional nanoscale circuit interconnect for use in microelectronic devices. A process for producing the circuit interconnect includes using dielectrophoresis by applying an electrical field across a gap between vertically displaced non-coplanar microelectrodes in the presence of a liquid suspension of nanoelements such as nanoparticles or single-walled carbon nanotubes to form a nanoelement bridge connecting the microelectrodes. The assembly process can be carried out at room temperature, is compatible with conventional semiconductor fabrication, and has a high yield. The current-voltage curves obtained from the nanoelement bridge demonstrate that the assembly is functional with a resistance of −40 ohms for gold nanoparticles. The method is suitable for making high density three-dimensional circuit interconnects, vertically integrated nanosensors, and for in-line testing of manufactured conductive nanoelements.

    See patent

Languages

  • French

    -

Recommendations received

More activity by Ahmed

View Ahmed’s full profile

  • See who you know in common
  • Get introduced
  • Contact Ahmed directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Ahmed Busnaina

Add new skills with these courses