MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

CONCURSO PÚBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA (CP-CEM/2016)

ENGENHARIA ELETRÔNICA

PROVA ESCRITA DISCURSIVA INSTRUÇÕES GERAIS

- 1- A duração da prova será de 05 horas e o tempo não será prorrogado. Ao término da prova, entregue o caderno ao Fiscal sem retirar os grampos de nenhuma folha.
- 2- Responda às questões utilizando caneta esferográfica azul ou preta. Não serão consideradas respostas e desenvolvimento da questão a lápis. Confira o número de páginas de cada parte da prova.
- 3- Só comece a responder à prova ao ser dada a ordem para iniciá-la, interrompendo a sua execução no momento em que for determinado.
- 4- O candidato deverá preencher os campos:
 - NOME DO CANDIDATO: NÚMÉRO DA INSCRIÇÃO e DV.
- 5- Iniciada a prova, não haverá mais esclarecimentos. O candidato somente poderá deixar o seu lugar, devidamente autorizado pelo Supervisor/Fiscal, para se retirar definitivamente do recinto de prova ou, nos casos a seguir especificados, devidamente acompanhado por militar designado para esse fim: atendimento médico por pessoal designado pela Marinha do Brasil; fazer uso de banheiro e casos de força maior, comprovados pela supervisão do certame, sem que aconteça saída da área circunscrita para a realização da prova.

Em nenhum dos casos haverá prorrogação do tempo destinado à realização da prova e, em caso de retirada definitiva do recinto de prova, esta será corrigida até onde foi solucionada.

- 6- A solução deve ser apresentada nas páginas destinadas a cada questão.
- 7- Não é permitida a consulta a livros ou apontamentos.
- 8- A prova não poderá conter qualquer marca identificadora ou assinatura, o que implicará na atribuição de nota zero.
- 9- Será eliminado sumariamente do concurso e as suas provas não serão levadas em consideração, o candidato que:
 - a) der ou receber auxílio para a execução de qualquer prova;
 - b) utilizar-se de qualquer material não autorizado;
 - c) desrespeitar qualquer prescrição relativa à execução das provas:
 - d) escrever o nome ou introduzir marcas identificadoras noutro lugar que não o determinado para esse fim; e
 - e) cometer ato grave de indisciplina.

10- É PERMITIDO O USO DE RÉGUA SIMPLES.

NÃO DESTACAR A PARTE INFERIOR

RUBRICA DO PROFESSOR	ESCALA DE	NOTA	USODA DEnsM
	000A080		

SNCHIDOS	→	CONCURSO:CP-CEM/2014 NOME DO CANDIDATO:					
	CAMPOS PREEN PELOS CANDI		N°DAINS CRIÇÃO	DV	ESCALADE 000 A080	NOTA	USODADEnsM

CONHECIMENTOS PROFISSIONAIS (VALOR: 80 PONTOS)

1ª QUESTÃO (8 pontos)

Observe as figuras a seguir.

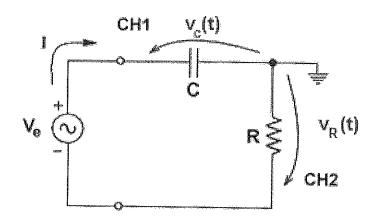


Figura A - Circuito RC alimentado por um gerador de sinal senoidal

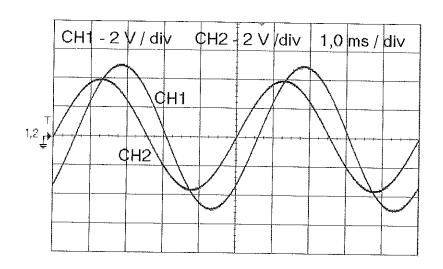


Figura B - Resposta do circuito RC

O circuito da figura A é composto por um gerador de sinal senoidal não aterrado, um resistor R de 10,08 $k\Omega$ e um capacitor C de 94,92 nF ligados em série. O gerador de sinal fornece um sinal senoidal, off-set nulo e com frequência de 1,0 kHz ao circuito RC. Um osciloscópio digital foi conectado ao circuito medindo as tensões V_{C} no capacitor C (canal 1 - CH1) e V_{R} no resistor R (canal 2 - CH2). As tensões observadas no osciloscópio, para os dois canais, estão representadas na figura B.

A partir das figuras A e B, determine:

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 1ª questão

- a) O valor da corrente eficaz (rms) no resistor R. (3 pontos)
- b) A defasagem ϕ (em graus) entre a tensão Vc e V_R. (2 pontos)
- c) A potência dissipada pelo circuito, assumindo componentes ideais. (3 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

CONCURSO PÚBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA (CP-CEM/2016)

ENGENHARIA ELETRÔNICA

PROVA ESCRITA DISCURSIVA INSTRUÇÕES GERAIS

- 1- A duração da prova será de 05 horas e o tempo não será prorrogado. Ao término da prova, entregue o caderno ao Fiscal sem retirar os grampos de nenhuma folha.
- 2- Responda às questões utilizando caneta esferográfica azul ou preta. Não serão consideradas respostas e desenvolvimento da questão a lápis. Confira o número de páginas de cada parte da prova.
- 3- Só comece a responder à prova ao ser dada a ordem para iniciá-la, interrompendo a sua execução no momento em que for determinado.
- 4- O candidato deverá preencher os campos:
 - NOME DO CANDIDATO; NÚMERO DA INSCRIÇÃO e DV.
- 5- Iniciada a prova, não haverá mais esclarecimentos. O candidato somente poderá deixar o seu lugar, devidamente autorizado pelo Supervisor/Fiscal, para se retirar definitivamente do recinto de prova ou, nos casos a seguir especificados, devidamente acompanhado por militar designado para esse fim: atendimento médico por pessoal designado pela Marinha do Brasil; fazer uso de banheiro e casos de força maior, comprovados pela supervisão do certame, sem que aconteça saída da área circunscrita para a realização da prova.

Em nenhum dos casos haverá prorrogação do tempo destinado à realização da prova e, em caso de retirada definitiva do recinto de prova, esta será corrigida até onde foi solucionada.

- 6- A solução deve ser apresentada nas páginas destinadas a cada questão.
- 7- Não é permitida a consulta a livros ou apontamentos.
- 8- A prova não poderá conter qualquer marca identificadora ou assinatura, o que implicará na atribuição de nota zero.
- 9- Será eliminado sumariamente do concurso e as suas provas não serão levadas em consideração, o candidato que:
 - a) der ou receber auxílio para a execução de qualquer prova;
 - b) utilizar-se de qualquer material não autorizado;
 - c) desrespeitar qualquer prescrição relativa à execução das provas;
 - d) escrever o nome ou introduzir marcas identificadoras noutro lugar que não o determinado para esse fim; e
 - e) cometer ato grave de indisciplina.

10- É PERMITIDO O USO DE RÉGUA SIMPLES.

NÃO DESTACAR A PARTE INFERIOR

RUBRICA DO PROFESSOR	ESCALA DE	NOTA	USODA DEnsM
	000A080		·

MPOS PREENCHIDOS PELOS CANDIDATOS	CONCURSO:CP-CEM/2014 NOME DO CANDIDATO:					
		N°DAINSCRIÇÃO	DV	ESCALADE	NOTA	USODADEnsM
CAMI	>			000 A080		

CONHECIMENTOS PROFISSIONAIS (VALOR: 80 PONTOS)

1ª QUESTÃO (8 pontos)

Observe as figuras a seguir.

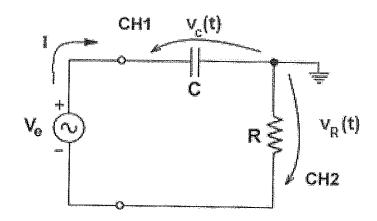


Figura A - Circuito RC alimentado por um gerador de sinal senoidal

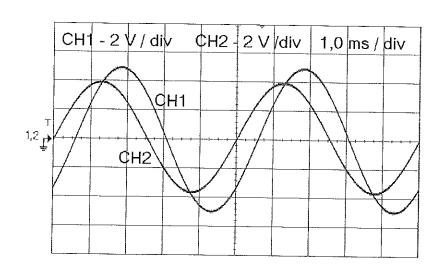


Figura B - Resposta do circuito RC

O circuito da figura A é composto por um gerador de sinal senoidal não aterrado, um resistor R de 10,08 $k\Omega$ e um capacitor C de 94,92 nF ligados em série. O gerador de sinal fornece um sinal senoidal, off-set nulo e com frequência de 1,0 kHz ao circuito RC. Um osciloscópio digital foi conectado ao circuito medindo as tensões $V_{\rm C}$ no capacitor C (canal 1 - CH1) e $V_{\rm R}$ no resistor R (canal 2 - CH2). As tensões observadas no osciloscópio, para os dois canais, estão representadas na figura B.

A partir das figuras A e B, determine:

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 1ª questão

- a) O valor da corrente eficaz (rms) no resistor R. (3 pontos)
- b) A defasagem ϕ (em graus) entre a tensão Vc e $V_{R}\text{.}$ (2 pontos)
- c) A potência dissipada pelo circuito, assumindo componentes ideais. (3 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 1ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

A figura a seguir representa um circuito eletrônico.

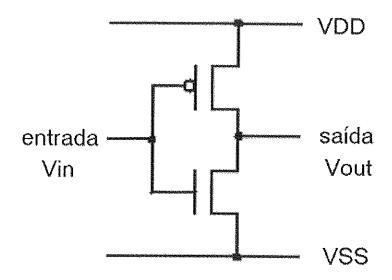


Figura - Esquema elétrico de um circuito eletrônico Com base na figura acima, pede-se:

- a) Quais são os componentes utilizados nesse circuito? (2 pontos)
- b) Qual é a finalidade desse circuito? (2 pontos)
- c) Descreva o seu funcionamento. (2 pontos)
- d) Faça a curva característica Vin x Vout do circuito proposto. (2 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

4 de 27

Continuação da 2ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Continuação da 2ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

Observe a figura a seguir.

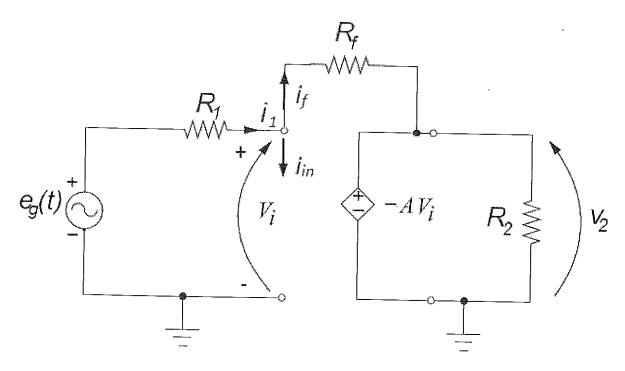


Figura - Circuito elétrico com um gerador vinculado

A figura acima representa um circuito elétrico contendo um gerador de sinais acoplado a um gerador de tensão vinculado (controlado pela tensão V_i). Sendo assim, pede-se:

- a) Explique o funcionamento do circuito. (1 ponto)
- b) Qual é a finalidade desse circuito? (2 pontos)
- c) Explique, em detalhes, a função dos resistores R_1 , R_2 e $R_{\rm f}$. (2 pontos)
- d) Mostre que a razão G = V_2 / e_g é dada por: $G = \frac{v_2}{e_g} = -\frac{R_f}{R_1} \left(\frac{1}{1 + \frac{1}{A} \left(1 + \frac{R_f}{R_1} \right)} \right)$

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 3ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016 Profissão: ENGENHARIA ELETRÔNICA

Observe as figuras a seguir.

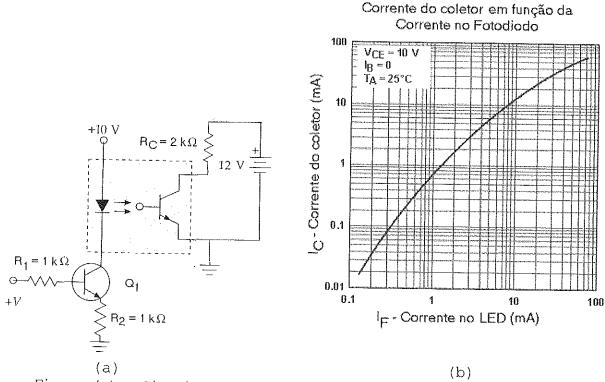


Figura (a) - Circuito com acoplador óptico com LED - fototransistor e Figura (b) - Curva estática do acoplador óptico

A figura (a) acima mostra um circuito eletrônico contendo vários componentes passivos e ativos e, dentro do quadro tracejado, um acoplador óptico com um LED e um fototransistor. A figura (b) mostra a curva estática para o acoplador óptico. A partir do circuito proposto,

- a) Qual deve ser a tensão + V a ser aplicada em R_1 para obter uma corrente no LED igual a 3,0 mA? Adote o valor 10 para o ganho do transistor Q_1 . Descreva os cálculos usados para responder esse item. (3 pontos)
- b) Para uma corrente do LED de 3,0 mA, qual deve ser a corrente no fototransistor? Justifique sua resposta descrevendo seu raciocínio. (3 pontos)
- c) Explique a finalidade do circuito proposto e mostre 3 (três) aplicações baseadas na sua explicação. (2 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 4ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 4ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

Um circuito eletrônico é montado usando-se um resistor R de 1 k Ω e um diodo Zener de Vzo = 3,3 V. Esse circuito é alimentado por uma fonte de tensão controlada de 4,6 V em relação à terra. O resistor está conectado entre o terminal positivo da fonte e o anodo do diodo Zener. O terminal catodo do zener está aterrado. Sendo assim, faça o que se pede.

- a) O que é um diodo Zener e qual é a sua principal função nos circuitos eletrônicos em geral? (1 pontos)
- b) Explique o seu funcionamento. (2 pontos)
- c) Desenhe o circuito descrito indicando o anodo e o catodo do diodo Zener. (1 pontos)
- d) O diodo Zener no circuito descrito está funcionando como um regulador de tensão? Justifique sua resposta. (2 pontos)
- e) Determine a corrente que passa no resistor R nas seguintes condições com o diodo Zener:
 - el) na configuração descrita no texto; (1 ponto)
 - e2) na configuração invertendo o diodo Zener (trocando o anodo pelo catodo). (1 ponto)

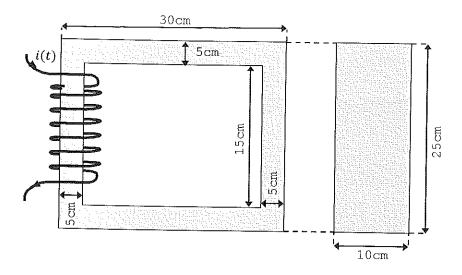
Dados do diodo Zener:

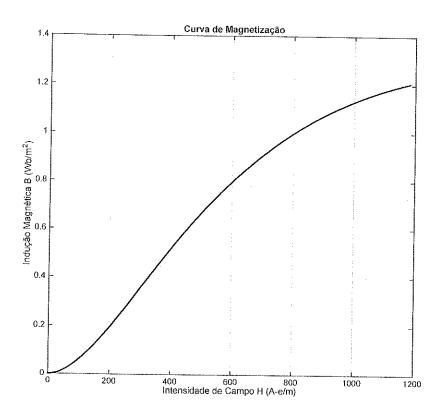
diretamente polarizado: Vz = 0,6 (V)

reversamente polarizado: $Vz = Vzo + rz * Iz (V); rz = 100 (\Omega) e Iz = 6,0 (mA)$

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA


Continuação da 5ª questão


Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Continuação da 5ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Observe a figura a seguir.

O reator da figura acima foi confeccionado com um material cuja curva de magnetização é apresentada no gráfico acima. Considere que o fluxo de dispersão fora da estrutura é desprezível.

Sendo assim, faça o que se pede.

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 6ª questão

- a) Considere que o enrolamento tenha 300 espiras. Qual deve ser a corrente imposta na bobina para se estabelecer um fluxo magnético de $5~\text{mWb/m}^2$. Calcule a resposta no sistema de unidades SI. (4 pontos)
- b) Qual deve ser o número de espiras para que a corrente na bobina seja menor ou igual a 2 A, estabelecendo o mesmo fluxo magnético de 5 mWb/m 2 . (4 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 6ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

Considere o circuito RL da figura 1 e o gráfico de $y=e^{-t}$ representado na figura 2.

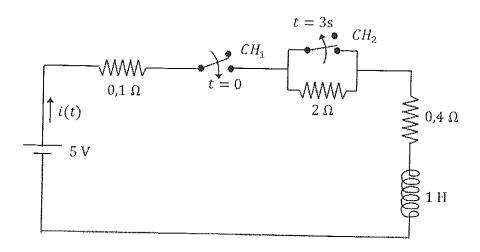


Figura 1 - Circuito RL

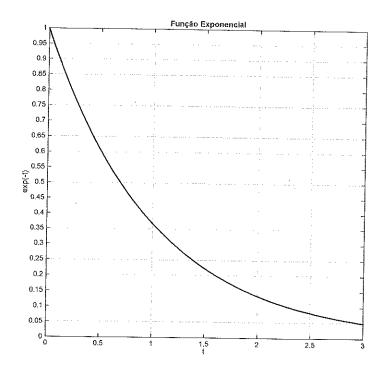
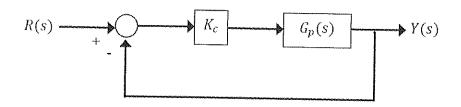


Figura 2 - Gráfico da função exponencial

A chave CH_1 fecha em t=0 e a chave CH_2 abre em t=3s.

- a) Determine o valor da corrente i(t) para t=2s. (4 pontos)
- b) Determine o valor da corrente i(t) para t=3.4s. (4 pontos)


Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 7ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Considere o seguinte sistema de controle.

O diagrama de Bode de $G_p(s)$ é dado na figura abaixo.



Figura - Diagrama de Bode de $G_p(s)$

Sendo assim, faça o que se pede.

- a) Obtenha a função de transferência $G_p(s)$. (3 pontos)
- b) Calcule o valor do ganho K_c do controlador que faz com que a constante de tempo do sistema em malha fechada seja cinco vezes mais rápida que a da malha aberta. (3 pontos)
- c) Calcule o valor final da resposta do sistema em malha fechada a uma entrada degrau unitário em função do ganho K_c . (2 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 8ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Profissão: ENGENHARIA ELETRÔNICA

Considere o sistema de controle da figura abaixo.

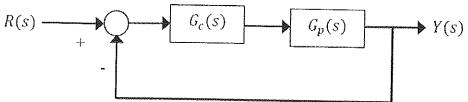


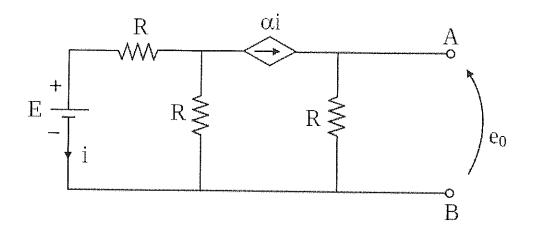
Figura - Sistema de controle de uma planta industrial.

A planta $G_p(s)$ é dada por: $G_p(s) = \frac{1}{s(s+1)}$.

- a) A planta dada por $G_p(s)$ é assintoticamente estável? Justifique sua resposta. (1 ponto)
- b) Com relação ao erro de regime, qual é o tipo da função de transferência de malha aberta $G_c(s)G_p(s)$ e o que isso permite afirmar sobre o erro de regime do sistema em malha fechada quando a entrada r(t) é um degrau unitário e o compensador é dado por $G_c(s)=K_c$ com $K_c\in\mathbb{R}^+$? (2 pontos)
- c) Deseja-se projetar um compensador $G_c(s)$ tal que a função de transferência de malha fechada do sistema $G_{mf}(s)$ tenha a forma: $G_{mf}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$, com $\zeta = 0.3$ e $\omega_n = 2.0$ rad/s. Obtenha o compensador $G_c(s)$ que satisfaz esses requisitos e estabiliza o sistema em malha fechada. (5 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA


Continuação da 9ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Continuação da 9ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Considere o circuito da figura abaixo.

Em função dos parâmetros E, R, α (não nulos) do circuito, determine:

- a) A tensão e_0 do gerador de Thévénin entre A e B. (4 pontos)
- b) A resistência R_0 do gerador de Thévénin entre A e B. (4 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS

Profissão: ENGENHARIA ELETRÔNICA

Continuação da 10ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016

Continuação da 10ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2016