MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

(CONCURSO PÚBLICO PARA INGRESSO NO CORPO DE ENGENHEIROS DA MARINHA / CP-EngNav/2012)

É PERMITIDO O USO DE CALCULADORA PADRÃO NÃO CIENTÍFICA

PROVA ESCRITA OBJETIVA (PARA TODAS AS PROFISSÕES DE ENGENHARIA)

CONHECIMENTOS BÁSICOS (VALOR: 20 PONTOS)

- 1) Um pequeno ímã, orientado de forma a ter seu polo positivo para cima, é solto em queda livre dentro de um tubo cilíndrico de cobre, mantendo-se com a mesma orientação durante sua queda. Nestas condições, é correto afirmar que a queda do ímã:
 - (A) não gera corrente elétrica no tubo, pois cobre não é um material ferromagnético e, portanto, não é atraído por campos magnéticos. A única força que age sobre o ímã é a da gravidade.
 - (B) gera uma corrente elétrica anti-horária, quando vista de cima, no tubo de cobre. A corrente criada gera um campo magnético secundário que desacelera a queda do objeto.
 - (C) gera uma corrente elétrica horária, quando vista de cima, no tubo de cobre. A única força que age sobre o ímã é a da gravidade.
 - (D) gera correntes elétricas com sentidos opostos no tubo de cobre abaixo e acima da posição do ímã. As correntes criadas geram um campo magnético secundário que desacelera a queda do objeto.
 - (E) gera correntes elétricas com sentidos opostos no tubo de cobre abaixo e acima da posição do ímã. A única força que age sobre o ímã é a da gravidade.
- 2) Dois pontos materiais, А е В, de massas m_a respectivamente, movem-se num plano horizontal e sofrem uma colisão no instante t=0, na origem do sistema de coordenadas. Sabe-se que, imediatamente antes da colisão, A tinha velocidade $v_a = (1 \text{ m/s}, 0 \text{ m/s}), e \text{ B encontrava-se em repouso. Se, após a}$ colisão, A andou sobre uma linha reta até chegar ao ponto (1m, 1m), e B percorreu outra linha reta até chegar ao ponto (1m,-2m), então a razão $r=E_i/E_f$ entre as energias cinéticas do ponto A imediatamente antes e imediatamente após a colisão foi:
 - (A) 8/9
 - (B) 5/7
 - (C) 1/2
 - (D) 1
 - (E) 5/4

- 3) Um sólido, inicialmente em repouso a 20 metros de altura do solo, inicia um movimento de queda, sem atrito e sujeito apenas à ação da gravidade g=10m/s², vinculado a uma rampa inclinada plana que forma um ângulo de 45° com a vertical. O sólido abandonou essa rampa quando estava a uma altura de 10 metros do solo, e passou então a se mover em queda livre. A distância percorrida horizontalmente pelo sólido, após deixar a rampa inclinada até atingir o solo, foi de:
 - (A) $\sqrt{5}$ m
 - (B) $10(\sqrt{3}-1)$ m
 - (C) 10 m
 - (D) $10\sqrt{2}$ m
 - (E) 20 m
- 4) Num plano horizontal estão duas esferas, A e B, de cargas $Q_a=1mC$ e $Q_b=-1mC$, fixas nos pontos (-1m,1m) e (-1m,-1m), respectivamente. Uma esfera C de massa 10Kg e carga 2mC está ligada a uma das extremidades de um mola ideal de constante elástica K=1000N/m e comprimento natural 1m, que tem sua outra extremidade fixa num ponto P. Se a esfera C encontra-se na origem, em equilíbrio de forças, então o ponto P estará na posição:
 - (A) (-1m, 0m)
 - (B) $(9\sqrt{2}m, 0m)$
 - (C) $((-9\sqrt{2}-1) \text{ m}, 0\text{m})$
 - (D) $(0m, 9\sqrt{2}m)$
 - (E) $(0m, (9\sqrt{2}+1)m)$
- 5) Por um orifício, em uma mesa horizontal, passa uma corda inextensível de massa desprezível e com 1 metro de comprimento. Essa corda une duas esferas de 3kg, uma das quais se move sobre a superfície da mesa em movimento circular uniforme, de forma que a outra permanece em repouso, suspensa 50cm abaixo da mesa. Qual é a velocidade angular da esfera em movimento circular uniforme?
 - (A) $\sqrt{5}$ m/s
 - (B) 10 Rad/s
 - (C) 10 m/s
 - (D) $10\sqrt{2}$ Rad/s
 - (E) $\sqrt{50}$ Rad/s

- 6) Uma máquina térmica funciona aplicando a um mol de gás ideal, que está a uma temperatura T_1 e ocupa um volume V_1 , uma sequência de 4 transformadores reversíveis na seguinte ordem:
 - I uma expansão isotérmica até duplicar de volume;
 - II uma transformação isocórica até sua temperatura atingir a metade da temperatura inicial;
 - III uma contração isotérmica até retornar ao volume inicial V_1 ; e
 - IV uma transformação isocórica até retornar ao estado inicial.

Chamando de R a constante universal dos gases perfeitos, o rendimento η e o trabalho W, por ciclo, dessa máquina são, respectivamente:

- (A) $\eta = 0,25 \text{ e W} = RT_1$
- (B) $\eta = 0.25 \text{ e W} = RT_1 \ln(2)/2$
- (C) $\eta = 0.5 \text{ e W} = \ln(2)/2$
- (D) $\eta = 0.5 \text{ e W} = RT_1 \ln(2)/2$
- (E) $\eta = 0.66 \text{ e W} = T_1 \ln(2)/2$
- 7) Sobre um plano horizontal estão apoiados dois tanques cilíndricos, (A e B), ambos com 10cm de raio, unidos, à altura do plano de apoio, por um cano horizontal cilíndrico de 1cm de raio e 10 litros de volume. Dentro deste cano há um êmbolo livre para se mover horizontalmente, separando os tanques A e B. São despejados 20 litros de um líquido de densidade ρ_a no tanque A e 20 litros de um líquido de densidade ρ_b no outro tanque. Se, ao entrar em equilíbrio, a altura da coluna de líquido no recipiente A for de $120/\pi$ cm, então a razão entre ρ_a e ρ_b será:
 - (A) 0,66
 - (B) 1 -
 - (C) 1,5
 - (D) 2,2
 - (E) 3π

- 8) Dois pontos materiais A e B, ambos de massa m, são atirados para cima a partir do solo, na vertical, com velocidades iniciais v_a e v_b , respectivamente, sujeitos exclusivamente à ação da força peso, num local cuja aceleração da gravidade é g. A altura máxima atingida pelo ponto material A é o dobro da altura máxima atingida pelo ponto material B. Então, o quociente v_a/v_b é:
 - (A) $\sqrt{2}/2$
 - (B) 2
 - (C) 4
 - (D) 1/2
 - (E) $\sqrt{2}$
- 9) O valor de v_0 em $\mathbf R$ para o qual a solução $\mathbf x(t)$ do problema de valor inicial $\mathbf x'' + \mathbf x' 2\mathbf x = 0$, $\mathbf x(0) = 0$, $\mathbf x'(0) = v_0$, satisfaz $\mathbf x(1) = 1/e^2$, é:
 - (A) $3(e^3-1)$
 - (B) $3/(e^3-1)$
 - (C) $3(e^2-1)$
 - (D) $3/(e^2-1)$
 - (E) 3e
- 10) Os valores de k para os quais o campo vetorial $V(x,y,z)=(y^2+x^2,k^2xy+z,y+z)$ tem rotacional nulo são:
 - (A) $k=\pm 2$
 - (B) $k=\pm\sqrt{3}$
 - (C) $k=\pm 3$
 - (D) $k=\pm 4$
 - (E) $k=\pm\sqrt{2}$

11) Ao aproximar-se $\int \sin(x^2) dx$ pelo método de Simpson sem 0

repetições, usando as aproximações $\sin(\pi^2/4)=0,62$ e $\sin(\pi^2/16)=0,58$, obtém-se:

- (A) $(0,51)\pi$
- (B) $(0,49)\pi$
- (C) $(0,255)\pi$
- (D) $(0,245)\pi$
- $(E) (0,18)\pi$

- 12) A área da região $A=\{(x,y):0\leq x\leq \pi/2 \text{ e } 0\leq y\leq \min\{\sin x,\cos x\}\}$ é:
 - (A) $2-\sqrt{2}$
 - (B) $2-\sqrt{3}$
 - (C) $(2-\sqrt{2})/2$
 - (D) $(2-\sqrt{3})/2$
 - (E) $(2+\sqrt{3})/2$
- 13) O trabalho realizado pela força $F(x,y,z)=(y,-x,z+x^2+y^2)$ para transportar um ponto material de massa unitária do ponto (0,1,0) ao ponto $(1,0,\pi)$ pela curva $c(t)=(\sin\ t,\cos\ t,t)$, $0\le t\le \pi$, é:
 - (A) $3\pi + \pi^2/2$
 - (B) $2\pi + \pi^2/2$
 - (C) $3\pi + \pi^2/4$
 - (D) $2\pi + \pi^2/4$
 - (E) $\pi + \pi^2/4$
- 14) O coeficiente angular da reta tangente à elipse de equação $x^2+2y^2=3$ no ponto (1,1) é:
 - (A) 2
 - (B) 1/2
 - (C) 0
 - (D) -1/2
 - (E) -2
- 15) Uma classe de 20 estudantes fez uma prova e a média aritmética das notas obtidas foi 6,5. Escolheu-se um grupo de 5 estudantes e verificou-se que a média aritmética das notas obtidas por esses estudantes nessa prova foi 8,0. Nessas condições, a média aritmética das notas obtidas nessa prova pelos 15 outros estudantes da classe foi:
 - (A) 5,0
 - (B) 6,0
 - (C) 6,125
 - (D) 6,25
 - (E) 6,5

- 16) Seja f: $\mathbf{R} \to \mathbf{R}$ uma função duas vezes derivável e considere $u: \mathbb{R}^2 \to \mathbb{R}$, definida por $u(x,y)=f(x^2-y)$. Então, o laplaciano de u
 - (A) $2f'(x^2-y)+(4x^2-1)f''(x^2-y)$ (B) $2f'(x^2-y)-f''(x^2-y)$ (C) $2f'(x^2-y)+(4x^2+1)f''(x^2-y)$ (D) $2f''(x^2-y)$ (E) $(4x^2+1)f''(x^2-y)$

Prova: Amarela (CONHECIMENTOS BÁSICOS)