Giuliana Caronia-Brown

Giuliana Caronia-Brown

Greater Chicago Area
222 followers 224 connections

About

After many years of perseverant work in academia I would like to work in the private…

Activity

Experience

Education

  • Open University of London

    -

  • -

Publications

  • Expression and functional analysis of the Wnt/beta-catenin induced mir-135a-2 locus in embryonic forebrain development.

    Neural Development

    Brain size and patterning are dependent on dosage-sensitive morphogen signaling pathways - yet how these pathways are calibrated remains enigmatic. Recent studies point to a new role for microRNAs in tempering the spatio-temporal range of morphogen functions during development. Here, we investigated the role of miR-135a, derived from the mir-135a-2 locus, in embryonic forebrain development.

    See publication
  • The cortical hem regulates the size and patter of the neocortex

    Development

    The cortical hem functions through the action of Bone Morphogenetic Proteins (BMPs) and Wingless (WNTs) family members and has been demonstrated to be an organizer for the hippocampus. However, its effects on patterning the rest of the cerebral cortex remain unclear.
    In the present study, we investigated the effect of cortical hem loss on patterning of the cerebral cortex, taking advantage of the previously generated mouse line, in which ablation of the hem is achieved by introducing the…

    The cortical hem functions through the action of Bone Morphogenetic Proteins (BMPs) and Wingless (WNTs) family members and has been demonstrated to be an organizer for the hippocampus. However, its effects on patterning the rest of the cerebral cortex remain unclear.
    In the present study, we investigated the effect of cortical hem loss on patterning of the cerebral cortex, taking advantage of the previously generated mouse line, in which ablation of the hem is achieved by introducing the diptheria toxin subunit A (dt-A) in Wnt3a-expressing regions, after Cre-lox recombination. According to expectations, ablation of the hem resulted in loss of the hippocampal complex. Furthermore, patterning of the cerebral cortex was affected.

  • An Lmx1b-miR135a2 Regulatory Circuit Modulates Wnt1/Wnt Signaling and Determines the Size of the Midbrain Dopaminergic Progenitor Pool

    PGenetics

    MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an…

    MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS) development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs) results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors.

    See publication
  • Timing of Cortical Interneuron Migration Is Influenced by the Cortical Hem

    Cerebral Cortex [Epub ahead of print]

    Cerebral cortical gamma-aminobutyric acid (GABA)ergic interneurons originate from the basal forebrain and migrate into the cortex in 2 phases. First, interneurons cross the boundary between the developing striatum and the cortex to migrate tangentially through the cortical primordium. Second, interneurons migrate radially to their correct neocortical layer position. A previous study demonstrated that mice in which the cortical hem was genetically ablated displayed a massive reduction of…

    Cerebral cortical gamma-aminobutyric acid (GABA)ergic interneurons originate from the basal forebrain and migrate into the cortex in 2 phases. First, interneurons cross the boundary between the developing striatum and the cortex to migrate tangentially through the cortical primordium. Second, interneurons migrate radially to their correct neocortical layer position. A previous study demonstrated that mice in which the cortical hem was genetically ablated displayed a massive reduction of Cajal-Retzius (C-R) cells in the neocortical marginal zone (MZ), thereby losing C-R cell-generated reelin in the MZ. Surprisingly, pyramidal cell migration and subsequent layering were almost normal. In contrast, we find that the timing of migration of cortical GABAergic interneurons is abnormal in hem-ablated mice. Migrating interneurons both advance precociously along their tangential path and switch prematurely from tangential to radial migration to invade the cortical plate (CP). We propose that the cortical hem is responsible for establishing cues that control the timing of interneuron migration. In particular, we suggest that loss of a repellant signal from the medial neocortex, which is greatly decreased in size in hem-ablated mice, allows the early advance of interneurons and that reduction of another secreted molecule from C-R cells, the chemokine SDF-1/CXCL12, permits early radial migration into the CP.

    See publication
  • Bone morphogenetic protein signaling in the developing telencephalon controls formation of the hippocampal dentate gyrus and modifies fear-related behavior.

    J. Neuroscience

    ling in hippocampal neurogenesis, however, has not been established. We therefore generated mice that were deficient in Bmpr1b constitutively, and deficient in Bmpr1a conditionally in the dorsal telencephalon. In double mutant male and female mice, the dentate gyrus (DG) was dramatically smaller than in control mice, reflecting decreased production of granule neurons at the peak period of DG neurogenesis. Additionally, the pool of cells that generates new DG neurons throughout life was reduced,…

    ling in hippocampal neurogenesis, however, has not been established. We therefore generated mice that were deficient in Bmpr1b constitutively, and deficient in Bmpr1a conditionally in the dorsal telencephalon. In double mutant male and female mice, the dentate gyrus (DG) was dramatically smaller than in control mice, reflecting decreased production of granule neurons at the peak period of DG neurogenesis. Additionally, the pool of cells that generates new DG neurons throughout life was reduced, commensurate with the smaller size of the DG. Effects of diminished BMP signaling on the cortical hem were at least partly responsible for these defects in DG development. Reduction of the DG and its major extrinsic output to CA3 raised the possibility that the DG was functionally compromised. We therefore looked for behavioral deficits in double mutants and found that the mice were less responsive to fear- or anxiety-provoking stimuli, whether the association of the stimulus with fear or anxiety was learned or innate. Given that no anatomical defects appeared in the double mutant telencephalon outside the DG, our observations support a growing literature that implicates the hippocampus in circuitry mediating fear and anxiety. Our results additionally indicate a requirement for BMP signaling in generating the dorsalmost neuronal lineage of the telencephalon, DG granule neurons, and in the development of the stem cell niche that makes neurons in the adult hippocampus.

    See publication
  • Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins.

    Development

    Little is known about the molecular mechanisms that integrate anteroposterior (AP) and dorsoventral (DV) positional information in neural progenitors that specify distinct neuronal types within the vertebrate neural tube. We have previously shown that in ventral rhombomere (r)4 of Hoxb1 and Hoxb2 mutant mouse embryos, Phox2b expression is not properly maintained in the visceral motoneuron progenitor domain (pMNv), resulting in a switch to serotonergic fate. Here, we show that Phox2b is a direct…

    Little is known about the molecular mechanisms that integrate anteroposterior (AP) and dorsoventral (DV) positional information in neural progenitors that specify distinct neuronal types within the vertebrate neural tube. We have previously shown that in ventral rhombomere (r)4 of Hoxb1 and Hoxb2 mutant mouse embryos, Phox2b expression is not properly maintained in the visceral motoneuron progenitor domain (pMNv), resulting in a switch to serotonergic fate. Here, we show that Phox2b is a direct target of Hoxb1 and Hoxb2. We found a highly conserved Phox2b proximal enhancer that mediates rhombomere-restricted expression and contains separate Pbx-Hox (PH) and Prep/Meis (P/M) binding sites. We further show that both the PH and P/M sites are essential for Hox-Pbx-Prep ternary complex formation and regulation of the Phox2b enhancer activity in ventral r4. Moreover, the DV factor Nkx2.2 enhances Hox-mediated transactivation via a derepression mechanism. Finally, we show that induction of ectopic Phox2b-expressing visceral motoneurons in the chick hindbrain requires the combined activities of Hox and Nkx2 homeodomain proteins. This study takes an important first step to understand how activators and repressors, induced along the AP and DV axes in response to signaling pathways, interact to regulate specific target gene promoters, leading to neuronal fate specification in the appropriate developmental context.

    See publication
  • An I47L substitution in the HOXD13 homeodomain causes a novel human limb malformation by producing a selective loss of function.

    Development

    The 5' members of the Hoxa and Hoxd gene clusters play major roles in vertebrate limb development. One such gene, HOXD13, is mutated in the human limb malformation syndrome synpolydactyly. Both polyalanine tract expansions and frameshifting deletions in HOXD13 cause similar forms of this condition, but it remains unclear whether other kinds of HOXD13 mutations could produce different phenotypes. We describe a six-generation family in which a novel combination of brachydactyly and central…

    The 5' members of the Hoxa and Hoxd gene clusters play major roles in vertebrate limb development. One such gene, HOXD13, is mutated in the human limb malformation syndrome synpolydactyly. Both polyalanine tract expansions and frameshifting deletions in HOXD13 cause similar forms of this condition, but it remains unclear whether other kinds of HOXD13 mutations could produce different phenotypes. We describe a six-generation family in which a novel combination of brachydactyly and central polydactyly co-segregates with a missense mutation that substitutes leucine for isoleucine at position 47 of the HOXD13 homeodomain. We compared the HOXD13(I47L) mutant protein both in vitro and in vivo to the wild-type protein and to an artificial HOXD13 mutant, HOXD13(IQN), which is completely unable to bind DNA. We found that the mutation causes neither a dominant-negative effect nor a gain of function, but instead impairs DNA binding at some sites bound by wild-type HOXD13. Using retrovirus-mediated misexpression in developing chick limbs, we showed that wild-type HOXD13 could upregulate chick EphA7 in the autopod, but that HOXD13(I47L) could not. In the zeugopod, however, HOXD13(I47L) produced striking changes in tibial morphology and ectopic cartilages, which were never produced by HOXD13(IQN), consistent with a selective rather than generalised loss of function. Thus, a mutant HOX protein that recognises only a subset of sites recognised by the wild-type protein causes a novel human malformation, pointing to a hitherto undescribed mechanism by which missense mutations in transcription factors can generate unexpected phenotypes. Intriguingly, both HOXD13(I47L) and HOXD13(IQN) produced more severe shortening in proximal limb regions than did wild-type HOXD13, suggesting that functional suppression of anterior Hox genes by more posterior ones does not require DNA binding and is mediated by protein:protein interactions.

    See publication
  • Highly restricted expression at the ectoderm-endoderm boundary of PIHbox 9, a sea urchin homeobox gene related to the human HB9 gene.

    Mech of Development

    Characterisation of a sea urchin (P. lividus) homeobox gene PIHbox 9 is reported. The homeodomain of PIHbox9 is 95% identical to the homeodomain of the human HB9 gene, indicating that the two genes are highly related. Temporal expression analysis during sea urchin embryogenesis showed an absence of transcripts at early cleavage stages. At late gastrula stage, transcripts were barely detectable and reached the highest abundance at prism/early pluteus stages. By whole mount in situ hybridisation…

    Characterisation of a sea urchin (P. lividus) homeobox gene PIHbox 9 is reported. The homeodomain of PIHbox9 is 95% identical to the homeodomain of the human HB9 gene, indicating that the two genes are highly related. Temporal expression analysis during sea urchin embryogenesis showed an absence of transcripts at early cleavage stages. At late gastrula stage, transcripts were barely detectable and reached the highest abundance at prism/early pluteus stages. By whole mount in situ hybridisation we observed a highly restricted expression in a few cells of the ectoderm-endoderm boundary of embryos at the prism stage. At pluteus stages, expression of PIHbox 9 was confined around the anus.

    See publication

Languages

  • Italian and english

    Native or bilingual proficiency

Recommendations received

More activity by Giuliana

View Giuliana’s full profile

  • See who you know in common
  • Get introduced
  • Contact Giuliana directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Add new skills with these courses