MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

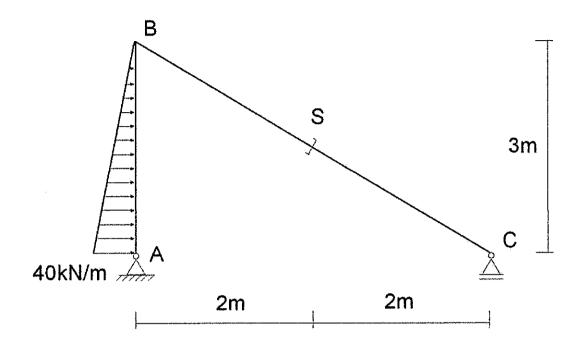
CONCURSO PÚBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA (CP-CEM/2019)

ENGENHARIA CIVIL

INSTRUÇÕES GERAIS

- 1- A duração da prova será de **05 horas** e o tempo não será prorrogado. Ao término da prova, entregue o caderno ao Fiscal sem retirar os grampos de nenhuma folha.
- 2- Responda às questões utilizando caneta esferográfica azul ou preta. Não serão consideradas respostas e desenvolvimento da questão a lápis. Confira o número de páginas de cada parte da prova.
- 3- Só comece a responder à prova ao ser dada a ordem para iniciá-la, interrompendo a sua execução no momento em que for determinado.
- 4- O candidato deverá preencher os campos:
 - NOME DO CANDIDATO; NÚMERO DA INSCRIÇÃO e DV.
- 5- Iniciada a prova, não haverá mais esclarecimentos. O candidato somente poderá deixar o seu lugar, devidamente autorizado pelo Supervisor/Fiscal, para se retirar definitivamente do recinto de prova ou, nos casos a seguir especificados, devidamente acompanhado por militar designado para esse fim: atendimento médico por pessoal designado pela Marinha do Brasil; fazer uso de banheiro e casos de força maior, comprovados pela supervisão do certame, sem que aconteca saída da área circunscrita para a realização da prova.
 - Em nenhum dos casos haverá prorrogação do tempo destinado à realização da prova e, em caso de retirada definitiva do recinto de prova, esta será corrigida até onde foi solucionada.
- 6- A solução deve ser apresentada nas páginas destinadas a cada questão.
- 7- Não é permitida a consulta a livros ou apontamentos.
- 8- A prova não poderá conter qualquer marca identificadora ou assinatura, o que implicará atribuição de nota zero.
- 9- Será eliminado sumariamente do concurso e as suas provas não serão levadas em consideração o candidato que:
 - a) der ou receber auxílio para a execução de qualquer prova;
 - b) utilizar-se de qualquer material não autorizado;
 - c) desrespeitar qualquer prescrição relativa à execução das provas;
 - d) escrever o nome ou introduzir marcas identificadoras noutro lugar que não o determinado para esse fim; e
 - e) cometer ato grave de indisciplina.
- 10- É PERMITIDA A UTILIZAÇÃO DE CALCULADORA PADRÃO NÃO CIENTÍFICA, RÉGUA SIMPLES E COMPASSO.

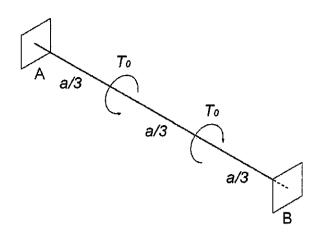
NÃO DESTACAR A PARTE INFERIOR


RUBRICA DO PROFESSOR	ESCALA DE	NOTA	USO DA DEnsM
	000 A 080		

\	CONCURSO: CP-CEM/2019 NOME DO CANDIDATO:					
	N° DA INSCRIÇÃO	DV	ESCALA DE	NOTA	USO DA DEnsM	
-			000 A 080		,	

CONHECIMENTOS PROFISSIONAIS (VALOR: 80 PONTOS)

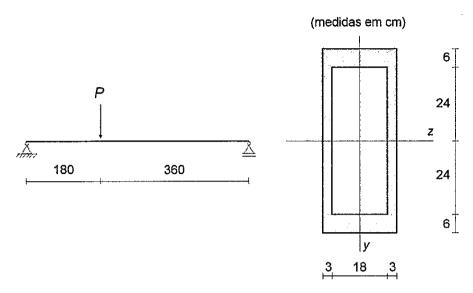
1ª QUESTÃO (8 pontos)


Dada a estrutura ABC da figura abaixo, determine:

- a) a reação de apoio em C. (2 pontos)
- b) os esforços solicitantes na seção S. (6 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Observe a figura abaixo:



A figura mostra uma barra prismática de comprimento a, engastada em A e B e submetida aos momentos TO (em relação ao eixo da barra) nas posições indicadas. Calcule a reação de apoio em B, indicando seu sentido na figura. (8 pontos)

Dado: $\varphi = \frac{T\ell}{GI_t}$

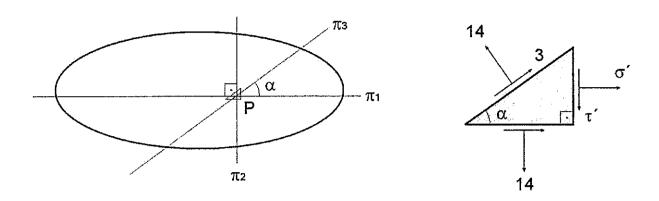
Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Observe a figura abaixo:

Dados: $I=\frac{bh^3}{12}$ (seção retangular <u>cheia</u>, com base b e altura h) $\sigma=\frac{M}{I}y$, $\tau=\frac{VS^*}{bI}$

A figura mostra uma viga simplesmente apoiada com seção transversal retangular vazada.

Com base nas informações calcule:

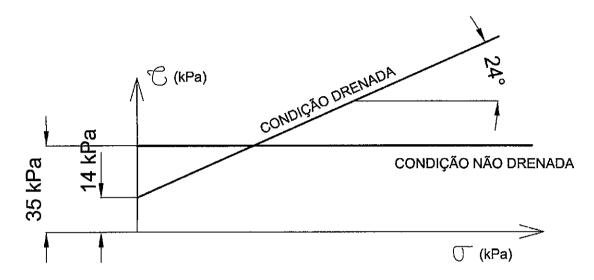

- a) o momento de inércia da seção em relação ao eixo z. (2 pontos)
- b) o valor máximo de P de modo que não se ultrapasse, no plano da seção transversal, a tensão normal admissível $\sigma_d=1.35~kN/cm^2$. (3 pontos)
- c) a máxima tensão de cisalhamento (no plano da seção transversal), com o valor de P determinado no item b. (3 pontos)

rova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

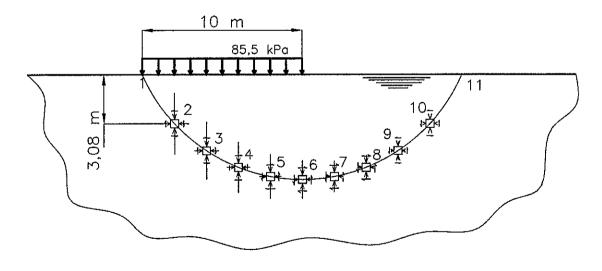
Continuação de 3ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Observe a figura abaixo:



A figura mostra um sólido submetido a estado plano de tensão, bem como um elemento triangular de dimensões infinitesimais com faces paralelas aos planos $\pi_1,\pi_2\,\mathrm{e}\,\pi_3$, que passam pelo ponto P. São conhecidas, em P, as tensões normal e de cisalhamento segundo o plano π_3 e a tensão normal segundo o plano π_1 , todas em kN/cm^2 . Sendo assim, calcule, nesse ponto, as tensões normal e de cisalhamento $(\sigma'\,\mathrm{e}\,\tau')$ segundo o plano π_2 .


Dados: $cos \propto = \frac{4}{5}$, $sen \propto = \frac{3}{5}$ (8 pontos)

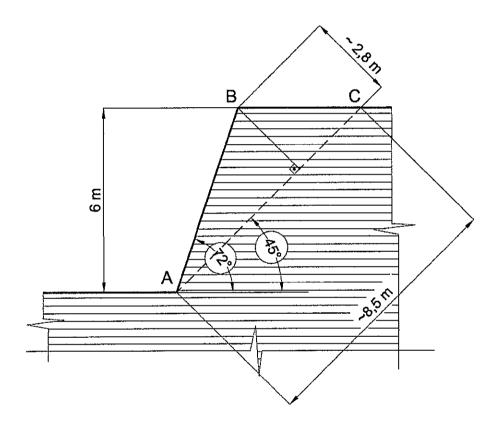
Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Um aterro de grande extensão, com largura de 10m, deverá ser construído sobre um terreno que apresenta perfil geotécnico típico composto por camada de argila de grande espessura, com o N.A. na superfície do terreno o aterro irá aplicar tensão de 85,5 kPa na superfície do terreno. O peso específico da argila pode ser assumido com valor de 15 kN/m^3 e sua envoltória de resistência é definida pelo gráfico abaixo.

Os acréscimos de tensões causados pelo aterro em pontos de uma superfície de ruptura que está sendo analisada são fornecidos na Figura abaixo. No ponto 2 da superfície em análise, a resistência do solo será alcançada na fase imediatamente após a construção do aterro.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação de 5ª questão


No ponto 2 da referida superfície em análise, a resistência do solo será alcançada na fase imediatamente após a construção do aterro? Justifique sua resposta.

Ponto	σz	σх	σу	TXZ
1	0,0	0,0	0,0	0,0
2	70,8	26,1	43,6	-15,6
3	65,0	21,5	38,9	-8,0
4	56,6	19,4	34,2	5,6
5	48,4	17,1	29,5	14,6
6	39,5	14,6	24,4	19,1
7	30,4	12,3	19,2	18,9
8	21,5	9,9	14,1	14,6
9	13,4	7,5	9,4	8,5
10	6,1	4,3	4,7	2,7
11	0,0	0,0	0,0	0,0

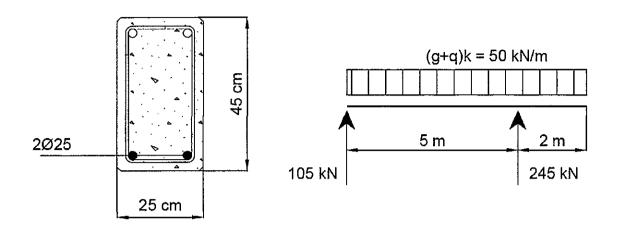
 $sen(24^\circ) = 0,407$

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Para o estudo da estabilidade de um talude de solo com altura de 6 m e inclinação de 72° está sendo avaliado o fator de segurança (FS) quanto a deslizamento de uma cunha hipotética ABC conforme definido na Figura abaixo. Estudos indicam que o solo do talude pode ser considerado homogêneo e que apresenta valor de ângulo de atrito interno efetivo (φ ') = 20°. Assim, determine o valor de coesão efetiva (c') para que o valor de FS para a cunha ABC seja FS = 2,0. Sabendo que o peso específico do solo pode ser adotado com valor $\gamma_{\rm solo}$ = 18 kN/m³ o nível da água (N.A.) se encontra muito abaixo do pé do talude e admitindo o valor de tg (20°) = 0,36.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Considerando a seção transversal esquemática de uma barragem de enrocamento com núcleo de terra indicada na figura abaixo, faça o que se pede.


- a) Estime a vazão, em litros por hora, que atravessa o maciço por unidade de comprimento, considerando o esboço da rede de fluxo apresentado. (4 pontos)
- b) Como varia a pressão neutra no enrocamento de montante? Determine seu valor no ponto A indicado. (4 pontos)

Dado: $Q = k \times i \times A = k \times H \times \frac{n_c}{n_q}$

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

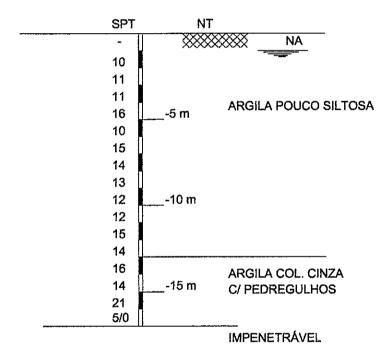
Observe a figura abaixo:

A figura apresenta a seção transversal e o esquema estático de uma viga de concreto armado simplesmente apoiada com um balanço. Verifique se a armadura longitudinal, formada por duas barras de 25 mm (aço CA 50) é suficiente para o carregamento indicado, observando que o carregamento e as reações estão apresentados com valores característicos e deverão ser majorados com coeficiente $\gamma_{\rm f}$ = 1,4, e comprove, justificando sua resposta.

Dados:

Cobrimento da armadura = 2,5 cm Estribos φ 8 mm Concreto Classe C 30 (f_{ck} = 30 MPa) Adotar γ_c = 1,4 e γ_s = 1,15

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019


O perfil geotécnico típico do subsolo de determinado terreno é apresentado na figura abaixo. Neste local Deverá ser construída uma edificação sobre sapatas corridas assentes à profundidade de 1 m. A carga da estrutura tem valor de 250 kN/m e é aplicada por uma parede de 20 cm de espessura que será assente sobre a sapata. Por meio de estudos analíticos e ensaios, verificou-se que se poderiam admitir os seguintes parâmetros para os solo:

 $E_{\rm u}$ = 20 MPa para o solo, sendo $E_{\rm u}$ o módulo de elasticidade da argila para solicitação não drenada;

 $\sigma_n = 600 \text{ kPa};$

O fator de segurança global deve ser FS = 3,0;

Peso específico do solo natural e do reaterro com valor de 18 kN/m^3 ;

Dados:

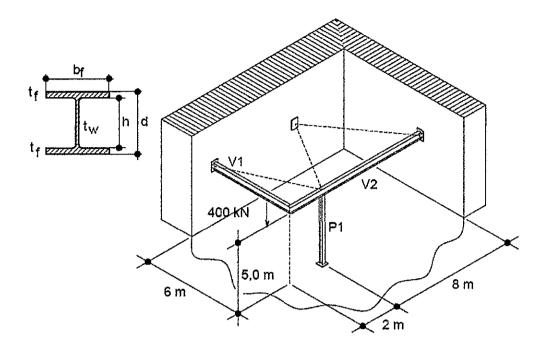
Adote como válida a expressão abaixo, baseada na Teoria da Elasticidade para cálculo de recalque de uma sapata corrida rígida:

$$\rho = \frac{\sigma}{E} \times (1 - \nu^2) \times 2.0 \times B$$

Para a sapata ser rígida sua altura h pode ser tal que:

$$h \ge \frac{B_{sapata} - b_{parede}}{3}$$

Peso específico de concreto: $\gamma = 25 \, \text{kN/m}^3$ $\nu = 0.5$


Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 9ª questão

Com base nas informações determine a largura (B) e a espessura (h) de uma sapata corrida de forma que o recalque imediato seja inferior a 2,0 cm.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Observe a figura abaixo:

Um pilar de aço com seção "H", em aço com $f_y=250$ MPa, deverá ser utilizado para suportar as vigas V1 e V2, que também se apoiam em paredes de um edifício. O edifício pode ser considerado uma estrutura indeslocável. Sobre a viga V1 existe uma carga móvel com valor $F_k=400\,$ kN. O peso próprio dos elementos de aço é pequeno frente a essa carga e poderá ser desconsiderado. Com base no exposto, determine um perfil H com esbeltezes de mesas (b_f/2t_f) inferiores a 12 e esbeltez de alma (h/t_w) inferior a 25 com esses valores de esbeltez pode-se garantir que não há flambagem local de mesa e alma, sabendo que o detalhamento das ligações é tal que todas podem ser consideradas como articuladas.

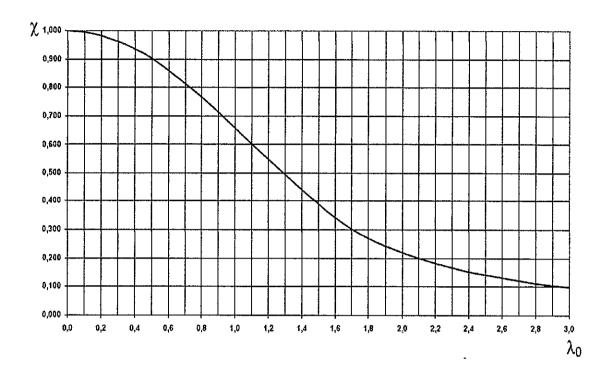
Dados:

As linhas tracejadas indicam barras de travamento horizontais que resistem à tração e compressão.

Expressões:

$$N_{c,R,d} = \chi Q A f_v / \gamma_{al}$$

$$\lambda_o = \frac{\lambda}{\sqrt{\frac{\pi^2 E}{f_y}}}$$


 $E_{aco} = 200.000 \text{ MPa}$

Deve ser adotado $\gamma_f = 1.4$

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 10ª questão

Gráfico λ_o x χ

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019