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Abstract

Models have gained the spotlight in many discussions surrounding COVID-19. The
urgency for timely decisions resulted in a multitude of models as informed policy actions
must be made even when so many uncertainties about the pandemic still remain. In this
paper, we use machine learning algorithms to build intuitive country-level COVID-19
motion models described by death toll velocity and acceleration. Model explainability
techniques provide insightful data-driven narratives about COVID-19 death toll motion
models − while velocity is explained by factors that are increasing/reducing death toll
pace now, acceleration anticipates the effects of public health measures on slowing the
death toll pace. This allows policymakers and epidemiologists to understand factors
driving the outbreak and to evaluate the impacts of different public health measures.
Finally, our models also predict counterfactuals in order to face the challenge of
estimating what is likely to happen as a result of an action.

Introduction

What are the key factors accelerating the number of deaths due to COVID-19? What is
the impact of public health countermeasures such as travel bans and movement
restriction? Does mass social isolation effectively help decreasing the death toll rate?
What would be the impact on death toll if public health countermeasures are relaxed?
Answers to these questions may lead to timely and informed policy decisions, but most
of them are still open to debate.

COVID-19 seems to be harder to understand than previously appreciated, and a
general law or the complete causal chain behind death toll evolution seem to be
unfeasible to obtain in the short term. By contrast, there are multiple competing
explanations being reported that attribute different causes to death toll evolution in
different countries. While these partial explanations are often guided by our standard
understanding of the spread of infectious diseases, the COVID-19 death toll increases
and decreases in myriad different ways depending on characteristics and particularities
of each country, and there is not a sole cause or even one major explanatory factor.

Here we propose to model the COVID-19 death toll evolution by using the concept
of motion in which velocity and acceleration are defined as follows:

• Velocity is equal to the slope of the death toll as a function of time. Thus, velocity
is the first order derivative of the number of deaths (deaths/day).

• Acceleration is equal to the slope of the velocity as a function of time. Thus,
acceleration is the second order derivative of the number of deaths (deaths/day2).
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Figure 1 shows death toll, velocity and acceleration for eight countries: Belgium,
Brazil, France, Germany, Italy, Sweden, UK and USA, as of June 5th 2020. Commonly,
velocity increases at an alarming exponential rate, but then it follows an approximate
bell shaped (normalized Gaussian) curve. The steepness of the curve is determined by
how quickly the death toll increases. The peak of velocity coincides with the moment in
which acceleration is exactly zero. The minimum acceleration point indicates that the
contagion became bounded by the lack of resources [1].
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Fig 1. COVID-19 death toll, velocity (first-order derivative) and acceleration
(second-order derivative), as of June 5th 2020.

In the figure, curves are aligned by the number of days after the first death reported
in the corresponding country. Clearly, COVID-19 death toll evolves differently in each
country, with some showing flattened curves but others not. The factors driving the
pandemic evolution in each country may vary greatly depending on their specificities
and on the countermeasures adopted at each one. By modeling velocity and acceleration
across different economy, demography, social, and climate contexts we may unveil
non-obvious patterns driving the COVID-19 death toll evolution. Countermeasures (or
the lack of them) are often among the factors impacting acceleration the most. Velocity,
on the other hand, is mostly impacted by socioeconomic and demographic factors.

In summary, the main contributions of this paper are:

• We model the COVID-19 death toll evolution using the concepts of velocity and
acceleration. We build models that predict velocity (deaths/day) and acceleration
(∆ velocity) to be observed at an arbitrary day of the outbreak. Model predictions
come with their explanations, thus providing insightful narratives on why the
models behave the way they do. This is an enabling tool for policymakers to
understand high-level reasoning behind death toll evolution, so that our models
are specially valuable as a planning tool for government officials who need to know
about the factors driving the likely trajectory of COVID-19 deaths in their
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countries. Explanations for acceleration may point to course correction measures
that need immediate attention in order to avoid disastrous situations, while
explanations for velocity usually point to more intricate factors such as
urbanization problems, typical comorbidities, and social inequality issues.

• Our models combine over 200 different factors in order to provide powerful
predictions and insightful explanations for death toll evolution. The multitude of
factors reflects the interdisciplinary aspects of the pandemic evolution. Clearly,
COVID-19 death toll evolution is a complex phenomenon in which factors related
to diverse disciplines interact in non-obvious ways, finally resulting in the
observed death toll.

• Finally, models are trained on data coming from countries that account for over
99% of all global COVID-19 deaths. These countries are at different outbreak
stages, allowing simulations to evaluate potential effects of policy decisions and
“what if” reasoning by predicting counterfactuals.

Materials and methods

In this section we present the data we use in this study and then we discuss how our
models were built.

Data

We employed different sources of data to build our models: (i) the daily COVID-19
death toll curve in each country, (ii) country’s countermeasures in response to
COVID-19 pandemics, (iii) community mobility reports, (iv) estimations of critical care
beds available for and needed by COVID-19 patients in each country, and (v) country’s
development indicators. Next, we present details about the data.

COVID-19 death toll curve − Data concerning the evolution on the number of
deaths comes from case reports provided by the European Center for Disease Prevention
and Control (ECDC). The data was frozen on June 5th 2020, comprising 8,926,399
cases and 468,257 deaths reported worldwide. Death reports from 211 countries are
presented daily. However, these reports have some issues, including discrepancies in
reporting practices across countries. Another issue is the delayed communication of the
death, which may result in abrupt variations in consecutive days of the death toll curve
of a country. That is, days with under-reported number of deaths are followed by days
with over-reported number of deaths. To avoid overfitting the original death toll curve
with unnecessarily complex models, we smoothed it using the 7-day rolling average, and
from the resulting curve we finally get daily values of velocity (deaths per 100k/day)
and acceleration (deaths per 100k/day2).

Country’s countermeasures in response to COVID-19 pandemics −
Measures are implemented to slow the spread of the virus by enforcing physical distance
between people. The dates in which these countermeasures were taken in response to
COVID-19 pandemics come from the Oxford COVID-19 Government Response Tracker.
Data is collected from public sources by a team of Oxford University students and staff
from every part of the world [2]. Table 1 shows data about the different measures
adopted in response to the COVID-19 pandemics. The value that a countermeasure
receives on a specific day is given as the number of days during the outbreak for which
it has being taken (or not taken).
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Table 1. Countermeasures in response to the COVID-19 pandemics. For each
countermeasure it is shown, at the peak of velocity, the average followed by first and
third quartiles.

Schools and universities
No measures (days) 20.58 (7 − 29)
Recommend closing (days) 0.85 (0 − 0)
Require closing only some levels (days) 3.42 (0 − 0)
Require closing all levels (days) 58.00 (28 − 98)

Workplaces
No measures (days) 24.67 (12 − 34)
Recommend closing (days) 7.94 (0 − 5)
Require closing for some categories and workers (days) 23.94 (0 − 43)
Require closing for all-but-essential workers (days) 26.29 (0 − 34)

Public events
No measures (days) 20.17 (7 − 32)
Recommend cancelling (days) 2.27 (0 − 2)
Require cancelling (days) 60.40 (33 − 94)

Private gatherings
No restrictions (days) 24.71 (11 − 38)
Limit is above 1,000 people (days) 3.92 (0 − 0)
Limit is 101 to 1,000 people (days) 4.67 (0 − 3)
Limit is 11 to 100 people (days) 11.19 (0 − 5)
Limit is 10 or less people (days) 38.35 (0 − 57)

Public transport
No measures (days) 35.06 (16 − 45)
Recommend closing (days) 15.15 (0 − 29)
Require closing (days) 32.63 (0 − 85)

Shelter-in-place
No measures (days) 29.77 (15 − 43)
Recommend not leaving house (days) 9.31 (0 − 13)
Require not leaving house, with exceptions (days) 34.52 (8 − 51)
Require not leaving house, with minimal exceptions (days) 9.25 (0 − 0)

Internal movement
No measures (days) 29.86 (16 − 46)
Recommend not to travel (days) 8.61 (0 − 6)
Restriction in place (days) 44.36 (20 − 84)

Travel controls
No restrictions (days) 11.35 (0 − 16)
Screening arrivals (days) 5.25 (0 − 4)
Ban arrivals from some regions (days) 21.06 (0 − 33)
Ban all regions (days) 40.83 (0 − 87)

Income support
No support (days) 49.25 (22 − 50)
Government is replacing less than 50% of lost salary (days) 17.15 (0 − 19)
Government is replacing more than 50% of lost salary (days) 16.44 (0 − 26)

Debt or contract relief
No relief (days) 50.04 (21 − 66)
Narrow relief (days) 10.98 (0 − 11)
Broad relief (days) 21.83 (0 − 33)

Testing policy
No testing policy (days) 9.40 (0 − 16)
Testing only symptoms and specific criteria (days) 45.94 (6 − 77)
Testing anyone with symptoms (days) 20.85 (0 − 24)
Open public testing (days) 6.65 (0 − 0)

Public campaign
No campaign (days) 6.19 (0 − 2)
Officials urging caution (days) 4.92 (0 − 0)
Coordinated campaign (days) 71.73 (46 − 99)

Contact tracing
No contact tracing (days) 16.88 (0 − 29)
Limited contact tracing (days) 32.88 (0 − 56)
Comprehensive contact tracing (days) 33.08 (0 − 52)
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Fig 2. (Color online) Countermeasures adopted by each country forms a trajectory.

To compare the set of measures adopted by each country, we apply the t-Distributed
Stochastic Neighbor Embedding (t-SNE) method [3], which embeds the 47 measures
present in Table 1 into a 2D space. t-SNE works by minimizing the divergence between
two distributions: one that measures pairwise similarities of the input objects and
another that measures pairwise similarities of the corresponding low-dimensional points
in the embedding. As a result, both X and Y axes are non-linear combinations of the
original 47 dimensions. Finally, the method is applied sequentially for each day of the
outbreak, resulting in a 2D trajectory for each country, as shown in Figure 2.

In the figure, trajectories are shown over a heatmap composed of clear and dark
regions. When the trajectory is passing over a dark region, the corresponding measures
are less stringent. By contrast, a trajectory encompasses stringent measures when it
passes over a lighter region. Further, the thinner part of a trajectory indicates an
abrupt variation on the direction due to changes on the adopted measures. Thicker
parts, on the other hand, indicate consecutive days adopting the same set of measures.
Finally, countries placed next to each other are currently adopting a similar set of
measures. The figure shows a large variation in government responses, with some
countries deciding to rise the stringency of response, while others keeping less stringent
measures. We follow the definition of stringency presented in [2], that is, the overall
stringency level of a country on a given day is calculated by taking the average of the
stringencies of the following nine measures: school closing, workplace closing, public
events cancelling, gathering size restrictions, public transportation closing, stay at home
requirements, restrictions on internal movement, restrictions on international travel,
public information campaign. The stringency of each individual measure on a day takes
a value between 0 and 100, and thus the overall stringency is given as:

S =
1

9
×

9∑
i=1

Si (1)

where Si is the stringency associated with measure i on a given day.

COVID-19 community mobility reports − Human mobility is associated with
growth and decline of new cases of COVID-19 [4]. Figure 3 shows how mobility changes
as a function of the level of stringency being adopted. As expected, human mobility
reduces as stringency increases. The data used to draw the curves in Figure 3 comprises
the number of visitors to specific categories of location (e.g., grocery stores, parks,
subway and train stations) every day and compares this change relative to a baseline day
before the pandemic outbreak. Google Maps1 provides anonymized data showing how

1https://cloud.google.com/maps-platform
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Fig 3. (Color online) Community mobility change.

peoples’ movements have changed throughout the pandemic. Baseline days represent a
normal value for that day of the week, given as median value over the five-week period
from January 3rd to February 6th 2020, extracted from Google Maps data. The data
also comprises the change in average duration spent in residences during the outbreak.
We use an offset of three weeks in order to better correlate with the number of deaths
by taking into account an approximation of incubation and treatment period lengths.

Critical care beds available and needed by COVID-19 patients − We use
estimations from the Institute for Health Metrics and Evaluation (IHME, University of
Washington). These estimations are for COVID-19 patients exclusively, and thus
non-COVID patient needs were excluded. Also, the estimation of critical care beds
available for COVID-19 patients is obtained by excluding the typical percentage of beds
occupied by other patients and emergencies.

Country’s development data − We use data from the World Bank, which
provides a comprehensive dataset on the development of countries around the globe.
Table 2 shows a partial list of indicators about health system, climate, socio-economics
and demographics for all countries involved in this study. Both temperature and
relative humidity are given as the average of the respective values measured in the ten
most affected cities in each country, and their values are taken three weeks prior to the
current date in order to better correlate with the number of deaths by taking into
account an approximation of the incubation and treatment periods.

Table 2. Data on health system, climate, socioeconomics and demographics. For each
item it is shown the average followed by first and third quartiles.

Health system preparedness
Critical care beds needed/available (on the peak of velocity) 2.38 (0.03 − 2.44)
Number of nurses (per 100k) 511.34 (130.75 − 850.21)
Current health expenditure (% of GDP) 4.19 (4.01 − 9.44)

Climate
Average monthly temperature (C) 16.83 (8.72 − 17.37)
Average monthly relative humidity (%) 63.08 (55.39 − 77.68)

Socio-economics
Number of long-term care beds in institutions (per 100k aged 70+) 2,636 (1,070 − 6,100)
Population living in slums (% urban population) 21.11 (4.12 − 35.82)
Share of one person households (% households) 16.56 (6.48 − 25.87)
Income distribution (GINI Index) 36.93 (31.50 − 43.70)

Demographics
Population in the largest city (% urban population) 27.85 (17.14 − 36.71)
Population density (inhabitants/km2) 256.52 (35.73 − 147.85)
Urban population (% population) 65.49 (53.73 − 83.84)
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Table 3 shows data about age structure, sex-ratio and share of deaths by age. It is
worth mentioning that men aged 70 or more correspond to the sub-population at
highest risk.

Table 3. Data on age structure, sex-ratio by age, and share of deaths by age. For each
item it is shown the average followed by first and third quartiles.

Age structure(% of population)
25+ 60.72 (54.53 − 72.70)
50+ 30.38 (20.17 − 39.40)
70+ 7.31 (3.13 − 11.38)
Sex ratio (males per 100 females)
20−29 106.80 (103.04 − 105.93)
30−39 109.70 (99.20 − 104.55)
40−49 108.95 (96.92 − 103.78)
50−59 107.21 (93.79 − 102.82)
60−69 102.44 (89.01 − 99.95)
70−79 89.49 (81.45 − 94.72)
80−89 76.58 (67.96 − 83.01)
90−99 55.51 (41.78 − 67.14)
100+ 36.30 (19.04 − 47.00)

Share of deaths by age
15−49 13.92 (5.27 − 19.62)
50−69 25.01 (19.40 − 29.23)
70+ 52.33 (37.03 − 73.04)

Finally, Table 4 shows a partial list of the risk factors and comorbidities. Our
intuition is to correlate COVID-19 death toll motion with an approximation of the size
of at-risk group within each country. Prevalence of smoking is based on the population
aged 15 years and older who smoke any form of tobacco, including cigarettes, cigars,
pipes or any other smoked tobacco products. Obesity is defined as having a body-mass
index (BMI) equal to or greater than 30. Diabetes prevalence refers to the percentage of
people aged between 20 and 79 years who have type 1 or type 2 diabetes. AIDS
prevalence is based on the population aged between 15 and 49 years infected with HIV.
Cancer prevalence is based on the population with any form of cancer. Bacilli
Calmette-Guérin (BCG) vaccination indicates the countries currently having universal
BCG vaccination program. The table also shows death rates from stroke, diabetes,
cancer and AIDS, for men and women. Values are standardized so that a value of 1.00
corresponds to the average over all countries we have considered in this study.

Table 4. Data on risk factors and comorbidities. For each item it is shown the average
followed by first and third quartiles.

Risk factors and comorbidities:
Share of women who smoke (% of women) 13.61 (2.00 − 20.00)
Share of men who smoke (% of men) 26.93 (19.00 − 35.00)
Share of women who are obese (% of women) 24.26 (19.50 − 28.60)
Share of men who are obese (% of men) 20.24 (17.10 − 24.20)
Diabetes prevalence (% of population) 7.87 (5.55 − 8.46)
Death rate from cardiovascular disease (per 100k) 206.20 (114.77 − 260.94)
Share of the population infected with HIV (% of population) 0.53 (0.04 − 0.31)
Share of population with cancer (% of population) 1.61 (0.69 − 2.12)
BCG vaccination policy is active − 189 (yes) − 22 (no)

Death rates by sex (values are standardized):
Death rate from Stroke, female 0.84 (0.50 − 1.20)
Death rate from Stroke, male 0.85 (0.54 − 1.19)
Death rate from Cancer, female 0.97 (0.94 − 1.13)
Death rate from Cancer, male 0.98 (0.87 − 1.21)
Death rate from Diabetes, female 0.82 (0.40 − 1.26)
Death rate from Diabetes, male 0.85 (0.50 − 1.19)
Death rate from AIDS, male 0.64 (0.02 − 0.52)
Death rate from AIDS, female 0.58 (0.01 − 0.33)
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Models

Our models are particularly useful in situations where many intuitive factors interact in
non-obvious ways, which seems to be the case with COVID-19. Specifically, the models
are based on two cornerstones:

1. They combine a multitude of factors in order to reflect the interdisciplinary
aspects of the pandemic evolution. Model explainability [5] enables inspecting the
high-level concepts and reasoning used by our models so that we may formulate
possible narratives about the COVID-19 death toll motion defined in terms of
velocity and acceleration.

2. They are trained on data from countries that are at different outbreak stages,
which enables “what if” reasoning by predicting counterfactuals. This offers
powerful simulation possibilities since we may evaluate the potential effects of
policies by looking at projections and different scenarios, which is of paramount
importance as the pandemic is ongoing.

Model construction and evaluation − Our models are built using an
implementation of the LightGBM algorithm [6]. The LightGBM algorithm produces a
complex model composed of hundreds of simple decision trees [7] that are combined into
a single model by a process known as boosting [8]. This added complexity allows our
models to reach low error levels that are not likely to be obtained by simpler models.
Another reason for choosing LightGBM is that it naturally deals with missing values, as
some factors are not available for some countries. Basically, LightGBM ignores missing
values during a split, and then allocate them to whichever side reduces the loss the
most. Models are optimized either to predict the death toll velocity or the death toll
acceleration to be observed in the next day. Longer prediction horizons could be
achieved by performing next-day predictions in sequence. A model for each country is
built and evaluated using discovery and validation datasets, as follows:

• The discovery dataset for a country includes data from all other countries. For the
sake of reproducibility: our models were obtained by combining up to 100 simple
decision trees with maximum tree-depth of 10, and the learning rate was set to
0.10.

• The validation dataset for a country includes only data from this country. The
error of a model with respect to the validation dataset is assessed in terms of the
standard Mean Absolute Error (MAE) measure [9], which is given as the mean of
absolute values of individual prediction errors on over all instances in the
validation dataset. Each prediction error is the difference between observed (e.g.,
true) and predicted values.

Each instance in both datasets corresponds to a specific day of the outbreak in a
country, and it is represented by the factors we present in Tables 1, 2, 3 and 4. Some
factors vary daily (i.e., number of critical care beds needed and available), while others
remain constant during the entire outbreak period (i.e., population density).

Algorithm 1 describes the main steps of model construction for a specific country.
Basically, the algorithm performs an exploratory search for the optimum subset of
factors to compose the final model. The exact search approach, however, would require
the exhaustive enumeration of all possible combinations of factors, so that one model is
obtained for each combination in the power set. Obviously, inspecting all possible
subsets of factors is computationally prohibitive. Instead, the algorithm samples the
model space by randomly selecting the factors to compose a model. At the end, the best
performing models are finally selected.
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Algorithm 1 Model construction for country c

Require: The discovery datasets for country c, Dc
v for velocity and Dc

a for acceleration
Require: The validation datasets for country c, V c

v for velocity and V c
a for acceleration

Require: The pool of all available factors, P
Require: The number of candidate models to sample, n
Ensure: The most performant models, f∗

v (x) for velocity and f∗
a (x) for acceleration

i← 1
while i < n do
k ← a random integer between 1 and |P |
p← a subset of k distinct factors randomly selected from P (i.e., p ⊆ P )
f i
v(x)← a model optimized to predict velocity at an arbitrary day x using factors

in p and observations in Dc
v

f i
a(x) ← a model optimized to predict acceleration at an arbitrary day x using

factors in p and observations in Dc
a

i← i + 1
end while
f∗
v (x)← the model in {f1

v , f
2
v , . . . , f

n
v } with the lowest MAE in V c

v

f∗
a (x)← the model in {f1

a , f
2
a , . . . , f

n
a } with the lowest MAE in V c

a

Model explainability − We assume that a low-error model may be seem as a
possible explanation for COVID-19 death toll velocity and acceleration in a country.
However, our models are complex as they are obtained from the interplay of a large
number of factors. While this provides a more realistic and unified view of COVID-19
death toll motion, understanding how each factor contributes to velocity and
acceleration is thus a major challenge. We follow a prominent method that is based on
Shapley values from cooperative game theory [10] in order to attribute importance to
factors. Specifically, Shapley values can be used to find a fair division scheme that
defines how the total importance should be distributed among the factors composing
the model [5]. The method is based on the idea that:

(i) a specific outbreak day x is represented by a set of factors that interact according
to a model, thus resulting in the prediction f(x), and

(ii) the magnitude of the difference between f(x) and the average prediction E[f(x)]
(i.e., the average velocity, or the average acceleration in the discovery dataset) is
divided among the factors in a unique way that is “fair” given their individual
contributions to change the prediction from E[f(x)] to f(x). Thus, the average
contribution each factor has on changing the model prediction is considered to be
its importance score.

More formally, the method creates an explanation function g(f, x) which takes as input
a model f and the values assumed by the different factors within an outbreak day x,
and returns importance scores of these factors on day x. The importance score
associated with a factor can be directly interpreted as the sensitivity that indicates how
much the model’s response will vary as the factor has its value increased or decreased.

Results

In this section, we present results for some countries.2 Table 5 shows the Mean
Absolute Error (MAE) for velocity and acceleration models of some countries

2Please, visit https://covid-19.kunumi.com for a live instance of our analysis tool with a larger set
of countries.
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Table 5. Model effectiveness for some countries. The prediction error is the difference
between observed (e.g., true) and predicted values.

Mean Absolute Error
Model Velocity Acceleration
Pakistan 0.000044 0.000018
Egypt 0.000067 0.000033
Slovakia 0.000122 0.000054
Brazil 0.000173 0.000171
Iran 0.000180 0.000116
Germany 0.000298 0.000293
Canada 0.000298 0.000315
USA 0.000487 0.000467
Norway 0.000412 0.000506

Mean Absolute Error
Model Velocity Acceleration
Denmark 0.000516 0.000575
Netherlands 0.000788 0.000960
Switzerland 0.000821 0.000906
France 0.000972 0.001052
Italy 0.001043 0.000691
Spain 0.001631 0.001141
Ecuador 0.001761 0.000917
UK 0.001890 0.001147
Sweden 0.002356 0.001946

considering the number of days after the first death. In the table, countries are shown
in ascending order of error for velocity. The errors of our models are very low, MAEs for
prediction of velocity vary from 4.4× 10−5 to 2.4× 10−3 and acceleration from
1.8× 10−5 to 1.9× 10−3, for Pakistan and Sweden, respectively.

For each country we employ model explainability so that we can discuss the main
factors driving the predictions for some of these countries. In particular, we employ
waterfall plots in order to inspect the main factors explaining velocity and acceleration
in important days of the outbreak. Waterfall plots are designed to visually display how
the importance of each factor moves the model output from a prior expectation under
the discovery dataset distribution to the final model prediction given the evidence of all
the factors within the model. Each waterfall plot shows the importance of a set of
factors in a given day, so that:

• Factors are sorted from top to bottom by the magnitude of their importance
values, with factors of smallest magnitude grouped at the bottom to avoid clutter.

• The importance for each factor is shown as positive (in red) indicating that the
factor contributes to increase velocity or acceleration, and negative (in blue)
indicating that the factor contributes to decrease velocity or acceleration.

The days between the peak of acceleration and the peak of velocity are of particular
importance for evaluating the impact of countermeasures being adopted by public
health officials. The days during this period reveal two important aspects: acceleration
decreases while velocity keeps increasing, which makes the impact of countermeasures
on slowing death toll pace hard to evaluate. However, we are able to present the main
factors driving the decrease of acceleration during this period, thus revealing which
countermeasures are being effective and also the ones that need further attention.

Italy, Netherlands and UK − Evaluating countermeasures (and
the lack of them)

Figure 4 shows observed and predicted curves and projections for acceleration and
velocity for the last fifteen days for Italy. The peak of acceleration in Italy occurred on
the 22nd day after the first death, while the peak of velocity occurred on the 34th day.
Figure 5 shows the main factors explaining acceleration on some days within this period.
Initially, most of the factors are still contributing to increase acceleration, as expected.
Closing schools and universities was the most effective measure at this point. Cancelling
public events and the recommendation to close public transportation are still ineffective
as they are not yet contributing to decrease acceleration. Five days later, other
measures started contributing to decrease acceleration. Finally, at the peak of velocity,
most measures are contributing to decrease acceleration, the most effective seem to be
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Fig 4. (Color online) Projections for Italy.

self-isolation, closing public transportation, and the cancellation of public events. By
contrast, the long time without taking any measure regarding closing
schools/universities is now a factor contributing to increase acceleration. Further, some
measures may take longer to become effective (i.e., limitation of private gatherings).
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Fig 5. (Color online) Waterfall plots for Italy. Factors driving acceleration on the 22nd

(top), 27th (middle), and 34th day (bottom).
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Fig 6. (Color online) Projections for Netherlands.

Figure 6 shows observed and predicted curves for Netherlands. The peak of
acceleration occurred on the 17th day after the first death, while the peak of velocity
occurred on the 26th day. Figure 7 shows the main factors explaining acceleration on
the 20th and 26th days. Few days after the peak of acceleration (i.e., 20th day),
measures on restricting internal movement started to decrease acceleration. On the peak
of velocity, several factors are contributing to decrease acceleration, but the main ones
include cancelling public events and banning arrivals from affected regions.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
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Fig 7. (Color online) Waterfall plots for Netherlands. Factors driving acceleration on
the 20th (top) and 26th day (bottom).
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Fig 8. (Color online) Projections for the UK.

Figure 8 shows observed and predicted curves for the UK. The peak of acceleration
occurred on the 23rd day after the first death, while the peak of velocity occurred on
the 37th day. Figure 9 shows the main factors explaining acceleration on the 30th and
37th days. Few days after the peak of acceleration, measures such as closing
schools/universities and self-isolation, started to decrease acceleration. On the peak of
velocity, other measures started to become effective. Cancelling public events seems to
be an important measure, which still needs additional days to finally become effective.
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Fig 9. (Color online) Waterfall plots for the UK. Factors driving acceleration on the
30th (top) and 37th day (bottom).

Countries have adopted different measures, resulting in shorter or longer periods
between the peaks of acceleration and velocity. In Netherlands this period lasted for
only nine days, while in the UK this period lasted for 14 days.
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Fig 10. (Color online) Projections for Germany.

Germany − The importance of a robust health system

Figure 10 shows observed and predicted curves for Germany. The curves point to two
days of particular interest: the 20th day after the first death (which marks the peak of
acceleration), and the 39th day (which marks the peak of velocity).

Figure 11 shows the factors driving velocity and acceleration are shown on the 20th

day. Acceleration is mainly explained by the lack and the recency of countermeasures.
For instance, no public transport measures were taken for 67 days, and this is the main
factor increasing acceleration at this stage of the outbreak. A related factor is the small
decrease of visitors in transit stations (-10%), which also increases acceleration.

0.000 0.005 0.010 0.015 0.020

19 other explanatory factors
48 = Income - days with no income support
17 = International travel - screening arrivals

14 = Private gatherings - 10 or less people
3 = Residential percent change from baseline

3 = Population living in slums (% urban population)
14 = Shelter-in-place - require not leaving house (with exce(tions)

−10 = Transit stations percent change from baseline
31 = International travel - days with no restrictions

0.2274 = Critical care beds needed/available
25 = Public events - require cancelling

67 = Public transport - days with no measures

19 other explanatory factors
 Income - days with no income support
 International travel - screening arrivals

 Private gatherings - 10 or less people
 Residential percent change from baseline

 Population living in slums (% urban population)
 Shelter-in-place - require not leaving house (with exceptions)

 Transit stations percent change from baseline
 International travel - days with no restrictions

 Critical care beds needed/available
 Public events - require cancelling

 Public transport - days with no measures +0.0101
+0.0075

+0.0049
+0.0033

+0.002

+0.0011

+0.0007
+0.0007

+0.0016

20.0066

20.0013

20.0009

E[f(x)] =20.0029

f(x) = 0.0203

0.16 0.18 0.20 0.22

39 other explanatory factors
237 = Population density (inhabitants per Km2)

24 = Share of men who are obese (% male population)
78 = Average relative humidity (%)

78 = Deaths of 70+ years old (% of deaths)
20 = Share of women who are obese (% female population)

28 = Share of women who smoke (% female population)
0.36 = Deaths from Stroke female (world avg)

67 = Days of outbreak
36 = 90-year olds (males per 100 females)

5 = Population in the largest city (% urban population)
0.2274 = Critical care beds needed/available

39 other explanatory factors
 Population density (inhabitants per Km2)

 Share of men who are obese (% male population)
 Average relative humidity (%)

 Deaths of 70+ years old (% of deaths)
 Share of women who are obese (% female population)

 Share of women who smoke (% female population)
 Deaths from Stroke female (world avg)

 Days of outbreak
 90-year olds (males per 100 females)

 Population in the largest city (% urban population)
 Critical care beds needed/available

+0.0298
+0.017

+0.0097
+0.0072

+0.0053
+0.0051

+0.0043
+0.0036

+0.0042

20.0517

20.0121

20.0028

E[f(x)] = 0.1557

f(x) = 0.1751

Fig 11. (Color online) Waterfall plots for Germany on the peak of acceleration on the
20th day. Top − Factors driving acceleration. Bottom − Factors driving velocity.

July 4, 2020 14/27

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.04.20146423doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.04.20146423
http://creativecommons.org/licenses/by/4.0/


Since the 20th day marks the peak of acceleration, it is not expected to find many
factors contributing to decrease acceleration. In fact, there are only three factors worth
mentioning: the small proportion of urban population living in slums, the restriction on
private gatherings, and most importantly, the high availability of critical care beds,
indicating a robust system even during the peak of acceleration. As expected, many
factors are contributing to increase velocity on the peak of acceleration. These factors
are shown in the bottom of Figure 11, including the distribution of urban population,
male/female proportion on different ages, and risk factors such as obesity and smoking.
On the other side, the high availability of critical care beds is the main factor
contributing to decrease velocity. This points, again, to the importance of a prepared
and robust health system in order to reduce death toll.
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Fig 12. (Color online) Waterfall plots for Germany on the peak of velocity on the 39th

day. Top − Factors driving acceleration. Bottom − Factors driving velocity.

Figure 12 shows that on the 39th day acceleration became negative. Thus, many
factors are contributing to decrease acceleration. Stringent measures (such as school
closures, workplace closures and travel bans) were adopted for a time which is now
sufficient to show benefits. Further, the high availability of critical care beds keeps
contributing to decrease acceleration. The 39th day also marks the peak of velocity, and
factors contributing to increase velocity include typical comorbidities (i.e., stroke) and
risk factors such as obesity. The only relevant factor contributing to decrease velocity is
the high availability of critical care beds. Ensuring sufficient physical infrastructure and
resources, even on the peak of velocity, is crucial for dealing with the outbreak.

Brazil − Urban slums are potential incubators of COVID-19

Figure 13 shows observed and predicted curves for Brazil. A particular period of the
outbreak, starting on the 31st day and continuing until the 45th day, was marked by a
consistent increase in acceleration. The drastic increase in acceleration caused the
health system to collapse, as critical care beds needed became greater than beds
available. Next we discuss the main factors driving acceleration during this period.
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Fig 13. (Color online) Projections for Brazil.
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Fig 14. (Color online) Waterfall plots showing factors driving acceleration on different
days in Brazil. From top to bottom: 31st, 40th, and 45th day after the first death.

Figure 14 shows the main factors driving acceleration in Brazil from the 31st to the
45th day after the first death. Clearly, the high proportion of urban population living in
slums was a major factor increasing acceleration on this period. Urban slums are
characterized by low-quality housing, limited basic services and poor sanitation. This
makes simple lifesaving practices like hand-washing a challenge. Further, households in
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Fig 15. (Color online) Projections for Belgium.

urban slums are typically +10 times denser than neighboring areas of the same city.
The largest urban slum in Brazil, for instance, has a density of 39,000 inhabitants per
km2, while the country’s population density is only 25 inhabitants per km2. Finally,
many people in slums need to work normally during the outbreak, as they often have no
savings. They use public transportation over long distances, and their service
occupations usually require close contact with others, making them vectors for the virus
and accelerating the spread of infection.

Belgium − The risk with long-term care and nursing institutions

A high proportion of long-term care facilities have reported COVID-19 outbreaks, with
high rates of morbidity and case fatality in residents. Deaths in Belgium’s long-term
care institutions account for one third of the COVID-19 death toll in the country, while
in Switzerland, residents of long-term care institutions account for more than half of
deaths due to COVID-19 [11]. Despite measures promoting social distancing, long-term
care residents need care from staff who inevitably might transmit the virus. Infected
asymptomatic staff members ravaged the long-term care institutions whose residents are
older adults often with underlying chronic medical conditions [12].

Figure 15 shows observed and predicted curves for Belgium. The curves point to two
days of particular interest: the 21st day after the first death, which marks the peak of
acceleration, and the 30th day, which marks the peak of velocity. These days are further
inspected in Figure 16, which shows the main factors driving velocity. Indeed, the high
number of long-term care beds in Belgium is among the factors contributing to increase
velocity on both peaks.
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Fig 16. (Color online) Waterfall plots for Belgium. Factors driving velocity on the
peak of velocity.
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Brazil and USA − The persistent impact of income inequality

While some factors gain importance only during specific periods of the outbreak, income
inequality shows high impact on velocity during the entire outbreak. Income inequality
is assessed with the GINI Index [13], a standard measure which varies from 0 (total
equality) to 100 (total inequality). Inequality has many undesirable effects including
significant negative impacts on public health [14], and our models reveal that countries
with greater income inequality are more likely to face an increased COVID-19 death toll
pace. This is the case of the two most affected countries, Brazil and the USA, two
countries that suffer greatly from high income inequality.

Figures 17 and 18 show the main factors driving velocity on Brazil and USA.
Inequality is among the major factors contributing to increase velocity during the entire
outbreak. In some specific days, inequality is the most important factor.
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Fig 17. (Color online) Waterfall plots showing factors driving velocity throughout the
outbreak in Brazil. From top to bottom: 10th, 30th, and 50th day after the first death.

July 4, 2020 18/27

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.04.20146423doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.04.20146423
http://creativecommons.org/licenses/by/4.0/


0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

36 other explanatory factors
0.83 = Deaths from Cancer 15-49 years (world avg)

37 = Share of women who are obese (% female population)
21 = 100-year olds (males per 100 females)

19 = Share of women who smoke (% female population)
51 = 90-year olds (males per 100 females)

58 = Average relative humidity (%)
64 = Deaths of 70+ years old (% of deaths)

66 = Days of outbreak
7 = Population in the largest city (% urban population)

42 = Income distribution (GINI Index)
0.1582 = Critical care beds needed/available

36 other explanatory factors
 Deaths from Cancer 15-49 years (world avg)

 Share of women who are obese (% female population)
 100-year olds (males per 100 females)

 Share of women who smoke (% female population)
 90-year olds (males per 100 females)

 Average relative humidity (%)
 Deaths of 70+ years old (% of deaths)

 Days of outbreak
 Population in the largest city (% urban population)

 Income distribution (GINI Index)
 Critical care beds needed/available

+0.0382
+0.0221

+0.0024
+0.0021

40.1156

40.0215
40.0071

40.006
40.0049
40.0045
40.0044
40.0029

E[f(x)] = 0.1557

f(x) = 0.0537

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

37 other explanatory factors
37 = Share of women who are obese (% female population)

55 = Average relative humidity (%)
64 = Deaths of 70+ years old (% of deaths)

151 = Death rate from CVDs (per 100k)
0.83 = Deaths from Cancer 15-49 years (world avg)

0.33 = Deaths from Stroke female (world avg)
35 = Share of men who are obese (% male population)
7 = Population in the largest city (% urban population)

42 = Income distribution (GINI Index)
0.4748 = Critical care beds needed/available

116 = Days of outbreak

37 other explanatory factors
 Share of women who are obese (% female population)

 Average relative humidity (%)
 Deaths of 70+ years old (% of deaths)

 Death rate from CVDs (per 100k)
 Deaths from Cancer 15-49 years (world avg)

 Deaths from Stroke female (world avg)
 Share of men who are obese (% male population)
 Population in the largest city (% urban population)

 Income distribution (GINI Index)
 Critical care beds needed/available

 Days of outbreak +0.0845
+0.0685

+0.0581
+0.0561
+0.0302

+0.0142
+0.0112

+0.0098
50.0074
50.0055
50.0055
50.0059

E[f(x)] = 0.1557

f(x) = 0.464

0.15 0.20 0.25 0.30

37 other explanatory factors
55 = Average relative humidity (%)

51 = 90-year olds (males per 100 females)
37 = Share of women who are obese (% female population)

64 = Deaths of 70+ years old (% of deaths)
0.33 = Deaths from Stroke female (world avg)

0.83 = Deaths from Cancer 15-49 years (world avg)
0.3728 = Critical care beds needed/available

35 = Share of men who are obese (% male population)
7 = Population in the largest city (% urban population)

42 = Income distribution (GINI Index)
126 = Days of outbreak

37 other explanatory factors
 Average relative humidity (%)

 90-year olds (males per 100 females)
 Share of women who are obese (% female population)

 Deaths of 70+ years old (% of deaths)
 Deaths from Stroke female (world avg)

 Deaths from Cancer 15-49 years (world avg)
 Critical care beds needed/available

 Share of men who are obese (% male population)
 Population in the largest city (% urban population)

 Income distribution (GINI Index)
 Days of outbreak +0.0605

+0.0521
+0.0419

+0.0171

+0.0086
+0.008

+0.0057

40.0147

40.0071
40.0059
40.0042
40.0039

E[f(x)] = 0.1557

f(x) = 0.3138

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28

37 other explanatory factors
51 = 90-year olds (males per 100 females)

0.83 = Deaths from Cancer 15-49 years (world avg)
56 = Average relative humidity (%)

37 = Share of women who are obese (% female population)
64 = Deaths of 70+ years old (% of deaths)

0.33 = Deaths from Stroke female (world avg)
35 = Share of men who are obese (% male population)

0.3137 = Critical care beds needed/available
7 = Population in the largest city (% urban population)

136 = Days of outbreak
42 = Income distribution (GINI Index)

37 other explanatory factors
 90-year olds (males per 100 females)

 Deaths from Cancer 15-49 years (world avg)
 Average relative humidity (%)

 Share of women who are obese (% female population)
 Deaths of 70+ years old (% of deaths)
 Deaths from Stroke female (world avg)

 Share of men who are obese (% male population)
 Critical care beds needed/available

 Population in the largest city (% urban population)
 Days of outbreak

 Income distribution (GINI Index) +0.0525
+0.0428

+0.0365

+0.0171
+0.0097

+0.0048

+0.008

40.0281

40.0071
40.0061

40.0053

40.0042

E[f(x)] = 0.1557

f(x) = 0.2764

Fig 18. (Color online) Waterfall plots showing factors driving velocity throughout the
outbreak in the USA. Top to bottom: 20th, 60th, 80th, and 90th day after the first death.
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Global overview on the importance of factors and measures

So far we have discussed how different factors impact velocity and acceleration on
specific country-level models. To get a global overview on the impact that different
factors have on velocity, we plotted the contribution of every factor for every country.
We selected three particular days to analyze: the peak of acceleration, the peak of
velocity, and June 5th 2020 as it is the last day in our data. The resulting summary
plot has five characteristics:

• Each row corresponds to a factor and has as many dots as countries.

• A dot represents the value of the corresponding factor for a country.

• Red dots indicate that the factor assumes a high value for the corresponding
country. Likewise, blue dots indicate that the factor assumes a low value.

• The vertical line shows whether the impact of a factor increased the prediction
(i.e., the dot is on the right size) or decreased it (i.e., the dot is on the left side).

• Factors impacting most the model prediction appear on the top of the plot.

Figure 19 shows how the different factors are explaining velocity at the peak of
acceleration on different countries. Next we discuss the role of some of these factors.
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Fig 19. (Color online) Summary plot showing how each factor contributes to
increase/decrease velocity at the peak of acceleration.
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As expected, the most important factor is the demand for critical care beds. Clearly,
countries showing high demands at the peak of acceleration (i.e., red dots) have
experienced a large increase in velocity due to this factor. Little demands, on the other
hand, usually contribute to decrease velocity. Other generally important factors include
income distribution, number of beds in long-term care institutions, smoking prevalence
among females, share of population infected with HIV, and relative number of
cancer-related deaths among the elderly population. High values of these factors
contribute to increase velocity.

It is worth mentioning that while we are evaluating each factor in isolation, their
contributions to velocity are calculated by taking into account the complex interplay
among all them. Take for instance the role of relative humidity − low relative humidity
contributes to decrease velocity, while high relative humidity usually contributes to
increase velocity. There are some exceptions, however, where high relative humidity
contributes to decrease velocity. In order to better understand these exceptions, we
extracted a heatmap from our working data showing the relationship between
temperature and relative humidity, and check how their interplay ultimately impacts
velocity.

Figure 20 presents a heatmap showing the relationship between temperature and
relative humidity. Clearly, temperatures higher than ≈25oC are strongly associated with
low velocities, despite the high values of relative humidity.3
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Fig 20. (Color online) The relationship between temperature, relative humidity and
velocity. Lighter regions are associated with higher velocities.

The lack of countermeasures to slow the spread of the virus is reflected in several
factors occupying the middle of the heatmap. As expected, the more days without a
measure the higher is the impact on increasing velocity. A particular important measure
at this stage of the outbreak seems to be the adoption of coordinated public information
campaign due to the need for essential information and advice right on early stages of
the outbreak. Clearly, the more days with coordinated public campaigns the more
velocity decreases. However, at this stage of the outbreak, countermeasures are among
the factors impacting the least on velocity.

Other factors that are worth mentioning include the number of years without BCG
vaccination and share of one-person households in the country. Both factors show
marginal impact on velocity at the peak of acceleration and are among the ones showing
small impact on velocity, but they gain importance on latter stages of the outbreak.

3Interestingly, authors in [15] have reported that the relationship between the annual average of
temperature compensation and COVID-19 confirmed cases was approximately linear in the range of less
than 25.8oC, which became flat above 25.8oC.
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Figure 21 shows how the different factors impact velocity at the peak of velocity on
different countries. Top factors remain the same as the ones at the peak of acceleration,
namely: demand for critical care beds, number of long-term care beds in institutions,
and income distribution. Other factors, such as number of years without BCG
vaccination gained substantial importance. Specifically, some countries seem to benefit
from an active national vaccination program. As recently reported in [16], the BCG
vaccine has beneficial non-specific effects on the immune system that protect against a
wide range of infections, and randomized controlled trials have provided evidence that
the BCG vaccine’s immunomodulatory properties can protect against respiratory
infections.
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Fig 21. (Color online) Summary plot showing how each factor contributes to
increase/decrease velocity at the peak of velocity.

Two factors that also gained substantial importance are the availability of nurses
and the percentage of GDP expended on the health system. Specifically, velocity
decreases as more nurses are available. Similarly, velocity decreases as more is spent on
the health system.

Finally, the more days adopting less stringent measures (i.e., closing workplaces only
for some categories, narrow debt relief and banning arrivals only from some regions),
the more velocity increases. The opposite trend is observed with more stringent
measures (i.e., broad contract relief), that is, the more days adopting these measures,
the more velocity decreases.

Figure 22 shows how the different factors have impacted velocity on June 5th 2020,
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the last day in our working data. Interestingly, income distribution became the top
factor impacting velocity. The number of nurses available, the age working dependency
ratio and the share of elderly people also gained importance, and are now among the
factors impacting velocity most.
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Fig 22. (Color online) Summary plot showing how each factor contributes to
increase/decrease velocity on June 5th 2020.

Two factors are involved in an interesting contrast: the share of one-person
households and the population living in slums. Both factors have similar importance at
this stage of the outbreak, but they show opposite trends. One person households
contribute to decrease velocity, while population living in slums contribute to increase
velocity. People living together are clearly more exposed to getting infected because
they share space. Larger households, which are a characteristic of urban slums, pose
greater risk of infection during the outbreak because they can contribute to the rapid
spread of the virus.

Finally, at this stage of the outbreak, it becomes clearer which countermeasures were
effective. We consider as effective a measure which contributes to decrease velocity as it
is adopted for more days. Thus, effective measures include the recommendation of not
leaving house, the adoption of a broad debt relief, closing schools, limiting private
gatherings to less than 10 people, and cancelling public events.
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Predicting counterfactuals

Our counterfactual scenarios are built by performing hypothetical variations on
countermeasures that are being actually adopted in a country [17]. By performing these
variations, the overall stringency level of the country is increased or decreased
accordingly, following Equation 1. As a result, for each day d we have many different
scenarios based on hypothetical variations of the countermeasures being adopted. As an
example, suppose a country where the countermeasure “Ban arrivals from some regions”
was adopted on day d. In this case, we create a hypothetical scenario for day d in which
the country would be adopting countermeasure “Screening arrivals” instead. In this
case, the overall stringency level decreases. Alternatively, we may create a hypothetical
scenario in which the country would be adopting “Ban arrivals from all regions” on day
d, and in this case the overall stringency level is increased. Therefore, we have different
hypothetical scenarios for each day of the outbreak.

Now, let vd−1 be the observed velocity on day d− 1. Clearly, vd−1 is the fact
obtained as the result of adopting a specific set of countermeasures in the country. Lets
assume we have built n hypothetical scenarios for each day of the outbreak, from which
we use our models to predict the corresponding accelerations for day d. This results in a
set of n predicted accelerations for day d: {â1d, â2d, . . . , ând}, one prediction for each
counterfactual scenario. The next step is to obtain the counterfactual velocities for the
next day: {v̂1d, v̂2d, . . . , v̂nd }, where each v̂id = vid−1 + âid. Notice that each counterfactual
scenario i is associated with a different stringency level. The death toll associated with
a counterfactual scenario i is simply given as the sum of the corresponding

counterfactual velocities over all days of outbreak, that is:
∑
d

v̂id.

Finally, we can easily calculate the difference between the stringency level of a
counterfactual scenario and the actual/observed stringency level in the country. A
positive difference means that the corresponding counterfactual scenario is more
stringent than the actual scenario. On the other hand, a negative difference reveals that
the counterfactual scenario is less stringent than the actual scenario. Likewise, we
calculate the difference between the actual death toll and the counterfactuals, and this
difference corresponds to our expectation of the counterfactual effects. Since we have
considered many counterfactual scenarios, we can simply calculate the interval of death
toll change, that is, a specific counterfactual scenario may lead to less change than
others, even if they have the same stringency level.

Figure 23 shows the counterfactual effects of hypothetical countermeasures in the
death toll for different countries. According to our results, Belgium would have
experienced a drop of up to 9% on death toll if the adopted countermeasures were more
stringent. On the other hand, death toll would have increased 8% with the adoption of
less stringent countermeasures. We provide the same analysis for UK, Sweden and USA.

An interesting additional dimension for our counterfactual analysis would be to
predict the corresponding effects on the economy. Unfortunately, we do not have the
necessary data to include the economics dimension. However, in the study [18], the
authors used geographic variation in mortality during the 1918 Flu Pandemic in the
USA and found that more exposed areas experience a sharp and persistent decline in
economic activity. On the contrary, cities that intervened earlier and more aggressively
experienced a relative increase in real economic activity after the pandemic subsided.
Altogether, their findings suggest that pandemics can have substantial economic costs,
and non-pharmaceutical interventions can lead to both better economic outcomes and
lower mortality rates.
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Fig 23. (Color online) Counterfactual death toll predictions for different countries.

Conclusion

This study shows how useful concepts in model explainability and counterfactuals can
be used to facilitate reasoning about different hypotheses regarding the ongoing
COVID-19 pandemic. For this, we built intuitive country-level COVID-19 motion
models described in terms of death toll velocity and acceleration, which are defined as
the first and second order derivatives, respectively, of the COVID-19 death toll in
respect to time. The study considered a multitude of factors, and we show that both
velocity and acceleration can be approximated with proper combinations of these
factors. Model explanation techniques reveal the main factors driving velocity and
acceleration. In general, more intricate factors such as urbanization problems, typical
comorbidities, and social inequality issues are among the ones better explaining velocity.
Acceleration, on the other hand, is explained by the effects of public health measures
being adopted, or the lack of them. These explanations enable data-driven narratives
that may help epidemiologists and policymakers to understand factors driving the
outbreak, as well as to monitor the impact of public health measures on the spread of
the disease. We also provide counterfactual predictions in order to estimate what is
likely to happen as a result of an action. As with all approaches to causal inference on
non-experimental data, strong assumptions were required [19]. Specifically, we assumed
an independence between countries in the sense that increasing/decreasing the overall
stringency level of a country does not change the factors and the death toll observed in
other countries. Still, our predictions allow the assessment of the impact of
countermeasures by means of “what-if” simulation scenarios.
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