MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

CONCURSO PÚBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA (CP-CEM/2019)

ENGENHARIA QUÍMICA

INSTRUCÕES GERAIS

- 1- A duração da prova será de **05 horas** e o tempo não será prorrogado. Ao término da prova, entregue o caderno ao Fiscal sem retirar os grampos de nenhuma folha.
- 2- Responda às questões utilizando caneta esferográfica azul ou preta. Não serão consideradas respostas e desenvolvimento da questão a lápis. Confira o número de páginas de cada parte da prova.
- 3- Só comece a responder à prova ao ser dada a ordem para iniciá-la, interrompendo a sua execução no momento em que for determinado.
- 4- O candidato deverá preencher os campos:
 - NOME DO CANDIDATO; NÚMERO DA INSCRIÇÃO e DV.
- 5- Iniciada a prova, não haverá mais esclarecimentos. O candidato somente poderá deixar o seu lugar, devidamente autorizado pelo Supervisor/Fiscal, para se retirar definitivamente do recinto de prova ou, nos casos a seguir especificados, devidamente acompanhado por militar designado para esse fim: atendimento médico por pessoal designado pela Marinha do Brasil; fazer uso de banheiro e casos de força maior, comprovados pela supervisão do certame, sem que aconteça saída da área circunscrita para a realização da prova.
 - Em nenhum dos casos haverá prorrogação do tempo destinado à realização da prova e, em caso de retirada definitiva do recinto de prova, esta será corrigida até onde foi solucionada.
- 6- A solução deve ser apresentada nas páginas destinadas a cada questão.
- 7- Não é permitida a consulta a livros ou apontamentos.
- 8- A prova não poderá conter qualquer marca identificadora ou assinatura, o que implicará atribuição de nota zero.
- 9- Será eliminado sumariamente do concurso e as suas provas não serão levadas em consideração o candidato que:
 - a) der ou receber auxílio para a execução de qualquer prova;
 - b) utilizar-se de qualquer material não autorizado;
 - c) desrespeitar qualquer prescrição relativa à execução das provas;
 - d) escrever o nome ou introduzir marcas identificadoras noutro lugar que não o determinado para esse fim; e
 - e) cometer ato grave de indisciplina.
- 10- É PERMITIDA A UTILIZAÇÃO DE CALCULADORA PADRÃO NÃO CIENTÍFICA E RÉGUA SIMPLES.

NÃO DESTACAR A PARTE INFERIOR

RUBRICA DO PROFESSOR	ESCALA DE	NOTA	USO DA DEnsM
	000 A 080		

NDIDATOS	→	CONCURSO: CP-CEM/2019 NOME DO CANDIDATO:)			
S CAI		N° DA INSCRIÇÃO	DV	ESCALA DE	NOTA	USO DA DEnsM
PELC	-		:	000 A 080		

CONHECIMENTOS PROFISSIONAIS (VALOR: 80 PONTOS)

1ª QUESTÃO (8 pontos)

Uma parede plana extensa consiste de uma camada de material com 25 mm de espessura e condutividade térmica $0.5~\rm W.m^{-1}.K^{-1}$. A face I da parede é irradiada com um fluxo de $2000~\rm W.m^{-2}e$ está em contato com um gás a $500~\rm K$ e com coeficiente de transferência de calor por convecção de $40~\rm W.m^{-2}.K^{-1}$. A absortividade dessa superfície (face I) para a radiação incidente é 0.8, e a transmissividade para a radiação incidente é nula. A outra face da parede (face II) está em contato com ar ambiente a $300~\rm K$ e com coeficiente de transferência de calor de $30~\rm W.m^{-2}.K^{-1}$. Desconsiderando a radiação emitida por ambas as faces, determine:

- a) a temperatura da face I. (4 pontos)
- b) o fluxo de calor transferido para o ar, pela face TT. (4 pontos).

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 1ªquestão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Uma corrente de gás com vazão de 1,0 mol/s é composta de ar e $\rm H_2S$, com fração molar de $\rm H_2S$ de 0,2. Essa corrente é misturada com uma corrente de água pura em um dispositivo de contato. A corrente de água de saída tem fração molar de $\rm H_2S$ dissolvido de 3,8.10⁻⁵, e o dispositivo opera em temperatura de 20 °C e pressão de 1 atm. Considerando o dispositivo de contato como um estágio de equilíbrio e a evaporação de água desprezível, calcule:

- a) a fração molar de H_2S no gás que deixa o sistema. (4 pontos)
- b) as vazões das fases gás e líquida na saída do sistema. (4 pontos)

Dados:

Lei de Henry: $P_{H2S} = H_{H2S}x_{H2S}$

Sendo: P_{H2S} , a pressão parcial de H_2S no gás na condição de equilíbrio; x_{H2S} , a fração molar de H_2S no líquido na condição de equilíbrio; H_{H2S} = 4,83.10³ atm/fração molar, a constante de Henry a 20 °C.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 2ªquestão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Uma turbina a vapor opera com 20000 kg/h de vapor alimentado a 40 bar e 600 °C. Na saída da turbina o vapor está a 200 °C e com pressão de 2 bar. A perda térmica durante o processo de expansão na turbina é 120 kW. Desconsiderando a variação de energia cinética e potencial das correntes, calcule:

- a) a potência útil fornecida pela turbina e a variação de entropia do vapor. (4 pontos)
- b) a temperatura do vapor de saída e a potência útil fornecida, considerando uma nova situação na qual a turbina é bem isolada termicamente e o processo é considerado reversível e adotando as mesmas condições de alimentação e pressão de saída. (4 pontos)

Dados:

$$\frac{d(\mathsf{mU})}{\mathsf{dt}} = -\mathsf{m}'\Delta H + Q + W$$

$$\frac{d(mS)}{dt} = -m' \Delta S + \frac{Q}{T} + S_p$$

m a massa; U a energia interna específica; m' a vazão mássica da corrente; H a entalpia específica das correntes; W a potência devido ao trabalho realizado; Q a potência devido à transferência de calor; S a entropia específica; S_p a entropia produzida e t a variável tempo.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 3ªquestão

Tabela de propriedades termodinâmicas de vapor superaquecido.

P	T	٧	Ū	Н	S
(bar)	(°C)	(m ³ ·kg ⁻¹)	(kJ.kg ⁻¹)	(kJ.kg ⁻¹)	(kJ.kg ⁻¹ .K ⁻¹)
2,0	150	0,9596	2577	2769	7,279
2,0	200	1,080	2654	2870	7,507
2,0	250	1,199	2731	2971	7,709
2,0	300	1,316	2809	3072	7,893
40,0	300	0,0588	2725	2961	6,361
40,0	400	0,0734	2920	3214	6,769
40,0	500	0,0864	3099	3445	7,090
40,0	600	0,0988	3279	3674	7,369

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 3ªquestão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Uma reação química em fase líquida irreversível tem a seguinte estequiometria: $2A \rightarrow B + C$. Realizaram-se quatro experimentos em um reator de mistura perfeita de 30 litros, mantendo-se a concentração da alimentação em 2 mol/l de A e isenta de B e C. Ĉada ensaio foi realizado com uma vazão volumétrica de líquido, q, e a concentração de B na saída do reator, C_{Bs} , foi medida na condição de regime permanente. Além disso, os experimentos foram realizados em temperatura e densidade constantes. Sendo assim, analise a tabela abaixo, que apresenta os resultados dos experimentos e faça o que se pede.

Experimento	1	2	3	4
q (1/min)	2,0	1,0	0,6	0,3
C _{Bs} (mol/1)	0,25	0,38	0,52	0,69

- a) Calcule as concentrações de A na saída do reator e as velocidades de consumo de A, para os quatro experimentos. (4 pontos)
- b) Determine a ordem da reação de consumo de A e a constante cinética. (4 pontos)

Dados:

Equações de projeto de reatores ideais, densidade constante:

reator tubular, $dC_A = \frac{r_A}{q} dV_T$

reator de mistura, $(C_{Ae} - C_{As})q = (-r_A)V_M$

V_T o volume do reator do mistr

 $V_{\mathtt{M}}$ o volume do reator de mistura perfeita

q a vazão volumétrica

 C_{Ae} a concentração de A na entrada

 $ar{C}_{As}$ a concentração de $ar{A}$ na saída

-rA é a velocidade de reação

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 4ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Em um balão de vidro de volume V, tem-se, inicialmente, um gás A puro. O balão é conectado a um tubo de vidro de comprimento L e diâmetro D, sendo D << L, e a outra extremidade do tubo é exposta a um amplo ambiente contendo um gás puro B. O sistema é mantido a temperatura T e pressão P. Considerando que o interior do balão é perfeitamente misturado e que no interior do tubo o processo é regido pela difusão, obtenha uma expressão, em função dos dados fornecidos, para o cálculo:

- a) da vazão molar de gás que sai do tubo no início do processo e apresente as hipóteses consideradas. (4 pontos)
- b) do tempo necessário para que a fração molar de A, no balão, atinja 0,5 e apresente as hipóteses consideradas. (4 pontos)

Dados:

 D_{AB} a difusividade de A em B, m^2/s a P e T

Constante dos gases R: 8,314 J/mol.K

Lei de Fick para difusão: $J_A = -\rho D_{AB} \frac{dx_A}{dz}$

 $N = N_A + N_B$ $N_A = J_A + X_A N$

 J_A o fluxo difusivo de A, mol/(m^2 .s)

 N_A o fluxo de A relativo a um referencial fixo no espaço, mol/($m^2.s$) N fluxo total relativo a um referencial fixo no espaço, mol/($m^2.s$) p a densidade molar do meio, mol/ m^3

 x_A a fração molar de A

DAB a difusividade de A em B, m2/s

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 5ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

O ponto de ebulição representa uma boa indicação das forças intermoleculares necessárias a serem vencidas nos diferentes compostos. Na tabela a seguir, são mostradas algumas substâncias e seus respectivos pontos de ebulição.

SUBSTÂNCIA	PONTO DE EBULIÇÃO (°C)
Metano - CH4	-164
Fluormetano - CH ₃ F	-78
Metanol - CH ₃ OH	65

Com base nessas informações, justifique os pontos de ebulição, indicando quais forças intermoleculares precisam ser superadas para essa mudança de estado.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 6ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Num forno de preaquecimento de lingotes de aço, é utilizado um carvão cuja composição elementar é 72% de carbono, 8,8% de hidrogênio e o restante são cinzas. Os teores de enxofre e nitrogênio são desprezíveis, não há oxigênio nesse carvão, a combustão é feita com 50% de ar em excesso e a temperatura no forno é de 500°C e a pressão é de latm. Admitindo combustão completa, faça o que se pede.

- a) Sabendo que há a necessidade de 4172600kcal/h para o aquecimento, quanto de carvão (em kg/h) será necessário para o tratamento dos lingotes? (5 pontos)
- b) Por problemas com a emissão de carbono em função do efeito estufa, foi sugerido que se utilize um outro carvão, para o mesmo serviço, que apresente a mesma composição de carbono e hidrogênio, mas com menor teor de cinzas e com um teor de oxigênio diferente de zero, no processo de combustão no forno. Essa substituição melhora o problema de emissão? Justifique sua resposta. (3 pontos)

Dados:

Composição do ar atmosférico: $21\%O_2$ e $79\%N_2$ (porcentagem molar ou volumétrica)

Massas atômicas: C=12; H=1; O=16; N=14

Reações termoquímicas de combustão:

 $C + O_2 \rightarrow CO_2 \Delta H = -96,7 \text{kcal/mol};$

 $H_2 + \frac{1}{2} O_2 \rightarrow H_2O$ $\Delta H = -68,3 \text{kcal/mol}$ (água no estado líquido)

 $H_2 + \frac{1}{2} O_2 \rightarrow H_2O$ $\Delta H=-57,8$ kcal/mol (água no estado de vapor)

 $PC(I ou S) = - \sum_{i} \Delta H_{i}$

PCI = poder calorífico inferior; PCS = poder calorífico superior, n = número de moles, ΔH_i = entalpia de combustão da substância i

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 7ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Profissão: ENGENHARIA QUÍMICA

15 de 23

8ª Questão (8 pontos)

Pode-se produzir ácido fosfórico a partir de fósforo e ácido nítrico, conforme a equação mostrada a seguir, que não está balanceada:

 $P + HNO_3 + H_2O \Rightarrow H_3PO_4 + NO$

Após uma reação efetuada, foi recolhida uma quantidade de NO gasoso, num frasco de 49200mL. A pressão final após essa coleta foi de 1,5atm e a temperatura foi de 27°C. Sendo assim, determine:

- a) a massa (em g) de fósforo utilizada. (4 pontos)
- b) a massa (em g) de ácido fosfórico obtida. (4 pontos)

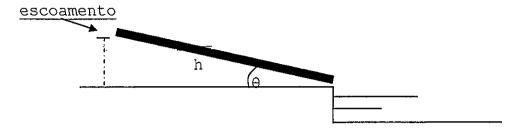
Dados:

Massas atômicas: H=1; N=14; O=16; P=31.

Equação dos gases ideais: pV=nRT (p = pressão; V = volume; n = número de mols; R = 0,082atm.L/mol.K; T = temperatura).

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 8ª questão


Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 8ªquestão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

9ª Questão (8 pontos)

O escoamento de água em uma tubulação é representado na figura a seguir.

Sabendo-se que a viscosidade é $1 \times 10^{-3} \, \mathrm{Pa.s.}$, a massa específica é de $1000 \, kg/m^3$ - ambas constantes -, o tubo, em aço-carbono, tem diâmetro de 2,1cm e comprimento de $1000 \, \mathrm{m}$ e que o bocal de entrada e o bocal de saída estão à pressão atmosférica, determine a máxima altura, h (em m), para que o fluido escoe no tubo inclinado em regime laminar.

Dados:

Regime laminar: considere Re≤2100. Equação de Bernoulli:

$$\frac{v_{b1}^2}{2} + gz_1 + \frac{p_1}{\rho} + \eta_p W_s = \frac{v_{b2}^2}{2} + gz_2 + \frac{p_2}{\rho} + lwf$$

 v_{bi} é a velocidade média do escoamento; g é a aceleração da gravidade 9,8m/s²; z_i è a cota do ponto considerado; p_i é a pressão no ponto considerado; p_i é a densidade do fluido; p_i é o rendimento da bomba; p_i é o trabalho de eixo; p_i lwf é a perda de energia mecânica.

Para tubos:

$$lwf = \frac{2fLv_b^2}{D}$$

f é o fator de atrito de Fanning f = 16/Re; L é o comprimento de tubulação; vb é a velocidade média; D é i diâmetro interno da tubulação.

Número de Reynolds: Re = $\frac{Dv_b\rho}{\mu}$

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 9ªquestão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 9ªquestão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

10° Questão (8 pontos)

Os mecanismos de corrosão de um metal M envolvem reações químicas em que se tem transferência de elétrons numa dada interface. A reação anódica alimenta a reação catódica nos processos corrosivos. Assim, considere a seguinte afirmação:

Quanto maior for a acidez e maior for a concentração de oxigênio no meio corrosivo, mais intensa será a corrosão. Analise e justifique essa afirmação. Utilize, na justificativa, as equações das reações eletroquímicas adequadas.

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019

Continuação da 10ª questão

Prova : CONHECIMENTOS PROFISSIONAIS Concurso: CP-CEM/2019