Daniella Ishimaru, PhD

Daniella Ishimaru, PhD

San Francisco Bay Area
1K followers 500+ connections

Experience

  • Anax Biomedical Consulting Graphic

    Anax Biomedical Consulting

    California, United States

  • -

  • -

    Menlo Park, California, United States

  • -

    Menlo Park, California, United States

  • -

    Menlo Park, California, United States

  • -

    San Francisco Bay Area

  • -

    Charleston, SC

  • -

    Charleston, SC

  • -

    San Diego, CA

  • -

    Rio de Janeiro, Brazil

Education

  • -

  • -

Publications

  • RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus

    Nucleic acids research

    Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem–loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the…

    Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem–loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the SARS pseudoknot. We uncovered RNA dimerization through a palindromic sequence embedded in the SARS-CoV Stem 3. Further in vitro analysis revealed that SARS-CoV RNA dimers assemble through ‘kissing’ loop–loop interactions. We also show that loop–loop kissing complex formation becomes more efficient at physiological temperature and in the presence of magnesium. When the palindromic sequence was mutated, in vitro RNA dimerization was abolished, and frameshifting was reduced from 15 to 5.7%. Furthermore, the inability to dimerize caused by the silent codon change in Stem 3 of SARS-CoV changed the viral growth kinetics and affected the levels of genomic and subgenomic RNA in infected cells. These results suggest that the homodimeric RNA complex formed by the SARS pseudoknot occurs in the cellular environment and that loop–loop kissing interactions involving Stem 3 modulate -1 PRF and play a role in subgenomic and full-length RNA synthesis.

    See publication
  • The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein

    Journal of Biological Chemistry

    MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded…

    MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins.

    See publication
  • Mechanism of regulation of bcl-2 mRNA by nucleolin and A+ U-rich element-binding factor 1 (AUF1)

    Journal of Biological Chemistry

    The antiapoptotic Bcl-2 protein is overexpressed in a variety of cancers, particularly leukemias. In some cell types this is the result of enhanced stability of bcl-2 mRNA, which is controlled by elements in its 3′-untranslated region. Nucleolin is one of the proteins that binds to bcl-2 mRNA, thereby increasing its half-life. Here, we examined the site on the bcl-2 3′-untranslated region that is bound by nucleolin as well as the protein binding domains important for bcl-2 mRNA recognition…

    The antiapoptotic Bcl-2 protein is overexpressed in a variety of cancers, particularly leukemias. In some cell types this is the result of enhanced stability of bcl-2 mRNA, which is controlled by elements in its 3′-untranslated region. Nucleolin is one of the proteins that binds to bcl-2 mRNA, thereby increasing its half-life. Here, we examined the site on the bcl-2 3′-untranslated region that is bound by nucleolin as well as the protein binding domains important for bcl-2 mRNA recognition. RNase footprinting and RNA fragment binding assays demonstrated that nucleolin binds to a 40-nucleotide region at the 5′ end of the 136-nucleotide bcl-2 AU-rich element (AREbcl-2). The first two RNA binding domains of nucleolin were sufficient for high affinity binding to AREbcl-2. In RNA decay assays, AREbcl-2 transcripts were protected from exosomal decay by the addition of nucleolin. AUF1 has been shown to recruit the exosome to mRNAs. When MV-4-11 cell extracts were immunodepleted of AUF1, the rate of decay of AREbcl-2 transcripts was reduced, indicating that nucleolin and AUF1 have opposing roles in bcl-2 mRNA turnover. When the function of nucleolin in MV-4-11 cells was impaired by treatment with the nucleolin-targeting aptamer AS1411, association of AUF1 with bcl-2 mRNA was increased. This suggests that the degradation of bcl-2 mRNA induced by AS1411 results from both interference with nucleolin protection of bcl-2 mRNA and recruitment of the exosome by AUF1. Based on our findings, we propose a model that illustrates the opposing roles of nucleolin and AUF1 in regulating bcl-2 mRNA stability.

    See publication
  • Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation

    Biochemistry

    The tumor suppressor protein p53 is a nuclear protein that serves as an important transcription factor. The region responsible for sequence-specific DNA interaction is located in its core domain (p53C). Although full-length p53 binds to DNA as a tetramer, p53C binds as a monomer since it lacks the oligomerization domain. It has been previously demonstrated that two core domains have a dimerization interface and undergo conformational change when bound to DNA. Here we demonstrate that the…

    The tumor suppressor protein p53 is a nuclear protein that serves as an important transcription factor. The region responsible for sequence-specific DNA interaction is located in its core domain (p53C). Although full-length p53 binds to DNA as a tetramer, p53C binds as a monomer since it lacks the oligomerization domain. It has been previously demonstrated that two core domains have a dimerization interface and undergo conformational change when bound to DNA. Here we demonstrate that the interaction with a consensus DNA sequence provides the core domain of p53 with enhanced conformational stability at physiological salt concentrations (0.15 M). This stability could be either increased or abolished at low (0.01 M) or high (0.3 M) salt concentrations, respectively. In addition, interaction with the cognate sequence prevents aggregation of p53C into an amyloid-like structure, whereas binding to a nonconsensus DNA sequence has no effect on p53C stability, even at low ionic strength. Strikingly, sequence-specific DNA binding also resulted in a large stabilization of full-length p53, whereas nonspecific sequence binding led to no stabilization. The effects of cognate DNA could be mimicked by high concentrations of osmolytes such as glycerol, which implies that the stabilization is caused by the exclusion of water. Taken together, our results show an enhancement in protein stability driven by specific DNA recognition. When cognate DNA was added to misfolded protein obtained after a pressurization cycle, the original conformation was mostly recovered. Our results may aid the development of therapeutic approaches to prevent misfolded species of p53.

    See publication
  • Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells

    Molecular Cancer Research

    Overexpression of the proto-oncogene bcl-2 promotes abnormal cell survival by inhibiting apoptosis. Expression of bcl-2 is determined, in part, by regulatory mechanisms that control the stability of bcl-2 mRNA. Elements in the 3′-untranslated region of bcl-2 mRNA have been shown to play a role in regulating the stability of the message. Previously, it was found that the RNA binding proteins nucleolin and Ebp1 have a role in stabilizing bcl-2 mRNA in HL60 cells. Here, we have identified HuR as a…

    Overexpression of the proto-oncogene bcl-2 promotes abnormal cell survival by inhibiting apoptosis. Expression of bcl-2 is determined, in part, by regulatory mechanisms that control the stability of bcl-2 mRNA. Elements in the 3′-untranslated region of bcl-2 mRNA have been shown to play a role in regulating the stability of the message. Previously, it was found that the RNA binding proteins nucleolin and Ebp1 have a role in stabilizing bcl-2 mRNA in HL60 cells. Here, we have identified HuR as a component of bcl-2 messenger ribonucleoprotein (mRNP) complexes. RNA coimmunoprecipitation assays showed that HuR binds to bcl-2 mRNA in vivo. We also observed an RNA-dependent coprecipitation of HuR and nucleolin, suggesting that the two proteins are present in common mRNP complexes. Moreover, nucleolin and HuR bind concurrently to bcl-2 AU-rich element (ARE) RNA in vitro, suggesting separate binding sites for these proteins on bcl-2 mRNA. Knockdown of HuR in A431 cells leads to down-regulation of bcl-2 mRNA and protein levels. Observation of a decreased ratio of bcl-2 mRNA to heterogeneous nuclear RNA in HuR knockdown cells confirmed a positive role for HuR in regulating bcl-2 stability. Recombinant HuR retards exosome-mediated decay of bcl-2 ARE RNA in extracts of HL60 cells. This supports a role for HuR in the regulation of bcl-2 mRNA stability in HL60 cells, as well as in A431 cells. Addition of nucleolin and HuR to HL60 cell extracts produced a synergistic protective effect on decay of bcl-2 ARE RNA. HuR knockdown also leads to redistribution of bcl-2 mRNA from polysomes to monosomes. Thus, HuR seems to play a positive role in both regulation of bcl-2 mRNA translation and mRNA stability.

    See publication
  • Pressure-inactivated FMDV: a potential vaccine

    Vaccine

    Foot-and-mouth disease virus (FMDV) is the causative agent of the foot-and-mouth disease (FMD). Alternative FMD vaccines have been pursued due to important disadvantages of the one currently in use. High hydrostatic pressure (HP) has been observed to inactivate some viruses. Here, we investigated the effects of HP on FMDV O1 Campos-Vallée (CVa) infectivity. A treatment consisting of 2.5 kbar at −15 °C and 1 M urea, completely abolished FMDV infectivity, maintaining the integrity of its capsid…

    Foot-and-mouth disease virus (FMDV) is the causative agent of the foot-and-mouth disease (FMD). Alternative FMD vaccines have been pursued due to important disadvantages of the one currently in use. High hydrostatic pressure (HP) has been observed to inactivate some viruses. Here, we investigated the effects of HP on FMDV O1 Campos-Vallée (CVa) infectivity. A treatment consisting of 2.5 kbar at −15 °C and 1 M urea, completely abolished FMDV infectivity, maintaining the integrity of its capsid structure. Moreover, its ability to elicit neutralizing antibody production in rabbits was preserved. Taken together, our results suggest that HP could be a safe, simple, cheap and reproducible way for viral vaccine production.

    See publication
  • Reversible aggregation plays a crucial role on the folding landscape of p53 core domain

    Biophysical journal

    The role of tumor suppressor protein p53 in cell cycle control depends on its flexible and partially unstructured conformation, which makes it crucial to understand its folding landscape. Here we report an intermediate structure of the core domain of the tumor suppressor protein p53 (p53C) during equilibrium and kinetic folding/unfolding transitions induced by guanidinium chloride. This partially folded structure was undetectable when investigated by intrinsic fluorescence. Indeed, the…

    The role of tumor suppressor protein p53 in cell cycle control depends on its flexible and partially unstructured conformation, which makes it crucial to understand its folding landscape. Here we report an intermediate structure of the core domain of the tumor suppressor protein p53 (p53C) during equilibrium and kinetic folding/unfolding transitions induced by guanidinium chloride. This partially folded structure was undetectable when investigated by intrinsic fluorescence. Indeed, the fluorescence data showed a simple two-state transition. On the other hand, analysis of far ultraviolet circular dichroism in 1.0 M guanidinium chloride demonstrated a high content of secondary structure, and the use of an extrinsic fluorescent probe, 4,4′-dianilino-1,1′ binaphthyl-5,5′-disulfonic acid, indicated an increase in exposure of the hydrophobic core at 1 M guanidinium chloride. This partially folded conformation of p53C was plagued by aggregation, as suggested by one-dimensional NMR and demonstrated by light-scattering and gel-filtration chromatography. Dissociation by high pressure of these aggregates reveals the reversibility of the process and that the aggregates have water-excluded cavities. Kinetic measurements show that the intermediate formed in a parallel reaction between unfolded and folded structures and that it is under fine energetic control. They are not only crucial to the folding pathway of p53C but may explain as well the vulnerability of p53C to undergo departure of the native to an inactive state, which makes the cell susceptible to malignant transformation.

    See publication
  • Fibrillar aggregates of the tumor suppressor p53 core domain

    Biochemistry

    Alzheimer's disease, Parkinson's disease, cystic fibrosis, prion diseases, and many types of cancer are considered to be protein conformation diseases. Most of them are also known as amyloidogenic diseases due to the occurrence of pathological accumulation of insoluble aggregates with fibrillar conformation. Some neuroblastomas, carcinomas, and myelomas show an abnormal accumulation of the wild-type tumor suppressor protein p53 either in the cytoplasm or in the nucleus of the cell. Here we show…

    Alzheimer's disease, Parkinson's disease, cystic fibrosis, prion diseases, and many types of cancer are considered to be protein conformation diseases. Most of them are also known as amyloidogenic diseases due to the occurrence of pathological accumulation of insoluble aggregates with fibrillar conformation. Some neuroblastomas, carcinomas, and myelomas show an abnormal accumulation of the wild-type tumor suppressor protein p53 either in the cytoplasm or in the nucleus of the cell. Here we show that the wild-type p53 core domain (p53C) can form fibrillar aggregates after mild perturbation. Gentle denaturation of p53C by pressure induces fibrillar aggregates, as shown by electron and atomic force microscopies, by binding of thioflavin T, and by circular dichroism. On the other hand, heat denaturation produced granular-shaped aggregates. Annular aggregates similar to those found in the early aggregation stages of α-synuclein and amyloid-β were also observed by atomic force microscopy immediately after pressure treatment. Annular and fibrillar aggregates of p53C were toxic to cells, as shown by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reduction assay. Interestingly, the hot-spot mutant R248Q underwent similar aggregation behavior when perturbed by pressure or high temperature. Fibrillar aggregates of p53C contribute to the loss of function of p53 and seed the accumulation of conformationally altered protein in some cancerous cells.

    See publication
  • Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant

    Journal of molecular biology

    The wild-type p53 protein can be driven into a conformation corresponding to that adopted by structural mutant forms by heterodimerization with a mutant subunit. To seek partially folded states of the wild-type p53 core domain (p53C) we used high hydrostatic pressure (HP) and subzero temperatures. Aggregation of the protein was observed in parallel with its pressure denaturation at 25 and 37 °C. However, when HP experiments were performed at 4 °C, the extent of denaturation and aggregation was…

    The wild-type p53 protein can be driven into a conformation corresponding to that adopted by structural mutant forms by heterodimerization with a mutant subunit. To seek partially folded states of the wild-type p53 core domain (p53C) we used high hydrostatic pressure (HP) and subzero temperatures. Aggregation of the protein was observed in parallel with its pressure denaturation at 25 and 37 °C. However, when HP experiments were performed at 4 °C, the extent of denaturation and aggregation was significantly less pronounced. On the other hand, subzero temperatures under pressure led to cold denaturation and yielded a non-aggregated, alternative conformation of p53C. Nuclear magnetic resonance (1H15N-NMR) data showed that the alternative p53C conformation resembled that of the hot-spot oncogenic mutant R248Q. This alternative state was as susceptible to denaturation and aggregation as the mutant R248Q when subjected to HP at 25 °C. Together these data demonstrate that wild-type p53C adopts an alternative conformation with a mutant-like stability, consistent with the dominant-negative effect caused by many mutants. This alternative conformation is likely related to inactive forms that appear in vivo, usually driven by interaction with mutant proteins. Therefore, it can be a valuable target in the search for ways to interfere with protein misfolding and hence to prevent tumor development.

    See publication
  • Pressure studies on protein folding, misfolding, protein-DNA interactions and amyloidogenesis

    Progress in Biotechnology

    Hydrostatic pressure is a useful tool for dissecting macromolecular interactions at the molecular level. Nonpolar interactions are determining factors in protein folding, protein aggregation and protein-nucleic acid recognition. Because nonpolar interactions are entropic and compressible, they are more sensitive to pressure and low temperatures. We have studied problems of macromolecular recognition using hydrostatic pressure as the primary tool and employing several spectroscopic techniques…

    Hydrostatic pressure is a useful tool for dissecting macromolecular interactions at the molecular level. Nonpolar interactions are determining factors in protein folding, protein aggregation and protein-nucleic acid recognition. Because nonpolar interactions are entropic and compressible, they are more sensitive to pressure and low temperatures. We have studied problems of macromolecular recognition using hydrostatic pressure as the primary tool and employing several spectroscopic techniques, especially fluorescence, circular dichroism and high-resolution nuclear magnetic resonance. High pressure has the unique property of stabilizing partially folded states of a protein which degree of dissimilarity from the native state may range from drifted conformations to molten-globule states. The competition between correct folding and misfolding, which in many proteins leads to formation of insoluble aggregates is an important problem in the biotechnology industry and in human diseases such as amyloidosis, Alzheimer's, prion and tumor diseases. Because of its ability to sequester folding intermediates, pressure has been used to direct the folding in one direction or the other and to explore intermediates, which are at the junction of the routes for folding and aggregation.

    See publication
  • Hydrostatic pressure as a tool to study virus assembly: pressure-inactivation of viruses by formation of fusion intermediate states

    High Pressure Molecular Science

    The contribution of protein folding and protein-nucleic acid interactions to virus assembly has been measured in several bacterial, plant and animal viruses, using hydrostatic pressure as thermodynamic variable. By comparing the pressure stability among native wild-type viruses, single-amino acid mutants or empty particles, we have gained new insights about virus assembly and disassembly. We find that the isolated capsid proteins and the assembly intermediates are not fully folded, and that…

    The contribution of protein folding and protein-nucleic acid interactions to virus assembly has been measured in several bacterial, plant and animal viruses, using hydrostatic pressure as thermodynamic variable. By comparing the pressure stability among native wild-type viruses, single-amino acid mutants or empty particles, we have gained new insights about virus assembly and disassembly. We find that the isolated capsid proteins and the assembly intermediates are not fully folded, and that association of 60 or more subunits into an icosahedral particle is coupled to progressive folding of the coat protein and also to changes in interactions with the nucleic acid. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. Pressure studies on viruses have direct biotechnological applications. The ability of pressure to inactivate viruses has been evaluated with a view toward the applications of vaccine development and virus sterilization. We demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There are substantial evidence that a high pressure cycle traps a virus in the “fusion intermediate state”, not infectious but highly immunogenic. Pressure inactivation has been successful with viruses that cause disease in animals, especially foot-and-mouth disease virus (FMDV) and bovine rotavirus and humans, such as rhinoviruses, adenoviruses, alphaviruses, influenza and retroviruses.

    See publication
  • Low temperature and pressure stability of picornaviruses: implications for virus uncoating

    Biophysical journal

    The family Picornaviridae includes several viruses of great economic and medical importance. Poliovirus replicates in the human digestive tract, causing disease that may range in severity from a mild infection to a fatal paralysis. The human rhinovirus is the most important etiologic agent of the common cold in adults and children. Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases in cattle. These viruses have in common a capsid structure composed of 60…

    The family Picornaviridae includes several viruses of great economic and medical importance. Poliovirus replicates in the human digestive tract, causing disease that may range in severity from a mild infection to a fatal paralysis. The human rhinovirus is the most important etiologic agent of the common cold in adults and children. Foot-and-mouth disease virus (FMDV) causes one of the most economically important diseases in cattle. These viruses have in common a capsid structure composed of 60 copies of four different proteins, VP1 to VP4, and their 3D structures show similar general features. In this study we describe the differences in stability against high pressure and cold denaturation of these viruses. Both poliovirus and rhinovirus are stable to high pressure at room temperature, because pressures up to 2.4 kbar are not enough to promote viral disassembly and inactivation. Within the same pressure range, FMDV particles are dramatically affected by pressure, with a loss of infectivity of more than 4 log units observed. The dissociation of polio and rhino viruses can be observed only under pressure (2.4 kbar) at low temperatures in the presence of subdenaturing concentrations of urea (1–2 M). The pressure and low temperature data reveal clear differences in stability among the three picornaviruses, FMDV being the most sensitive, polio being the most resistant, and rhino having intermediate stability. Whereas rhino and poliovirus differ little in stability (less than 10 kcal/mol at 0°C), the difference in free energy between these two viruses and FMDV was remarkable (more than 200 kcal/mol of particle). These differences are crucial to understanding the different factors that control the assembly and disassembly of the virus particles during their life cycle. The inactivation of these viruses by pressure (combined or not with low temperature) has potential as a method for producing vaccines.

    See publication
  • Inhibition of Mayaro virus replication by prostaglandin A1 and B2 in Vero cells

    Brazilian journal of medical and biological research

    The effect of prostaglandins (PGA1 and PGB2) on the replication of Mayaro virus was studied in Vero cells. PGA1 and PGB2 antiviral activity was found to be dose-dependent. However, while 10 µg/ml PGB2 inhibited virus yield by 60%, at the same dose PGA1 suppressed virus replication by more than 90%. SDS-PAGE analysis of [35S]-methionine-labelled proteins showed that PGA1 did not alter cellular protein synthesis. In infected cells, PGA1 slightly inhibited the synthesis of protein C, while…

    The effect of prostaglandins (PGA1 and PGB2) on the replication of Mayaro virus was studied in Vero cells. PGA1 and PGB2 antiviral activity was found to be dose-dependent. However, while 10 µg/ml PGB2 inhibited virus yield by 60%, at the same dose PGA1 suppressed virus replication by more than 90%. SDS-PAGE analysis of [35S]-methionine-labelled proteins showed that PGA1 did not alter cellular protein synthesis. In infected cells, PGA1 slightly inhibited the synthesis of protein C, while drastically inhibiting the synthesis of glycoproteins E1 and E2.

    See publication

Languages

  • English

    Native or bilingual proficiency

  • Portuguese

    Native or bilingual proficiency

View Daniella’s full profile

  • See who you know in common
  • Get introduced
  • Contact Daniella directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Add new skills with these courses