Zachary Cooper, PhD

Zachary Cooper, PhD

Washington DC-Baltimore Area
2K followers 500+ connections

About

External R&D lead and Translational Lead for early oncology clinical trials (including…

Experience

  • AstraZeneca Graphic

    AstraZeneca

    Washington DC-Baltimore Area

  • -

    Washington DC-Baltimore Area

  • -

    Washington DC-Baltimore Area

  • -

    Washington D.C. Metro Area

  • -

    Washington D.C. Metro Area

  • -

    Houston, Texas Area

  • -

    Houston, Texas Area

  • -

    Greater Boston Area

  • -

    Greater Boston Area

  • -

    Providence, Rhode Island Area

  • -

    Providence, Rhode Island Area

  • -

    Baltimore, Maryland Area

  • -

    Baltimore, Maryland Area

  • -

    Bethesda, MD

Education

Volunteer Experience

  • Member

    Young Adult Advisory Council at MD Anderson Cancer Center

    - 1 year 6 months

    Health

  • Society for Immunotherapy of Cancer (SITC) Graphic

    Early Career Scientist Committee Member

    Society for Immunotherapy of Cancer (SITC)

    - Present 4 years 8 months

    Health

    The Early Career Scientists Committee oversees the activities of the organization specifically for those in the early stages of their career as well as activities directed to entice others to consider a career in cancer immunotherapy basic and translational research. The committee provides recommendations about how the society can provide opportunities to meet the needs of these early career professionals as well as develop those early in their career into the future leaders of the organization…

    The Early Career Scientists Committee oversees the activities of the organization specifically for those in the early stages of their career as well as activities directed to entice others to consider a career in cancer immunotherapy basic and translational research. The committee provides recommendations about how the society can provide opportunities to meet the needs of these early career professionals as well as develop those early in their career into the future leaders of the organization and of the scientific community.

Publications

  • COLUMBIA-1: a randomised study of durvalumab plus oleclumab in combination with chemotherapy and bevacizumab in metastatic microsatellite-stable colorectal cancer

    British Journal of Cancer

    Background: To determine whether the addition of durvalumab (anti-PD-L1) and oleclumab (anti-CD73) to standard-of-care treatment (FOLFOX and bevacizumab) enhances the anti-tumour effect in patients with metastatic colorectal cancer (mCRC).

    Methods: COLUMBIA-1 (NCT04068610) was a Phase Ib (feasibility; Part 1)/Phase II (randomised; Part 2) trial in patients with treatment-naïve microsatellite stable mCRC. Patients in Part 2 were randomised to receive standard-of-care (control arm) or…

    Background: To determine whether the addition of durvalumab (anti-PD-L1) and oleclumab (anti-CD73) to standard-of-care treatment (FOLFOX and bevacizumab) enhances the anti-tumour effect in patients with metastatic colorectal cancer (mCRC).

    Methods: COLUMBIA-1 (NCT04068610) was a Phase Ib (feasibility; Part 1)/Phase II (randomised; Part 2) trial in patients with treatment-naïve microsatellite stable mCRC. Patients in Part 2 were randomised to receive standard-of-care (control arm) or standard-of-care plus durvalumab and oleclumab (experimental arm). Primary objectives included safety and efficacy.

    Results: Seven patients were enrolled in Part 1 and 52 in Part 2 (n = 26 in each arm). Grade ≥3 treatment-emergent adverse events (TEAE) occurred in 80.8% and 65.4% of patients in the control and experimental arms of Part 2, respectively, with 26.9% and 46.3% experiencing serious TEAEs. The confirmed objective response rate (ORR) was numerically higher in the experimental arm compared with the control arm (61.5% [95% confidence interval (CI), 40.6-79.8] vs 46.2% [95% CI, 26.6-66.6]) but did not meet the statistically significant threshold in either arm.

    Conclusion: The safety profile of FOLFOX and bevacizumab in combination with durvalumab and oleclumab was manageable; however, the efficacy results do not warrant further development of this combination in patients with microsatellite stable mCRC.

    See publication
  • Spatial Immunoprofiling of Adenoid Cystic Carcinoma Reveals B7-H4 Is a Therapeutic Target for Aggressive Tumors

    Clinical Cancer Research

    Purpose: Adenoid cystic carcinoma (ACC) is a heterogeneous malignancy, and no effective systemic therapy exists for metastatic disease. We previously described two prognostic ACC molecular subtypes with distinct therapeutic vulnerabilities, ACC-I and ACC-II. In this study, we explored the ACC tumor microenvironment (TME) using RNA-sequencing and spatial biology to identify potential therapeutic targets.

    Experimental design: Tumor samples from 62 ACC patients with available RNA-sequencing…

    Purpose: Adenoid cystic carcinoma (ACC) is a heterogeneous malignancy, and no effective systemic therapy exists for metastatic disease. We previously described two prognostic ACC molecular subtypes with distinct therapeutic vulnerabilities, ACC-I and ACC-II. In this study, we explored the ACC tumor microenvironment (TME) using RNA-sequencing and spatial biology to identify potential therapeutic targets.

    Experimental design: Tumor samples from 62 ACC patients with available RNA-sequencing data that had been collected as part of previous studies were stained with a panel of 28 validated metal-tagged antibodies. Imaging mass cytometry (IMC) was performed using the Fluidigm Helios CyTOF instrument and analyzed with Visiopharm software. The B7-H4 antibody-drug conjugate AZD8205 was tested in ACC patient-derived xenografts (PDXs).

    Results: RNA deconvolution revealed that most ACCs are immunologically "cold", with approximately 30% being "hot". ACC-I tumors with a poor prognosis harbored a higher density of immune cells; however, spatial analysis by IMC revealed that ACC-I immune cells were significantly restricted to the stroma, characterizing an immune-excluded TME. ACC-I tumors overexpressed the immune checkpoint B7-H4, and the degree of immune exclusion was directly correlated with B7-H4 expression levels, an independent predictor of poor survival. Two ACC-I/B7-H4-high PDXs obtained 90% complete responses to a single dose of AZD8205, but none were observed with isotype-conjugated payload or in an ACC-II/B7-H4 low PDX.

    Conclusions: Spatial analysis revealed that ACC subtypes have distinct TMEs, with enrichment of ACC-I immune cells that are restricted to the stroma. B7-H4 is highly expressed in poor-prognosis ACC-I subtype and is a potential therapeutic target.

    See publication
  • First-in-human study of oleclumab, a potent, selective anti-CD73 monoclonal antibody, alone or in combination with durvalumab in patients with advanced solid tumors

    Cancer Immunology, Immunotherapy

    Background
    CD73 upregulation in tumors leads to local immunosuppression. This phase I, first-in-human study evaluated oleclumab (MEDI9447), an anti-CD73 human IgG1λ monoclonal antibody, alone or with durvalumab in patients with advanced colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), or epidermal growth factor receptor-mutant non-small-cell lung cancer (NSCLC).
    Methods
    Patients received oleclumab 5–40 mg/kg (dose-escalation) or 40 mg/kg (dose-expansion) intravenously…

    Background
    CD73 upregulation in tumors leads to local immunosuppression. This phase I, first-in-human study evaluated oleclumab (MEDI9447), an anti-CD73 human IgG1λ monoclonal antibody, alone or with durvalumab in patients with advanced colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), or epidermal growth factor receptor-mutant non-small-cell lung cancer (NSCLC).
    Methods
    Patients received oleclumab 5–40 mg/kg (dose-escalation) or 40 mg/kg (dose-expansion) intravenously every 2 weeks (Q2W), alone (escalation only) or with durvalumab 10 mg/kg intravenously Q2W.
    Results
    192 patients were enrolled, 66 during escalation and 126 (42 CRC, 42 PDAC, 42 NSCLC) during expansion. No dose-limiting toxicities occurred during escalation. In the monotherapy and combination therapy escalation cohorts, treatment-related adverse events (TRAEs) occurred in 55 and 54%, respectively, the most common being fatigue (17 and 25%). In the CRC, PDAC, and NSCLC expansion cohorts, 60, 57, and 45% of patients had TRAEs, respectively; the most common were fatigue (15%), diarrhea (9%), and rash (7%). Free soluble CD73 and CD73 expression on peripheral T cells and tumor cells showed sustained decreases, accompanied by reduced CD73 enzymatic activity in tumor cells. Objective response rate during escalation was 0%. Response rates in the CRC, PDAC, and NSCLC expansion cohorts were 2.4% (1 complete response [CR]), 4.8% (1 CR, 1 partial response [PR]), and 9.5% (4 PRs), respectively; 6-month progression-free survival rates were 5.4, 13.2, and 16.0%.
    Conclusions
    Oleclumab ± durvalumab had a manageable safety profile, with pharmacodynamic activity reflecting oleclumab’s mechanism of action. Evidence of antitumor activity was observed in tumor types that are generally immunotherapy resistant.

    See publication
  • CD73 Inhibitor Oleclumab Plus Osimertinib in Previously Treated Patients With Advanced T790M-Negative EGFRm Non-Small-Cell Lung Cancer: A Brief Report

    Journal of Thoracic Oncology

    Background
    CD73 is overexpressed in epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) and may promote immune evasion, suggesting potential for combining CD73 blockers with EGFR tyrosine kinase inhibitors (TKIs). This phase Ib/II study (NCT03381274) evaluated the anti-CD73 antibody oleclumab plus the third-generation EGFR TKI osimertinib in advanced EGFR-mutated NSCLC.
    Methods
    Patients had tissue T790M-negative NSCLC with TKI-sensitive EGFR mutations…

    Background
    CD73 is overexpressed in epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) and may promote immune evasion, suggesting potential for combining CD73 blockers with EGFR tyrosine kinase inhibitors (TKIs). This phase Ib/II study (NCT03381274) evaluated the anti-CD73 antibody oleclumab plus the third-generation EGFR TKI osimertinib in advanced EGFR-mutated NSCLC.
    Methods
    Patients had tissue T790M-negative NSCLC with TKI-sensitive EGFR mutations following progression on a first- or second-generation EGFR-TKI, and were osimertinib-naïve. They received osimertinib 80 mg orally once-daily plus oleclumab 1500 mg (dose level 1 [DL1]) or 3000 mg (DL2) intravenously every 2 weeks. Primary endpoints included safety and objective response rate (ORR) by RECIST v1.1.
    Results
    By July 9, 2021, 5 patients received DL1 and 21 received DL2. Respectively, 60.0% and 85.7% had any grade treatment-related adverse events (TRAEs) and 20.0% and 14.3% had grade 3 TRAEs. No dose-limiting toxicities, serious TRAEs, or deaths occurred. Four patients were T790M-positive on retrospective circulating tumor DNA (ctDNA) testing; 3 had objective partial responses. In patients who were T790M-negative in tumor and ctDNA, ORR was 25.0% at DL1 and 11.8% at DL2 (all partial responses); response durations at DL2 were 14.8 and 16.6 months. In patients receiving DL2, excluding those who were T790M-positive by ctDNA, median progression-free survival was 7.4 months, and median overall survival was 24.8 months. DL2 was the recommended Phase 2 dose.
    Conclusions
    Oleclumab plus osimertinib showed evidence of moderate activity with acceptable tolerability in previously treated patients with advanced EGFR-mutated NSCLC.

    See publication
  • Design and Preclinical Evaluation of a Novel B7-H4–Directed Antibody-Drug Conjugate, AZD8205, Alone and in Combination with the PARP1-Selective Inhibitor AZD5305

    Clinical Cancer Research

    Purpose: We evaluated the activity of AZD8205, a B7-H4–directed antibody-drug conjugate (ADC) bearing a novel topoisomerase I inhibitor (TOP1i) payload, alone and in combination with the poly-ADP ribose polymerase 1 (PARP1)–selective inhibitor AZD5305, in preclinical models. Experimental Design: Immunohistochemistry (IHC) and deep-learning–based image analysis algorithms were used to assess prevalence and intratumoral heterogeneity of B7-H4 expression in human tumors. Several TOP1i-ADCs…

    Purpose: We evaluated the activity of AZD8205, a B7-H4–directed antibody-drug conjugate (ADC) bearing a novel topoisomerase I inhibitor (TOP1i) payload, alone and in combination with the poly-ADP ribose polymerase 1 (PARP1)–selective inhibitor AZD5305, in preclinical models. Experimental Design: Immunohistochemistry (IHC) and deep-learning–based image analysis algorithms were used to assess prevalence and intratumoral heterogeneity of B7-H4 expression in human tumors. Several TOP1i-ADCs, prepared with Val-Ala or Gly-Gly-Phe-Gly peptide linkers, with or without a PEG8 spacer were compared in biophysical, in vivo efficacy, and rat toxicology studies. AZD8205 mechanism of action and efficacy studies were conducted in human cancer cell line and patient-derived xenograft (PDX) models. Results: Evaluation of IHC staining density on a per-cell basis revealed a range of heterogeneous B7-H4 expression across patient tumors. This informed selection of bystander-capable Val-Ala–PEG8–TOP1i payload AZ14170133 and development of AZD8205, which demonstrated improved stability, efficacy, and safety compared with other linker-payload ADCs. In a study of 26 PDX tumors, single administration of 3.5 mg/kg AZD8205 provided a 69% overall response rate, according to modified RECIST criteria, which correlated with homologous recombination repair deficiency (HRD) and elevated levels of B7-H4 in homologous recombination repair-proficient models. Addition of AZD5305 sensitized very low B7-H4–expressing tumors to AZD8205 treatment, independent of HRD status and in models representing clinically relevant mechanisms of PARPi resistance. Conclusion: These data provide evidence for the potential utility of AZD8205 for treatment of B7-H4–expressing tumors and support the rationale for an ongoing phase 1 clinical study (NCT05123482).

    See publication
  • Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: a single-centre phase 2 trial

    Lancet Oncology

    We did this trial to evaluate the efficacy, safety, and changes in the tumour microenvironment for durvalumab, an anti-PD-L1 drug, and tremelimumab, an anti-CTLA-4 drug, across multiple sarcoma subtypes.
    In this single-centre phase 2 trial, done at The University of Texas MD Anderson Cancer Center (Houston, TX USA), patients aged 18 years or older with advanced or metastatic sarcoma with an Eastern Cooperative Oncology Group performance status of 0 or 1 who had received at least one previous…

    We did this trial to evaluate the efficacy, safety, and changes in the tumour microenvironment for durvalumab, an anti-PD-L1 drug, and tremelimumab, an anti-CTLA-4 drug, across multiple sarcoma subtypes.
    In this single-centre phase 2 trial, done at The University of Texas MD Anderson Cancer Center (Houston, TX USA), patients aged 18 years or older with advanced or metastatic sarcoma with an Eastern Cooperative Oncology Group performance status of 0 or 1 who had received at least one previous line of systemic therapy were enrolled in disease subtype-specific groups (liposarcoma, leiomyosarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma, synovial sarcoma, osteosarcoma, alveolar soft-part sarcoma, chordoma, and other sarcomas). Patients received 1500 mg intravenous durvalumab and 75 mg intravenous tremelimumab for four cycles, followed by durvalumab alone every 4 weeks for up to 12 months. The primary endpoint was progression-free survival at 12 weeks in the intention-to-treat population (all patients who received at least one dose of treatment). Safety was also analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT02815995, and is completed.
    Between Aug 17, 2016, and April 9, 2018, 62 patients were enrolled, of whom 57 (92%) received treatment and were included in the intention-to-treat population. With a median follow-up of 37·2 months (IQR 1·8–10·1), progression-free survival at 12 weeks was 49% (95% CI 36–61). 21 grade 3–4 treatment-related adverse events were reported, the most common of which were increased lipase (four [7%] of 57 patients), colitis (three [5%] patients), and pneumonitis (three [5%] patients). Nine (16%) patients had a treatment related serious adverse event. One patient had grade 5 pneumonitis and colitis.
    The combination of durvalumab and tremelimumab is an active treatment regimen for advanced or metastatic sarcoma and merits evaluation in specific subsets in future trials.

    See publication
  • Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy

    Nature

    Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed1,2. Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy (NCT02231775, n = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in…

    Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed1,2. Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy (NCT02231775, n = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in female versus male patients (MPR, 66% versus 14%, P = 0.001; RFS, 64% versus 32% at 2 years, P = 0.021). The findings were validated in several additional cohorts2,3,4 of patients with unresectable metastatic melanoma who were treated with BRAF- and/or MEK-targeted therapy (n = 664 patients in total), demonstrating improved progression-free survival and overall survival in female versus male patients in several of these studies. Studies in preclinical models demonstrated significantly impaired anti-tumour activity in male versus female mice after BRAF/MEK-targeted therapy (P = 0.006), with significantly higher expression of the androgen receptor in tumours of male and female BRAF/MEK-treated mice versus the control (P = 0.0006 and P = 0.0025). Pharmacological inhibition of androgen receptor signalling improved responses to BRAF/MEK-targeted therapy in male and female mice (P = 0.018 and P = 0.003), whereas induction of androgen receptor signalling (through testosterone administration) was associated with a significantly impaired response to BRAF/MEK-targeted therapy in male and female patients (P = 0.021 and P < 0.0001). Together, these results have important implications for therapy.

    See publication
  • COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination With Oleclumab or Monalizumab in Patients With Unresectable, Stage III Non–Small-Cell Lung Cancer

    Journal of Clinical Oncology

    PURPOSE
    Building upon Durvalumab as standard of care, COAST is a phase II study of durvalumab alone or combined with the anti-CD73 monoclonal antibody oleclumab or anti-NKG2A monoclonal antibody monalizumab as consolidation therapy in this setting.

    METHODS
    Patients with unresectable stage III non–small-cell lung cancer, Eastern Cooperative Oncology Group performance status 0/1, and no progression after cCRT were randomly assigned 1:1:1, ≤ 42 days post-cCRT, to durvalumab alone or…

    PURPOSE
    Building upon Durvalumab as standard of care, COAST is a phase II study of durvalumab alone or combined with the anti-CD73 monoclonal antibody oleclumab or anti-NKG2A monoclonal antibody monalizumab as consolidation therapy in this setting.

    METHODS
    Patients with unresectable stage III non–small-cell lung cancer, Eastern Cooperative Oncology Group performance status 0/1, and no progression after cCRT were randomly assigned 1:1:1, ≤ 42 days post-cCRT, to durvalumab alone or combined with oleclumab or monalizumab for up to 12 months, stratified by histology. The primary end point was investigator-assessed confirmed objective response rate (ORR; RECIST v1.1).

    RESULTS
    Between January 2019 and July 2020, 189 patients were randomly assigned. At this interim analysis (data cutoff, May 17, 2021), median follow-up was 11.5 months (range, 0.4-23.4 months; all patients). Confirmed ORR was numerically higher with durvalumab plus oleclumab (30.0%; 95% CI, 18.8 to 43.2) and durvalumab plus monalizumab (35.5%; 95% CI, 23.7 to 48.7) versus durvalumab (17.9%; 95% CI, 9.6 to 29.2). Progression-free survival (PFS) was prolonged with both combinations versus durvalumab (plus oleclumab: hazard ratio, 0.44; 95% CI, 0.26 to 0.75; and plus monalizumab: hazard ratio, 0.42; 95% CI, 0.24 to 0.72), with higher 12-month PFS rates (plus oleclumab: 62.6% [95% CI, 48.1 to 74.2] and plus monalizumab: 72.7% [95% CI, 58.8 to 82.6] v durvalumab alone: 33.9% [95% CI, 21.2 to 47.1]). All-cause grade ≥ 3 treatment-emergent adverse events occurred in 40.7%, 27.9%, and 39.4% with durvalumab plus oleclumab, durvalumab plus monalizumab, and durvalumab, respectively.

    CONCLUSION
    Both combinations increased ORR and prolonged PFS versus durvalumab alone. Safety was similar across arms with no new or significant safety signals identified with either combination. These data support their further evaluation in a phase III trial.

    See publication
  • Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR-mutated NSCLC

    JCI Insight

    Treatment with anti-PD-1 and anti-PD-L1 therapies has shown durable clinical benefit in non-small cell lung cancer (NSCLC). However, patients with NSCLC with epidermal growth factor receptor (EGFR) mutations do not respond as well to treatment as patients without an EGFR mutation. We show that EGFR-mutated NSCLC expressed higher levels of CD73 compared with EGFR WT tumors and that CD73 expression was regulated by EGFR signaling. EGFR-mutated cell lines were significantly more resistant to T…

    Treatment with anti-PD-1 and anti-PD-L1 therapies has shown durable clinical benefit in non-small cell lung cancer (NSCLC). However, patients with NSCLC with epidermal growth factor receptor (EGFR) mutations do not respond as well to treatment as patients without an EGFR mutation. We show that EGFR-mutated NSCLC expressed higher levels of CD73 compared with EGFR WT tumors and that CD73 expression was regulated by EGFR signaling. EGFR-mutated cell lines were significantly more resistant to T cell killing compared with WT cell lines through suppression of T cell proliferation and function. In a xenograft mouse model of EGFR-mutated NSCLC, neither anti-PD-L1 nor anti-CD73 antibody alone inhibited tumor growth compared with the isotype control. In contrast, the combination of both antibodies significantly inhibited tumor growth, increased the number of tumor-infiltrating CD8+ T cells, and enhanced IFN-γ and TNF-α production of these T cells. Consistently, there were increases in gene expression that corresponded to inflammation and T cell function in tumors treated with the combination of anti-PD-L1 and anti-CD73. Together, these results further support the combination of anti-CD73 and anti-PD-L1 therapies in treating EGFR-mutated NSCLC, while suggesting that increased T cell activity may play a role in response to therapy.

    See publication
  • Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma

    OncoImmunology

    Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g…

    Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.

    See publication
  • The Combiome Hypothesis: Selecting Optimal Treatment for Cancer Patients

    Clinical Lung Cancer

    Existing approaches for cancer diagnosis are inefficient in the use of diagnostic tissue, and decision-making is often sequential, typically resulting in delayed treatment initiation. Future diagnostic testing needs to be faster and optimize increasingly complex treatment decisions. We envision a future where comprehensive testing is routine. Our approach, termed the “combiome,” combines holistic information from the tumor, and the patient's immune system. The combiome model proposed here…

    Existing approaches for cancer diagnosis are inefficient in the use of diagnostic tissue, and decision-making is often sequential, typically resulting in delayed treatment initiation. Future diagnostic testing needs to be faster and optimize increasingly complex treatment decisions. We envision a future where comprehensive testing is routine. Our approach, termed the “combiome,” combines holistic information from the tumor, and the patient's immune system. The combiome model proposed here advocates synchronized up-front testing with a panel of sensitive assays, revealing a more complete understanding of the patient phenotype and improved targeting and sequencing of treatments. Development and eventual adoption of the combiome model for diagnostic testing may provide better outcomes for all cancer patients, but will require significant changes in workflows, technology, regulations, and administration. In this review, we discuss the current and future testing landscape, targeting of personalized treatments, and technological and regulatory advances necessary to achieve the combiome.

    See publication
  • Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade.

    Nature Medicine

    Treatment with combined immune checkpoint blockade (CICB) targeting CTLA-4 and PD-1 is associated with clinical benefit across tumor types, but also a high rate of immune-related adverse events. Insights into biomarkers and mechanisms of response and toxicity to CICB are needed. To address this, we profiled the blood, tumor and gut microbiome of 77 patients with advanced melanoma treated with CICB, with a high rate of any ≥grade 3 immune-related adverse events (49%) with parallel studies in…

    Treatment with combined immune checkpoint blockade (CICB) targeting CTLA-4 and PD-1 is associated with clinical benefit across tumor types, but also a high rate of immune-related adverse events. Insights into biomarkers and mechanisms of response and toxicity to CICB are needed. To address this, we profiled the blood, tumor and gut microbiome of 77 patients with advanced melanoma treated with CICB, with a high rate of any ≥grade 3 immune-related adverse events (49%) with parallel studies in pre-clinical models. Tumor-associated immune and genomic biomarkers of response to CICB were similar to those identified for ICB monotherapy, and toxicity from CICB was associated with a more diverse peripheral T-cell repertoire. Profiling of gut microbiota demonstrated a significantly higher abundance of Bacteroides intestinalis in patients with toxicity, with upregulation of mucosal IL-1β in patient samples of colitis and in pre-clinical models. Together, these data offer potential new therapeutic angles for targeting toxicity to CICB.

    See publication
  • Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors

    Journal of Immunotherapy for Cancer

    MEDI9197 is an intratumorally administered toll-like receptor 7 and 8 agonist. In mice, MEDI9197 modulated antitumor immune responses, inhibited tumor growth and increased survival. This first-time-in-human, phase 1 study evaluated MEDI9197 with or without the programmed cell death ligand-1 (PD-L1) inhibitor durvalumab and/or palliative radiation therapy (RT) for advanced solid tumors. Eligible patients had at least one cutaneous, subcutaneous, or deep-seated lesion suitable for intratumoral…

    MEDI9197 is an intratumorally administered toll-like receptor 7 and 8 agonist. In mice, MEDI9197 modulated antitumor immune responses, inhibited tumor growth and increased survival. This first-time-in-human, phase 1 study evaluated MEDI9197 with or without the programmed cell death ligand-1 (PD-L1) inhibitor durvalumab and/or palliative radiation therapy (RT) for advanced solid tumors. Eligible patients had at least one cutaneous, subcutaneous, or deep-seated lesion suitable for intratumoral (IT) injection. From November 2015 to March 2018, part 1 enrolled 35 patients and part 3 enrolled 17 patients; five in part 1 and 2 in part 3 received RT. The maximum tolerated dose of MEDI9197 monotherapy was 0.037 mg, with dose-limiting toxicity (DLT) of cytokine release syndrome in two patients (one grade 3, one grade 4) and 0.012 mg in combination with durvalumab 1500 mg with DLT of MEDI9197-related hemorrhagic shock in one patient (grade 5) following liver metastasis rupture after two cycles of MEDI9197. Across parts 1 and 3, the most frequent MEDI9197-related adverse events (AEs) of any grade were fever (56%), fatigue (31%), and nausea (21%). The most frequent MEDI9197-related grade ≥3 events were decreased lymphocytes (15%), neutrophils (10%), and white cell counts (10%). MEDI9197 increased tumoral CD8+ and PD-L1+ cells, inducing type 1 and 2 interferons and Th1 response. There were no objective clinical responses; 10 patients in part 1 and 3 patients in part 3 had stable disease ≥8 weeks. IT MEDI9197 was feasible for subcutaneous/cutaneous lesions but AEs precluded its use in deep-seated lesions. Although no patients responded, MEDI9197 induced systemic and intratumoral immune activation, indicating potential value in combination regimens in other patient populations.

    See publication
  • Melanoma Evolves Complete Immunotherapy Resistance through the Acquisition of a Hypermetabolic Phenotype

    Cancer Immunology Research

    Despite the clinical success of T cell checkpoint blockade, most cancer patients still fail to have durable responses to immunotherapy. The molecular mechanisms driving checkpoint blockade resistance, whether pre-existing or evolved, remain unclear. To address this critical knowledge gap, we treated B16 melanoma with the combination of CTLA-4, PD-1, and PD-L1 blockade and a Flt3 ligand vaccine (≥75% curative), isolated tumors resistant to therapy, and serially passaged them in vivo with the…

    Despite the clinical success of T cell checkpoint blockade, most cancer patients still fail to have durable responses to immunotherapy. The molecular mechanisms driving checkpoint blockade resistance, whether pre-existing or evolved, remain unclear. To address this critical knowledge gap, we treated B16 melanoma with the combination of CTLA-4, PD-1, and PD-L1 blockade and a Flt3 ligand vaccine (≥75% curative), isolated tumors resistant to therapy, and serially passaged them in vivo with the same treatment regimen until they developed complete resistance. Using gene expression analysis and immunogenomics, we determined the adaptations associated with this resistance phenotype. Checkpoint resistance coincided with acquisition of a "hypermetabolic" phenotype characterized by coordinated upregulation of the glycolytic, oxidoreductase, and mitochondrial oxidative phosphorylation pathways. These resistant tumors flourished under hypoxic conditions whereas metabolically starved T cells lost glycolytic potential, effector function, and the ability to expand in response to immunotherapy. Further, we found that checkpoint resistant versus sensitive tumors could be separated by non-invasive MRI imaging based solely on their metabolic state. In a cohort of melanoma patients resistant to both CTLA-4 and PD-1 blockade, we observed upregulation of pathways indicative of a similar hypermetabolic state. Together these data indicated that melanoma can evade T cell checkpoint blockade immunotherapy by adapting a hypermetabolic phenotype.

    See publication
  • The human tumor microbiome is composed of tumor type–specific intracellular bacteria

    Science

    Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a…

    Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a particularly rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted functions with tumor types and subtypes, patients’ smoking status, and the response to immunotherapy.

    See publication
  • Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade

    Journal of Immunotherapy for Cancer

    Background PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for…

    Background PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM.

    Methods Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo.

    Results Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM.

    Conclusions Our data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.

    See publication
  • Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma

    Nature Communications

    Complex tumor microenvironmental (TME) features influence the outcome of cancer immunotherapy (IO). Here we perform immunogenomic analyses on 67 intratumor sub-regions of a PD-1 inhibitor-resistant melanoma tumor and 2 additional metastases arising over 8 years, to characterize TME interactions. We identify spatially distinct evolution of copy number alterations influencing local immune composition. Sub-regions with chromosome 7 gain display a relative lack of leukocyte infiltrate but evidence…

    Complex tumor microenvironmental (TME) features influence the outcome of cancer immunotherapy (IO). Here we perform immunogenomic analyses on 67 intratumor sub-regions of a PD-1 inhibitor-resistant melanoma tumor and 2 additional metastases arising over 8 years, to characterize TME interactions. We identify spatially distinct evolution of copy number alterations influencing local immune composition. Sub-regions with chromosome 7 gain display a relative lack of leukocyte infiltrate but evidence of neutrophil activation, recapitulated in The Cancer Genome Atlas (TCGA) samples, and associated with lack of response to IO across three clinical cohorts. Whether neutrophil activation represents cause or consequence of local tumor necrosis requires further study. Analyses of T-cell clonotypes reveal the presence of recurrent priming events manifesting in a dominant T-cell clonotype over many years. Our findings highlight the links between marked levels of genomic and immune heterogeneity within the physical space of a tumor, with implications for biomarker evaluation and immunotherapy response.

    See publication
  • Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies

    Journal of Immunotherapy for Cancer

    Background
    Immune checkpoint blockade (ICB) promotes adaptive immunity and tumor regression in some cancer patients. However, in patients with immunologically “cold” tumors, tumor-resident innate immune cell activation may be required to prime an adaptive immune response and so exploit the full potential of ICB. Whilst Toll-like receptor (TLR) agonists have been used topically to successfully treat some superficial skin tumors, systemic TLR agonists have not been…

    Background
    Immune checkpoint blockade (ICB) promotes adaptive immunity and tumor regression in some cancer patients. However, in patients with immunologically “cold” tumors, tumor-resident innate immune cell activation may be required to prime an adaptive immune response and so exploit the full potential of ICB. Whilst Toll-like receptor (TLR) agonists have been used topically to successfully treat some superficial skin tumors, systemic TLR agonists have not been well-tolerated.

    Results
    Targeting both TLR7 and 8 triggers an innate and adaptive immune response in primary human immune cells, exemplified by secretion of IFNα, IL-12 and IFNγ. In contrast, a STING or a TLR9 agonist primarily induces release of IFNα. We demonstrate that the TLR7/8 agonist, MEDI9197, is retained at the sight of injection with limited systemic exposure. This localized TLR7/8 agonism leads to Th1 polarization, enrichment and activation of natural killer (NK) and CD8+ T cells, and inhibition of tumor growth in multiple syngeneic models. The anti-tumor activity of this TLR7/8 agonist is enhanced when combined with T cell-targeted immunotherapies in pre-clinical models.
    Conclusion
    Localized TLR7/8 agonism can enhance recruitment and activation of immune cells in tumors and polarize anti-tumor immunity towards a Th1 response. Moreover, we demonstrate that the anti-tumor effects of this TLR7/8 agonist can be enhanced through combination with checkpoint inhibitors and co-stimulatory agonists.

    See publication
  • Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma

    Cell

    Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient…

    Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.

    See publication
  • Combined analysis of antigen presentation and T cell recognition reveals restricted immune responses in melanoma

    Cancer Discovery

    The quest for tumor-associated-antigens (TAAs) and neo-antigens is a major focus of cancer immunotherapy. Here we combine a neo-antigen prediction-pipeline and human-leukocyte-antigen (HLA)-peptidomics to identify TAAs and neo-antigens in 16 tumors derived from seven melanoma patients, and characterize their interactions with their TILs. Our investigation of the antigenic and T-cell landscapes encompassing the TAA and neo-antigen signatures, their immune reactivity, and their corresponding…

    The quest for tumor-associated-antigens (TAAs) and neo-antigens is a major focus of cancer immunotherapy. Here we combine a neo-antigen prediction-pipeline and human-leukocyte-antigen (HLA)-peptidomics to identify TAAs and neo-antigens in 16 tumors derived from seven melanoma patients, and characterize their interactions with their TILs. Our investigation of the antigenic and T-cell landscapes encompassing the TAA and neo-antigen signatures, their immune reactivity, and their corresponding T-cell identities provides the first comprehensive analysis of cancer cell T-cell co-signatures, allowing us to discover remarkable antigenic and TIL similarities between metastases from the same patient. Furthermore, we reveal that two neo-antigen-specific clonotypes killed 90% of autologous melanoma cells, both in vitro and in vivo, showing that a limited set of neo-antigen-specific T-cells may play a central role in melanoma tumor rejection. Our findings indicate that combining HLA-peptidomics with neo-antigen predictions allows robust identification of targetable neo-antigens, which could successfully guide personalized cancer-immunotherapies.

    See publication
  • Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial

    Lancet Oncology

    We undertook this single-centre, open-label, randomised phase 2 trial at the UT MD Anderson Cancer Center. Eligible participants were adult patients (aged ≥18 years) with histologically or cytologically confirmed surgically resectable clinical stage III or oligometastatic stage IV BRAFV600E or BRAFV600K (ie, Val600Glu or Val600Lys)-mutated melanoma. Eligible patients had to have an ECOG performance status of 0 or 1, a life expectancy of more than 3 years, and no previous exposure to BRAF or MEK…

    We undertook this single-centre, open-label, randomised phase 2 trial at the UT MD Anderson Cancer Center. Eligible participants were adult patients (aged ≥18 years) with histologically or cytologically confirmed surgically resectable clinical stage III or oligometastatic stage IV BRAFV600E or BRAFV600K (ie, Val600Glu or Val600Lys)-mutated melanoma. Eligible patients had to have an ECOG performance status of 0 or 1, a life expectancy of more than 3 years, and no previous exposure to BRAF or MEK inhibitors. Exclusion criteria included metastases to bone, brain, or other sites where complete surgical excision was in doubt. We randomly assigned patients (1:2) to either upfront surgery and consideration for adjuvant therapy (standard of care group) or neoadjuvant plus adjuvant dabrafenib and trametinib (8 weeks of neoadjuvant oral dabrafenib 150 mg twice per day and oral trametinib 2 mg per day followed by surgery, then up to 44 weeks of adjuvant dabrafenib plus trametinib starting 1 week after surgery for a total of 52 weeks of treatment). Randomisation was not masked and was implemented by the clinical trial conduct website maintained by the trial centre. Patients were stratified by disease stage. The primary endpoint was investigator-assessed event-free survival (ie, patients who were alive without disease progression) at 12 months in the intent-to-treat population. This trial is registered at ClinicalTrials.gov, number NCT02231775.

    Neoadjuvant plus adjuvant dabrafenib and trametinib significantly improved event-free survival versus standard of care in patients with high-risk, surgically resectable, clinical stage III–IV melanoma. Although the trial finished early, limiting generalisability of the results, the findings provide proof-of-concept and support the rationale for further investigation of neoadjuvant approaches in this disease. This trial is currently continuing accrual as a single-arm study of neoadjuvant plus adjuvant dabrafenib and trametinib.

    See publication
  • A phase II study of combined therapy with a BRAF inhibitor (vemurafenib) and interleukin-2 (aldesleukin) in patients with metastatic melanoma

    OncoImmunology

    Background: Approximately 50% of melanomas harbor BRAF mutations. Treatment with BRAF +/- MEK inhibition is associated with favorable changes in the tumor microenvironment thus providing the rationale for combining targeted agents with immunotherapy.

    Methods: Patients with unresectable Stage III or IV BRAFV600E mutant melanoma were enrolled in a single-center prospective study (n = 6). Patients were eligible to receive two courses of HD-IL-2 and vemurafenib twice daily. The primary…

    Background: Approximately 50% of melanomas harbor BRAF mutations. Treatment with BRAF +/- MEK inhibition is associated with favorable changes in the tumor microenvironment thus providing the rationale for combining targeted agents with immunotherapy.

    Methods: Patients with unresectable Stage III or IV BRAFV600E mutant melanoma were enrolled in a single-center prospective study (n = 6). Patients were eligible to receive two courses of HD-IL-2 and vemurafenib twice daily. The primary endpoint was progression-free survival (PFS) with secondary objectives including overall survival (OS), response rates (RR), and safety of combination therapy as compared to historical controls. Immune profiling was performed in longitudinal tissue samples, when available.

    Results: Overall RR was 83.3% (95% CI: 36%-99%) and 66.6% at 12 weeks. All patients eventually progressed, with three progressing on treatment and three progressing after the vemurafenib continuation phase ended. Median PFS was 35.8 weeks (95% CI: 16–57 weeks). Median OS was not reached; however, the time at which 75% of patients were still alive was 104.4 weeks. Change in circulating BRAFV600E levels correlated with response. Though combination therapy was associated with enhanced CD8 T cell infiltrate, an increase in regulatory T cell frequency was seen with HD-IL-2 administration, suggesting a potential limitation in this strategy.

    Conclusion: Combination vemurafenib and HD-IL-2 is well tolerated and associated with treatment responses. However, the HD-IL-2 induced increase in Tregs may abrogate potential synergy. Given the efficacy of regimens targeting the PD-1 pathway, strategies combining these regimens with BRAF-targeted therapy are currently underway, and the role of combination vemurafenib and HD-IL-2 is uncertain.

    See publication
  • Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients

    Science

    Pre-clinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-PD-1 immunotherapy (n=112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders (R) versus non-responders (NR). Analysis of patient fecal microbiome samples…

    Pre-clinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-PD-1 immunotherapy (n=112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders (R) versus non-responders (NR). Analysis of patient fecal microbiome samples (n=43, 30R, 13NR) showed significantly higher alpha diversity (p<0.01) and relative abundance of Ruminococcaceae bacteria (p<0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in R including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and anti-tumor immunity in responding patients with a favorable gut microbiome, as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.

    See publication
  • Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine

    Science

    Growing evidence suggests that microbes can influence the efficacy of cancer therapies. By studying colon cancer models, we found that bacteria can metabolize the chemotherapeutic drug gemcitabine (2′,2′-difluorodeoxycytidine) into its inactive form, 2′,2′-difluorodeoxyuridine. Metabolism was dependent on the expression of a long isoform of the bacterial enzyme cytidine deaminase (CDDL), seen primarily in Gammaproteobacteria. In a colon cancer mouse model, gemcitabine resistance was induced by…

    Growing evidence suggests that microbes can influence the efficacy of cancer therapies. By studying colon cancer models, we found that bacteria can metabolize the chemotherapeutic drug gemcitabine (2′,2′-difluorodeoxycytidine) into its inactive form, 2′,2′-difluorodeoxyuridine. Metabolism was dependent on the expression of a long isoform of the bacterial enzyme cytidine deaminase (CDDL), seen primarily in Gammaproteobacteria. In a colon cancer mouse model, gemcitabine resistance was induced by intratumor Gammaproteobacteria, dependent on bacterial CDDL expression, and abrogated by cotreatment with the antibiotic ciprofloxacin. Gemcitabine is commonly used to treat pancreatic ductal adenocarcinoma (PDAC), and we hypothesized that intratumor bacteria might contribute to drug resistance of these tumors. Consistent with this possibility, we found that of the 113 human PDACs that were tested, 86 (76%) were positive for bacteria, mainly Gammaproteobacteria.

    See publication
  • Comparative immunologic characterization of autoimmune giant cell myocarditis with ipilimumab

    OncoImmunology

    Autoimmune myocarditis is a rare but often fatal toxicity of checkpoint inhibitor immunotherapy. To improve the understanding of this complication, we performed immune profiling on post-mortem tissue from a patient with metastatic melanoma who had steroid-responsive hepatitis, steroid-refractory myocarditis, and shrinking lung metastases after ipilimumab treatment. Histological analysis of heart tissue demonstrated findings consistent with giant cell myocarditis (GCM). The immune infiltrate in…

    Autoimmune myocarditis is a rare but often fatal toxicity of checkpoint inhibitor immunotherapy. To improve the understanding of this complication, we performed immune profiling on post-mortem tissue from a patient with metastatic melanoma who had steroid-responsive hepatitis, steroid-refractory myocarditis, and shrinking lung metastases after ipilimumab treatment. Histological analysis of heart tissue demonstrated findings consistent with giant cell myocarditis (GCM). The immune infiltrate in the heart was largely comprised of CD4+ T cells, whereas the liver had very few T cells, and CD8+ T cells were predominant in the responding lung metastases. TCR sequencing identified high T cell clonality in the lung metastases. The TCR repertoire showed low clonality in the heart and minimal overlap with the liver (1.2%), but some overlap with lung metastases (9.9%). Transcriptional profiling identified several potential mediators of increased inflammation in the heart. These findings provide new insights into the pathogenesis of autoimmune myocarditis with ipilimumab.

    See publication
  • Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure

    EMBO Molecular Medicine

    Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a "MITF-high" phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance "AXL-high" phenotype. > 50% of melanomas progress with enriched "AXL-high" populations, and because AXL is linked to de-differentiation and invasiveness avoiding an "AXL-high relapse" is desirable. We discovered that…

    Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a "MITF-high" phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance "AXL-high" phenotype. > 50% of melanomas progress with enriched "AXL-high" populations, and because AXL is linked to de-differentiation and invasiveness avoiding an "AXL-high relapse" is desirable. We discovered that phenotype heterogeneity is supported during the response phase of BRAF inhibitor therapy due to MITF-induced expression of endothelin 1 (EDN1). EDN1 expression is enhanced in tumours of patients on treatment and confers drug resistance through ERK re-activation in a paracrine manner. Most importantly, EDN1 not only supports MITF-high populations through the endothelin receptor B (EDNRB), but also AXL-high populations through EDNRA, making it a master regulator of phenotype heterogeneity. Endothelin receptor antagonists suppress AXL-high-expressing cells and sensitize to BRAF inhibition, suggesting that targeting EDN1 signalling could improve BRAF inhibitor responses without selecting for AXL-high cells.

    See publication
  • Parallel profiling of immune infiltrate subsets in uveal melanoma versus cutaneous melanoma unveils similarities and differences: a pilot study

    OncoImmunology

    The low response rates to immunotherapy in uveal melanoma (UM) sharply contrast with reputable response rates in cutaneous melanoma (CM) patients. To characterize the mechanisms responsible for resistance to immunotherapy in UM, we performed immune profiling in tumors from 10 metastatic UM patients and 10 metastatic CM patients by immunohistochemistry (IHC). Although there is no difference in infiltrating CD8+ T cells between UM and CM, a significant decrease in programmed death-1…

    The low response rates to immunotherapy in uveal melanoma (UM) sharply contrast with reputable response rates in cutaneous melanoma (CM) patients. To characterize the mechanisms responsible for resistance to immunotherapy in UM, we performed immune profiling in tumors from 10 metastatic UM patients and 10 metastatic CM patients by immunohistochemistry (IHC). Although there is no difference in infiltrating CD8+ T cells between UM and CM, a significant decrease in programmed death-1 (PD-1)-positive lymphocytes was observed and lower levels of programmed death ligand-1 (PD-L1) in UM metastases compared to CM metastases. Tumors from metastatic UM patients showed a lower success rate of tumor infiltrating lymphocyte (TIL) growth compared to metastatic CM (45% v. 64% success), with a significantly lower quantity of UM TIL expanded overall. These studies suggest that UM and CM are immunologically distinct, and provide potential explanation for the impaired success of immunotherapy in UM.

    See publication
  • An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition.

    The Journal of Experimental Medicine

    Mitogen-activated protein kinase (MAPK) pathway antagonists induce profound clinical responses in advanced cutaneous melanoma, but complete remissions are frustrated by the development of acquired resistance. Before resistance emerges, adaptive responses establish a mutation-independent drug tolerance. Antagonizing these adaptive responses could improve drug effects, thereby thwarting the emergence of acquired resistance. In this study, we reveal that inflammatory niches consisting of…

    Mitogen-activated protein kinase (MAPK) pathway antagonists induce profound clinical responses in advanced cutaneous melanoma, but complete remissions are frustrated by the development of acquired resistance. Before resistance emerges, adaptive responses establish a mutation-independent drug tolerance. Antagonizing these adaptive responses could improve drug effects, thereby thwarting the emergence of acquired resistance. In this study, we reveal that inflammatory niches consisting of tumor-associated macrophages and fibroblasts contribute to treatment tolerance through a cytokine-signaling network that involves macrophage-derived IL-1β and fibroblast-derived CXCR2 ligands. Fibroblasts require IL-1β to produce CXCR2 ligands, and loss of host IL-1R signaling in vivo reduces melanoma growth. In tumors from patients on treatment, signaling from inflammatory niches is amplified in the presence of MAPK inhibitors. Signaling from inflammatory niches counteracts combined BRAF/MEK (MAPK/extracellular signal–regulated kinase) inhibitor treatment, and consequently, inhibiting IL-1R or CXCR2 signaling in vivo enhanced the efficacy of MAPK inhibitors. We conclude that melanoma inflammatory niches adapt to and confer drug tolerance toward BRAF and MEK inhibitors early during treatment.

    See publication
  • Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma

    npj Genomic Medicine

    Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune…

    Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune profiling, and revealed substantial genomic and immune heterogeneity in all patients studied, with considerable diversity in T cell frequency, and few shared T cell clones (<8% on average) across the cohort. Variables related to treatment response were identified via these approaches and through novel radiomic assessment. These data yield insight into differential therapeutic responses to targeted therapy and immune checkpoint blockade in melanoma, and have key translational implications in the age of precision medicine.

    See publication
  • Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance

    Science Translational Medicine

    Immune checkpoint blockade produces clinical benefit in many patients. However, better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen–4 (CTLA-4) followed by programmed death receptor–1 (PD-1) and identified immune markers of response and resistance. Building on these studies, we performed deep…

    Immune checkpoint blockade produces clinical benefit in many patients. However, better biomarkers of response are still needed, and mechanisms of resistance remain incompletely understood. To address this, we recently studied a cohort of melanoma patients treated with sequential checkpoint blockade against cytotoxic T lymphocyte antigen–4 (CTLA-4) followed by programmed death receptor–1 (PD-1) and identified immune markers of response and resistance. Building on these studies, we performed deep molecular profiling including T cell receptor sequencing and whole-exome sequencing within the same cohort and demonstrated that a more clonal T cell repertoire was predictive of response to PD-1 but not CTLA-4 blockade. Analysis of CNAs identified a higher burden of copy number loss in nonresponders to CTLA-4 and PD-1 blockade and found that it was associated with decreased expression of genes in immune-related pathways. The effect of mutational load and burden of copy number loss on response was nonredundant, suggesting the potential utility of a combinatorial biomarker to optimize patient care with checkpoint blockade therapy.

    See publication
  • Hypoxia-driven mechanism of vemurafenib resistance in melanoma.

    Molecular Cancer Therapeutics

    Melanoma is molecularly and structurally heterogeneous, with some tumor cells existing under hypoxic conditions. Our cell growth assays showed that under controlled hypoxic conditions, BRAF(V600E) melanoma cells rapidly became resistant to vemurafenib. By employing both a three-dimensional (3D) spheroid model and a two-dimensional (2D) hypoxic culture system to model hypoxia in vivo, we identified upregulation of HGF/MET signaling as a major mechanism associated with vemurafenib resistance as…

    Melanoma is molecularly and structurally heterogeneous, with some tumor cells existing under hypoxic conditions. Our cell growth assays showed that under controlled hypoxic conditions, BRAF(V600E) melanoma cells rapidly became resistant to vemurafenib. By employing both a three-dimensional (3D) spheroid model and a two-dimensional (2D) hypoxic culture system to model hypoxia in vivo, we identified upregulation of HGF/MET signaling as a major mechanism associated with vemurafenib resistance as compared to 2D standard tissue culture in ambient air. We further confirmed that the upregulation of HGF/MET signaling was evident in drug-resistant melanoma patient tissues and mouse xenografts. Pharmacologic inhibition of the c-Met/Akt pathway restored the sensitivity of melanoma spheroids or 2D hypoxic cultures to vemurafenib.

    See publication
  • Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade

    Cancer Discovery

    Immune checkpoint blockade represents a major breakthrough in cancer therapy, however responses are not universal. Genomic and immune features in pre-treatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of metastatic melanoma patients initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) blockade (n=53) followed by programmed death-1 (PD-1)…

    Immune checkpoint blockade represents a major breakthrough in cancer therapy, however responses are not universal. Genomic and immune features in pre-treatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of metastatic melanoma patients initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) blockade (n=53) followed by programmed death-1 (PD-1) blockade at progression (n=46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In these studies, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade, and also demonstrate differential effects on the tumor microenvironment induced by CTLA-4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified.
    Significance: These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade, and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine, and should be explored in immune checkpoint blockade treatment across cancer types.

    See publication
  • Density, distribution, and composition of immune infiltrates correlate with survival in Merkel cell carcinoma

    Clinical Cancer Research

    Purpose: Merkel cell carcinoma (MCC) is an aggressive cancer with frequent metastasis and death with few effective therapies. Given the frequent expression of programmed death ligand-1 (PD-L1) in MCC, immune checkpoint blockade has been leveraged as treatment for metastatic MCC. There is therefore a critical need to better understand the relationships between MCPyV status, immune profiles and patient outcomes.

    Experimental Design: We performed immunohistochemistry for CD3, CD8, PD-1 and…

    Purpose: Merkel cell carcinoma (MCC) is an aggressive cancer with frequent metastasis and death with few effective therapies. Given the frequent expression of programmed death ligand-1 (PD-L1) in MCC, immune checkpoint blockade has been leveraged as treatment for metastatic MCC. There is therefore a critical need to better understand the relationships between MCPyV status, immune profiles and patient outcomes.

    Experimental Design: We performed immunohistochemistry for CD3, CD8, PD-1 and PD-L1 on 62 primary MCCs with annotated clinical outcomes. Immunohistochemistry for MCPyV T-antigen determined MCPyV status. Automated image analysis quantified immune cell density (positive cells/mm2) at discrete geographic locations in the tumor (periphery, center, and hotspot). T-cell receptor sequencing (TCRseq) was performed in a subset of MCCs.

    Results: No histopathologic variable associated with overall survival (OS) or disease-specific survival (DSS). However, higher CD3+ (p=0.004) and CD8+ (p=0.037) T-cell density at the tumor periphery associated with improved OS, and higher CD8+ T-cell density at the tumor periphery associated with improved DSS (p=0.049). Stratifying lesions according to MCPyV status, higher CD3+ (p=0.026) and CD8+ (p=0.015) T-cell density at the tumor periphery associated with improved OS for MCPyV+ but not MCPyV- MCC. TCRseq revealed higher clonal overlap in the MCPyV+ samples, raising the possibility of an antigen-specific response against a unifying antigen.

    Conclusions: These findings establish the tumor associated immune infiltrate at the tumor periphery as a robust prognostic indicator in MCC and provide a mechanistic framework to utilize this biomarker as a surrogate of response in ongoing and future checkpoint inhibitor trials in MCC.

    See publication
  • Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib Combination Treatment for BRAF Inhibitor-Refractory Metastatic Melanoma: A Phase 2 Clinical Trial.

    JAMA Oncology

    IMPORTANCE:
    Combined treatment with dabrafenib and trametinib (CombiDT) achieves clinical responses in only about 15% of patients with BRAF inhibitor (BRAFi)-refractory metastatic melanoma in contrast to the higher response rate observed in BRAFi-naïve patients. Identifying correlates of response and mechanisms of resistance in this population will facilitate clinical management and rational therapeutic development.
    DESIGN
    Single-center, single-arm, open-label phase 2 trial of CombiDT…

    IMPORTANCE:
    Combined treatment with dabrafenib and trametinib (CombiDT) achieves clinical responses in only about 15% of patients with BRAF inhibitor (BRAFi)-refractory metastatic melanoma in contrast to the higher response rate observed in BRAFi-naïve patients. Identifying correlates of response and mechanisms of resistance in this population will facilitate clinical management and rational therapeutic development.
    DESIGN
    Single-center, single-arm, open-label phase 2 trial of CombiDT treatment in patients with BRAF V600 metastatic melanoma resistant to BRAFi monotherapy conducted between September 2012 and October 2014 at the UT MDACC. Whole-exome sequencing, reverse transcription polymerase chain reaction analysis for BRAF splicing, RNA sequencing, and immunohistochemical analysis were performed on tumor samples, and blood was analyzed for levels of circulating BRAF V600.
    RESULTS:
    A total of 28 patients were screened, and 23 enrolled. Among evaluable patients, the confirmed ORR was 10%; disease control rate (DCR) was 45%, and median PFS was 13 weeks. Clinical benefit was associated with duration of prior BRAFi therapy greater than 6 months (DCR, 73% vs 11% for ≤6 months; P = .02) and decrease in circulating BRAF V600 at day 8 of cycle 1 (DCR, 75% vs 18% for no decrease; P = .02) but not with pretreatment mitogen-activated protein kinase (MAPK) pathway mutations or activation. Biopsy specimens obtained during treatment demonstrated that CombiDT therapy failed to achieve significant MAPK pathway inhibition or immune infiltration in most patients.
    CONCLUSIONS:
    The baseline presence of MAPK pathway alterations was not associated with benefit from CombiDT in patients with BRAFi-refractory metastatic melanoma. Failure to inhibit the MAPK pathway provides a likely explanation for the limited clinical benefit of CombiDT in this setting. Circulating BRAF V600 is a promising early biomarker of clinical response.

    See publication
  • sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance

    Nature

    Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression1, 2, 3, 4, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and…

    Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression1, 2, 3, 4, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in β-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.

    See publication
  • Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy

    Cancer Cell

    The immense genetic heterogeneity found in mutational acquired resistance to targeted therapy highlights the need for more effective treatment before resistance occurs. By focusing on melanomas during the initial response phase of treatment, we discovered that the upregulation of the melanoma survival oncogene MITF drives early drug tolerance. This process is reversible; revealing the non-mutational nature of the MITF-mediated drug tolerance. Importantly, we demonstrate that this non-mutational…

    The immense genetic heterogeneity found in mutational acquired resistance to targeted therapy highlights the need for more effective treatment before resistance occurs. By focusing on melanomas during the initial response phase of treatment, we discovered that the upregulation of the melanoma survival oncogene MITF drives early drug tolerance. This process is reversible; revealing the non-mutational nature of the MITF-mediated drug tolerance. Importantly, we demonstrate that this non-mutational tolerance phase, which precedes acquired mutational resistance, provides an opportunity for more effective treatment approaches. By repositioning an HIV drug to target MITF as a driver of MAPK inhibitor (MAPKi)-induced drug tolerance we identify a clinically relevant approach for melanoma therapy that has the potential to improve initial responses and delay the onset of resistance.

    See publication
  • Targeted Therapies Combined With Immune Checkpoint Therapy

    The Cancer Journal

    The age of personalized medicine continues to evolve within clinical oncology with the arsenal available to clinicians in a variety of malignancies expanding at an exponential rate. The development and advancement of molecular treatment modalities, including targeted therapy and immune checkpoint blockade, continue to flourish. Treatment with targeted therapy (BRAF, MEK, and other small molecule inhibitors) can be associated with swift disease control and high response rates, but limited…

    The age of personalized medicine continues to evolve within clinical oncology with the arsenal available to clinicians in a variety of malignancies expanding at an exponential rate. The development and advancement of molecular treatment modalities, including targeted therapy and immune checkpoint blockade, continue to flourish. Treatment with targeted therapy (BRAF, MEK, and other small molecule inhibitors) can be associated with swift disease control and high response rates, but limited durability when used as monotherapy. Conversely, treatment with immune checkpoint blockade monotherapy regimens (anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1/programmed cell death protein 1 ligand) tends to have lower response rates than that observed with BRAF-targeted therapy, although these treatments may offer long-term durable disease control. With the advent of these forms of therapy, there was interest early on in empirically combining targeted therapy with immune checkpoint blockade with the hopes of preserving high response rates and adding durability; however, there is now strong scientific rationale for combining these forms of therapy-and early evidence of synergy in preclinical models of melanoma. Clinical trials combining these strategies are ongoing, and mature data regarding response rates and durability are not yet available. Synergy may ultimately be apparent; however, it has also become clear that complexities exist regarding toxicity when combining these therapies. Nonetheless, this increased appreciation of the complex interplay between oncogenic mutations and antitumor immunity has opened up tremendous opportunities for studying targeted agents and immunotherapy in combination, which extends far beyond melanoma to other solid tumors and also to hematologic malignancies.

    Other authors
    See publication
  • Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma

    OncoImmunology

    We have made major advances in the treatment of melanoma through the use of targeted therapy and immune checkpoint blockade; however clinicians are posed with therapeutic dilemmas regarding timing and sequence of therapy. There is a growing appreciation of the impact of anti-tumor immune responses to these therapies, and we performed studies to test the hypothesis that clinical patterns and immune infiltrates differ at progression on these treatments. We observed rapid clinical progression…

    We have made major advances in the treatment of melanoma through the use of targeted therapy and immune checkpoint blockade; however clinicians are posed with therapeutic dilemmas regarding timing and sequence of therapy. There is a growing appreciation of the impact of anti-tumor immune responses to these therapies, and we performed studies to test the hypothesis that clinical patterns and immune infiltrates differ at progression on these treatments. We observed rapid clinical progression kinetics in patients on targeted therapy compared to immune checkpoint blockade. To gain insight into possible immune mechanisms behind these differences, we performed deep immune profiling in tumors of patients on therapy. We demonstrated low CD8+ T-cell infiltrate on targeted therapy and high CD8+ T-cell infiltrate on immune checkpoint blockade at clinical progression. These data have important implications, and suggest that anti-tumor immune responses should be assessed when considering therapeutic options for patients with melanoma.

    See publication
  • Loss of PTEN promotes resistance to T cell-mediated immunotherapy

    Cancer Discovery

    T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T cell trafficking into tumors. In patients, PTEN loss correlates with decreased T cell infiltration at tumor sites, reduced likelihood of successful T cell expansion…

    T cell-mediated immunotherapies are promising cancer treatments. However, most patients still fail to respond to these therapies. The molecular determinants of immune resistance are poorly understood. We show that loss of PTEN in tumor cells in preclinical models of melanoma inhibits T cell-mediated tumor killing and decreases T cell trafficking into tumors. In patients, PTEN loss correlates with decreased T cell infiltration at tumor sites, reduced likelihood of successful T cell expansion from resected tumors, and inferior outcomes with PD-1 inhibitor therapy. PTEN loss in tumor cells increased the expression of immunosuppressive cytokines, resulting in decreased T cell infiltration in tumors, and inhibited autophagy, which decreased T cell-mediated cell death. Treatment with a selective PI3Kβ inhibitor improved the efficacy of both anti-PD-1 and anti-CTLA4 antibodies in murine models. Together these findings demonstrate that PTEN loss promotes immune resistance and support the rationale to explore combinations of immunotherapies and PI3K-AKT pathway inhibitors.
    SIGNIFICANCE: This study adds to the growing evidence that oncogenic pathways in tumors can promote resistance to the anti-tumor immune response. As PTEN loss and PI3K-AKT pathway activation occur in multiple tumor types, the results support the rationale to further evaluate combinatorial strategies targeting the PI3K-AKT pathway to increase the efficacy of immunotherapy.

    See publication
  • Novel Treatments in Development for Melanoma.

    Cancer Treatment and Research

    The past several years can be considered a renaissance era in the treatment of metastatic melanoma. Following a 30-year stretch in which oncologists barely put a dent in a very grim overall survival (OS) rate for these patients, things have rapidly changed course with the recent approval of three new melanoma drugs by the FDA. Both oncogene-targeted therapy and immune checkpoint blockade approaches have shown remarkable efficacy in a subset of melanoma patients and have clearly been…

    The past several years can be considered a renaissance era in the treatment of metastatic melanoma. Following a 30-year stretch in which oncologists barely put a dent in a very grim overall survival (OS) rate for these patients, things have rapidly changed course with the recent approval of three new melanoma drugs by the FDA. Both oncogene-targeted therapy and immune checkpoint blockade approaches have shown remarkable efficacy in a subset of melanoma patients and have clearly been game-changers in terms of clinical impact. However, most patients still succumb to their disease, and thus, there remains an urgent need to improve upon current therapies. Fortunately, innovations in molecular medicine have led to many silent gains that have greatly increased our understanding of the nature of cancer biology as well as the complex interactions between tumors and the immune system. They have also allowed for the first time a detailed understanding of an individual patient’s cancer at the genomic and proteomic level. This information is now starting to be employed at all stages of cancer treatment, including diagnosis, choice of drug therapy, treatment monitoring, and analysis of resistance mechanisms upon recurrence. This new era of personalized medicine will foreseeably lead to paradigm shifts in immunotherapeutic treatment approaches such as individualized cancer vaccines and adoptive transfer of genetically modified T cells. Advances in xenograft technology will also allow for the testing of drug combinations using in vivo models, a truly necessary development as the number of new drugs needing to be tested is predicted to skyrocket in the coming years. This chapter will provide an overview of recent technological developments in cancer research, and how they are expected to impact future diagnosis, monitoring, and development of novel treatments for metastatic melanoma.

    See publication
  • Raising the bar: optimizing combinations of targeted therapy and immunotherapy

    Annals of Translational Medicine

    Major breakthroughs have arisen in the treatment of melanoma and other cancers through the use of targeted and immunotherapy. Therapies targeting the BRAFV600 mutation, such as vemurafenib and dabrafenib, were FDA-approved in 2011 and 2013, following demonstration of rapid, marked response in a majority of patients expressing the BRAFV600 mutation and a survival benefit over then standard-of-care therapy with dacarbazine. However, the vast majority of responding patients eventually relapse…

    Major breakthroughs have arisen in the treatment of melanoma and other cancers through the use of targeted and immunotherapy. Therapies targeting the BRAFV600 mutation, such as vemurafenib and dabrafenib, were FDA-approved in 2011 and 2013, following demonstration of rapid, marked response in a majority of patients expressing the BRAFV600 mutation and a survival benefit over then standard-of-care therapy with dacarbazine. However, the vast majority of responding patients eventually relapse, most often within only 6-12 months of treatment initiation. Another form of immunotherapy, immune checkpoint blockade, exploits a tumor-deployed immune escape mechanism through which tumors impede the immune response by binding checkpoint molecules which serve as brakes, specifically on T lymphocytes. Such therapies involving monoclonal blocking antibodies against cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) were approved in 2011 and 2014, respectively. Though these treatments are associated with responses in fewer patients (20-35%) than treatment with targeted therapy, responses are often durable with a significant proportion of patients achieving durable disease control. Unfortunately, many patients do not derive benefit from these forms of therapy, and more therapeutic options are needed. Another form of therapy that has been studied extensively is adoptive cell therapy (ACT), and involves the isolation and expansion of antigen-specific lymphocytes from tumor (tumor infiltrating lymphocytes-TIL) or peripheral blood from patients with melanoma (and other cancer types). This form of therapy is associated with responses in approximately 50% of metastatic melanoma patients, though its use has been limited by the technical expertise involved in isolation and expansion of these cells, as well as the infrastructure required for this therapeutic approach.

    See publication
  • Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    PLoS One

    A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an…

    A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1) transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR) and platelet derived growth factor receptor (PDGFR) family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs), demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK) kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

    See publication
  • Immune Effects of Chemotherapy, Radiation, and Targeted Therapy and Opportunities for Combination with Immunotherapy

    Seminars in Oncology

    There have been significant advances in cancer treatment over the past several years through the use of chemotherapy, radiation therapy, molecularly targeted therapy and immunotherapy. Despite these advances, treatments such as mono-therapy or mono-modality have significant limitations. There is increasing interest in using these strategies in combination, however it is not completely clear how best to incorporate molecularly targeted and immune targeted therapies into combination regimens…

    There have been significant advances in cancer treatment over the past several years through the use of chemotherapy, radiation therapy, molecularly targeted therapy and immunotherapy. Despite these advances, treatments such as mono-therapy or mono-modality have significant limitations. There is increasing interest in using these strategies in combination, however it is not completely clear how best to incorporate molecularly targeted and immune targeted therapies into combination regimens. This is particularly pertinent when considering combinations with immunotherapy, as other types of therapy may have significant impact on host immunity, the tumor microenvironment, or both. Thus, the influence of chemotherapy, radiation therapy, and molecularly targeted on the host anti-tumor immune response and the host anti-host response (i.e. autoimmune toxicity) must be taken into consideration when designing immunotherapy-based combination regimens. We will present data related to many of these combination approaches in the context of investigations in patients with melanoma and discuss their potential relationship to management of patients with other tumor types. Importantly, we will also highlight challenges of these approaches and emphasize the need for continued translational research.

    Other authors
    See publication
  • Does it MEK a Difference? Understanding Immune Effects of Targeted Therapy

    Clinical Cancer Research

    BRAF inhibitor treatment (BRAFi) enhances anti-tumor immunity, but is associated with increased intra-tumoral PD-L1 expression. MEK inhibitors (MEKi) may alter T-cell function, however recent studies demonstrate preserved T-cell infiltrate during treatment with BRAFi/MEKi. These data have important implications for combining BRAFi/MEKi and checkpoint blockade in the treatment of melanoma.

    Other authors
    See publication
  • Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation

    Cell Reports

    Despite the remarkable clinical response of melanoma harboring BRAF mutations to BRAF inhibitors (BRAFi), most tumors become resistant. Here, we identified the downregulation of the ubiquitin ligase RNF125 in BRAFi-resistant melanomas and demonstrated its role in intrinsic and adaptive resistance to BRAFi in cultures as well as its association with resistance in tumor specimens. Sox10/MITF expression correlated with and contributed to RNF125 transcription. Reduced RNF125 was associated with…

    Despite the remarkable clinical response of melanoma harboring BRAF mutations to BRAF inhibitors (BRAFi), most tumors become resistant. Here, we identified the downregulation of the ubiquitin ligase RNF125 in BRAFi-resistant melanomas and demonstrated its role in intrinsic and adaptive resistance to BRAFi in cultures as well as its association with resistance in tumor specimens. Sox10/MITF expression correlated with and contributed to RNF125 transcription. Reduced RNF125 was associated with elevated expression of receptor tyrosine kinases (RTKs), including EGFR. Notably, RNF125 altered RTK expression through JAK1, which we identified as an RNF125 substrate. RNF125 bound to and ubiquitinated JAK1, prompting its degradation and suppressing RTK expression. Inhibition of JAK1 and EGFR signaling overcame BRAFi resistance in melanoma with reduced RNF125 expression, as shown in culture and in in vivo xenografts. Our findings suggest that combination therapies targeting both JAK1 and EGFR could be effective against BRAFi-resistant tumors with de novo low RNF125 expression

    See publication
  • Working with human tissues for translational cancer research

    The Journal of Visualized Experiments

    Medical research for human benefit is greatly impeded by the necessity for human tissues and subjects. However, upon obtaining consent for human specimens, precious samples must be handled with the greatest care in order to ensure integrity of organs, tissues, and cells to the highest degree. Unfortunately, tissue processing by definition requires extraction of tissues from the host, a change which can cause great cellular stress and have major repercussions on subsequent analyses. These…

    Medical research for human benefit is greatly impeded by the necessity for human tissues and subjects. However, upon obtaining consent for human specimens, precious samples must be handled with the greatest care in order to ensure integrity of organs, tissues, and cells to the highest degree. Unfortunately, tissue processing by definition requires extraction of tissues from the host, a change which can cause great cellular stress and have major repercussions on subsequent analyses. These stresses could result in the specimen being no longer representative of the site from which it was retrieved. Therefore, a strict protocol must be adhered to while processing these specimens to ensure representativeness. The desired assay(s) must also be taken into consideration in order to ensure that an optimal technique is used for sample processing. Outlined here is a protocol for tissue retrieval, processing and various analyses which may be performed on processed tissue in order to maximize downstream production from limited tissue samples.

    Other authors
  • Update on the use of aldesleukin for treatment of high risk metastatic melanoma

    ImmunoTargets and Therapy

    High-dose interleukin-2 has been used for the treatment of metastatic melanoma since 1998 based on data proving durable complete responses in up to 10% of treated patients. The immunomodulatory effects of this critical cytokine have been instrumental in the development of immunotherapy for melanoma and other cancers. However, with the advent of new therapies, its use as a front-line agent has come into question. Nonetheless, there is still a role for interleukin-2 as monotherapy, as well as in…

    High-dose interleukin-2 has been used for the treatment of metastatic melanoma since 1998 based on data proving durable complete responses in up to 10% of treated patients. The immunomodulatory effects of this critical cytokine have been instrumental in the development of immunotherapy for melanoma and other cancers. However, with the advent of new therapies, its use as a front-line agent has come into question. Nonetheless, there is still a role for interleukin-2 as monotherapy, as well as in combination with other agents and in clinical trials. In this article, we review preclinical and clinical data regarding interleukin-2, its pharmacology and mechanism of action, its toxicity profile, and its use in ongoing and planned clinical trials. We also explore the future of this agent within the treatment landscape for melanoma.

    Other authors
    See publication
  • Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma.

    Journal of Clinical Investigation

    Multiple mechanisms have been described that confer BRAF inhibitor resistance to melanomas, yet the basis of this resistance remains undefined in a sizable portion of patient samples. Here, we characterized samples from a set of patients with melanoma that included individuals at baseline diagnosis, on BRAF inhibitor treatment, and with resistant tumors at both the protein and RNA levels. Using RNA and DNA sequencing, we identified known resistance-conferring mutations in 50% (6 of 12) of the…

    Multiple mechanisms have been described that confer BRAF inhibitor resistance to melanomas, yet the basis of this resistance remains undefined in a sizable portion of patient samples. Here, we characterized samples from a set of patients with melanoma that included individuals at baseline diagnosis, on BRAF inhibitor treatment, and with resistant tumors at both the protein and RNA levels. Using RNA and DNA sequencing, we identified known resistance-conferring mutations in 50% (6 of 12) of the resistant samples. In parallel, targeted proteomic analysis by protein array categorized the resistant samples into 3 stable groups, 2 of which were characterized by reactivation of MAPK signaling to different levels and 1 that was MAPK independent. The molecular relevance of these classifications identified in patients was supported by both mutation data and the similarity of resistance patterns that emerged during a co-clinical trial in a genetically engineered mouse (GEM) model of melanoma that recapitulates the development of BRAF inhibitor resistance. Additionally, we defined candidate biomarkers in pre- and early-treatment patient samples that have potential for predicting clinical responses. On the basis of these observations, we suggest that BRAF inhibitor-resistant melanomas can be actionably classified using protein expression patterns, even without identification of the underlying genetic alteration.

    See publication
  • The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies

    Nature Genetics

    Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP…

    Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy. Combined YAP and RAF or MEK inhibition was synthetically lethal not only in several BRAF-mutant tumor types but also in RAS-mutant tumors. Increased YAP in tumors harboring BRAF V600E was a biomarker of worse initial response to RAF and MEK inhibition in patients, establishing the clinical relevance of our findings. Our data identify YAP as a new mechanism of resistance to RAF- and MEK-targeted therapy. The findings unveil the synthetic lethality of combined suppression of YAP and RAF or MEK as a promising strategy to enhance treatment response and patient survival.

    See publication
  • Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

    Science Signaling

    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor)…

    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.

    See publication
  • Combining targeted therapy and immune checkpoint inhibitors in the treatment of metastatic melanoma

    Cancer Biology and Medicine

    Melanoma is the deadliest form of skin cancer and has an incidence that is rising faster than any other solid tumor. Metastatic melanoma treatment has considerably progressed in the past five years with the introduction of targeted therapy (BRAF and MEK inhibitors) and immune checkpoint blockade (anti-CTLA4, anti-PD-1, and anti-PD-L1). However, each treatment modality has limitations. Treatment with targeted therapy has been associated with a high response rate, but with short-term responses…

    Melanoma is the deadliest form of skin cancer and has an incidence that is rising faster than any other solid tumor. Metastatic melanoma treatment has considerably progressed in the past five years with the introduction of targeted therapy (BRAF and MEK inhibitors) and immune checkpoint blockade (anti-CTLA4, anti-PD-1, and anti-PD-L1). However, each treatment modality has limitations. Treatment with targeted therapy has been associated with a high response rate, but with short-term responses. Conversely, treatment with immune checkpoint blockade has a lower response rate, but with long-term responses. Targeted therapy affects antitumor immunity, and synergy may exist when targeted therapy is combined with immunotherapy. This article presents a brief review of the rationale and evidence for the potential synergy between targeted therapy and immune checkpoint blockade. Challenges and directions for future studies are also proposed.

    Other authors
    See publication
  • Universes Collide: Combining Immunotherapy with Targeted Therapy for Cancer.

    Cancer Discovery

    Abstract
    There have been significant advances in the past several years with regard to targeted therapy and immunotherapy for cancer. This is highlighted in melanoma, where treatment with targeted therapy (against the BRAF oncoprotein) results in responses in the majority of patients, although the duration of response is limited. In contrast, treatment with immunotherapy results in a lower response rate, but one that tends to be more durable. Insights about mechanisms of response and…

    Abstract
    There have been significant advances in the past several years with regard to targeted therapy and immunotherapy for cancer. This is highlighted in melanoma, where treatment with targeted therapy (against the BRAF oncoprotein) results in responses in the majority of patients, although the duration of response is limited. In contrast, treatment with immunotherapy results in a lower response rate, but one that tends to be more durable. Insights about mechanisms of response and potential synergy between these treatment strategies for melanoma are a focus of this review, with opportunities to extend these insights to the treatment of other cancers.
    SIGNIFICANCE:
    Two major advances in melanoma have occurred concurrently and involve treatment with targeted therapy and immune checkpoint blockade. However, each of these approaches has limitations with regard to overall response rates or duration of response. To address this, investigators have proposed combining these strategies, and this concept is being tested empirically in clinical trials. There is a scientific rationale supporting the combination of targeted therapy and immunotherapy, and these concepts are discussed herein. Cancer Discov; 4(12); 1-10.

    See publication
  • RAF Inhibitor Therapy Promotes Melanocytic Antigen Expression and Enhanced Anti-Tumor Immunity in Melanoma

    Journal of Pigmentary Disorders

    Melanoma remains a major cause of morbidity and mortality worldwide, however tremendous advances have been made in its treatment over the past several years. The discovery of genomic alterations that contribute to oncogenicity has ushered in a new era of molecularly-targeted therapy. Importantly, over half of melanomas harbor a mutation in the BRAF gene that leads to constitutive signaling down the MAPK pathway and multiple subsequent deleterious effects. Pharmacologic agents targeting this…

    Melanoma remains a major cause of morbidity and mortality worldwide, however tremendous advances have been made in its treatment over the past several years. The discovery of genomic alterations that contribute to oncogenicity has ushered in a new era of molecularly-targeted therapy. Importantly, over half of melanomas harbor a mutation in the BRAF gene that leads to constitutive signaling down the MAPK pathway and multiple subsequent deleterious effects. Pharmacologic agents targeting this mutation have been developed and several are now FDA-approved, having yielded high response rates to therapy although these are tempered by a short duration of response. Multiple molecular mechanisms of resistance have been identified, however until recently few studies had delved into the immune effects of BRAF inhibitors. The effect of BRAF inhibition on anti-tumor immunity will be discussed herein, as will potential implications of these findings in the treatment of melanoma.

    Other authors
  • Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and Oxidative Phosphorylation in melanoma.

    Cancer Research

    Metabolic heterogeneity is a key factor in cancer pathogenesis. We found that a subset of BRAF and NRAS mutant human melanomas resistant to the MEK inhibitor selumetinib displayed increased oxidative phosphorylation (OxPhos) mediated by the transcriptional co-activator PGC1 . Notably, all selumetinib-resistant cells with elevated OxPhos could be re-sensitized by co-treatment with the mTORC1/2 inhibitor AZD8055, whereas this combination was ineffective in resistant cell lines with low OxPhos. In…

    Metabolic heterogeneity is a key factor in cancer pathogenesis. We found that a subset of BRAF and NRAS mutant human melanomas resistant to the MEK inhibitor selumetinib displayed increased oxidative phosphorylation (OxPhos) mediated by the transcriptional co-activator PGC1 . Notably, all selumetinib-resistant cells with elevated OxPhos could be re-sensitized by co-treatment with the mTORC1/2 inhibitor AZD8055, whereas this combination was ineffective in resistant cell lines with low OxPhos. In both BRAF- and NRAS-mutant melanoma cells, MEK inhibition increased MITF expression which in turn elevated levels of PGC1 . In contrast, mTORC1/2 inhibition triggered cytoplasmic localization of MITF, decreasing PGC1 expression and inhibiting OxPhos. Analysis of tumor biopsies from BRAF-mutant melanoma patients progressing on BRAF inhibitor ± MEK inhibitor revealed that PGC1 levels were elevated in approximately half of the resistant tumors. Overall, our findings highlight the significance of OxPhos in melanoma and suggest that combined targeting of the MAPK and mTORC pathways may offer an effective therapeutic strategy to treat melanomas with this metabolic phenotype.

    See publication
  • Evidence of synergy with combined BRAF-targeted therapy and immune checkpoint blockade for metastatic melanoma

    OncoImmunology

    Significant advances in the treatment of melanoma have been made with BRAF-targeted therapy and immune checkpoint blockade, and these strategies are now being combined empirically in clinical trials. Potential synergy is demonstrated in murine models and in analysis of longitudinal biopsies from patients on trial, however important questions remain regarding toxicity, optimal timing and sequence of therapy.

    Other authors
  • Effective Innate and Adaptive Antimelanoma Immunity through Localized TLR7/8 Activation.

    Journal of Immunology

    Intratumoral immune activation can induce local and systemic antitumor immunity. Imiquimod is a cream-formulated, TLR7 agonist that is Food and Drug Administration approved for the treatment of nonmelanoma skin cancers, but it has limited activity against melanoma. We studied the antitumor activity and mechanism of action of a novel, injectable, tissue-retained TLR7/8 agonist, 3M-052, which avoids systemic distribution. Intratumoral administration of 3M-052 generated systemic antitumor immunity…

    Intratumoral immune activation can induce local and systemic antitumor immunity. Imiquimod is a cream-formulated, TLR7 agonist that is Food and Drug Administration approved for the treatment of nonmelanoma skin cancers, but it has limited activity against melanoma. We studied the antitumor activity and mechanism of action of a novel, injectable, tissue-retained TLR7/8 agonist, 3M-052, which avoids systemic distribution. Intratumoral administration of 3M-052 generated systemic antitumor immunity and suppressed both injected and distant, uninjected wild-type B16.F10 melanomas. Treated tumors showed that an increased level of CCL2 chemokines and infiltration of M1 phenotype-shifted macrophages, which could kill tumor cells directly through production of NO and CCL2, were essential for the antitumor activity of 3M-052. CD8+ T cells, B cells, type I IFN, IFN-γ, and plasmacytoid dendritic cells were contributed to efficient tumor suppression, whereas perforin, NK cells, and CD4 T cells were not required. Finally, 3M-052 therapy potentiated checkpoint blockade therapy with anti-CTLA-4 and anti-programmed death ligand 1 Abs, even when checkpoint blockade alone was ineffective. Our findings suggest that intratumoral treatment with 3M-052 is a promising approach for the treatment of cancer and establish a rational strategy and mechanistic understanding for combination therapy with intratumoral, tissue-retained TLR7/8 agonist and checkpoint blockade in metastatic cancer.

    See publication
  • The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNFα

    Cancer Discovery

    Recently, the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune microenvironment can act as a source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma growth factor that provides resistance to MAPK pathway…

    Recently, the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune microenvironment can act as a source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma growth factor that provides resistance to MAPK pathway inhibitors through the lineage transcription factor MITF (microphthalmia transcription factor). Most strikingly, in BRAF-mutant melanomas of patients and BRAFV600E melanoma allografts, MAPK pathway inhibitors increased the number of tumor-associated macrophages, and TNFα and MITF expression. Inhibiting TNFα signaling with IκB kinase inhibitors profoundly enhanced the efficacy of MAPK pathway inhibitors by targeting not only the melanoma cells but also the microenvironment. In summary, we identify the immune microenvironment as a novel source of resistance and reveal a new strategy to improve the efficacy of targeted therapy in melanoma.
    SIGNIFICANCE:
    This study identifies the immune microenvironment as a source of resistance to MAPK pathway inhibitors through macrophage-derived TNFα, and reveals that in patients on treatment this source becomes reinforced. Inhibiting IκB kinase enhances the efficacy of MAPK pathway inhibitors, which identifies this approach as a potential novel strategy to improve targeted therapy in melanoma.

    See publication
  • Clinical Profiling of BCL-2 Family Members in the Setting of BRAF Inhibition Offers a Rationale for Targeting De Novo Resistance Using BH3 Mimetics.

    PLoS One

    While response rates to BRAF inhibitiors (BRAFi) are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with…

    While response rates to BRAF inhibitiors (BRAFi) are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax) would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA), significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720) and BCL2 (navitoclax) inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance.

    See publication
  • Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade

    Cancer Immunology Research

    BRAF targeted therapy results in objective responses in the majority of patients, however responses are short lived (~6 months). In contrast, treatment with immune checkpoint inhibitors results in a lower response rate, but responses tend to be more durable. BRAF inhibition results in a more favorable tumor microenvironment in patients, with an increase in CD8+ T cell infiltrate and a decrease in immunosuppressive cytokines. However, there is also increased expression of the immunomodulatory…

    BRAF targeted therapy results in objective responses in the majority of patients, however responses are short lived (~6 months). In contrast, treatment with immune checkpoint inhibitors results in a lower response rate, but responses tend to be more durable. BRAF inhibition results in a more favorable tumor microenvironment in patients, with an increase in CD8+ T cell infiltrate and a decrease in immunosuppressive cytokines. However, there is also increased expression of the immunomodulatory molecule PD-L1, which may contribute to resistance. Based on these findings, we hypothesized that BRAF-targeted therapy may synergize with PD-1 pathway blockade to enhance anti-tumor immunity. To test this hypothesis, we developed a BRAF(V600E)/Pten-/- syngeneic tumor graft immunocompetent mouse model in which BRAF inhibition leads to a significant increase in intratumoral CD8+ T cell density and cytokine production, similar to effects of BRAF inhibition in patients. In this model CD8+ T cells were found to play a critical role in the therapeutic effect of BRAF inhibition. Administration of anti-PD-1 or anti-PD-L1 blockade together with BRAF inhibitor led to an enhanced response, significantly prolonging survival and slowing tumor growth, as well as significantly increasing the number and activity of tumor infiltrating lymphocytes. These results demonstrate synergy between combined BRAF-targeted therapy and immune checkpoint blockade. Although clinical trials combining these two strategies are ongoing, important questions remain. Further studies using this new melanoma model may provide therapeutic insights, including optimal timing and sequence of therapy.

    See publication
  • A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors.

    Cancer Discovery

    Most melanomas harbor oncogenic BRAFV600 mutations, which constitutively activate the MAP kinase (MAPK) pathway. Although MAPK pathway inhibitors show clinical benefit in BRAFV600-mutant melanoma, it remains incompletely understood why 10-20% of patients fail to respond. Here, we show that RAF inhibitor sensitive and resistant BRAFV600-mutant melanomas display distinct transcriptional profiles. Whereas most drug-sensitive cell lines and patient biopsies showed high expression and activity of…

    Most melanomas harbor oncogenic BRAFV600 mutations, which constitutively activate the MAP kinase (MAPK) pathway. Although MAPK pathway inhibitors show clinical benefit in BRAFV600-mutant melanoma, it remains incompletely understood why 10-20% of patients fail to respond. Here, we show that RAF inhibitor sensitive and resistant BRAFV600-mutant melanomas display distinct transcriptional profiles. Whereas most drug-sensitive cell lines and patient biopsies showed high expression and activity of the melanocytic lineage transcription factor MITF, intrinsically resistant cell lines and biopsies displayed low MITF expression but higher levels of NF-κB signaling and the receptor tyrosine kinase AXL. In vitro, these MITF-low/NF-κB-high melanomas were resistant to inhibition of RAF and MEK, singly or in combination, and ERK. Moreover, in cell lines, NF-κB activation antagonized MITF expression and induced both resistance marker genes and drug resistance. Thus, distinct cell states characterized by MITF or NF-κB activity may influence intrinsic resistance to MAPK pathway inhibitors in BRAFV600-mutant melanoma.

    See publication
  • PDGFRα up-regulation mediated by sonic hedgehog pathway activation leads to BRAF inhibitor resistance in melanoma cells with BRAF mutation.

    Oncotarget

    Control of BRAF(V600E) metastatic melanoma by BRAF inhibitor (BRAF-I) is limited by intrinsic and acquired resistance. Growth factor receptor up-regulation is among the mechanisms underlying BRAF-I resistance of melanoma cells. Here we demonstrate for the first time that PDGFRα up-regulation causes BRAF-I resistance. PDGFRα inhibition by PDGFRα-specific short hairpin (sh)RNA and by PDGFRα inhibitors restores and increases melanoma cells' sensitivity to BRAF-I in vitro and in vivo. This effect…

    Control of BRAF(V600E) metastatic melanoma by BRAF inhibitor (BRAF-I) is limited by intrinsic and acquired resistance. Growth factor receptor up-regulation is among the mechanisms underlying BRAF-I resistance of melanoma cells. Here we demonstrate for the first time that PDGFRα up-regulation causes BRAF-I resistance. PDGFRα inhibition by PDGFRα-specific short hairpin (sh)RNA and by PDGFRα inhibitors restores and increases melanoma cells' sensitivity to BRAF-I in vitro and in vivo. This effect reflects the inhibition of ERK and AKT activation which is associated with BRAF-I resistance of melanoma cells. PDGFRα up-regulation is mediated by Sonic Hedgehog Homolog (Shh) pathway activation which is induced by BRAF-I treatment. Similarly to PDGFRα inhibition, Shh inhibition by LDE225 restores and increases melanoma cells' sensitivity to BRAF-I. These effects are mediated by PDGFRα down-regulation and by ERK and AKT inhibition. The clinical relevance of these data is indicated by the association of PDGFRα up-regulation in melanoma matched biopsies of BRAF-I +/- MEK inhibitor treated patients with shorter time to disease progression and less tumor regression. These findings suggest that monitoring patients for early PDGFRα up-regulation will facilitate the identification of those who may benefit from the treatment with BRAF-I in combination with clinically approved PDGFRα or Shh inhibitors.

    See publication
  • MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition.

    Cancer Discovery

    Treatment of BRAF-mutant melanoma with combined dabrafenib and trametinib, which target RAF and the downstream MAP-ERK kinase (MEK)1 and MEK2 kinases, respectively, improves progression-free survival and response rates compared with dabrafenib monotherapy. Mechanisms of clinical resistance to combined RAF/MEK inhibition are unknown. We performed whole-exome sequencing (WES) and whole-transcriptome sequencing (RNA-seq) on pretreatment and drug-resistant tumors from five patients with acquired…

    Treatment of BRAF-mutant melanoma with combined dabrafenib and trametinib, which target RAF and the downstream MAP-ERK kinase (MEK)1 and MEK2 kinases, respectively, improves progression-free survival and response rates compared with dabrafenib monotherapy. Mechanisms of clinical resistance to combined RAF/MEK inhibition are unknown. We performed whole-exome sequencing (WES) and whole-transcriptome sequencing (RNA-seq) on pretreatment and drug-resistant tumors from five patients with acquired resistance to dabrafenib/trametinib. In three of these patients, we identified additional mitogen-activated protein kinase (MAPK) pathway alterations in the resistant tumor that were not detected in the pretreatment tumor, including a novel activating mutation in MEK2 (MEK2Q60P). MEK2Q60P conferred resistance to combined RAF/MEK inhibition in vitro, but remained sensitive to inhibition of the downstream kinase extracellular signal-regulated kinase (ERK). The continued MAPK signaling-based resistance identified in these patients suggests that alternative dosing of current agents, more potent RAF/MEK inhibitors, and/or inhibition of the downstream kinase ERK may be needed for durable control of BRAF-mutant melanoma.

    Other authors
    See publication
  • BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes

    OncoImmunology

    There have been significant advances with regard to BRAF-targeted therapies against metastatic melanoma. However, the majority of patients receiving BRAF inhibitors (BRAFi) manifest disease progression within a year. We have recently shown that melanoma patients treated with BRAFi exhibit an increase in melanoma-associated antigens and in CD8+ tumor-infiltrating lymphocytes in response to therapy. To characterize such a T-cell infiltrate, we analyzed the complementarity-determining region 3…

    There have been significant advances with regard to BRAF-targeted therapies against metastatic melanoma. However, the majority of patients receiving BRAF inhibitors (BRAFi) manifest disease progression within a year. We have recently shown that melanoma patients treated with BRAFi exhibit an increase in melanoma-associated antigens and in CD8+ tumor-infiltrating lymphocytes in response to therapy. To characterize such a T-cell infiltrate, we analyzed the complementarity-determining region 3 (CDR3) of rearranged T-cell receptor (TCR) β chain-coding genes in tumor biopsies obtained before the initiation of BRAFi and 10–14 d later. We observed an increase in the clonality of tumor-infiltrating lymphocytes in 7 of 8 patients receiving BRAFi, with a statistically significant 21% aggregate increase in clonality. Over 80% of individual T-cell clones detected after initiation of BRAFi treatment were new clones. Interestingly, the comparison of tumor infiltrates with clinical responses revealed that patients who had a high proportion of pre-existing dominant clones after the administration of BRAFi responded better to therapy than patients who had a low proportion of such pre-existing dominant clones following BRAFi. These data suggest that although the inhibition of BRAF in melanoma patients results in tumor infiltration by new lymphocytes, the response to treatment appears to be related to the presence of a pre-existing population of tumor-infiltrating T-cell clones.

    See publication
  • Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2.

    Cancer Discovery

    An emerging concept in melanoma biology is that of dynamic, adaptive phenotype switching, where cells switch from a highly proliferative, poorly invasive phenotype to a highly invasive, less proliferative one. This switch may hold significant implications not just for metastasis, but also for therapy resistance. We demonstrate that phenotype switching and subsequent resistance can be guided by changes in expression of receptors involved in the non-canonical Wnt5A signaling pathway, ROR1 and…

    An emerging concept in melanoma biology is that of dynamic, adaptive phenotype switching, where cells switch from a highly proliferative, poorly invasive phenotype to a highly invasive, less proliferative one. This switch may hold significant implications not just for metastasis, but also for therapy resistance. We demonstrate that phenotype switching and subsequent resistance can be guided by changes in expression of receptors involved in the non-canonical Wnt5A signaling pathway, ROR1 and ROR2. ROR1 and ROR2 are inversely expressed in melanomas and negatively regulate each other. Further, hypoxia initiates a shift of ROR1-positive melanomas to a more invasive, ROR2-positive phenotype. Notably, this receptor switch induces a 10-fold decrease in sensitivity to BRAF inhibitors. In melanoma patients treated with the BRAF inhibitor, Vemurafenib, Wnt5A expression correlates with clinical response and therapy resistance. These data highlight the fact that mechanisms that guide metastatic progression may be linked to those that mediate therapy resistance.

    See publication
  • Combining checkpoint inhibitors and BRAF-targeted agents against metastatic melanoma

    OncoImmunology

    The combination of BRAF-targeted agents with immune checkpoint inhibitors represents a recent advance in the treatment of melanoma, even though each of these therapeutic approaches alone has specific limitations. Increasing evidence suggests indeed the existence of a synergistic interaction between these therapeutic modalities.

    See publication
  • BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma.

    Clinical Cancer Research

    PURPOSE: To evaluate the effects BRAF inhibition on the tumor microenvironment in patients with metastatic melanoma.

    EXPERIMENTAL DESIGN: Thirty-five biopsies were collected from 16 patients with metastatic melanoma pretreatment (day 0) and at 10-14 days after initiation of treatment with either BRAF inhibitor alone (vemurafenib) or BRAF + MEK inhibition (dabrafenib + trametinib), and were also taken at time of progression. Biopsies were analyzed for melanoma antigens, T cell markers…

    PURPOSE: To evaluate the effects BRAF inhibition on the tumor microenvironment in patients with metastatic melanoma.

    EXPERIMENTAL DESIGN: Thirty-five biopsies were collected from 16 patients with metastatic melanoma pretreatment (day 0) and at 10-14 days after initiation of treatment with either BRAF inhibitor alone (vemurafenib) or BRAF + MEK inhibition (dabrafenib + trametinib), and were also taken at time of progression. Biopsies were analyzed for melanoma antigens, T cell markers, and immunomodulatory cytokines.

    RESULTS: Treatment with either BRAF inhibitor alone or BRAF + MEK inhibitor was associated with an increased expression of melanoma antigens and an increase in CD8+ T cell infiltrate. This was also associated with a decrease in immunosuppressive cytokines (IL-6 & IL-8) and an increase in markers of T cell cytotoxicity. Interestingly, expression of exhaustion markers TIM-3 and PD1 and the immunosuppressive ligand PDL1 were increased on treatment. A decrease in melanoma antigen expression and CD8 T cell infiltrate was noted at time of progression on BRAF inhibitor alone, and was reversed with combined BRAF and MEK inhibition.

    CONCLUSIONS: Together, this data suggests that treatment with BRAF inhibition enhances melanoma antigen expression and facilitates T cell cytotoxicity and a more favorable tumor microenvironment, providing support for potential synergy of BRAF-targeted therapy and immunotherapy. Interestingly, markers of T cell exhaustion and the immunosuppressive ligand PDL1 are also increased with BRAF inhibition, further implying that immune checkpoint blockade may be critical in augmenting responses to BRAF-targeted therapy in patients with melanoma.

    See publication
  • Toll-like receptor agonists and febrile-range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release.

    Journal of Biological Chemistry

    Heat shock protein (Hsp)-70 expression can be stimulated by febrile range temperature (FRT). Hsp70 has been shown to be elevated in serum of patients with sepsis and, when released from cells, extracellular Hsp70 exerts endotoxin-like effects through TLR (toll-like receptor)-4 receptors. Circulating TLR agonists and fever both persist for the first several days of sepsis and each can activate Hsp70 expression; however, the effect of combined exposure to FRT and TLR agonists on Hsp70 expression…

    Heat shock protein (Hsp)-70 expression can be stimulated by febrile range temperature (FRT). Hsp70 has been shown to be elevated in serum of patients with sepsis and, when released from cells, extracellular Hsp70 exerts endotoxin-like effects through TLR (toll-like receptor)-4 receptors. Circulating TLR agonists and fever both persist for the first several days of sepsis and each can activate Hsp70 expression; however, the effect of combined exposure to FRT and TLR agonists on Hsp70 expression is unknown. We found that concurrent exposure to FRT (39.5 degC) and agonists for TLR4 (LPS), TLR2 (Pam3Cys), or TLR3 (poly IC) synergized to increase Hsp70 expression and extracellular release in RAW264.7 macrophages. The increase in Hsp70 expression was associated with activation of p38 and ERK MAP kinases, phosphorylation of histone H3 and increased recruitment of HSF1 to the Hsp70 promoter. Pretreatment with the p38 MAPK inhibitor SB283580 but not the ERK pathway inhibitor UO126 significantly reduced Hsp70 gene modification and Hsp70 expression in RAW cells co-exposed to LPS and FRT. In mice challenged with intratracheal LPS and then exposed to febrile range hyperthermia (core temperature ~39.5 degC) Hsp70 levels in lung tissue and in cell-free lung lavage were increased compared with mice exposed to either hyperthermia or LPS alone. We propose a model of how enhanced Hsp70 expression and extracellular release in patients concurrently exposed to fever and TLR agonists may contribute to the pathogenesis of sepsis.

    See publication
  • BRAF Inhibition Increases Tumor Infiltration by T cells and Enhances the Anti-tumor Activity of Adoptive Immunotherapy in Mice.

    Clinical Cancer Research

    PURPOSE:
    Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors.
    EXPERIMENTAL DESIGN:
    BRAF-mutated human melanoma tumor…

    PURPOSE:
    Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors.
    EXPERIMENTAL DESIGN:
    BRAF-mutated human melanoma tumor cell lines transduced to express gp100 and H-2Db to allow recognition by gp100-specific pmel-1 T-cells were used as xenograft models to assess melanocyte differentiation antigen-independent enhancement of immune responses by BRAF inhibitor PLX4720. Luciferase expressing pmel-1 T cells were generated to monitor T-cell migration in vivo. The expression of vascular endothelial growth factor (VEGF) was determined by enzyme-linked immunosorbent assay, protein array and immunohistochemistry. Importantly, VEGF expression after BRAF inhibition was tested in a set of patient samples.
    RESULTS:
    We found that administration of PLX4720 significantly increased tumor infiltration of adoptively transferred T cells in vivo and enhanced the antitumor activity of ACT. This increased T-cell infiltration was primarily mediated by the ability of PLX4720 to inhibit melanoma tumor cell production of VEGF by reducing the binding of c-myc to the VEGF promoter. Furthermore, analysis of human melanoma patient tumor biopsies before and during BRAF inhibitor treatment showed downregulation of VEGF consistent with the pre-clinical murine model.
    CONCLUSIONS:
    These findings provide a strong rationale to evaluate the potential clinical application of combining BRAF inhibition with T-cell based immunotherapy for the treatment of melanoma patients.

    See publication
  • Elucidating distinct roles for NF1 in melanomagenesis.

    Cancer Discovery

    BRAF mutations play a well-established role in melanomagenesis; however, without additional genetic alterations tumor development is restricted by oncogene-induced senescence (OIS). Here we show that mutations in the NF1 tumor suppressor gene cooperate with BRAF mutations in melanomagenesis by preventing OIS. In a genetically engineered mouse model, Nf1 mutations suppress Braf-induced senescence, promote melanocyte hyperproliferation, and enhance melanoma development. Nf1 mutations function by…

    BRAF mutations play a well-established role in melanomagenesis; however, without additional genetic alterations tumor development is restricted by oncogene-induced senescence (OIS). Here we show that mutations in the NF1 tumor suppressor gene cooperate with BRAF mutations in melanomagenesis by preventing OIS. In a genetically engineered mouse model, Nf1 mutations suppress Braf-induced senescence, promote melanocyte hyperproliferation, and enhance melanoma development. Nf1 mutations function by deregulating both PI3K and ERK pathways. As such, Nf1/Braf mutant tumors are resistant to BRAF inhibitors but are sensitive to combined MEK/mTOR inhibition. Importantly, NF1 is mutated or suppressed in human melanomas that harbor concurrent BRAF mutations, NF1 ablation decreases the sensitivity of melanoma cell lines to BRAF inhibitors, and NF1 is lost in tumors from patients following treatment with these agents. Collectively, these studies provide mechanistic insight into how NF1 cooperates with BRAF mutations in melanoma and demonstrate that NF1-inactivation may impact responses to targeted therapies.

    See publication
  • Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma.

    Clinical Cancer Research

    PURPOSE:
    In this study, we assessed the specific role of BRAF(V600E) signaling in modulating the expression of immune regulatory genes in melanoma, in addition to analyzing downstream induction of immune suppression by primary human melanoma tumor-associated fibroblasts (TAF).
    EXPERIMENTAL DESIGN:
    Primary human melanocytes and melanoma cell lines were transduced to express WT or V600E forms of BRAF, followed by gene expression analysis. The BRAF(V600E) inhibitor vemurafenib was used to…

    PURPOSE:
    In this study, we assessed the specific role of BRAF(V600E) signaling in modulating the expression of immune regulatory genes in melanoma, in addition to analyzing downstream induction of immune suppression by primary human melanoma tumor-associated fibroblasts (TAF).
    EXPERIMENTAL DESIGN:
    Primary human melanocytes and melanoma cell lines were transduced to express WT or V600E forms of BRAF, followed by gene expression analysis. The BRAF(V600E) inhibitor vemurafenib was used to confirm targets in BRAF(V600E)-positive melanoma cell lines and in tumors from melanoma patients undergoing inhibitor treatment. TAF lines generated from melanoma patient biopsies were tested for their ability to inhibit the function of tumor antigen-specific T cells, before and following treatment with BRAF(V600E)-upregulated immune modulators. Transcriptional analysis of treated TAFs was conducted to identify potential mediators of T-cell suppression.
    RESULTS:
    Expression of BRAF(V600E) induced transcription of interleukin 1 alpha (IL-1α) and IL-1β in melanocytes and melanoma cell lines. Further, vemurafenib reduced the expression of IL-1 protein in melanoma cell lines and most notably in human tumor biopsies from 11 of 12 melanoma patients undergoing inhibitor treatment. Treatment of melanoma-patient-derived TAFs with IL-1α/β significantly enhanced their ability to suppress the proliferation and function of melanoma-specific cytotoxic T cells, and this inhibition was partially attributable to upregulation by IL-1 of COX-2 and the PD-1 ligands PD-L1 and PD-L2 in TAFs.
    CONCLUSIONS:
    This study reveals a novel mechanism of immune suppression sensitive to BRAF(V600E) inhibition, and indicates that clinical blockade of IL-1 may benefit patients with BRAF wild-type tumors and potentially synergize with immunotherapeutic interventions.

    See publication
  • Targeting the MAGE A3 antigen in pancreatic cancer.

    Surgery

    Pancreatic cancer is the fourth-leading cause of death in the United States and one of the most aggressive known malignancies. New and innovative advances in treatment are desperately needed. The development of immunotherapy for pancreatic cancer has been hampered by difficulty in generating tumor-reactive lymphocytes from resected specimens and by a lack of appropriate target antigens expressed on tumor cells. Innovative strategies have been developed with the use of peripheral blood…

    Pancreatic cancer is the fourth-leading cause of death in the United States and one of the most aggressive known malignancies. New and innovative advances in treatment are desperately needed. The development of immunotherapy for pancreatic cancer has been hampered by difficulty in generating tumor-reactive lymphocytes from resected specimens and by a lack of appropriate target antigens expressed on tumor cells. Innovative strategies have been developed with the use of peripheral blood lymphocytes that are genetically engineered to express T-cell receptors targeting common tumor antigens, including cancer-testis antigens, such as the MAGE-A3 antigen. Cancer-testis antigens pose excellent targets for immunotherapy because they are expressed in cancer and in the testis, an immune-privileged site, but have limited expression in normal tissue. An additional advantage in targeting cancer-testis antigens for immunotherapy is that their expression can be selectively up-regulated in tumor cells via epigenetic regulation with chromatin remodeling agents. Current interest in targeting cancer-testis antigens in pancreatic cancer is well-founded because cancer-testis antigens have been shown to be expressed in pancreatic cancer as potential targets for therapy. In our studies, we validated the expression pattern of cancer-testis antigens in resected specimens of pancreatic cancer and tested the hypothesis that treatment of pancreatic cancer cells with chromatin remodeling agents would render them more sensitive to antigen-specific T lymphocytes. We focused predominately on the MAGE-A3 antigen because it is highly expressed in pancreatic cancer, and several immunotherapeutic strategies are in clinical trials targeting this specific antigen. The results of these studies have important translational implications and provide the rationale for combined treatment with chromatin remodeling agents and immunotherapeutic approaches for pancreatic cancer.

    See publication
  • Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.

    Nature

    Drug resistance presents a challenge to the treatment of cancer patients. Many studies have focused on cell-autonomous mechanisms of drug resistance. By contrast, we proposed that the tumour micro-environment confers innate resistance to therapy. Here we developed a co-culture system to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 cancer cell lines to 35 anticancer drugs. We found that stroma-mediated resistance is common, particularly to…

    Drug resistance presents a challenge to the treatment of cancer patients. Many studies have focused on cell-autonomous mechanisms of drug resistance. By contrast, we proposed that the tumour micro-environment confers innate resistance to therapy. Here we developed a co-culture system to systematically assay the ability of 23 stromal cell types to influence the innate resistance of 45 cancer cell lines to 35 anticancer drugs. We found that stroma-mediated resistance is common, particularly to targeted agents. We characterized further the stroma-mediated resistance of BRAF-mutant melanoma to RAF inhibitors because most patients with this type of cancer show some degree of innate resistance. Proteomic analysis showed that stromal cell secretion of hepatocyte growth factor (HGF) resulted in activation of the HGF receptor MET, reactivation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-OH kinase (PI(3)K)-AKT signalling pathways, and immediate resistance to RAF inhibition. Immunohistochemistry experiments confirmed stromal cell expression of HGF in patients with BRAF-mutant melanoma and showed a significant correlation between HGF expression by stromal cells and innate resistance to RAF inhibitor treatment. Dual inhibition of RAF and either HGF or MET resulted in reversal of drug resistance, suggesting RAF plus HGF or MET inhibitory combination therapy as a potential therapeutic strategy for BRAF-mutant melanoma. A similar resistance mechanism was uncovered in a subset of BRAF-mutant colorectal and glioblastoma cell lines. More generally, this study indicates that the systematic dissection of interactions between tumours and their micro-environment can uncover important mechanisms underlying drug resistance.

    See publication
  • Histone deacetylase 6 (HDAC6) deacetylates survivin for its nuclear export in breast cancer

    Journal of Biological Chemistry

    Survivin is an oncogenic protein that is highly expressed in breast cancer and has a dual function that is dependent on its subcellular localization. In the cytosol, survivin blocks programmed cell death by inactivating caspase proteins; however, in the nucleus it facilitates cell division by regulating chromosomal movement and cytokinesis. In prior work, we showed that survivin is acetylated by CREB-binding protein (CBP), which restricts its localization to the nuclear compartment and thereby…

    Survivin is an oncogenic protein that is highly expressed in breast cancer and has a dual function that is dependent on its subcellular localization. In the cytosol, survivin blocks programmed cell death by inactivating caspase proteins; however, in the nucleus it facilitates cell division by regulating chromosomal movement and cytokinesis. In prior work, we showed that survivin is acetylated by CREB-binding protein (CBP), which restricts its localization to the nuclear compartment and thereby inhibits its anti-apoptotic function. Here, we identify histone deacetylase 6 (HDAC6) as responsible for abrogating CBP-mediated survivin acetylation in the estrogen receptor (ER)-positive breast cancer cell line, MCF-7. HDAC6 directly binds survivin, an interaction that is enhanced by CBP. In quiescent breast cancer cells in culture and in malignant tissue sections from ER+ breast tumors, HDAC6 localizes to a perinuclear region of the cell, undergoing transport to the nucleus following CBP activation where it then deacetylates survivin. Genetically modified mouse embryonic fibroblasts that lack mhdac6 localize survivin predominantly to the nuclear compartment, whereas wild-type mouse embryonic fibroblasts localize survivin to distinct cytoplasmic structures. Together, these data imply that HDAC6 deacetylates survivin to regulate its nuclear export, a feature that may provide a novel target for patients with ER+ breast cancer.

    See publication
  • Rapamycin induces the anti-apoptotic protein survivin in neuroblastoma

    Int J Biochem Mol Biol.

    Neuroblastoma is the most common solid tumor of infancy, accounting for 15% of all cancer cell deaths in children. Expression of the anti-apoptotic protein survivin in these tumors correlates with poor prognostic features and resistance to therapy. The mammalian target of rapamycin (mTOR) protein is being explored as a potential therapeutic target in patients with this disease. The objective of this study was to test the hypothesis that rapamycin regulates survivin expression and function in…

    Neuroblastoma is the most common solid tumor of infancy, accounting for 15% of all cancer cell deaths in children. Expression of the anti-apoptotic protein survivin in these tumors correlates with poor prognostic features and resistance to therapy. The mammalian target of rapamycin (mTOR) protein is being explored as a potential therapeutic target in patients with this disease. The objective of this study was to test the hypothesis that rapamycin regulates survivin expression and function in neuroblastoma cells. To explore this hypothesis, we treated two different neuroblastoma lines (NB7, NB8) and a well-characterized control lung cancer cell line, A549, with varying doses of rapamycin (0.1-10μM) for serial time points (2-48 hours). RNA and protein expression levels were then evaluated by quantitative RT-PCR and western blotting, respectively. Cell proliferation and apoptosis were assayed by WST-1 and Annexin V. The results showed a rapamycin-dependent increase in survivin mRNA and protein levels in the neuroblastoma cell lines in a dose- and time-dependent fashion, while a decrease in these levels was observed in control cells. Rapamycin inhibited cell proliferation in both A549 and neuroblastoma cells however neuroblastoma cells had less apoptosis than A549 cells (9% vs. 20%). In summary, our results indicate that rapamycin induces expression of the anti-apoptotic protein survivin in neuroblastoma cells which may protect these cells from programmed cell death. Induction of survivin by rapamycin could therefore be a potential mechanism of neuroblastoma tumor cell resistance and rapamycin may not be an effective therapeutic agent for these tumors.

    See publication
  • Acetylation Directs Survivin Nuclear Localization to Repress STAT3 Oncogenic Activity.

    Journal of Biological Chemistry

    The multiple functions of the oncofetal protein survivin are dependent on its selective expression patterns within immunochemically distinct subcellular pools. The mechanism by which survivin localizes to these compartments, however, is only partly understood. Here we show that nuclear accumulation of survivin is promoted by CREB-binding protein (CBP)-dependent acetylation on lysine 129 (129K, Lys-129). We demonstrate a mechanism by which survivin acetylation at this position results in its…

    The multiple functions of the oncofetal protein survivin are dependent on its selective expression patterns within immunochemically distinct subcellular pools. The mechanism by which survivin localizes to these compartments, however, is only partly understood. Here we show that nuclear accumulation of survivin is promoted by CREB-binding protein (CBP)-dependent acetylation on lysine 129 (129K, Lys-129). We demonstrate a mechanism by which survivin acetylation at this position results in its homodimerization, while deacetylation promotes the formation of survivin monomers that heterodimerize with CRM1 and facilitate its nuclear export. Using proteomic analysis, we identified the oncogenic transcription factor STAT3 as a binding partner of nuclear survivin. We show that acetylated survivin binds to the N-terminal transcriptional activation domain of the STAT3 dimer and represses STAT3 transactivation of target gene promoters. Using multiplex PCR and DNA sequencing, we identified a single-nucleotide polymorphism (A → G) at Lys-129 that exists as a homozygous mutation in a neuroblastoma cell line and corresponds with a defect in survivin nuclear localization. Our results demonstrate that the dynamic equilibrium between survivin acetylation and deacetylation at amino acid 129 determines its interaction with CRM1, its subsequent subcellular localization, and its ability to inhibit STAT3 transactivation, providing a potential route for therapeutic intervention in STAT3-dependent tumors.

    See publication
  • Febrile range temperature represses TNF-alpha gene expression in LPS-stimulated macrophages by selectively blocking recruitment of Sp1 to the TNF-alpha promoter.

    Cell, Stress, and Chaperones

    We have previously shown that exposure to febrile-range temperature (FRT, 39.5 degrees C) reduces LPS-induced TNF-alpha transcription in mouse macrophages through at least two mechanisms: (1) by directly recruiting heat shock factor-1 (HSF-1) to a heat shock response element present in the TNF-alpha 5'-UTR and (2) by markedly reducing LPS-induced recruitment of NFkappaB-p65 to the kappaB enhancer (at -510) in the TNF-alpha gene. In the present study, we used EMSA and chromatin…

    We have previously shown that exposure to febrile-range temperature (FRT, 39.5 degrees C) reduces LPS-induced TNF-alpha transcription in mouse macrophages through at least two mechanisms: (1) by directly recruiting heat shock factor-1 (HSF-1) to a heat shock response element present in the TNF-alpha 5'-UTR and (2) by markedly reducing LPS-induced recruitment of NFkappaB-p65 to the kappaB enhancer (at -510) in the TNF-alpha gene. In the present study, we used EMSA and chromatin immunoprecipitation assays to further analyze the complex effects of FRT on the recruitment of transcription factors and co-activators on the TNF-alpha gene in LPS-stimulated RAW 264.7 mouse macrophages. Our results showed that in FRT-exposed RAW cells, HSF-1 was recruited only to the 5'-UTR site, and no additional interaction was evident in the TNF-alpha gene up to 1,300 nt upstream of the transcription start site. Similarly, FRT exposure selectively reduced LPS-induced NFkappaB-p65 recruitment to the kappaB enhancer site at -510 without affecting the other three kappaB enhancer sites present in the TNF-alpha 5'-flanking sequence. Finally, we found that FRT exposure abrogated LPS-stimulated recruitment of Sp1 to the proximal TNF-alpha promoter without any change in associated histone H3 acetylation around the TNF-alpha promoter and despite a marked increase in the total intra-nuclear Sp1 DNA binding activity. In conclusion, our studies further emphasize the complex and redundant control of TNF-alpha transcription and identify additional potential mechanisms through which FRT exposure may reduce TNF-alpha expression by selectively modifying gene-specific recruitment of transcription factors to the proximal TNF-alpha promoter.

    See publication
  • EGF regulates survivin stability through the Raf-1/ERK pathway in insulin-secreting pancreatic β-cells.

    BMC Molecular Biology

    BACKGROUND: Postnatal expansion of the pancreatic β-cell mass is required to maintain glucose homeostasis immediately after birth. This β-cell expansion is regulated by multiple growth factors, including glucose, insulin, insulin-like growth factor (IGF-1) and epidermal growth factor (EGF). These mitogens signal through several downstream pathways (AKT, ERK, STAT3, and JNK) to regulate the survival and proliferation of β-cells. Survivin, an oncofetal protein with both pro-proliferative and…

    BACKGROUND: Postnatal expansion of the pancreatic β-cell mass is required to maintain glucose homeostasis immediately after birth. This β-cell expansion is regulated by multiple growth factors, including glucose, insulin, insulin-like growth factor (IGF-1) and epidermal growth factor (EGF). These mitogens signal through several downstream pathways (AKT, ERK, STAT3, and JNK) to regulate the survival and proliferation of β-cells. Survivin, an oncofetal protein with both pro-proliferative and anti-apoptotic properties, is a known transcriptional target of both IGF-1 and EGF in cancer cells. Here, we analyzed the effects of the β-cell mitogens IGF-1 and EGF on survivin regulation in the established pancreatic β-cell model cell lines, MIN6 and INS-1 and in primary mouse islets.

    RESULTS: In pancreatic β-cells, treatment with glucose, insulin, or EGF increased survivin protein levels at early time points. By contrast, no significant effects on survivin were observed following IGF-1 treatment. EGF-stimulated increases in survivin protein were abrogated in the presence of downstream inhibitors of the Raf-1/MEK/ERK pathway. EGF had no significant effect on survivin transcription however it prolonged the half-life of the survivin protein and stabilized survivin protein levels by inhibiting surviving ubiquitination.

    CONCLUSIONS: This study defines a novel mechanism of survivin regulation by EGF through the Raf-1/MEK/ERK pathway in pancreatic β-cells, via prolongation of survivin protein half-life and inhibition of the ubiquitin-mediated proteasomal degradation pathway. This mechanism may be important for regulating β-cell expansion after birth.

    See publication
  • Febrile-range temperature modifies cytokine gene expression in LPS-stimulated macrophages by differentially modifying NF-{kappa}B recruitment to cytokine gene promoters.

    American Journal of Physiology: Cell Physiology

    We previously showed that exposure to febrile-range temperatures (FRT, 39.5-40 degrees C) reduces LPS-induced TNF-alpha expression, in part through the direct interaction of heat shock factor-1 (HSF1) with the TNF-alpha gene promoter. However, it is not known whether exposure to FRT also modifies more proximal LPS-induced signaling events. Using HSF1-null mice, we confirmed that HSF1 is required for FRT-induced repression of TNF-alpha in vitro by LPS-stimulated bone marrow-derived macrophages…

    We previously showed that exposure to febrile-range temperatures (FRT, 39.5-40 degrees C) reduces LPS-induced TNF-alpha expression, in part through the direct interaction of heat shock factor-1 (HSF1) with the TNF-alpha gene promoter. However, it is not known whether exposure to FRT also modifies more proximal LPS-induced signaling events. Using HSF1-null mice, we confirmed that HSF1 is required for FRT-induced repression of TNF-alpha in vitro by LPS-stimulated bone marrow-derived macrophages and in vivo in mice challenged intratracheally with LPS. Exposing LPS-stimulated RAW 264.7 mouse macrophages to FRT reduced TNF-alpha expression while increasing IL-1beta expression despite the two genes sharing a common myeloid differentiation protein-88 (MyD88)-dependent pathway. Global activation of the three LPS-induced signaling intermediates that lead to cytokine gene expression, ERK and p38 MAPKs and NF-kappaB, was not affected by exposing RAW 264.7 cells to FRT as assessed by ERK and p38 phosphorylation and NF-kappaB in vitro DNA-binding activity and activation of a NF-kappaB-dependent synthetic promoter. However, chromatin immunoprecipitation (ChIP) analysis demonstrated that exposure to FRT reduced LPS-induced recruitment of NF-kappaB p65 to the TNF-alpha promoter while simultaneously increasing its recruitment to the IL-1beta promoter. These data suggest that FRT exerts its effects on cytokine gene expression in a gene-specific manner through distal effects on promoter activation rather than proximal receptor activation and signal transduction.

    See publication
  • Heat shock co-activates interleukin-8 transcription.

    American Journal of Respiratory Cell and Molecular Biology

    The heat shock (HS) response is a phylogenetically ancient cellular response to stress, including heat, that shifts gene expression to a set of conserved HS protein (HSP) genes. In our earlier studies, febrile-range hyperthermia (FRH) not only activated HSP gene expression, but also increased expression of CXC chemokines in mice, leading us to hypothesize that the CXC chemokine family of genes might be HS-responsive. To address this hypothesis we analyzed the effect of HS on the expression of…

    The heat shock (HS) response is a phylogenetically ancient cellular response to stress, including heat, that shifts gene expression to a set of conserved HS protein (HSP) genes. In our earlier studies, febrile-range hyperthermia (FRH) not only activated HSP gene expression, but also increased expression of CXC chemokines in mice, leading us to hypothesize that the CXC chemokine family of genes might be HS-responsive. To address this hypothesis we analyzed the effect of HS on the expression of IL-8/CXCL-8, a member of the human CXC family of ELR(+) chemokines. HS markedly enhanced TNF-alpha-induced IL-8 secretion in human A549 respiratory epithelial-like cells and in primary human small airway epithelial cells. IL-8 mRNA was also up-regulated by HS, but the stability of IL-8 mRNA was not affected. TNF-alpha-induced reporter activity of an IL-8 promoter construct IL8(-1471/+44)-luc stably transfected in A549 cells was also enhanced by HS. Electrophoretic mobility and chromatin immunoprecipitation assays showed that the stress-activated transcription factor heat shock factor-1 (HSF-1) binds to at least two putative heat shock response elements (HSE) present in the IL-8 promoter. Deletional reporter constructs lacking either one or both of these sites showed reduced HS responsiveness. Furthermore, depletion of HSF-1 using siRNA also reduced the effects HS on TNF-alpha-induced IL-8 expression, demonstrating that HSF-1 could also act to regulate IL-8 gene transcription. We speculate that during evolution the CXC chemokine genes may have co-opted elements of the HS response to amplify their expression and enhance neutrophil delivery during febrile illnesses.

    See publication
  • Macrophages produce TGF-beta-induced (beta-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts.

    Journal of Immunology

    Phagocytic clearance of apoptotic cells by macrophages is an essential part in the resolution of inflammation. It coincides with activation of repair mechanisms, including accumulation of extracellular matrix. A possible link between clearance of apoptotic debris and accumulation of extracellular matrix has not been investigated. Production of collagen was measured in primary fibroblasts cocultured with macrophages. Ingestion of apoptotic cells by monocyte-derived macrophages led to…

    Phagocytic clearance of apoptotic cells by macrophages is an essential part in the resolution of inflammation. It coincides with activation of repair mechanisms, including accumulation of extracellular matrix. A possible link between clearance of apoptotic debris and accumulation of extracellular matrix has not been investigated. Production of collagen was measured in primary fibroblasts cocultured with macrophages. Ingestion of apoptotic cells by monocyte-derived macrophages led to up-regulation of collagen. Direct contact between macrophages and fibroblasts was not required for collagen up-regulation. Macrophages produced TGF-beta following ingestion of apoptotic cells, but the levels of this cytokine were lower than those required for a significant up-regulation of collagen. Simultaneously, the levels of TGF-beta-induced (TGFBI), or keratoepithelin/BIGH3, mRNA and protein were increased. In contrast, primary alveolar macrophages stimulated collagen production without exposure to apoptotic cells; there was no further increase in the levels of TGFBI, mRNA or protein, or collagen after ingestion of apoptotic cells. Stimulation of fibroblasts with TGFBI down-regulated MMP14 levels, decreased DNA binding by p53, increased DNA binding by PU.1, and up-regulated collagen protein but not mRNA levels. Overexpression of MMP14 or p53, or small interfering RNA-mediated inhibition of PU.1 led to an increase in MMP14 and a decline in collagen levels, whereas small interfering RNA-mediated inhibition of MMP14 led to elevation of collagen levels. In conclusion, monocyte-derived but not alveolar macrophages produce TGFBI following ingestion of apoptotic cells, leading to the down-regulation of MMP14 levels in fibroblasts through a mechanism involving p53 and PU.1, and to subsequent accumulation of collagen.

    See publication

Honors & Awards

  • Emerging Scientist Award

    8th Annual FlowTex Cytometry Conference

    I was awarded the Emerging Scientist Award for a submitted abstract entitled "Differential patterns of leukocyte infiltrate at progression on targeted therapy versus immune checkpoint blockade for melanoma" in which I was also awarded a oral presentation at the 8th Annual FlowTex Cytometry Conference.

  • AACR-Millennium Scholar-in-Training Awards

    American Association for Cancer Research

    I was awarded a travel award for a submitted abstract entitled "BRAF inhibition is associated with increased clonality of tumor infiltrating lymphocytes" in which I was also awarded an oral presentation at AACR's Annual Meeting 2013.

View Zachary’s full profile

  • See who you know in common
  • Get introduced
  • Contact Zachary directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Add new skills with these courses