Jeff Grover

Jeff Grover

Somerville, Massachusetts, United States
1K followers 500+ connections

About

Quantum computing researcher. Interested in building good software in research…

Experience

  • Massachusetts Institute of Technology Graphic

    Massachusetts Institute of Technology

    Cambridge, Massachusetts, United States

  • -

    Lexington, Massachusetts, United States

  • -

    Watertown, Massachusetts, United States

  • -

    Cambridge, Massachusetts, United States

  • -

    College Park, Maryland, United States

  • -

    College Park, Maryland, United States

  • -

    Amherst, Massachusetts, United States

  • -

    Amherst, Massachusetts, United States

Education

Publications

  • Anneal-path correction in flux qubits

    npj Quantum Information

    Quantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted flux qubit (CSFQ), using dispersive measurements to extract system parameters and model the device. Josephson junction asymmetry inherent to the device causes a deleterious nonlinear cross-talk when annealing the qubit. We implement a nonlinear…

    Quantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted flux qubit (CSFQ), using dispersive measurements to extract system parameters and model the device. Josephson junction asymmetry inherent to the device causes a deleterious nonlinear cross-talk when annealing the qubit. We implement a nonlinear annealing path to correct the asymmetry in situ, resulting in a substantial increase in the probability of the qubit being in the correct state given an applied flux bias. We also confirm the multi-level structure of our CSFQ circuit model by annealing it through small spectral gaps and observing quantum signatures of energy level crossings. Our results demonstrate an anneal-path correction scheme designed and implemented to improve control accuracy for high-coherence and high-control quantum annealers, which leads to an enhancement of success probability in annealing protocols.

    Other authors
    See publication
  • Fast, Lifetime-Preserving Readout for High-Coherence Quantum Annealers

    PRX Quantum

    We demonstrate, for the first time, that a quantum flux parametron (QFP) is capable of acting as both isolator and amplifier in the readout circuit of a capacitively shunted flux qubit (CSFQ). By treating the QFP like a tunable coupler and biasing it such that the coupling is off, we show that T1 of the CSFQ is not impacted by Purcell loss from its low-Q readout resonator (Qe=760) despite being detuned by only 40 MHz. When annealed, the QFP amplifies the qubit’s persistent current signal such…

    We demonstrate, for the first time, that a quantum flux parametron (QFP) is capable of acting as both isolator and amplifier in the readout circuit of a capacitively shunted flux qubit (CSFQ). By treating the QFP like a tunable coupler and biasing it such that the coupling is off, we show that T1 of the CSFQ is not impacted by Purcell loss from its low-Q readout resonator (Qe=760) despite being detuned by only 40 MHz. When annealed, the QFP amplifies the qubit’s persistent current signal such that it generates a flux qubit-state-dependent frequency shift of 85 MHz in the readout resonator, which is over 9 times its linewidth. The device is shown to read out a flux qubit in the persistent current basis with fidelities surpassing 98.6% with only 80 ns integration, and reaches fidelities of 99.6% when integrated for 1 μs. This combination of speed and isolation is critical to the readout of high-coherence quantum annealers.

    Other authors
    See publication
  • Alignment-dependent decay rate of an atomic dipole near an optical nanofiber

    Physical Review A

    We study the modification of the atomic spontaneous emission rate, i.e., the Purcell effect, of $^{87}$Rb in the vicinity of an optical nanofiber (∼500 nm diameter). We observe enhancement and inhibition of the atomic decay rate depending on the alignment of the induced atomic dipole relative to the nanofiber. We present calculations with two different methods that qualitatively agree with some of the results; the calculations that best agree consider the atoms as simple oscillating dipoles…

    We study the modification of the atomic spontaneous emission rate, i.e., the Purcell effect, of $^{87}$Rb in the vicinity of an optical nanofiber (∼500 nm diameter). We observe enhancement and inhibition of the atomic decay rate depending on the alignment of the induced atomic dipole relative to the nanofiber. We present calculations with two different methods that qualitatively agree with some of the results; the calculations that best agree consider the atoms as simple oscillating dipoles. This is surprising since the multilevel nature of the atoms should produce a different radiation pattern, predicting different modification of the lifetime than the measured ones. This work is a step towards characterizing and controlling atomic properties near optical waveguides, fundamental tools for the development of quantum photonics.

    Other authors
    • Pablo Solano
    See publication
  • Optical Nanofibers: A New Platform for Quantum Optics

    Advances In Atomic, Molecular, and Optical Physics

    The development of optical nanofibers (ONFs) and the study and control of their optical properties when coupling atoms to their electromagnetic modes has opened new possibilities for their use in quantum optics and quantum information science. These ONFs offer tight optical mode confinement (less than the wavelength of light) and diffraction-free propagation. The small cross section of the transverse field allows probing of linear and nonlinear spectroscopic features of atoms with exquisitely…

    The development of optical nanofibers (ONFs) and the study and control of their optical properties when coupling atoms to their electromagnetic modes has opened new possibilities for their use in quantum optics and quantum information science. These ONFs offer tight optical mode confinement (less than the wavelength of light) and diffraction-free propagation. The small cross section of the transverse field allows probing of linear and nonlinear spectroscopic features of atoms with exquisitely low power. The cooperativity—the figure of merit in many quantum optics and quantum information systems—tends to be large even for a single atom in the mode of an ONF, as it is proportional to the ratio of the atomic cross section to the electromagnetic mode cross section. ONFs offer a natural bus for information and for inter-atomic coupling through the tightly confined modes, which opens the possibility of one-dimensional many-body physics and interesting quantum interconnection applications. The presence of the ONF modifies the vacuum field, affecting the spontaneous emission rates of atoms in its vicinity. The high gradients in the radial intensity naturally provide the potential for trapping atoms around the ONF, allowing the creation of one-dimensional arrays of atoms. The same radial gradient in the transverse direction of the field is responsible for the existence of a large longitudinal component that introduces the possibility of spin–orbit coupling of the light and the atom, enabling the exploration of chiral quantum optics.

    Other authors
    See publication
  • Photon-correlation measurements of atomic-cloud temperature using an optical nanofiber

    Physical Review A

    We develop a temperature measurement of an atomic cloud based on the temporal correlations of fluorescence photons evanescently coupled into an optical nanofiber. We measure the temporal width of the intensity-intensity correlation function due to atomic transit time and use it to determine the most probable atomic velocity, hence the temperature. This technique agrees well with standard time-of-flight temperature measurements. We confirm our results with trajectory simulations.

    Other authors
    See publication
  • Inhomogeneous broadening of optical transitions of 87Rb atoms in an optical nanofiber trap

    Journal of Physics B: Atomic, Molecular and Optical Physics

    We experimentally demonstrate optical trapping of ${}^{87}\​mathrm{Rb}$ atoms using a two-color evanescent field around an optical nanofiber. In our trapping geometry, a blue-detuned traveling wave whose polarization is nearly parallel to the polarization of a red-detuned standing wave produces significant vector light shifts that lead to broadening of the absorption profile of a near-resonant beam at the trapping site. A model that includes scalar, vector, and tensor light shifts of the probe…

    We experimentally demonstrate optical trapping of ${}^{87}\​mathrm{Rb}$ atoms using a two-color evanescent field around an optical nanofiber. In our trapping geometry, a blue-detuned traveling wave whose polarization is nearly parallel to the polarization of a red-detuned standing wave produces significant vector light shifts that lead to broadening of the absorption profile of a near-resonant beam at the trapping site. A model that includes scalar, vector, and tensor light shifts of the probe transition $5{S}_{1/2}$-$5{P}_{3/2}$ from the trapping beams, weighted by the temperature-dependent position of the atoms in the trap, qualitatively describes the observed asymmetric profile and explains differences with previous experiments that used Cs atoms. The model provides a consistent way to extract the number of atoms in the trap.

    Other authors
    See publication
  • Ultrahigh transmission optical nanofibers

    AIP Advances

    We present a procedure for reproducibly fabricating ultrahigh transmission optical nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions of 99.95 ± 0.02%, which represents a loss from tapering of 2.6  ×  10−5 dB/mm when normalized to the entire stretch. When controllably launching the next family of higher-order modes on a fiber with 195 mm stretch, we achieve a transmission of 97.8 ± 2.8%, which has a loss from tapering of 5.0  ×  10−4 dB/mm when normalized to the…

    We present a procedure for reproducibly fabricating ultrahigh transmission optical nanofibers (530 nm diameter and 84 mm stretch) with single-mode transmissions of 99.95 ± 0.02%, which represents a loss from tapering of 2.6  ×  10−5 dB/mm when normalized to the entire stretch. When controllably launching the next family of higher-order modes on a fiber with 195 mm stretch, we achieve a transmission of 97.8 ± 2.8%, which has a loss from tapering of 5.0  ×  10−4 dB/mm when normalized to the entire stretch. Our pulling and transfer procedures allow us to fabricate optical nanofibers that transmit more than 400 mW in high vacuum conditions. These results, published as parameters in our previous work, present an improvement of two orders of magnitude less loss for the fundamental mode and an increase in transmission of more than 300% for higher-order modes, when following the protocols detailed in this paper. We extract from the transmission during the pull, the only reported spectrogram of a fundamental mode launch that does not include excitation to asymmetric modes; in stark contrast to a pull in which our cleaning protocol is not followed. These results depend critically on the pre-pull cleanliness and when properly following our pulling protocols are in excellent agreement with simulations.

    Other authors
    See publication
  • Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap

    JOSA B

    The grating magneto-optical trap (GMOT) requires only one beam and three planar diffraction gratings to form a cloud of cold atoms above the plane of the diffractors. Despite the complicated polarization arrangement, we demonstrate sub-Doppler cooling of Rb87 atoms to a temperature of 7.6(0.6)  μK through a multistage, far-detuned GMOT in conjunction with optical molasses. A decomposition of the electric field into polarization components for this geometry does not yield a mapping onto standard…

    The grating magneto-optical trap (GMOT) requires only one beam and three planar diffraction gratings to form a cloud of cold atoms above the plane of the diffractors. Despite the complicated polarization arrangement, we demonstrate sub-Doppler cooling of Rb87 atoms to a temperature of 7.6(0.6)  μK through a multistage, far-detuned GMOT in conjunction with optical molasses. A decomposition of the electric field into polarization components for this geometry does not yield a mapping onto standard sub-Doppler laser-cooling configurations. With numerical simulations, we find that the polarization composition of the GMOT optical field, which includes σ and π polarized light, does produce sub-Doppler temperatures.

    Other authors
    See publication
  • Thin-film superconducting resonator tunable to the ground-state hyperfine splitting of 87Rb

    AIP Advances

    We describe a thin-film superconducting Nb microwave resonator, tunable to within 0.3 ppm of the hyperfine splitting of 87Rb at fRb = 6.834683 GHz. We coarsely tuned the resonator using electron-beam lithography, decreasing the resonance frequency from 6.8637 GHz to 6.8278 GHz. For in situ fine tuning at 15 mK, the resonator inductance was varied using a piezoelectric stage to move a superconducting pin above the resonator. We found a maximum frequency shift of about 8.7 kHz per 60-nm…

    We describe a thin-film superconducting Nb microwave resonator, tunable to within 0.3 ppm of the hyperfine splitting of 87Rb at fRb = 6.834683 GHz. We coarsely tuned the resonator using electron-beam lithography, decreasing the resonance frequency from 6.8637 GHz to 6.8278 GHz. For in situ fine tuning at 15 mK, the resonator inductance was varied using a piezoelectric stage to move a superconducting pin above the resonator. We found a maximum frequency shift of about 8.7 kHz per 60-nm piezoelectric step and a tuning range of 18 MHz.

    Other authors
    See publication

View Jeff’s full profile

  • See who you know in common
  • Get introduced
  • Contact Jeff directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Jeff Grover in United States

Add new skills with these courses