MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

CONCURSO PÚBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA (CP-CEM/2019)

ENGENHARIA MECÂNICA

INSTRUÇÕES GERAIS

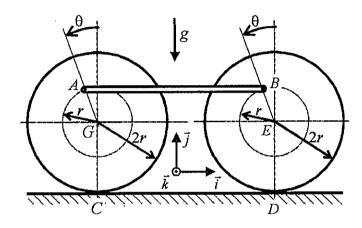
- 1- A duração da prova será de **05 horas** e o tempo não será prorrogado. Ao término da prova, entregue o caderno ao Fiscal sem retirar os grampos de nenhuma folha.
- 2- Responda às questões utilizando caneta esferográfica azul ou preta. Não serão consideradas respostas e desenvolvimento da questão a lápis. Confira o número de páginas de cada parte da prova.
- 3- Só comece a responder à prova ao ser dada a ordem para iniciá-la, interrompendo a sua execução no momento em que for determinado.
- 4- O candidato deverá preencher os campos:
 - NOME DO CANDIDATO; NÚMERO DA INSCRIÇÃO e DV.
- 5- Iniciada a prova, não haverá mais esclarecimentos. O candidato somente poderá deixar o seu lugar, devidamente autorizado pelo Supervisor/Fiscal, para se retirar definitivamente do recinto de prova ou, nos casos a seguir especificados, devidamente acompanhado por militar designado para esse fim: atendimento médico por pessoal designado pela Marinha do Brasil; fazer uso de banheiro e casos de força maior, comprovados pela supervisão do certame, sem que aconteça saída da área circunscrita para a realização da prova.

Em nenhum dos casos haverá prorrogação do tempo destinado à realização da prova e, em caso de retirada definitiva do recinto de prova, esta será corrigida até onde foi solucionada.

- 6- A solução deve ser apresentada nas páginas destinadas a cada questão.
- 7- Não é permitida a consulta a livros ou apontamentos.
- 8- A prova não poderá conter qualquer marca identificadora ou assinatura, o que implicará atribuição de nota zero.
- 9- Será eliminado sumariamente do concurso e as suas provas não serão levadas em consideração o candidato que:
 - a) der ou receber auxílio para a execução de qualquer prova;
 - b) utilizar-se de qualquer material não autorizado;
 - c) desrespeitar qualquer prescrição relativa à execução das provas;
 - d) escrever o nome ou introduzir marcas identificadoras noutro lugar que não o determinado para esse fim; e
 - e) cometer ato grave de indisciplina.

10- É PERMITIDA A UTILIZAÇÃO DE CALCULADORA PADRÃO NÃO CIENTÍFICA.

NÃO DESTACAR A PARTE INFERIOR


RUBRICA DO PROFESSOR	ESCALA DE	NOTA	USO DA DEnsM
	000 A 080		

DIDATOS	CONCURSO: CP-CEM/2019 NOME DO CANDIDATO:	9			
PELOS CANDID	N° DA INSCRIÇÃO	DV	ESCALA DE	NOTA	USO DA DEnsM

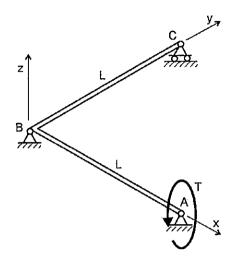
CONHECIMENTOS PROFISSIONAIS (VALOR: 80 PONTOS)

1ª QUESTÃO (8 pontos)

Conforme mostrado na figura, os discos homogêneos, cada um de massa m e raio 2r, rolam sem escorregar em relação ao solo. Os discos são conectados por uma barra homogênea AB, de massa 2m, e articulada nos discos nos pontos A e B, sem atrito. O sistema é abandonado do repouso na posição $\theta=0$, e uma perturbação infinitesimal inicia o movimento. Qual é o valor do vetor de rotação $\vec{\omega}$ dos discos para o instante em que $\theta=\pi$. Justifique a sua resposta.

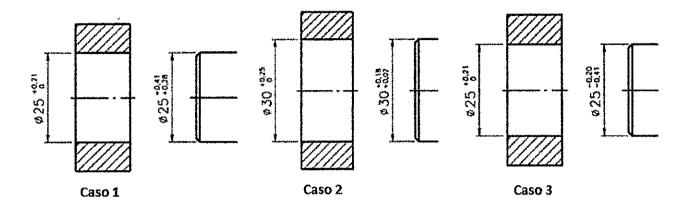
Dado: disco de massa M e raio R: $J_G = \frac{MR^2}{2}$

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019


Continuação de 1ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Uma placa plana é submetida a esforços atuantes no seu plano. Em um ponto O da seção dessa placa, definida pelo eixo Ox, são medidas as tensões normal σ_x e de cisalhamento τ_{xy} . Em um plano ortogonal a Ox, passando pelo mesmo ponto O, é medida a tensão normal σ_y . A partir desses valores, determine as tensões principais $\sigma_1 e \sigma_2$ atuantes nesse ponto O da placa e o ângulo α que a seção, com relação ao eixo Ox, em que atuam essas tensões principais.


Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Na barra em L da figura abaixo, o torque T (momento torçor), em torno do eixo x, está aplicado no ponto A. Trace os diagramas de momento torçor, momento fletor e força cortante, dos trechos AB e BC dessa barra, indicando os respectivos valores nos pontos A, B e C, em função dos dados indicados nessa figura.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

As figuras abaixo apresentam três desenhos de projeto de furo/eixo.

Para cada caso acima, indique o tipo de ajuste: com folga, com interferência ou incerto, justificando cada resposta.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Um carro de passeio tem tração traseira, diferencial bloqueável, e apresenta os seguintes dados:

Pesos: Dianteiro - 9 342 N; Traseiro - 8 231 N

Raio dos pneus - 319,5 mm

Altura do CG - 533,4 mm

Rigidez à inclinação lateral:

Entre-eixos - 2 743,2 mm

Dianteira - 1 557 Nm/grau;

Largura entre rodas - 1 498,6 mm

Traseira - 379 Nm/grau

Área frontal - 2,5 m²

Inércia do motor - 0,0904 kg.m²

Coeficiente de arrasto aerodinâmico - 0,27

Curva de torque do motor: RPM x Torque (N.m):

RPM	T	RPM	T	RPM	T	
800	163	2400	237	4000	271	_
1200	179	2800	245	4400	273	
1600	197	3200	258	4800	268	
2000	217	3600	268	5200	244	
				1		

Dados da caixa de redução:

Engrenag	ens
TO THE LANGE	CITY

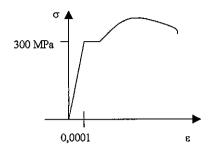
	1ª	2ª	3ª	4ª	5ª
Inércia (kg.m²)	0,150	0,100	0,079	0,057	0,034
Relação de redução	4,28	2,79	1,83	1,36	1,00
Eficiência	0,966	0,967	0,972	0,973	0,970

Transmissão final: Inércia - 0,14 kg.m²; Relação de redução - 2,92; Eficiência - 0,99

Inércias das rodas – 1,243 kg.m² (cada)

Coeficiente de resistência ao rolamento, asfalto - 0,013

Coeficiente de atrito com o solo - 0,62

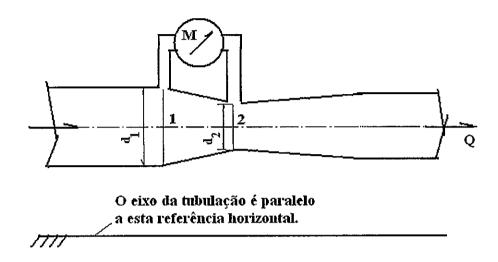

Suponha que esse carro deva avançar com velocidade de 120 km/h, com resistência ao avanço total de 4000 N. Nessa situação, indique qual marcha pode estar engatada e qual é a potência total que o motor deve fornecer, justificando sua resposta.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação de 5ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Analise o gráfico abaixo, que representa um ensaio de tração feito para um dado material.



Sendo assim, faça o que se pede.

- a) Identifique no gráfico a região do regime elástico linear e o escoamento. (4 pontos)
- b) Obtenha o valor do módulo de elasticidade, se cabível. (4 pontos)

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Um medidor de vazão do tipo Venturi deverá ser calibrado numa tubulação horizontal onde escoa um líquido de densidade $\rho=800 \, \text{kg/m}^3$. O manômetro M indica a diferença de pressão, Δp_{12} , entre as seções 1 e 2, de diâmetros $d_1=50 \, \text{mm}$ e $d_2=30 \, \text{mm}$, conforme figura a seguir.

Qual é a indicação do manômetro, sabendo que a vazão é igual a $0,005\text{m}^3/\text{s}$?

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação de 7ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

O vapor d'água, que é produzido num gerador de vapor, está a 250°C (aproximadamente 523K) e é usado num pistão para produzir trabalho mecânico, escapando em seguida para à atmosfera a temperatura igual a 100°C (aproximadamente 373K). Qual é o máximo rendimento teórico dessa máquina a vapor?

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Um tanque de armazenamento com 4m^3 de capacidade contém $0,02\text{m}^3$ de água na fase líquida, e o volume restante contém vapor d'água saturado a $5 \times 10^5 \text{ N/m}^2$ (0,5MPa). Uma resistência elétrica aquece o fluido no interior do tanque até que toda a água tenha sido vaporizada. Quanto de calor foi fornecido ao sistema nesse processo?

Dados: Propriedades termodinâmicas da água (liquido e vapor)

temp	volume	volume	Energia	Energia interna	Energia
	específico	específico	interna	Evap.	interna Vapor
(°C)					sat.
	líquido	vapor	Liquido	kJ/kg	
					kJ/kg
	(m3/kg)	(m3/kg)	kJ/kg		
99,63	0,0010	1,6940	417,36	2088,7	2506,1
151,9	0,0011	0,3749	639,68	1921,6	2561,2
179,9	0,0011	0,1944	761,68	1822,0	2583,6
198,3	0,0012	0,1318	843,16	1751,3	2594,4
212,4	0,0012	0,09963	906,44	1693,8	2600,3
	99,63 151,9 179,9 198,3	específico líquido (m3/kg) 99,63 0,0010 151,9 0,0011 179,9 0,0011 198,3 0,0012	específico específico líquido vapor (m3/kg) (m3/kg) 99,63 0,0010 1,6940 151,9 0,0011 0,3749 179,9 0,0011 0,1944 198,3 0,0012 0,1318	específico específico interna líquido vapor Liquido (m3/kg) (m3/kg) kJ/kg 99,63 0,0010 1,6940 417,36 151,9 0,0011 0,3749 639,68 179,9 0,0011 0,1944 761,68 198,3 0,0012 0,1318 843,16	específico específico interna Evap. líquido vapor Liquido kJ/kg (m3/kg) (m3/kg) kJ/kg 99,63 0,0010 1,6940 417,36 2088,7 151,9 0,0011 0,3749 639,68 1921,6 179,9 0,0011 0,1944 761,68 1822,0 198,3 0,0012 0,1318 843,16 1751,3

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Um tubo de aço inoxidável com 25mm de diâmetro interno e espessura de parede igual a 5mm é recoberto com um isolante térmico. A espessura do isolante é igual a 60mm. Qual é a temperatura interna do tubo, sabendo que no exterior do isolamento é igual a 40°C e que o fluxo de calor em regime permanente pela parede do tubo vale 500W/m?

Dados: (Ktubo = $20W/m^{\circ}C$ e Kisol = $0.2W/m^{\circ}C$)

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Profissão: ENGENHARIA MECÂNICA

13 de 13