
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

(CONCURSO PÚBLICO DE ADMISSÃO AO CURSO DE FORMAÇÃO PARA INGRESSO NO CORPO AUXILIAR DE PRAÇAS DA MARINHA / CP-CAP/2018)

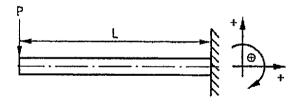
ESTÁ AUTORIZADA A UTILIZAÇÃO DE CALCULADORA PADRÃO NÃO CIENTÍFICA

MECÂNICA

Observe a figura da viga abaixo, onde as cargas P são iguais, e responda às questões 1 e 2.

QUESTÃO 1

Qual intervalo apresenta esforço cortante nulo em toda sua extensão?

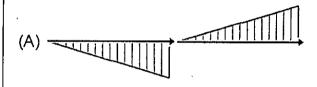

- (A) AC
- (B) CD
- (C) DB
- (D) AD
- (E) CB

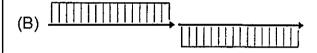
QUESTÃO 2

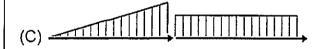
Em quais intervalos o momento fletor NÃO é constante em toda sua extensão?

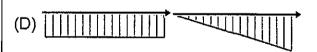
- (A) AC e CD
- (B) CD e DB
- (C) AC e DB
- (D) AD e DB
- (E) AC e CB

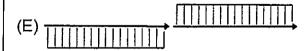
Observe a figura da viga e da convenção de sinais para esforços cortantes e momentos fletores abaixo e responda às questões 3 e 4.

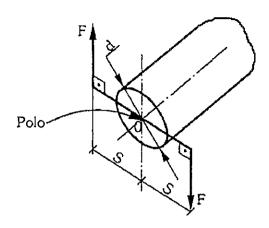

QUESTÃO 3


Calcule os valores absolutos máximos do esforço cortante e do momento fletor, respectivamente, e assinale a opção correta.


- (A) $\frac{P}{2}$, P.L
- (B) P, P.L.
- (C) 2.P, P.L
- (D) P, P.(2.L)
- (E) P, P.L.


QUESTÃO 4

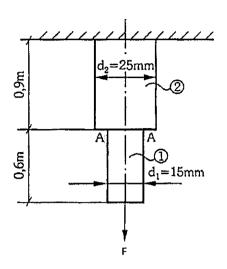

Assinale a opção que apresenta os diagramas de esforço cortante e momento fletor da viga, respectivamente.



Observe a figura abaixo para responder às questões 5 e 6, sabendo que o eixo cilíndrico de diâmetro d é submetido em uma de suas extremidades às cargas iguais F, que têm distância S entre seus pontos de aplicação e o Polo (0).

QUESTÃO 5

Quando a extremidade do eixo oposta à extremidade onde as cargas F são aplicadas (não mostrada na figura) estiver livre, o valor absoluto do momento torçor será:


- (A) 4.F.S
- (B) 0 (zero)
- (C) $\frac{F.S}{2}$
- (D) F.2.d
- (E) $\frac{F.d}{2}$

QUESTÃO 6

Quando a extremidade do eixo oposta à extremidade onde as cargas F são aplicadas (não mostrada na figura) estiver fixa, o valor absoluto do momento torçor será:

- (A) 2.F.S
- (B) F.S
- (C) 2.F.d
- (D) F.d
- (E) 0 (zero)

Observe a figura abaixo, em que duas barras de aço, 1 e 2, de seção reta circular, estão soldadas na seção AA. A carga de tração F que atua nas barras é de 4.500 N. Desprezando o peso próprio das barras, com o módulo de elasticidade do aço igual a 210 GPa, e considerando π igual a 3,1415, responda às questões 7 e 8.

QUESTÃO 7

Os alongamentos das barras 1 e 2, em mm, são, respectiva e aproximadamente:

- (A) 0,042 e 0,021
- (B) 0,059 e 0,030
- (C) 0,064 e 0,078
- (D) 0,073 e 0,039
- (E) 0,085 e 0,091

QUESTÃO 8

As tensões de tração que atuam nas barras 1 e 2, em MPa, são, respectiva e aproximadamente:

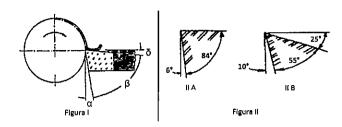
- (A) 10,7 e 5,4
- (B) 15,8 e 7,7
- (C) 25,5 e 9,2
- (D) 30,2 e 10,3
- (E) 32,7 e 33,5

Em relação aos tratamentos térmicos e termoquímicos dos aços, assinale a opção correta.

- (A) A normalização tem como principal objetivo refinar a granulação grosseira de peças de aço mediante o seu aquecimento a uma temperatura abaixo da zona crítica, seguido de resfriamento em óleo.
- (B) O coalescimento visa à produção da estrutura esferoidita que, pelas suas características, melhora a usinabilidade dos aços de alto teor de carbono.
- (C) O recozimento pode ser utilizado para alterar algumas propriedades mecânicas, tais como a resistência e a ductibilidade; porém, não é capaz de modificar as características elétricas e magnéticas dos aços.
- (D) A nitretação permite um aumento da dureza superficial e da resistência ao desgaste, mas reduz a resistência à fadiga.
- (E) A austêmpera é aplicada em aços de baixa temperabilidade e, devido ao seu resfriamento ser realizado ao ar, propicia ao aço maior ductibilidade quando comparado com a têmpera e a martêmpera.

QUESTÃO 10

Com relação ao ensaio de impacto, analise as afirmativas a seguir.


- I- O ensaio de impacto mede a tendência de um metal em comportar-se de uma maneira frágil.
- II- O corpo de prova Charpy é posicionado de forma engastada na máquina de ensaio enquanto que o corpo de prova Izod é livremente apoiado na máquina.
- III- Os corpos de prova para o ensaio de impacto têm entalhe e se dividem em duas classes: corpo de prova Charpy e corpo de prova Rockwell.
- IV- O corpo de prova é padronizado, provido de um entalhe e, no ensaio, sofre flexão devido ao impacto provocado pelo martelo pendular da máquina de ensaio.

Assinale a opção correta.

- (A) Apenas as afirmativas I e II são verdadeiras.
- (B) Apenas as afirmativas I e III são verdadeiras.
- (C) Apenas as afirmativas I e IV são verdadeiras.
- (D) Apenas as afirmativas II e III são verdadeiras.
- (E) Apenas as afirmativas II e IV são verdadeiras.

QUESTÃO 11

Observe as figuras a seguir.

A figura I representa os ângulos de uma ferramenta de corte. A figura I! representa duas ferramentas de aço rápido e suas respectivas orientações para os ângulos de folga, cunha e de saída, sendo uma ferramenta indicada para utilização em materiais de aço macio e a outra ferramenta indicada para utilização em materiais de ferro fundido extraduro. Com relação a essas figuras, é correto afirmar que:

- (A) "α" representa o ângulo de saída e a ferramenta (II A) é indicada para tornear material de ferro fundido extraduro.
- (B) "β" representa o ângulo de saída e a ferramenta (II A) é indicada para tornear material de ferro fundido extraduro.
- (C) "β" representa o ângulo de folga e a ferramenta (II B) é indicada para tornear material de aco macio.
- (D) "δ" representa o ângulo de saída e a ferramenta (II B) é indicada para tornear material de aço macio.
- (E) "δ" representa o ângulo de saída e a ferramenta (II B) é indicada para tornear material de ferro fundido extraduro.

QUESTÃO 12

Os latões são ligas não ferrosas que têm grande importância na fabricação de diversos componentes para as indústrias. Sobre os latões, é correto afirmar que:

- (A) são ligas de cobre-estanho, podendo conter estanho em teores que variam de 5% a 50%, o que significa que existem inúmeros tipos de latões.
- (B) à medida que o teor de zinco aumenta, ocorre também uma diminuição da resistência à corrosão em certos meios agressivos, levando à corrosão preferencial do zinco.
- (C) são ligas de cobre-zinco, e a presença do zinco não altera as propriedades do cobre.
- (D) são ligas de bronze-zinco, e a presença do zinco não altera as propriedades do bronze.
- (E) os latões denominados beta são aqueles que têm até cerca de 37% de zinco, e caracterizam-se pelo fato de o zinco ser mantido em solução líquida no cobre.

Sobre escalas termométricas, assinale a opção correta.

- (A) A relação entre as escalas Celsius (°C) e Fahrenheit (°F) é obtida pela equação T(°F) = t(°C) + 273.
- (B) A relação entre as escalas Celsius (°C) e Kelvin (K) é obtida pela equação $t(^{\circ}C) = \frac{5}{9}[T(^{\circ}F) 32]$.
- (C) A relação entre as escalas Kelvin (K) e Fahrenheit (°F) é obtida pela equação $T(K) = \frac{5}{9}[T(°F) 32] + 273$.
- (D) As duas escalas termométricas usuais são: a centrífuga e a Kelvin.
- (E) As duas escalas termométricas usuais são: a Fahrenheit e a Kelvin.

QUESTÃO 14

Uma árvore de aço tem diâmetro 30 mm, gira com velocidade angular de 20π rad/s, e é movida por uma força tangencial de 18.000 N. Sendo assim, considerando π igual a 3,1415, calcule a potência em W e o torque em N.m, aproximada e respectivamente, e assinale a opção correta.

- (A) 3.480 e 110
- (B) 9.645 e 223
- (C) 15.720 e 250
- (D) 16.920 e 270
- (E) 33.840 e 340

QUESTÃO 15

Um sistema hidráulico é um conjunto de elementos físicos convenientemente associados que, utilizando um fluido como meio de transferência de energia, uma forma de energia de entrada é convertida e condicionada, de modo a se ter como saída que tipo de energia, de acordo com Linsingen (2008)?

- (A) Centrifuga.
- (B) Motora.
- (C) Cinética.
- (D) Mecânica útil.
- (E) Potencial.

QUESTÃO 16

Determinada propriedade dos fluidos hidráulicos é definida como a quantidade de matéria de uma substância (massa) contida em um volume unitário dessa matéria. Ao multiplicar essa propriedade pela aceleração gravitacional, encontra-se qual propriedade e sua unidade no Sistema Internacional (SI)?

- (A) Viscosidade cinemática / m²/s.
- (B) Densidade / kg/m3.
- (C) Massa específica / adimensional.
- (D) Viscosidade absoluta / Ns/m².
- (E) Peso específico / N/m³.

QUESTÃO 17

- O ferro fundido dúctil caracteriza-se por possuir uma excelente resistência mecânica, tenacidade e ductilidade, podendo apresentar um limite de escoamento mais elevado do que até mesmo de aços-carbono sem elementos de liga. O ferro fundido dúctil é também denominado ferro:
- (A) nodular.
- (B) maleável.
- (C) fundido cinzento.
- (D) fundido branco.
- (E) fundido mesclado.

QUESTÃO 18

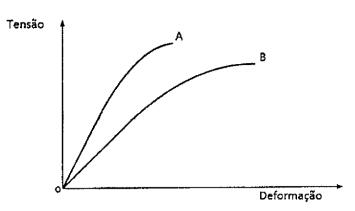
Assinale a opção que apresenta a operação de usinagem empregada para a obtenção de superfícies regradas, geradas por movimento retilíneo alternativo da peça ou da ferramenta, no sentido horizontal ou vertical.

- (A) Fresamento.
- (B) Retifica.
- (C) Brochamento.
- (D) Aplainamento.
- (E) Torneamento.

Prova: Amarela MECÂNICA

Assinale a opção que apresenta a afirmativa INCORRETA em relação ao projeto de peças a serem fundidas.

- (A) É necessário prever e proporcionar que as diversas seções das peças tenham variações graduais.
- (B) A preocupação primordial deve ser evitar defeitos originados a partir da solidificação do metal líquido no interior do molde.
- (C) Deve-se fortalecer a peça de modo a evitar as fissuras devido à contração do metal durante a solidificação.
- (D) Deve-se prever uma conicidade suficiente no modelo para melhor confecção do molde.
- (E) Deve-se considerar uma espessura mínima de paredes, pois paredes muito finas tendem a proporcionar resfriamento mais rápido em certas ligas, implicando a formação de pontos mais macios e menos resistentes.


QUESTÃO 20

São válvulas que controlam a pressão de montante:

- (A) válvula de quebra vácuo e válvula de segurança e de alívio.
- (B) válvulas redutoras e reguladoras de pressão e válvula de quebra vácuo.
- (C) válvula de excesso de vazão e válvula de segurança e de alívio.
- (D) válvula de quebra vácuo e válvula de excesso de vazão.
- (E) válvulas redutoras e reguladoras de pressão e válvula de excesso de vazão.

QUESTÃO 21

Observe a figura a seguir.

A figura acima apresenta as curvas de tensão versus deformação dos materiais metálicos "A" e "B". Com relação ao módulo de elasticidade e à rigidez dos dois materiais, é correto afirmar que:

- (A) o material "A" tem menor rigidez do que o material "B", pois o módulo de elasticidade de "A" é maior do que o de "B".
- (B) o material "A" tem maior rigidez do que o material "B", pois o módulo de elasticidade de "A" é menor do que o de "B".
- (C) o material "A" tem menor rigidez do que o material "B", pois o módulo de elasticidade de "A" é menor do que o de "B".
- (D) o material "A" tem maior rigidez do que o material "B", pois o módulo de elasticidade de "A" é maior do que o de "B".
- (E) os materiais "A" e "B" têm a mesma rigidez, pois seus módulos de elasticidade são iguais.

QUESTÃO 22

Deseja-se conseguir, num sistema de refrigeração, a temperatura de -5°C, sabendo-se que o calor é eliminado na temperatura de 30°C. Usando o ciclo de Carnot, calcule o coeficiente de eficiência térmica (CET) e assinale a opção correta.

Dado:

$$CET \ = \ \frac{efeito\ refrigerante}{trabalho\ fornecido} = \frac{T_2}{T_1 - T_2}$$

- (A) -0,17
- (B) -0.14
- (C) 0,20
- (D) 1,13
- (E) 7,66

Os ensaios não destrutivos permitem determinar as características dos materiais sem prejudicar sua futura utilização e têm o objetivo de determinar o estado ou a qualidade do material, tendo em vista sua aceitação ou rejeição. Em relação aos ensaios não destrutivos, assinale a opção correta.

- (A) Os raios X, ao atravessarem um material ou uma peça contendo descontinuidades, são absorvidos pelas seções defeituosas em maior intensidade do que pelas seções íntegras da peça. Ao ser revelada a radiografia, as áreas escuras correspondem às seções não defeituosas.
- (B) Os ensaios eletromagnéticos são considerados eficientes para detecção de fissuras e defeitos similares que se localizam na superfície das peças ou na sua proximidade e são uma técnica flexível que pode ser empregada em qualquer lugar e com baixo custo quando comparada com a maioria dos demais ensaios não destrutivos.
- (C) Os ensaios por líquido penetrante permitem detectar descontinuidades que se estendem até à superfície e são divididos entre técnica a seco e técnica úmida. Para a correta inspeção, deve-se limpar completamente a superfície do material seguindo a aplicação do líquido sobre a superfície e, após determinado tempo, remove-se completamente o líquido e aplica-se a substância reveladora, ocasião em que será possível delinear os defeitos existentes.
- (D) Os ensaios por líquido penetrante permitem detectar defeitos tais como regiões com densidades diferentes (porosidades), fissuras e bolhas, além de ser possível a sua utilização tanto em materiais metálicos quanto em materiais cerâmicos.
- (E) Os ensaios eletromagnéticos podem detectar defeitos minúsculos em peças metálicas ferrosas e não ferrosas através de ondas refletidas que vibram o cristal, resultando em impulsos elétricos que são detectados ou registrados por um osciloscópio.

OUESTÃO 24

A determinação do ponto de trabalho, isto é, vazão, carga, potência consumida e rendimento de uma bomba que opera em um sistema, é função das características da bomba e do sistema. Sendo assim, são curvas características tradicionais de uma bomba:

- (A) curva de Carga (H) x Rendimento Total (η). curva de Potência Absorvida (Pot_{abs}) x Vazão (Q). curva de Rendimento Total (η) x Potência Absorvida (Pot_{abs}).
- (B) curva de Potência Absorvida (Pot_{abs}) x Vazão (Q). curva de Rendimento Total (η) x Carga (H). curva de Carga (H) x Vazão (Q).
- (C) curva de Carga (H) x Vazão (Q).
 curva de Potência Absorvida (Pot_{abs}) x Vazão (Q).
 curva de Rendimento Total (η) x Vazão (Q).
- (D) curva de Rendimento Total (η) x Potência Absorvida (Pot_{abs}).
 curva de Rendimento Total (η) x Carga (Η).
 curva de Rendimento Total (η) x Vazão (Q).
- (E) curva de Potência Absorvida (Pot_{abs}) x Carga (H). curva de Potência Absorvida (Pot_{abs}) x Rendimento Total (η). curva de Potência Absorvida (Pot_{abs}) x Vazão (Q).

QUESTÃO 25

Assinale a opção que completa corretamente as lacunas da sentença abaixo:

De acordo com Chiaverini (1986), chama-se de condutibilidade elétrica a capacidade de o metal transmitir ou conduzir corrente elétrica. Sob esse ponto de vista, os materiais podem ser classificados em condutores, isolantes (ou dielétricos) e semicondutores. A recíproca da condutibilidade elétrica é a resistividade elétrica, propriedade que se relaciona com a resistência elétrica. Pode-se afirmar que a ______ com o aumento do comprimento e _____ com o aumento da seção transversal. A resistência ainda aumenta de forma _____ com a temperatura até a temperatura de fusão do metal.

- (A) condutibilidade decresce / cresce / não linear
- (B) resistividade decresce / cresce / não linear
- (C) resistividade cresce / decresce / linear
- (D) resistência cresce / decresce / linear
- (E) resistência decresce / decresce / linear

Prova: Amarela MECÂNICA

Uma barra de aço de seção reta circular com diâmetro 20 mm e comprimento 0,8 m encontra-se submetida à ação de uma carga axial de 7.200 N. Sabendo que o módulo de elasticidade do aço é 210 GPa e considerando π igual a 3,1415, calcule o alongamento da barra em μm , aproximadamente, e assinale a opção correta.

- (A) 47
- (B) 57
- (C) 67
- (D) 77
- (E) 87

QUESTÃO 27

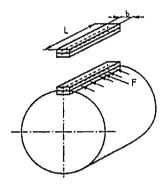
Correlacione as classificações das tubulações com suas funções e assinale a opção correta.

CLASSIFICAÇÃO

- I- Transmissão hidráulica
- II- Processo
- III- Instrumentação
- IV- Drenagem
- V- Utilidades

FUNÇÃO

- () Tubulações dos fluidos que constituem a finalidade básica da indústria.
- () Tubulações de fluidos auxiliares nas indústrias.
- () Tubulações para a transmissão de sinais de ar comprimido para as válvulas de controle.
- () Tubulações que não se destinam ao transporte de fluidos. São tubulações de líquidos sob pressão.
- () Tubulações encarregadas de coletar os diversos efluentes fluidos de uma instalação industrial e conduzi-los ao destino conveniente. Quase todas essas tubulações trabalham sem pressão.
- (A) (I) (V) (III) (II) (IV)
- (B) (II) (IV) (III) (I) (V)
- (C) (I) (IV) (II) (III) (V)
- (D) (II) (V) (III) (I) (IV)
- (E) (I) (V) (II) (III) (IV)


QUESTÃO 28

A deformação plástica resultante do trabalho mecânico a frio abaixo da temperatura de recristalização, ainda que superior à ambiente, provoca o chamado fenômeno de encruamento, cujos efeitos são traduzidos por uma deformação da estrutura cristalina e modificação das propriedades mecânicas do material. Sendo assim, é correto afirmar que o material, após sofrer um encruamento, apresentará:

- (A) aumento da resistência mecânica e diminuição da energia interna.
- (B) aumento no número de discordâncias e aumento da ductilidade.
- (C) aumento da dureza e diminuição da condutibilidade elétrica.
- (D) diminuição da ductilidade e aumento da condutibilidade elétrica.
- (E) diminuição da dureza e aumento no número de discordâncias.

QUESTÃO 29

Observe a figura abaixo.

Na figura representada acima, uma chaveta de comprimento L e largura b sofre a ação de uma força tangencial F. Calcule a tensão de cisalhamento na chaveta e assinale a opção correta.

- (A) $\frac{F}{b.L}$
- (B) $\frac{2F}{bL}$
- (C) $\frac{F}{2bL}$
- (D) $\frac{F}{(bL)^2}$
- (E) $\frac{F}{\sqrt{bL}}$

OUESTÃO 30

As ligações rosqueadas são um dos mais antigos meios de ligação usados para tubos. Para a ligação das varas de tubo entre si, empregam-se dois tipos de peças: as luvas e uniões, todas com rosca interna para acoplar com a rosca externa da extremidade dos tubos. Sendo assim, recomendam-se, para tubulações de qualquer tipo de aço, de acordo com a prática industrial usual:

- (A) luvas e uniões para ligações ao longo da tubulação.
- (B) luvas e uniões para ligações nas extremidades da tubulação.
- (C) luvas para ligações ao longo da tubulação e uniões para ligações nas extremidades da tubulação.
- (D) luvas para ligações nas extremidades da tubulação e uniões para ligações ao longo da tubulação.
- (E) luvas e uniões não são recomendadas, pois o rosqueamento enfraquece sempre a parede dos tubos.

QUESTÃO 31

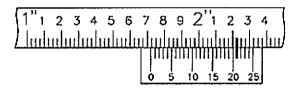
Assinale a opção que apresenta os elementos essenciais de uma instalação de refrigeração mecânica por meio de vapores.

- (A) Compressor, bomba, condensador e evaporador.
- (B) Compressor, condensador, filtro e evaporador.
- (C) Filtro, válvula de expansão, bomba e evaporador.
- (D) Evaporador, válvula de expansão, condensador e compressor.
- (E) Compressor, condensador, válvula de expansão e filtro.

QUESTÃO 32

As juntas de expansão são peças deformáveis que se intercalam nas tubulações com a finalidade de:

- (A) absorver totalmente as dilatações térmicas e impedir a propagação de vibrações.
- (B) impedir apenas a propagação de vibrações e esforços mecânicos.
- (C) impedir apenas a propagação de esforços mecânicos e variações de temperatura.
- (D) impedir a propagação de vibrações e de esforços mecânicos e absorver totalmente as dilatações térmicas.
- (E) absorver total ou parcialmente as dilatações provenientes das variações de temperatura e também, em alguns casos, com a finalidade de impedir a propagação de vibrações ou de esforços mecânicos.


QUESTÃO 33

Acerca da montagem de tubulações, é INCORRETO afirmar que:

- (A) pequenos desalinhamentos entre flanges não devem ser corrigidos pelo aperto dos parafusos.
- (B) o aperto dos flanges deve ser feito por igual e até a tensão recomendada, obedecendo à ordem sequencial dos parafusos, no sentido horário ou antihorário.
- (C) chaves com barras de extensão não são indicadas para aumentar o esforço de aperto dos parafusos.
- (D) o ponteamento de escoramentos de perfis e tubos de aço na parede dos tubos a serem sustentados deve ser feito por soldador qualificado.
- (E) antes de ser iniciada a montagem, deve ser feita a limpeza e a inspeção dimensional das peças prémontadas.

QUESTÃO 34

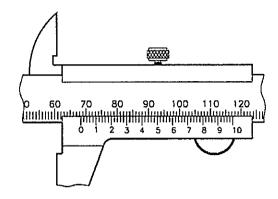
Observe o paquímetro abaixo.

No detalhe do paquímetro mostrado na figura acima, cada divisão da escala fixa corresponde a 0,025 polegadas, e sua resolução é 0,001 polegadas. Sendo assim, calcule a medida que se lê, em polegadas, e assinale a opção correta.

- (A) 1,020
- (B) 1,721
- (C) 1,820
- (D) 1,971
- (E) 2,220

Com relação aos ensaios de dureza, é correto afirmar que:

- (A) o ensaio de dureza Brinell é baseado na profundidade de penetração de uma ponta, subtraída da recuperação elástica devido à retirada de uma carga maior e à profundidade causada pela aplicação de uma carga menor. Os penetradores utilizados são do tipo esférico ou cônico.
- (B) o ensaio de dureza Vickers elimina o tempo necessário para a medição de qualquer dimensão da impressão causada, pois o resultado é lido direta e automaticamente na máquina de ensaio, sendo um ensaio rápido, livre de erros pessoais e com menos exigências na preparação do material quando comparado com os demais ensaios.
- (C) o ensaio de dureza Knoop consiste em comprimir lentamente uma esfera de aço de diâmetro D sobre a superfície plana, polida e limpa de um metal através de uma carga, Q, durante certo tempo t.
- (D) o ensaio de dureza Shore consiste na utilização de uma tabela classificadora contendo 10 minerais padrões, arranjados na ordem crescente e em medidas inteiras que variam de 1 a 10.
- (E) o ensaio de dureza Vickers utiliza um penetrador de diamante, com forma de pirâmide de base quadrada, com ângulo de 136° entre as faces opostas. Esse ensaio produz impressões extremamente pequenas na peça ensaiada e pode ser aplicado na medição de durezas superficiais.

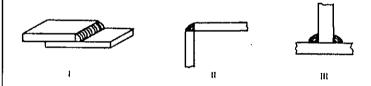

QUESTÃO 36

Considerando a forma com que é fornecida energia do fluido que é transportado, são classificadas como bombas de deslocamento positivo:

- (A) bombas de parafuso e de engrenagem.
- (B) bombas de fluxo axial e alternativa de pistão.
- (C) bombas de fluxo axial e alternativa de êmbolo.
- (D) bombas de palhetas deslizantes e centrífuga radial.
- (E) bombas de fluxo axial e de engrenagem.

QUESTÃO 37

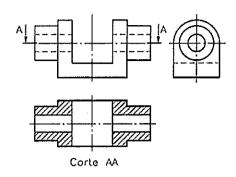
Observe o paquímetro abaixo.



No detalhe do paquímetro mostrado na figura acima, cada divisão da escala fixa corresponde a 1,00 mm, e sua resolução é 0,02 mm. Sendo assim, calcule a medida que se lê, em milímetros, e assinale a opção correta.

- (A) 65,30
- (B) 68,32
- (C) 70,23
- (D) 83,02
- (E) 84,00

QUESTÃO 38


Segundo Chiaverini (1986), marque a opção que identifica corretamente os tipos de juntas soldadas representadas nas figuras abaixo:

- (A) I-sobreposta / II-em V / III-de canto
- (B) I-de topo com flange / II-em T / III-em V
- (C) I-de canto / II-de topo em duplo V / III-em T
- (D) I-de topo em U / II-em T / III-de topo reta
- (E) I-sobreposta / II-de canto / III-em T

OUESTÃO 39

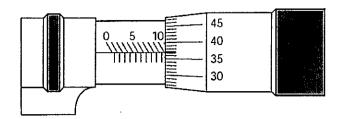
Observe as vistas ortográficas abaixo.

Assinale a opção que apresenta a vista que contém a indicação do plano de corte.

- (A) Frontal.
- (B) Lateral esquerda.
- (C) Lateral direita.
- (D) Superior.
- (E) Inferior.

QUESTÃO 40

Analise as afirmativas a seguir.


- I- Ajuste com folga é aquele em que o afastamento superior do eixo é menor ou igual ao afastamento inferior do furo.
- II- Ajuste com interferência é aquele em que o afastamento superior do furo é menor ou igual ao afastamento inferior do eixo.
- III- Ajuste incerto é aquele em que o afastamento superior do eixo é maior que o afastamento inferior do furo e o afastamento superior do furo é maior que o afastamento inferior do eixo.

Assinale a opção correta.

- (A) Apenas a afirmativa I é verdadeira.
- (B) Apenas a afirmativa II é verdadeira.
- (C) Apenas a afirmativa III é verdadeira.
- (D) Apenas as afirmativas I e II são verdadeiras.
- (E) As afirmativas I, II e III são verdadeiras.

QUESTÃO 41

Observe o micrômetro abaixo.

No detalhe do micrômetro mostrado na figura acima, cada divisão na bainha corresponde a 0,50 mm, e sua resolução é 0,01 mm. Sendo assim, calcule a medida que se lê, em milímetros, e assinale a opção correta.

- (A) 0,10
- (B) 5,39
- (C) 10,37
- (D) 11,35
- (E) 12,40

QUESTÃO 42

Calcule $\frac{3}{8}$ (três oitavos) de polegada, convertidas em milímetro, e assinale a opção correta.

- (A) 9,525
- (B) 9,677
- (C) 9,786
- (D) 9,891
- (E) 9,998

QUESTÃO 43

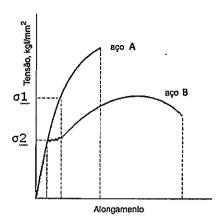
Assinale a opção que apresenta o processo de conformação de metais em que um bloco de metal é forçado a passar através do orifício de uma matriz sob alta pressão, de modo a ter sua seção transversal reduzida.

- (A) Extrusão.
- (B) Laminação.
- (C) Conformação por explosão.
- (D) Forjamento.
- (E) Estampagem.

Os metais, ao se solidificarem, cristalizam-se formando uma figura geométrica regular conhecida como cristal. Existem sete sistemas cristalinos, e de acordo com a disposição dos átomos originam-se desses sistemas catorze possíveis distribuições dos referidos átomos, formando os chamados reticulados cristalinos.

Assinale a opção que apresenta os principais reticulados cristalinos dos metais, a partir dos quais cerca de dois terços dos metais cristalizam.

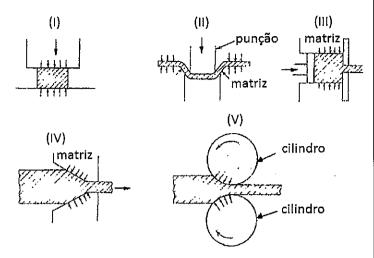
- (A) Hexagonal compacto, cúbico simples e ortorrômbico simples.
- (B) Cúbico de corpo centrado, cúbico simples e tetragonal de corpo centrado.
- (C) Cúbico de corpo centrado, cúbico de face centrada e hexagonal compacto.
- (D) Ortorrômbico de face centrada, ortorrômbico simples e hexagonal compacto.
- (E) Cúbico de corpo centrado, cúbico de face centrada e tetragonal de corpo centrado.


QUESTÃO 45

De acordo com Chiaverini (1986), no processo de soldagem a arco, os eletrodos revestidos podem apresentar apenas um tênue revestimento, cuja espessura é da ordem de décimos de milímetros. Nesse caso, é correto afirmar que o principal objetivo do tênue revestimento é:

- (A) acelerar o processo de soldagem.
- (B) aumentar a estabilidade do arco.
- (C) reduzir o consumo de eletrodos.
- (D) conservar os eletrodos quando estocados.
- (E) reduzir a camada protetora de gases.

QUESTÃO 46


Observe a figura a seguir.

A figura acima apresenta as características obtidas pelo ensaio de tração de duas amostras de aço sem adição de elementos de liga. A amostra "A" apresentou um limite de elasticidade definido por σ 1 e a amostra "B" definido por σ 2. Sendo assim, comparando os dois gráficos, é correto afirmar que o aço "A" tem:

- (A) maior ductilidade e teor de carbono, mas sua resiliência e dureza são menores que a do aço "B".
- (B) maior teor de carbono e maior resistência à tração, porém sua tenacidade e resiliência são menores que a do aço "B".
- (C) maior teor de carbono, maior dureza e maior ductilidade, porém sua tenacidade e resiliência são menores que a do aço "B".
- (D) maior resistência à tração e dureza, mas sua ductilidade, tenacidade e teor de carbono são menores que a do aço "B".
- (E) maior teor de carbono, maior resistência à tração, e é mais resiliente; porém, sua tenacidade é menor que a do aço "B".

Observe as figuras a seguir.

As ilustrações acima representam de forma esquemática os processos de conformação mecânica. Sendo assim, assinale a opção que apresenta, respectivamente, quais figuras representam os processos de forjamento, extrusão e trefilação.

- (A) II, V e III.
- (B) I, IV e III.
- (C) I, III e IV.
- (D) II, III e IV.
- (E) V, Iell.

QUESTÃO 48

Assinale a opção que apresenta os acessórios que servem para fechamento da extremidade de um tubo.

- (A) Tampões e flanges.
- (B) Flanges e niples.
- (C) Niples e bujões.
- (D) Bujões e tampões.
- (E) Flanges cegos e niples.

QUESTÃO 49

Uma bomba instalada em determinado sistema tem altura manométrica de sucção (h_s) e altura manométrica de descarga (h_d) , conforme as equações a seguir:

$$h_s = Z_s + \frac{P_s}{\gamma} - h_{fs}$$
 e $h_d = Z_d + \frac{P_d}{\gamma} + h_{fd}$

Dados:

Z - Alturas estáticas (acima do nível da bomba) de sucção ($Z_{\rm s}$) e de descarga ($Z_{\rm d}$);

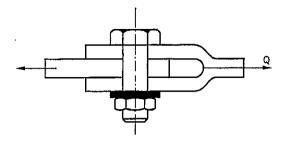
P – Pressão do reservatório de sucção (P_s) e de descarga (P_d);

 $h_{\rm f}$ – Perda de carga nos flanges de sucção ($h_{\rm fs}$) e de descarga ($h_{\rm fd}$);

γ - Peso específico do fluido.

Com base nesse dados, assinale a opção que apresenta a equação para cálculo da altura manométrica total (H), considerando o reservatório de descarga aberto para a atmosfera.

(A)
$$H = h_d - h_s = (Z_d - Z_s) + \left(\frac{P_d - P_s}{\gamma}\right) + (h_{fs} + h_{fd})$$


(B)
$$H = h_d - h_s = (Z_d - Z_s) + \left(\frac{P_d - P_s}{\gamma}\right) + (h_{fs} - h_{fd})$$

(C)
$$H = h_d - h_s = (Z_d - Z_s) - \frac{P_s}{\gamma} + (h_{fs} + h_{fd})$$

(D)
$$H = h_d - h_s = (Z_d - Z_s) + \frac{P_d}{\gamma} + (h_{fs} - h_{fd})$$

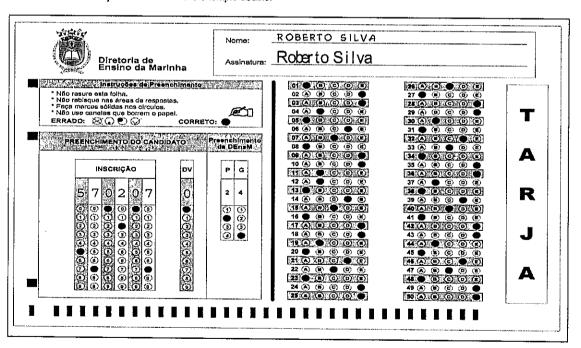
(E)
$$H = h_d - h_s = (Z_d - Z_s) - \frac{P_s}{\gamma} + (h_{fs} - h_{fd})$$

Observe a figura abaixo.

No detalhe do conjunto mostrado na figura acima, o parafuso sextavado é M12 e a carga Q é de 6.000 N. Considerando π igual a 3,1415, calcule a tensão de cisalhamento atuante no parafuso, em MPa, aproximadamente, e assinale a opção correta.

- (A) 26,5 (B) 27,6 (C) 28,4 (D) 29,3
- (E) 30,8

RASCUNHO PARA REDAÇÃO


	·
ΤÍΤ	ULO:
1	
2	
3	
4	
5	
6	
7	
8	
9.	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
L	

INSTRUÇÕES GERAIS AO CANDIDATO

- 1 Verifique se a prova recebida e a folha de respostas são da mesma cor (consta no rodapé de cada folha a cor correspondente) e se não faltam questões ou páginas. Escreva e assine corretamente seu nome, coloque seu número de inscrição e o dígito verificador (DV) apenas nos locais indicados;
- 2 O tempo para a realização da prova será de 4 (quatro) horas, incluindo o tempo necessário à redação e à marcação das respostas na folha de respostas, e não será prorrogado:
- 3 Só inicie a prova após ser autorizado pelo Fiscal, interrompendo sua execução quando determinado;
- 4 A redação deverá ser uma dissertação com ideias coerentes, claras e objetivas escritas em língua portuguesa e em letra cursiva. Deverá ter, no mínimo, 20 linhas continuas, considerando o recuo dos parágrafos, e, no máximo, 30 linhas;
- 5 Iniciada a prova, não haverá mais esclarecimentos. O candidato somente poderá deixar seu lugar, devidamente autorizado pelo Supervisor/Fiscal, para se retirar definitivamente do recinto de prova ou, nos casos abaixo especificados, devidamente acompanhado por militar designado para esse fim:
 - atendimento médico por pessoal designado pela MB;
 - fazer uso de banheiro: e
 - casos de força maior, comprovados pela supervisão do certame, sem que aconteça saída da área circunscrita para a realização da prova.

Em nenhum dos casos haverá prorrogação do tempo destinado à realização da prova, em caso de retirada definitiva do recinto de prova, esta será corrigida até onde foi solucionada;

- 6 Use caneta esferográfica preta ou azul para preencher a folha de respostas;
- 7 Confira nas folhas de questões as respostas que você assinalou como corretas antes de marcá-las na folha de respostas. Cuidado para não marcar duas opções para uma mesma questão na folha de respostas (a guestão será perdida);
- 8 Para rascunho, use os espaços disponíveis nas folhas de questões, mas só serão corrigidas as respostas marcadas na folha de respostas;
- 9 O tempo mínimo de permanência dos candidatos no recinto de aplicação de provas é de 2 (duas) horas.
- 10 Será eliminado sumariamente do processo seletivo/concurso e suas provas não serão levadas em consideração, o candidato que:
 - a) der ou receber auxílio para a execução da Prova escrita objetiva de conhecimentos profissionais e da Redação;
 - b) utilizar-se de qualquer material não autorizado;
 - c) desrespeitar qualquer prescrição relativa à execução da Prova e da Redação;
 - d) escrever o nome ou introduzir marcas identificadoras noutro lugar que não o determinado para esse fim;
 - e) cometer ato grave de indisciplina; e
 - f) comparecer ao local de realização da Prova escrita objetiva de conhecimentos profissionais e da Redação após o horário previsto para o fechamento dos portões.
- 11 Instruções para o preenchimento da folha de respostas:
 - a) use caneta esferográfica azul ou preta;
 - b) escreva seu nome em letra de forma no local indicado;
 - assine seu nome no local indicado;
 - d) no campo inscrição DV, escreva seu número de inscrição nos retângulos, da esquerda para a direita, um dígito em cada retângulo. Escreva o dígito correspondente ao DV no último retângulo. Após, cubra todo o círculo correspondente a cada número. Não amasse, dobre ou rasgue a folha de respostas, sob pena de ser rejeitada pelo equipamento de leitura ótica que a corrigirá; e
 - e) só será permitida a troca de folha de respostas até o início da prova, por motivo de erro no preenchimento nos campos nome, assinatura e número de inscrição, sendo de inteira responsabilidade do candidato qualquer erro ou rasura na referida folha de respostas, após o início da prova.
- 12 Procure preencher a folha com atenção de acordo com o exemplo abaixo:

13 - Não será permitido levar a prova após sua realização. O candidato está autorizado a transcrever suas respostas, dentro do horário destinado à solução da prova, utilizando o modelo impresso no fim destas instruções, para posterior conferência com o gabarito que será divulgado. É proibida a utilização de qualquer outro tipo de papel para anotação do gabarito.

	ANOTE SEU GABARITO														PROVA DE COR									
1	2_	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
		l		<u> </u>																	-			