
- 1) A água do mar é um meio corrosivo complexo constituído de: sais em solução, com pH entre os valores 7,2 e 8,6; matéria orgânica viva e em decomposição; FOULING (incrustações provenientes de organismos vegetais ou animais que crescem aderentes às superfícies metálicas; e gases dissolvidos. Além dos fatores químicos e biológicos citados, fatores físicos (tais como: impingimento, cavitação, temperatura e pressão) influenciam os processos corrosivos a que estão sujeitos os cascos metálicos dos navios. Assinale a opção que apresenta o fator menos influente na ação corrosiva da áqua do mar.
 - (A) pH.
 - (B) Fouling.
 - (C) Salinidade.
 - (D) Temperatura.
 - (E) Gases dissolvidos.
- 2) Eletronegatividade é a capacidade que um átomo possui de receber elétrons, de modo que, se um átomo tem forte tendência a adquirir elétrons, ele é dito altamente eletronegativo. Entre os elementos abaixo, qual é o mais eletronegativo?
 - (A) Sn
 - (B) S
 - (C) As
 - (D) O
 - (E) Tl

Prova : Amarela Concurso : CP-CAP/13

3) Analise o gráfico a seguir.

- O gráfico acima apresenta uma resposta típica de uma cromatografia gasosa, na qual as substâncias gasosas atravessam uma coluna em diferentes velocidades e tempos de retenção distintos, sendo medidos por um detector no final do cromatógrafo. O terceiro pico representa o sinal medido da substância B. O tempo de retenção ajustado da substância B é representado por:
- (A) t1
- (B) t3
- (C) t3-t1
- (D) t3-t2
- (E) t3-t2+t1
- 4) Qual é o pOH de uma solução de Ca(OH)₂ a 0,05 M?
 - (A) 0,1
 - (B) 1,0
 - (C) 13,0
 - (D) 13,9
 - (E) 14,0
- 5) Um sistema composto por 5 mols de um gás ideal sofre uma expansão isobárica de modo que seu volume dobra. Após esse processo, pode-se afirmar que:
 - (A) não há variação de entalpia.

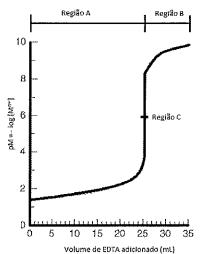
Dados: U = q + w

(B) a temperatura no sistema diminui.

H = U + P.V

- (C) não foi realizado um ciclo termodinâmico. P.V = n.R.T
- (D) não há variação na energia interna do sistema.
- (E) o sistema recebeu energia na forma de trabalho.

Prova : Amarela


Profissão: TÉCNICO EM QUÍMICA

- 6) Corrosão pode ser definida como a deterioração de um material, geralmente metálico, por ação química ou eletroquímica do meio ambiente. A forma de corrosão caracterizada pela formação de finos filamentos, não profundos, que se propagam em diferentes direções é denominada:
 - (A) uniforme.
 - (B) puntiforme.
 - (C) filiforme.
 - (D) grafítica.
 - (E) empolamento pelo hidrogênio.
- 7) Em relação à análise titrimétrica, é correto afirmar que:
 - (A) o ponto final ocorre quando todo o volume da bureta é esgotado.
 - (B) titulação de retorno ocorre quando se titula o analito com o titulante em posições trocadas.
 - (C) titulação em branco é feita com todas as substâncias da amostra com exceção do indicador.
 - (D) padrão primário é o reagente suficientemente puro que pode ter concentração diretamente calculada.
 - (E) ponto de equivalência ocorre quando é observada uma mudança súbita em uma propriedade física da solução.
- 8) O Nitrogênio é o composto mais abundante na atmosfera terrestre e possui várias aplicações industriais. Em relação a esse elemento, é INCORRETO afirmar que:
 - (A) pode ser obtido por destilação do ar líquido.
 - (B) é utilizado como gás inerte.
 - (C) constitui a base dos ácidos nucleicos e proteinas.
 - (D) é utilizado na produção de amônia pelo processo Haber.
 - (E) em sua forma molecular (N_2) é extremamente reativo.

Prova : Amarela

Profissão : TÉCNICO EM QUÍMICA

9) Analise a figura a seguir.

A figura acima representa uma típica curva de $\,$ titulação $\,$ de $\,$ um $\,$ metal $\,$ M $^{n+}$ com $\,$ EDTA, cuja reação $\,$ é $\,$ dada $\,$ por:

 M^{n+} + EDTA \rightarrow MY^{n-4}

As regiões A, B e C são denominadas, respectivamente:

- (A) Região ácida, Região básica, Região neutra.
- (B) Região básica, Região ácida, Região neutra.
- (C) Região de excesso de Mⁿ⁺, Região de excesso de EDTA, Ponto de equivalência.
- (D) Região de excesso de EDTA, Região de excesso de $\mathbf{M}^{\mathbf{n}^+}$, Ponto de equivalência.
- (E) Região final de titulação, Região inicial de titulação, Região com 50% titulado.

Prova : Amarela

Profissão: TÉCNICO EM QUÍMICA

- 10) Um técnico em química deseja saber o calor específico de determinada liga metálica de nome "X". Para tanto, dispõe de água pura, vidraria, balança, estufa e termômetro. Tomou 100 gramas de água à temperatura de 25°C em um recipiente isolado e acrescentou 10 gramas da liga X à temperatura de 60°C. Após o equilíbrio térmico, observou que a temperatura do sistema era de 50°C. Considerando-se que não houve perdas de calor para as vizinhanças, qual é o valor do calor específico da liga X?
 - (A) 0,25 cal/g°C
 - (B) 0,50 cal/q°C
 - (C) $2.5 \text{ cal/g}^{\circ}\text{C}$
 - (D) 5,0 cal/g°C
 - (E) 25,0 cal/g°C
- 11) Observe a reação abaixo.

$$MH_2 + 2H_2O \rightarrow M(OH)_2 + 2H_2$$

Qual elemento químico pode substituir a incógnita M da reação acima, de modo que sua camada de valência seja completamente preenchida?

- (A) Alumínio.
- (B) Césio.
- (C) Lítio.
- (D) Cálcio.
- (E) Sódio.
- 12) Assinale a opção que corresponde, respectivamente, à carga mais provável dos íons formados em compostos iônicos de cada um dos seguintes elementos: S, Te, Rb, Ga e Cd.
 - (A) +2, -2, +1, +3 e -1
 - (B) +2, -2, -1, -3 e -1
 - (C) +2, +2, -1, +3 e +1
 - (D) -2, -2, +1, -3 e +2
 - (E) -2, -2, +1, +3 e +2

Prova : Amarela Concurso : CP-CAP/13

13) Assinale a opção que completa corretamente as lacunas da sentença abaixo.

"Nos elementos da família 1A observa-se que, ao dirigir-se do Lítio(Li) para o Frâncio(Fr), a primeira energia de ionização dos elementos ______, pois a distância entre a camada de valência e o núcleo ______. "

- (A) aumenta / aumenta
- (B) aumenta / não se altera
- (C) diminui / aumenta
- (D) diminui / não se altera
- (E) diminui / diminui
- 14) A produção do vinho ocorre por meio da fermentação das uvas, que é feita por vários tipos de leveduras que consomem os açúcares presentes nas uvas transformando-os em álcool etílico. Essa bebida é normalmente armazenada em garrafas de coloração escura, sendo lacradas com uma rolha de cascalho de madeira. O contato com o ar é indesejável pois leva a oxidação do etanol à:
 - (A) Eteno.
 - (B) Etanal.
 - (C) Etanona.
 - (D) Etanodiol.
 - (E) Éter Dimetílico.
- 15) Os óxidos de nitrogênio são poluentes comuns, gerados por motores à combustão interna e usinas de eletricidade. Dois destes óxidos, NO₂ e NO₃, reagem entre si para formar um produto em que um dos átomos de Oxigênio está posicionado entre os dois átomos de Nitrogênio. Assinale a opção que apresenta o valor da soma das cargas formais dos átomos de Nitrogênio do produto da reação.
 - (A) -4 Dado: Carga formal = V (L 0.5.B)
 - (B) -2 V n° de elétrons de valência
 - (C) 0 L n° de elétrons presentes em pares isolados
 - (D) +2 B n° de elétrons compartilhados
 - (E) +4

Prova : Amarela Concurso : CP-CAP/13

- 16) A atmosfera artificial de um submarino pode ser considerada um gás ideal. Considere que, ao submergir, a temperatura interna do submarino sofreu 25% de redução em relação ao valor inicial na superfície e que a pressão da água do mar sobre o casco era o dobro da pressão na superfície. Assinale a opção que corresponde à variação da pressão interna que foi compensada para manter o ambiente interno desse submarino à pressão constante.
 - (A) Redução de 25% Dado: P.V = n.R.T
 - (B) Redução de 50%
 - (C) Aumento de 25%
 - (D) Aumento de 50%
 - (E) Aumento de 75%
- 17) O "princípio de exclusão de Pauli" determina que cada orbital atômico não pode ser ocupado por mais de dois elétrons e que dois elétrons em um átomo não podem ter o mesmo conjunto de números quânticos. Sendo assim, qual é o elemento químico correspondente ao átomo que possui um único elétron no orbital mais energético com o seguinte conjunto de números quânticos: {n = 4, l = 2, ml = -1 e ms = +1/2}?
 - (A) Ti
 - (B) Co
 - (C) Sr
 - (D) Zr
 - (E) Rh
- 18) Observe a molécula a seguir.

$$H_2C=CH-O-CH-CH_3$$
 | CH_3

A cadeia acima pode ser classificada como:

- (A) saturada, homogênea, ramificada e aberta.
- (B) saturada, heterogênea, ramificada e fechada.
- (C) insaturada, homogênea, ramificada e fechada.
- (D) insaturada, heterogênea, ramificada e aberta.
- (E) insaturada, heterogênea, não ramificada e aberta.

Prova : Amarela Concurso : CP-CAP/13

19) Observe a reação a seguir.

$$^{1}\text{CH}_{3}$$
 - $^{2}\text{CH}_{2}$ - ^{3}CH = ^{4}C - $^{5}\text{CH}_{3}$ + HX $|$ CH₃

Em relação à reação de Halogenação acima, em qual carbono o radical X será ligado?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5
- 20) Qual é o Grupo cujos elementos possuem a configuração eletrônica da camada de valência, genericamente, formulada por ns² np³?
 - (A) 1
 - (B) 13
 - (C) 14
 - (D) 15
 - (E) 16
- 21) Considerando o equilíbrio ácido-base em solução aquosa, assinale a opção correta.
 - (A) Ácido monobásico é aquele que só pode reagir com um tipo de base.
 - (B) Uma solução de $\rm H_2SO_4$ dissocia-se completamente em presença de $\rm Na_2SO_4$.
 - (C) Substâncias anfóteras podem reagir com ácidos ou bases.
 - (D) A definição de pK é: pk=-log(1/K).
 - (E) Uma base é considerada forte quando se dissocia a altas temperaturas.

Prova : Amarela

Profissão : TÉCNICO EM QUÍMICA

22) Deseja-se obter a constante de velocidade de formação de um produto D à temperatura de 500°C para a seguinte reação química:

$$A + B \rightarrow D$$

Para tanto dispõe-se dos dados abaixo obtidos empiricamente em diferentes condições de concentrações iniciais:

Experimento	C _{A0} (mol/L)	C _{BO} (mol/L)	Velocidade de formação de D (mol/L·s)
1	0,01	0,01	5·10 ⁻⁸
2	0,02	0,01	2·10 ⁻⁷
3	0,01	0,03	1,5·10 ⁻⁷

Assinale a opção que apresenta o valor e a unidade da constante de velocidade a 500°C.

- (A) $2 \cdot 10^{-3} \text{ L}^2/\text{mol}^2 \cdot \text{s}$
- (B) $2 \cdot 10^{-2}$ L/mol·s
- (C) $2 \cdot 10^{-2} L^2 / mol^2 \cdot s$
- (D) $5 \cdot 10^{-2}$ L/mol·s
- (E) 5·10⁻² L²/mol²·s
- 23) Em relação às técnicas básicas para análises em laboratório e preparo de substâncias para análise, é correto afirmar que na técnica para:
 - (A) filtração, pode-se usar um kitazato acoplado a um erlenmeyer para evitar o transbordamento do sobrenadante.
 - (B) abertura de amostra, a água régia é composta de 25% em volume de ácido bromídrico e 75% em volume de álcool etílico.
 - (C) lavagem do precipitado, deve-se usar a menor quantidade possível de líquido de lavagem.
 - (D) precipitação, deve-se adicionar um grande excesso de precipitante para se obter precipitados rapidamente.
 - (E) pesagem de precipitados, a pesagem por diferença deve ser feita com os pesos do recipiente vazio e com o precipitado no fundo do recipiente na presença da solução.

Prova : Amarela

Profissão: TÉCNICO EM QUÍMICA

24) As pilhas ou baterias que possuem o lítio como principal constituinte têm como uma de suas características o fato de serem leves, pois o lítio é o metal menos denso descoberto até o momento.

Considere as semi-reações:

$$\text{Li}_{(s)}^{+1} + e^{-} \rightarrow \text{Li}_{(s)}$$
 $E_{0} = -3,05 \text{ V}$ $\text{Ag}_{(aq)}^{+1} + e^{-} \rightarrow \text{Ag}_{(aq)}$ $E_{0} = +0,80 \text{ V}$

Se uma pilha é composta pelos dois elementos químicos acima, pode-se afirmar que o elemento que constitui o ânodo da reação eletroquímica espontânea e o Potencial da pilha são dados, respectivamente, por:

- (A) Li e 3,85 V
- (B) Ag e 3,85 V
- (C) Li e 2,25 V
- (D) Ag e 2,25 V
- (E) Li e 2,06 V
- As propriedades físicas dos hidrocarbonetos estão intimamente relacionadas com o tamanho da cadeia de carbono e com o consequente caráter predominante das ligações químicas de seus elementos constituintes. Deste modo, é possível afirmar que, para os álcoois, a solubilidade em água e o ponto de ebulição estão associados com o tamanho da cadeia principal de carbonos. Assim, com o aumento da cadeia de carbono, é correto afirmar que a solubilidade e o ponto de ebulição, respectivamente:
 - (A) aumenta; aumenta.
 - (B) aumenta; diminui.
 - (C) diminui; aumenta.
 - (D) aumenta; não se altera.
 - (E) diminui; não se altera.

Prova : Amarela Concurso : CP-CAP/13

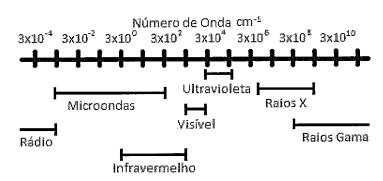
- 26) Em relação aos equipamentos, materiais e princípios aplicados à cromatografia em fase gasosa, é correto afirmar que:
 - (A) os gases de arraste mais utilizados são: He, N_2 e H_2 .
 - (B) os detectores utilizam o princípio da diferença no tamanho molecular.
 - (C) as colunas capilares são largas e curtas, proporcionando maiores vazões.
 - (D) a fase estacionária é a fase gasosa que apresenta vazão constante dentro do equipamento.
 - (E) a vantagem do uso da cromatografia em fase gasosa é que podem ser utilizadas amostras com qualquer grau de impureza.
- 27) Sabendo que os íons óxido (0²⁻), Fluoreto(F⁻), Sódio (Na⁺) e Magnésio(Mg²⁺) são isoeletrônicos, assinale a opção que apresenta a ordem crescente do tamanho dos raios iônicos dos mesmos.
 - (A) $R(Na^{+}) < R(Mg^{2+}) < R(O^{2-}) < R(F^{-})$
 - (B) $R(Mg^{2+}) < R(Na^{+}) < R(F^{-}) < R(O^{2-})$
 - (C) $R(Mg^{2+}) < R(Na^{+}) < R(O^{2-}) < R(F^{-})$
 - (D) $R(F^{-}) < R(O^{2-}) < R(Mg^{2+}) < R(Na^{+})$
 - (E) $R(O^{2-}) < R(F^{-}) < R(Na^{+}) < R(Mg^{2+})$
- 28) São princípios de separação aplicados à cromatografia líquido-líquido:
 - (A) absorção e evaporação.
 - (B) partição e troca iônica.
 - (C) absorção e troca iônica.
 - (D) evaporação e exclusão por tamanho.
 - (E) extração com solvente e exclusão por tamanho.

Prova : Amarela Concurso : CP-CAP/13

29) Sabe-se que o etanol sofre combustão completa com reação não balanceada representada por:

$$C_2H_5OH_{(1)} + O_2 \rightarrow CO_{2(g)} + H_2O_{(g)} \Delta H_{Comb} = -1.368,00 \text{ kJ/mol}$$

Sabendo-se que na combustão de certa quantidade de etanol houve a liberação de 456,00 kJ, é correto afirmar que a quantidade de oxigênio consumida na reação foi de:


- (A) 10,0 gramas
- (B) 16,0 gramas
- (C) 32,0 gramas
- (D) 48,0 gramas
- (E) 96,0 gramas
- 30) Analise o composto a seguir.

A nomenclatura oficial, segundo a IUPAC, do composto acima é dada por:

- (A) 3,4,6-Trimetil Octano
- (B) 3,5,6-Trimetil Octano
- (C) 2,5-Dietil 3-Metil Hexano
- (D) 2-Etil, 3, 5-Dimetil Heptano
- (E) 5-Etil, 3, 4-Dimetil Heptano

Prova : Amarela Concurso : CP-CAP/13

31) Analise a figura a seguir.

As radiações com maior comprimento de onda e maior frequência são, respectivamente:

- (A) Rádio e Raios Gama.
- (B) Raios Gama e Rádio.
- (C) Micro-ondas e Visível.
- (D) Infravermelho e Ultravioleta.
- (E) Ultravioleta e Infravermelho.
- 32) Ao precipitar 1L de uma solução de ${\rm Ba}^{2+}$ com excesso de ${\rm H}_2{\rm SO}_4$, obteve-se 58,25 mg de precipitado. Sabendo que o precipitado está na forma ${\rm BaSO}_4$, qual é a molaridade da solução de ${\rm Ba}^{2+}$?
 - (A) $1,0.10^{-5}$ M

Dado: massa molar do Sulfato de

(B) $2,5.10^{-4}$ M

Bário = 233 g/mol

- (C) $4,0.10^{-4}$ M
- (D) $5,0.10^{-4}$ M
- (E) 1,0.10⁻³ M
- 33) Alcenos podem ser obtidos mediante a reação abaixo, em meio ácido:

$$H_3^+$$
 H_3^- C - CH_2 - OH \rightarrow H_2^- C = CH_2 + H_2^- O

Na reação acima, o álcool etílico sofreu uma reação de

- (A) adição.
- (B) redução.
- (C) eliminação.
- (D) substituição.
- (E) desalogenação.

Prova

: Amarela

Concurso : CP-CAP/13

- 34) Em relação ao íon complexo $[Cu(NH_3)_4]^{2+}$, pode-se afirmar que:
 - (A) a valência do cobre é +2.
 - (B) o número de coordenação é 8.
 - (C) o número de coordenação é 12.
 - (D) o cobre atua como metal anfótero.
 - (E) o cobre é chamado de ligante monodentado.

35) Analise a tabela a seguir.

Indicador	Faixa de Viragem	Cor em meio ácido	Cor em meio
	(pH)		básico
Alaranjado de Matila	2,9 - 4,6	Vermelha	Laranja
Vermelho do Congo	3,0 - 5,0	Azul	Vermelha
Vermelho de Etila	4,5 - 6,5	Vermelha	Laranja
Vermelho de Fenol	6,8 - 8,4	Amarela	Vermelha
Fenolftaleina	8,3 - 10,0	Incolor	Vermelha

A tabela acima apresenta as cores que os indicadores possuem em diferentes valores de pH. A faixa de viragem indica em quais valores de pH ocorre a transição da cor em meio ácido para a cor em meio básico e vice-versa.

Em relação ao uso de indicadores na titrimetria, é correto afirmar que:

- (A) o Alaranjado de Metila e a fenolftaleína são úteis para titular bases fortes com ácidos fortes ou vice-versa.
- (B) quando o pH da solução for 4,0, o Vermelho do Congo apresentará coloração amarela.
- (C) a mudança de cor do indicador ocorre no ponto de equivalência da titulação de neutralização.
- (D) o indicador é escolhido com base na cor que apresenta um pH ácido ou pH básico.
- (E) na titulação de uma base fraca com um ácido forte, os indicadores mais adequados são os que possuem faixa de viragem nas regiões de pH abaixo de 7,0.

rova : Amarela Concurso : CP-CAP/13

- 36) O projeto de construção de um submarino nuclear brasileiro prevê a utilização pacífica da energia nuclear, com aplicação exclusiva na propulsão deste tipo de navio. Assinale a opção que apresenta o tipo de reação nuclear que produz um nuclídeo com número atômico maior e massa idêntica à do núcleo original.
 - (A) Decaimento α (nucleo de Hélio He)
 - (B) Decaimento beta (β̄)
 - (C) Captura de elétron (e)
 - (D) Emissão de pósitron (β⁺)
 - (E) Emissão de próton (núcleo de Hidrogênio H⁺)
- 37) Considerando concentração, solubilidade e outros fatores relevantes para a precipitação de sais, assinale a opção correta.
 - (A) A solubilidade de um sal depende somente da concentração do sal em solução.
 - (B) A precipitação de um sal aumenta sempre que ocorre aumento da temperatura.
 - (C) Um sal, com produto de solubilidade baixo, terá sempre baixa solubilidade.
 - (D) Sempre que o produto das concentrações molares de dois íons for maior que o $K_{\text{PS}}\text{,}$ haverá precipitação.
 - (E) Adição de acetato de sódio numa solução de ácido acético não altera o pH, altera somente a concentração de acetato.
- 38) Em relação à aparelhagem e às técnicas básicas de laboratório, é correto afirmar que:
 - (A) buretas são recipientes úteis na pesagem de sólidos.
 - (B) uma proveta pode ser utilizada para medir volume de líquidos.
 - (C) substâncias higroscópicas devem ser pesadas em recipientes abertos.
 - (D) o balão aferido, ou volumétrico, apresenta uma escala graduada de volume.
 - (E) substâncias quentes devem ser pesadas antes que atinjam a temperatura da balança.

Prova : Amarela Concurso : CP-CAP/13

39) Considere a adição de 10mL de ácido bromídrico [1M] a um litro de solução tampão, conforme abaixo:

Solução tampão: ácido acético [0,2M] + acetato de sódio [0,2M]

Sendo o aumento do volume desprezível, qual é o pH da solução tampão e o pH da solução resultante, respectivamen-

(A) 4,76 e 4,81

Dados: pKa do ácido acético = 4,76

(B) 4,76 e 4,71

pH = pKa + log [sal]/[ácido]

- log(0,9) = -0.05(C) 4,76 e 4,76
- (D) 6,76 e 6,81
- (E) 6,76 e 6,71
- 40) soma de medidas obtidas por três a sequir a instrumentos de medição distintos.

15,597 003 9

 \pm 0,000 000 1

+28,002 951

± 0,000 001

+80,33

 $\pm 0,01$

123,929 954 9

Considerando os algarismos significativos e os erros associados às medidas, qual é a melhor expressão para o valor da soma acima?

- (A) 124
- (B) 123,9
- (C) 123,93
- (D) 123,930
- (E) 123,929 954 9
- 41) A argamassa de cimento úmida (pH = 13) forma um produto de corrosão solúvel quando em contato com o
 - (A) aço.
 - (B) cobre.
 - (C) ferro.
 - (D) níquel.
 - (E) alumínio.

Prova : Amarela

Concurso : CP-CAP/13

- 42) Em relação à potenciometria, analise as afirmativas abaixo.
 - I O eletrodo de vidro não é um eletrodo de referência, pois é sensível ao pH.
 - II O eletrodo indicador do primeiro tipo consiste de um metal em contato com uma solução contendo íons do próprio metal.
 - III- Um equipamento potenciométrico necessita de um eletrodo de referência, um eletrodo indicador e de um dispositivo para leitura de potencial.

Assinale a opção correta.

- (A) Apenas a afirmativa II é verdadeira.
- (B) Apenas a afirmativa III é verdadeira.
- (C) Apenas as afirmativas I e II são verdadeiras.
- (D) Apenas as afirmativas II e III são verdadeiras.
- (E) As afirmativas I, II e III são verdadeiras.
- 43) Observe as reações químicas a sequir:

$$H_2S + H_2O \leftrightarrow H_3O^+ + HS^- \qquad K_1 = 9,1 . 10^{-8}$$

 $HS^- + H_2O \leftrightarrow H_3O^+ + S^{2-} \qquad K_2 = 1,2 . 10^{-15}$

A constante de ionização total da reação pode ser expressa pela relação:

- (A) $K.[H_2S] = [H_3O^+]^2.[S^{2-}]$
- (B) K. $[H_3O^+]^2$. $[S^{2^-}] = [H_2S]$
- (C) $K = [H_3O^+]^2 \cdot [HS^-]^2 \cdot [S^{2-}] \cdot [H_2S]$
- (D) K. ($[H_2S] + [HS^-]$) = ($[H_3O^+]$. $[HS^-]$) + ($[H_3O^+]$. $[S^{2-}]$)
- (E) K. ($[H_3O^+]$. $[HS^-]$ + $[H_3O^+]$. $[S^{2^+}]$) = $[H_2S]$ + $[HS^-]$
- 44) Em relação à análise de cátions, separada por grupos analíticos, pode-se afirmar que:
 - (A) existem somente 3 grupos analíticos definidos.
 - (B) os cátions do grupo III reagem apenas entre si.
 - (C) os cátions do grupo I formam precipitado com ácidos orgânicos em alta temperatura.
 - (D) o método de classificação em cada grupo analítico é definido pelo reagente com que o cátion reage.
 - (E) os cátions do grupo II formam precipitado tanto com o ácido clorídrico como com o ácido sulfídrico.

Prova : Amarela Concurso : CP-CAP/13

45) Analise a tabela a seguir.

C [M]	ន	Desvio Padrão (ss)
0,05	0,135	0,110
0,14	0,153	0,090
0,22	0,169	0,080

A tabela acima se refere à sensibilidade medida de um sensor de absorção em diferentes concentrações de uma solução. Sendo C a concentração molar da solução, S a sensibilidade medida e ss o desvio padrão, pode-se afirmar que, na concentração de 0,22M, o valor da sensibilidade de calibração (m) e a sensibilidade analítica (Y) são, respectivamente:

- (A) $0,125 \text{ M}^{-1} \text{ e } 1,50$
- Dados: S = m.C + b e Y = m/ss,
- (B) $0.125 \text{ M}^{-1} = 2.00$

onde b é uma constante

- (C) $0,200 \text{ M}^{-1} \text{ e } 2,00$
- (D) $0,200 \text{ M}^{-1} \text{ e } 2,50$
- (E) $0.250 \text{ M}^{-1} \text{ e } 5.00$
- 46) Considerando uma mistura em solução de um sal de um monoácido com um sal de uma monobase de iguais concentrações, assinale a opção correta.
 - (A) Solução tampão é aquela formada por um sal de ácido fraco com um sal de base fraca.
 - (B) Sal de ácido fraco e sal de base fraca sempre formam uma solução neutra.
 - (C) Sal de ácido forte e sal de base fraca sempre formam uma solução alcalina.
 - (D) Sal de ácido forte e sal de base forte sempre formam uma solução neutra.
 - (E) Sal de ácido fraco e sal de base forte sempre formam uma solução ácida.

Prova : Amarela

Profissão: TÉCNICO EM QUÍMICA

47) Analise a equação a seguir.

$$KO_{2 (s)} + CO_{2 (q)} \leftrightarrow K_2CO_{3 (s)} + O_{2 (q)}$$

O dióxido de carbono gerado pela tripulação dos submarinos deve ser constantemente removido do ar e o gás oxigênio, recuperado. Grupos de projetistas de submarinos desenvolveram uma célula purificadora de ar, contendo superóxido de potássio, KO_2 , que reage com o dióxido de carbono, formando carbonato de potássio e liberando oxigênio, de acordo com a equação química NÃO balanceada acima. Assinale a opção que apresenta a soma dos menores coeficientes estequiométricos inteiros dos compostos gasosos nessa equação, depois de balanceada.

- (A) 4
- (B) 5
- (C) 6
- (D) 8
- (E) 10
- Diamante e Grafite são formas alotrópicas diferentes do mesmo elemento químico, o Carbono. Essas formas possuem diferenças nas suas propriedades, tais como: dureza; condutividade térmica e elétrica; transparência; e estabilidade reacional. Essas diferenças nas propriedades das formas alotrópicas do carbono podem ser explicadas por meio das diferenças:
 - (A) nas ligações químicas e no raio atômico do carbono.
 - (B) nas ligações químicas e na eletronegatividade do carbono.
 - (C) nas ligações químicas e na energia de ativação do carbono.
 - (D) na eletronegatividade e no arranjo tridimensional dos átomos de carbono.
 - (E) nas ligações químicas e no arranjo tridimensional dos átomos de carbono.

Prova : Amarela Concurso : CP-CAP/13

- Uma solução aquosa foi acrescida de um sal de modo que seu pOH teve seu valor alterado de 6 para 8. Sendo assim, podese afirmar que as concentrações de íons ${\rm H_3O}^+$ antes $({\rm C_A})$ e depois $({\rm C_D})$ do acréscimo do sal atendem à seguinte relação:
 - (A) $C_A = C_D \cdot 1/2$
 - (B) $C_A = C_D \cdot 1/100$
 - (C) $C_A = C_D \cdot 1/200$
 - (D) $C_A = C_D \cdot 100$
 - (E) $C_A = C_D \cdot 2$
- 50) Em relação aos aparelhos e equipamentos usados em laboratório, é correto afirmar que:
 - (A) o bico de bulsen é utilizado para resfriar substâncias.
 - (B) os agitadores magnéticos atuam na separação de íons cloro.
 - (C) os dessecadores são utilizados para manter as vidrarias hidratadas.
 - (D) deve-se sempre secar o exterior e interior das vidrarias com um pano seco.
 - (E) podem ser utilizados diversos solventes, como etanol e acetona, nos frascos de lavagem (pissetas).

Prova : Amarela Concurso : CP-CAP/13 Profissão : TÉCNICO EM QUÍMICA

massa atômica	símbolo	Legenda número atômico		223 226	71		133 137	Cs	55,5 87,6 56	공	37 38	39,1 40,1	ス		24			6,94 9,01	⊑.	3	2 -	I	۵	IA II	1
	<u>ō</u>	Ö		Actir	Ra	Série	•	<u>В</u>	Série dos	ଫୁ	39	45,0	Ca	21	,	Ma			ወ					IIA IIIB	3
89 (227)	SH	57 139	SÉ	Actinideos (261)		Série dos 104	Lantenideos 178		72	<u> </u>	40	47,9	Sc	22											
Ac 232	SÉRIE DOS ACTINÍDEOS	58 La 140	RIE DOS		곴		<u></u>	<u></u>	73	Ŋ	4	50,9		23										IVB	426
고 기	S ACTINI	ိုင္စ	LANTA	(262)	D			교		S	42		<	24										VB	υ ·
Pa	DEOS	ָר ד <u>י</u>	SÉRIE DOS LANTANÍDEOS		g		184	>	4	Mo		0	ဂ္											VIB	Q)
92 U 238		60 Nd		(262)	뫄	107	1 8 6	Re	95,9 75	등	43	Ġ.	MΣ	25						ı				VIIB	7
93 Np (237)		61 Pm (147)		(265)	Hs	108	190	SO SO	(88)	Ru	44	55,8	F.e	26										RIIIA	8
94 Pu (242)		62 Sm 150		(266)	Mt	109	192		77	Rh	45	58,9	င္ပ	27										VIIIB	Q
95 Am (243)		63 Eu		(269)	Uun	110	195		78	Pd	46	58,7	Z.	28						•				RIIIA	10
96 Cm (247)		64 Gd 157		(272)	Uuu		197		79	Ag	47	63,5	ဥ	29					•					Ą	11
97 Bk (247)		65 Tb		(277)	duU	112	201		88 -		40	65,4	Zn	30									٠	IΙΑ	12 .
98 Cf (251)		66 Dy					204	크	81 7	n	49	69,7	Ga	သ	27,00	≥	13	10,80	σ.	5				TIIA	13
99 Es		67 Ho					207	Pb	82	Şn	50	72,6		32	28,10	<u>လ</u>	14	12,00	ဂ	6				IVA	14
100 Fm (253)		68 Er					209		83		Ω	74,9		င္မ	31,00	ט	15	14,00	z	7				NA.	15
101 Md (256)		69 Tm			•		(210)		84		552	79,0		34	32,10	ဟ	6	16,00	0	8				VIA	16
102 No (253)		70 Yb					(210)		85 ,		53	79,9	毋	35	35,50	Ω	17	19,00	· T)	9				VIIA	17
103 Lr (257)		71 Lu 175					(222)		86		4			36	39,90	Ą	ळ	20,20		10	4,00	<u>T</u>	2	0	18